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Resolving the microscopic hydrodynamics at the moving contact line
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The molecular structure of moving contact lines (MCLs) and the emergence of a
corresponding macroscopic dissipation have made the MCL a paradigm of fluid dynamics.
Through novel averaging techniques that remove capillary waves smearing we achieve an
unprecedented resolution in molecular dynamics simulations and find that they match with
the continuum description obtained by finite element method down to molecular scales.
This allows us to distinguish dissipation at the liquid-solid interface (Navier-slip) and at
the contact line, the latter being negligible for the rather smooth substrate considered.
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Controlling the properties of moving contact lines (MCLs) is key to many modern technological
applications, including printable photovoltaics [1], ink-jet printing [2], liquid-coating and paint-
drying processes [3]. However, modeling the MCL is complicated because continuum descriptions
often fail to describe the fluids microstructure in its proximity. A naive approach based on the
no-slip boundary condition encounters a nonintegrable stress singularity, raising what is known as
the Huh-Scriven paradox [4]. Several mechanisms have been proposed to remove the singularity at
the MCL present in dynamic wetting [5–8]. Among these mechanisms are, for example, the Cox-
Voinov law [9,10], the molecular-kinetic theory [11,12], and the interface formation theory [13,14].
Notably, all these approaches rely on the introduction of a microscopic length scale below which
the classical hydrodynamics of a homogeneous, incompressible, Newtonian fluid fails. To extend the
applicability of hydrodynamics, additional dissipation mechanisms have been suggested, including
Navier-slip [15] and MCL dissipation [16,17]. In addition, this picture is further complicated by the
number of physical mechanisms that can contribute to the dissipation at the liquid-solid interface
[18,19], including phonons [20,21], electronic excitations [22], and charge build-up [23].

Accordingly, a detailed picture is needed to understand these phenomena at the molecular scale
in the MCL region. Molecular dynamics (MD) simulations can deliver a microscopically detailed
picture of the MCL [24] and have been successful on many fronts, for example, in evidencing
the breakdown of local hydrodynamics [25], providing support for the molecular-kinetic theory
both with simple [26] and hydrogen-bonding substrates [27] or investigating the time scale for the
liquid-solid tension relaxation [28]. In previous MD studies, the fluid flow at the contact line was
affected by evaporation [29] and significant contact line dissipation emerged from strong hydrogen
bonding at the liquid-solid interface [30], neither of which plays a role in our work.

Despite the potential for providing information at the molecular scale, the presence of thermal
capillary waves [31] is setting a limit to the resolution one can achieve close to the liquid-vapor
interface. Capillary wave theory [32] predicts that spontaneous surface excitations broaden the width
of fluid interfaces with a logarithmic divergence that depends on the simulation cell size. For small
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FIG. 1. MD snapshot of a cylindrical droplet with 7332 water molecules in a box Lx × Ly × Lz =
198.9 Å × 46.8 Å × 170 Å and external acceleration of 5 × 10−3 Å/ps2 along the x direction. Red: oxygen
atoms; blue: oxygen atoms at the liquid-vapor interface; orange: oxygen atoms at the MCL; gray: carbon
atoms of the substrate. Top: side view; bottom: top view of the first water layer

molecular liquids and typical simulation cells, these fluctuations are larger than the molecular size
[31,33] at room temperature. Several computational strategies have been devised to recover the
intrinsic structure of fluid interfaces [33–39]. In some of these, including the approach reported here,
one first identifies molecules at the phase interface as shown in Fig. 1, then uses them to define a
local coordinate system. In turn, one can use this coordinate system to compute the profiles of chosen
observables as a function of the local distance from the interface. To obtain further insight into the
dynamics of the molecules at the MCL, one has to cope with its fluctuations. In this case, however,
two interfaces are involved (liquid-vapor and liquid-solid), and one-dimensional intrinsic profiles
are not enough to describe the system. Here, we extend the approach of intrinsic profiles to the region
around the three-phase contact line by introducing two-dimensional density maps that are functions
of the position relative to the liquid-vapor and liquid-solid interfaces, respectively. This procedure
allows us to resolve the structure and the flow close to the MCL at an unprecedented resolution.

We performed MD simulations of a cylindrical water droplet moving on a rigid substrate under
the influence of a constant acceleration parallel to the solid surface. Water is modeled using the
SPC/E potential [40] and the substrate as a rigid, graphite-like structure with defects [41], obtained
by removing 35% of randomly selected surface atoms. The presence of defects serves rather well
the purpose of providing a friction coefficient thanks to the lateral modulation of the water-surface
interaction potential. All molecular dynamics simulations are performed with an in-house modified
version of the GROMACS simulation package, release 2019.4 [42], that uses a Nosé-Hoover [43,44]
thermostat coupled only to the direction orthogonal to both the surface normal and the external force
[25], keeping in mind that this introduces a bias in the surface energies [45]. Further details are
reported in the Supplemental Material [46]. This includes details on all the algorithms used [47–52].
Input files and GROMACS source code patch are provided in a dataset available on Zenodo [53].

The first step in computing intrinsic maps of the droplet’s hydrodynamic fields is identifying the
surface molecules at the liquid-vapor interface, cf. Fig. 1. Here, as detailed in the Supplemental
Material [46], we use the GITIM algorithm [39] as implemented in the Pytim package [50].
The surface molecules are used to provide the location of the (continuum) liquid-vapor ζV (r)
and liquid-solid ζS (r) interfaces by using a linear interpolation between neighboring triplets of
surface molecules. We compute the intrinsic map of a generic local observable A as A(ξ) =
〈∑i Ai

∏
α δ(ξα − min |ri − ζα|)〉/N (ξ). Here, α = {V, S} labels the liquid-vapor and liquid-solid

interfaces and ξ = (ξV , ξS ) are the distances of a point in space from the two surfaces. The angular
brackets indicate a statistical average over time, and the index i labels particles. The normalization
factor N (ξ) is calculated from the intrinsic density map of uniformly distributed random points
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FIG. 2. Intrinsic map of the density (color) and velocity field in the comoving reference frame (arrows).
The molecules belonging to the liquid-vapor interface have zero inherent distance ξV and are represented here
using the result of an elliptic fit through their average position (small open circles). The density field has
resolution 0.22 Å × 0.2 Å and is normalized with respect to the bulk density. The velocity field has resolution
1.7 Å × 1.6 Å and is scaled such that an arrow of length 1 Å on the plot corresponds to a velocity of 0.01 Å/ps.

within the liquid phase. The two-dimensional intrinsic map A(ξ) is best interpreted if remapped
back from the generalized coordinates (ξV , ξS ) to the Cartesian ones using the average location of
the interfaces as the origin of the local frame. This approach provides precise information close to
the liquid-vapor interface but loses accuracy far away from the interface. However, this region is
not of concern for the current investigation, which focuses on the neighborhood of the MCL. The
intrinsic density field reported in Fig. 2 reveals the oscillations associated to molecular layering
at both the liquid-solid and liquid-vapor interfaces. In particular, a pronounced gap region due
to hard-core repulsion appears next to both interfaces. As shown in Fig. 2, the resolution of the
velocity field matches the molecular scale, with bins of size 1.7 Å × 1.6 Å, while the density bins
are of size 0.22 Å × 0.2 Å. We do not observe any trace of an influence of positional correlations
on the velocity field, which is a much smoother function of the position than the density. It is
often remarked that continuum hydrodynamics breaks down in simple liquids below scales of few
molecular diameters [54,55]. However, this is true for processes like sound propagation that, at that
scale, happen during extremely short times on the order of a picosecond. In contrast, we compute
the stationary fields of the hydrodynamic quantities by averaging over time intervals so large that
no memory effect can survive.

The density map is in fact a correlation function and the oscillations can be interpreted as in a
pair correlation function. The local density, computed as the (reciprocal) average volume available
for each atom, is constant over the whole liquid phase and the droplet is incompressible (see plot
of ∇ · v in Fig. A8 of the Supplemental Material [46]) down to and below the molecular scale.
Therefore, the stationary velocity field that we compute from MD data can be modeled as that of a
homogeneous incompressible fluid in the finite element method (FEM) simulations.

In Fig. 3 we report the horizontal velocity profile for molecules in the slab z < 6 Å, com-
puted in the droplet comoving frame using both the global and intrinsic coordinate systems. The
velocity sampled in the global coordinate system extends further than the intrinsic one because of
the fluctuations. Both profiles coincide in the region |x| < 50 Å, showing a steep increase when
departing from the droplet center. However, close to the MCL, the velocity profile computed in
the global coordinate system flattens out. In contrast, the intrinsic one is compatible over its entire
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FIG. 3. Top panel: horizontal velocity profiles (squares: global coordinate system; circles: intrinsic profiles)
sampled along x at z = 3 ± 3 Å. The dot-dashed curve is a fit to a power law c + a(x − x1)−1 + a(x2 − x)−1.
The dashed line is the convolution of the best-fit power law with a Gaussian as described in the text
(a = −0.435 Å2/ps, c = −0.0495 Å/ps, x1 = 66.42 Å, x2 = −66.33 Å). The green curve is the FEM solution
evaluated at the interface z = 0. Bottom panel: double logarithmic scale, same data as in the top panel but
symmetrized along the vertical axis and shifted so that the fitting constants c and x1 are zero (a = 0.335 Å2/ps).

extension with a power-law slip profile. The profile in the global coordinate system can be very well
described in the spirit of the capillary wave theory by using quantities Ã(x) = ∫ Lx

0 G(x − x′)A(x′)dx′

convoluted with the Gaussian distribution G(x) ∼ exp[−x2/(2σ 2)] of the interface fluctuations, so
that vx = p̃x/ρ̃. Here, A(x) is the profile of observable A averaged over the whole range in y direction
and over the first molecular layer in the z direction.

In the top panel of Fig. 3 we report as a dashed-line the velocity profile obtained by applying
this convolution procedure to the best fit intrinsic velocity profile vx ∼ (x − x1)−1 + (x2 − x)−1

and a steplike density profile, using the interfacial layer width σ = 2.5 Å. The resulting profile
reproduces very well the flattening in the region close to the MCL. These features are more evident
in the double logarithmic scale, reported in the right panel of Fig. 3, where we have symmetrized
the profile around its minimum and shifted it vertically and horizontally by the fitting constants x1

and c. Our results show that after removing the capillary fluctuations via the intrinsic map method,
the power-law behavior extends over the entire range down to the molecular length scale, and the
previously reported departure from the power law [56] is due to the smearing introduced by capillary
waves rather than a breakdown of hydrodynamics at short length scales.

The present computational approach allows us to discuss some of the proposed corrections to
continuum models. We compare our MD simulation results with a full hydrodynamic continuum
model for the MCL, where we solve a Stokes problem for an incompressible viscous Newtonian
fluid (Re = 0) featuring a free interface subject to capillary forces, which is driven by a constant
acceleration g. Dissipative processes are included by the combination of Navier-slip, i.e., βux =
μ∂zux, and dynamic contact line dissipation [57], i.e., νxux = γ /δ(cos θe − cos θ ). The slip parame-
ter β enhances the inhomogeneity in the flow by increasing ∂zux. In contrast, the contact line friction
δ enhances the asymmetry of the droplet shape through advancing and receding contact angle, e.g.,
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FIG. 4. Left: averaged MD velocity profile v = (vx, vz ) (shown for ρ > 0.66ρ̄); right: optimal Stokes
velocity profile u0 = (u0x, u0z ) for β = 1.38 (slip-length b = 40Å) and δ = 0, Bo = 0.2414 and ϑe = 97.2◦

in a comoving frame (vectors) and absolute horizontal velocity (shading).

cf. Fig. A5 of the Supplemental Material [46]. Note that we use constant slip length and contact
line dissipation, as space-dependent coefficients would yield an overdetermined improved fit but
not lead to new physical insights. We discretize the system of partial differential equations using the
isoparametric P2 − P1 Taylor-Hood finite elements combined with an ALE mesh motion strategy,
for details cf. the Supplemental Material [46] and Refs. [58,59].

For a given acceleration g and droplet size L, we compare the velocity of traveling-wave solutions
from the Stokes problem u(t, r) = u0(x − v0t, z) with the corresponding velocity from the MD
problem by computing the root-mean-square deviation (rmsd) , relative to the MD accuracy,
with 2 = ∫

�0
ρ|u0 − v|2/δv2dxdz/

∫
�

ρdxdz, in the comoving frame �0 = � − (v0, 0)t , where
δv(x, z) is the space-dependent MD averaging error of v. In Fig. 4 we show the excellent agreement
of the horizontal components of MD and Stokes velocity for a droplet with optimized β and δ.
Correspondingly, in Fig. 5 we show the rmsd  for different pairs of δ and β, where the optimal
parameters suggest a vanishing or small contact line dissipation 0 < δ < 0.05 and β = 1.38,
corresponding to a slip-length b = 40 Å. Because  is a relative measure of inaccuracy with respect
to that of MD, we expect  ∼ O(1) for a good fit, similarly to a reduced χ2 test. For given δ, the
local minima in Fig. 5 suggest that also other parameters with larger δ and smaller β are feasible.
However, those parameters are not optimal for the prescribed bulk viscosity μ = 0.7 mPa s but could
possibly be improved by fitting the entire triple (μ, β, δ), considering spatially inhomogeneous
parameters or a compressibility of the fluid.

The water molecules are subjected to a friction force that, in steady-state conditions, balances g
and is defined as the horizontal component of the force density f�,x(x, z) acting from the substrate on
water molecules. Even though long-range corrections for dispersion forces are in place, the friction
force becomes negligible at larger elevations z � 10 Å and is acting almost exclusively on the first
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0

0.5

1

1.5

2

FIG. 5. Rmsd  between FEM and MD flow fields for different dissipation parameters β (Navier-slip) and
δ (contact line) in the hydrodynamic Stokes model.
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FIG. 6. Profile of the friction surface density computed from the MD data in the global (squares) and
intrinsic (circles) coordinate systems. The green curve is the FEM solution evaluated at the interface z = 0.

layer of water molecules at the substrate. Therefore, we can define a friction force per unit area as
F� (x) = ∫ ∞

0 f�,x(x, z)dz. This force is the counterpart of the surface friction that in sharp interface
models like the present FEM can be calculated from the stress t · σν ≡ −μ�t · u at the solid-liquid
interface, where t and ν are the corresponding tangential and normal vectors. Figure 6 shows the
friction surface density F� obtained from the MD trajectories and compared to the FEM results.
Far from the droplet edges, both force profiles are in excellent agreement. However, close to the
advancing and receding MCL, the friction force behaves qualitatively differently. This mismatch
contrasts the overall good match of the slip velocity profile Fig. 3. Therefore, even though the
Navier-slip boundary condition is an excellent effective model in reproducing the slip velocity, the
same is not true concerning the friction force near the MCL.

This difference implies that the underlying dynamics is more complex than that encoded into
the Navier-slip boundary condition. Remarkably, even in the present case, where the substrate is
particularly smooth and the optimal FEM solution is compatible with zero contact line dissipation,
we observe a significant deviation of the friction force from the one emerging from the Navier-slip
boundary condition. Note that, upon integration of the force density in Fig. 6, this contribution is
compatible with a contact line friction δ � 0.05. Larger defects or soft substrates will enhance this
effect.

In this work, we compared microscopic MD simulations and hydrodynamic FEM simulations of
sliding droplets with respect to their densities, flow and force fields at interfaces and MCLs. Using
a novel averaging method, we showed that assumptions of continuum hydrodynamics are valid near
the MCL. However, despite an effectively vanishing contact line friction, corrections to the force
balance are clearly visible. In the future, larger droplets or elastic substrates with stronger roughness
should be investigated to further enhance contact line friction and suppress density oscillations.
Additionally, one should consider thermodynamics, compressibility, and evaporation of the liquid
phase to better match continuum hydrodynamics with the microscopic interacting-particle system.

The datasets available on Zenodo [53] provide MD input files, the GROMACS source code patch
for the thermostat, averaged data from MD simulations (Cartesian mesh with mass density and
velocity field) as well as FEM simulation solutions (triangular 2D droplet mesh with velocity field)
in ASCII format, and MATLAB functions for the data import and plot generation. The MATLAB
code is available at Ref. [60].
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