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Background: When characterizing the brain’s resting state functional connectivity (RSFC) networks, demonstrat- 

ing networks’ similarity across sessions and reliability across different scan durations is essential for validating 

results and possibly minimizing the scanning time needed to obtain stable measures of RSFC. Recent advances in 

optical functional neuroimaging technologies have resulted in fully wearable devices that may serve as a com- 

plimentary tool to functional magnetic resonance imaging (fMRI) and allow for investigations of RSFC networks 

repeatedly and easily in non-traditional scanning environments. 

Methods: Resting-state cortical hemodynamic activity was repeatedly measured in a single individual in the home 

environment during COVID-19 lockdown conditions using the first ever application of a 24-module (72 sources, 

96 detectors) wearable high-density diffuse optical tomography (HD-DOT) system. Twelve-minute recordings of 

resting-state data were acquired over the pre-frontal and occipital regions in fourteen experimental sessions over 

three weeks. As an initial validation of the data, spatial independent component analysis was used to identify 

RSFC networks. Reliability and similarity scores were computed using metrics adapted from the fMRI literature. 

Results: We observed RSFC networks over visual regions (visual peripheral, visual central networks) and higher- 

order association regions (control, salience and default mode network), consistent with previous fMRI literature. 

High similarity was observed across testing sessions and across chromophores (oxygenated and deoxygenated 

haemoglobin, HbO and HbR) for all functional networks, and for each network considered separately. Stable 

reliability values (described here as a < 10% change between time windows) were obtained for HbO and HbR 

with differences in required scanning time observed on a network-by-network basis. 

Discussion: Using RSFC data from a highly sampled individual, the present work demonstrates that wearable 

HD-DOT can be used to obtain RSFC measurements with high similarity across imaging sessions and reliability 

across recording durations in the home environment. Wearable HD-DOT may serve as a complimentary tool to 

fMRI for studying RSFC networks outside of the traditional scanning environment and in vulnerable populations 

for whom fMRI is not feasible. 
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. Introduction 

Mapping the functional organization of the human brain at rest

an be achieved through studies of resting-state functional connectiv-

ty (RSFC). RSFC is inferred from the synchronized activity of differ-
Abbreviations: (HD-DOT), High-density diffuse optical tomography; (PFM), preci

roscopy; (RSFC), resting-state functional connectivity; (fMRI), functional magnetic
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SFC data are acquired from multiple individuals for short periods (5–

0 minutes) in the absence of any explicit task or stimulus. Individual-

evel data are then co-registered to a common space, and RSFC networks

re identified using the entire multi-subject dataset. By combining data

rom hundreds or even thousands of individuals, group-level studies of

SFC have allowed neuroscientists to map the functional organization

f the human brain at rest in extraordinary detail. [ Beckmann et al.,

005 , Smith et al., 2009 , Thomas Yeo et al., 2011 ] 

In RSFC studies, subjects are often studied over a single testing ses-

ion. However, identifying particular network features across repeated

easurements (i.e., similarity ) is key to ensure the accuracy and repli-

ability of the obtained results. Furthermore, assessing the reliability of

etwork features across different scanning durations can inform whether

eliable measurements can be achieved from shorter recordings in the

ndividual. This could be especially useful for studies involving devel-

pmental or clinical populations, for whom conducting long scanning

essions can be challenging, and has implications for the ease and regu-

arity with which such measurements might be obtained. 

While fMRI offers the advantage of high spatial resolution, its size

nd the requirement of the subject to remain still significantly limit its

pplication to vulnerable populations, such as critical care patients or

nfants, and to ecologically meaningful contexts. Furthermore, fMRI has

ontraindications for subjects with electronic or metal implants (such as

acemakers, cochlear implants, aneurysm clips, and surgical devices).

euroimaging methods that are portable and even wearable have the

otential to allow investigations of RSFC in these populations and in

nrestricted environments, such as at the bedside, in the clinic, or in

he home. 

Functional near-infrared spectroscopy (fNIRS) surmounts many of

hese challenges by allowing for studies of cortical activity outside of

he traditional scanning environment. [Boas et al., 2014] fNIRS em-

loys an array of optical sources and detectors placed on the scalp to

onitor the changes in the cerebral concentrations of oxyhaemoglobin

HbO) and deoxyhaemoglobin (HbR). Several previous studies have

mployed fNIRS to investigate RSFC in the adult [ Racz et al., 2018 ,

hang and Zhu, 2020 , Niu et al., 2019 , Li et al., 2015 , Lu et al., 2010 ,

iu et al., 2013 ] and infant brain. [ Homae et al., 2010 , Taga et al., 2018 ,

lanco et al., 2021 , Lee et al., 2020 ] 

An extension of fNIRS known as diffuse optical tomography (DOT)

ses multiple sources and detectors of near-infrared light at several

ource–detector distances to acquire images of HbO and HbR changes

ver the cortical surface. [ Pinti et al., 2020 , White et al., 2009 ,

ggebrecht et al., 2014 , Chalia et al., 2019 ] High density DOT (HD-DOT)

 White and Culver, 2010 , Vidal-Rosas et al., 2021 , Frijia et al., 2021 ]

akes the method further still. Using a dense array of channels with

patially overlapping sensitivity distributions and a range of source-

etector separations, spanning the “short separation ” ( < 15 mm) to

long ” ( ≥ 30 mm) range, HD-DOT permits the production of high-quality

hree-dimensional images of functional brain activity. The information

btained from the plurality of overlapping channel measurements in-

reases spatial resolution, and the use of multiple source–detector sepa-

ations improves depth specificity, [White and Culver, 2010] though as

ith all existing optical neuroimaging methods, the sensitivity of HD-

OT is limited to the superficial areas of the cortex. 

Several prior fNIRS and DOT studies have investigated similarity and

eliability of network metrics across testing sessions and scanning du-

ations. Geng et al. (2017) investigated the effect of fNIRS scanning

uration on a set of graph theory metrics derived from RSFC data.

Geng et al., 2017] Nodal efficiency (a measure of the ability of a node

o propagate information with the other nodes in a network) and nodal

etweenness (a measure of centrality in a network) were found to be

eproducible after only one minute of fNIRS signal acquisition, whereas

ocal and global efficiency (both measures of efficiency in information

ransfer, locally and globally) were only reproducible after five minutes.

ang et al. (2017) assessed the minimum fNIRS scanning duration re-

uired to map stable RSFC and graph theory metrics in children. RSFC
2 
aps were stably achieved after seven minutes of scanning time, while

raph metrics were stably achieved after two and a half minutes at low

etwork thresholds. [Wang et al., 2017] White et al. (2009) developed

he archetypal HD-DOT system, which was used to study RSFC networks

n the adult human brain. [White et al., 2009] In this study, the system

as used on a single adult subject and covered the motor and visual

ortices. Recordings were performed across three sessions, and results

uggested that RSFC maps could be produced with high similarity across

essions. While this study’s HD-DOT system provided large cortical cov-

rage and high spatial resolution, the system’s bulky optical fibres lim-

ted translatability outside of the scanning environment and to certain

opulations. 

Recently, our group demonstrated a new generation of wearable

D-DOT system (LUMO, UCL DOT-HUB and Gowerlabs Ltd., UK). This

ystem’s modular, lightweight design allows for large cortical cover-

ge without sacrificing wearability, allowing for functional brain map-

ing to be undertaken outside of the traditional scanning environment.

Vidal-Rosas et al., 2021] We have demonstrated the feasibility of us-

ng a 12-module version of this system (36 sources and 48 detectors)

or retinotopic mapping of the adult visual cortex [Vidal-Rosas et al.,

021] and social stimuli response mapping of the infant temporal cor-

ex. [Frijia et al., 2021] 

In the present study, we sought to demonstrate that a wide-field

f view version of this same, wearable HD-DOT technology (compris-

ng 24-modules, 72 sources and 96 detectors) can yield high similar-

ty and reliability values in RSFC networks. Furthermore, we sought to

emonstrate that it is possible to achieve this when the device is self-

dministered, and recording is undertaken in the home environment. 

. Materials and methods 

.1. Wearable HD-DOT system 

We employed a custom 24-module HD-DOT system (LUMO, UCL

OT-HUB and Gowerlabs Ltd., UK), [ Vidal-Rosas et al., 2021 , Frijia et al.,

021 ] constructed from two 12-tile LUMO systems run synchronously.

he device consists of multiple, independent hexagonal modules (or

tiles’, Fig. 1 a ), each containing four photodiodes and three dual-

avelength LEDs emitting at 735 nm and 850 nm (24 modules yields

2 sources and 96 detectors total). The tiles are mounted into ‘docks’,

nd a chain (or chains) of docks are fitted into a neoprene cap. Seven

hort plastic optical fibres, one for each of the three sources and four

etectors available in each tile, are mounted together to form a ‘light-

uide’ that transmits light from the tile through the dock and hair to

he scalp and back again. This scheme provides extensive flexibility to

osition the tiles to suit the experimental paradigm, while adapting to

he curvature of the head. It also makes moving tiles from one cap to

nother fast and simple. Fig. 1 b shows a 24-module array fitted within a

eoprene cap, designed to interrogate the visual and pre-frontal cortices.

his arrangement was chosen to assess easily mappable networks (visual

etworks and pre-frontal networks) as well as maximize the separation

istance between the two LUMO dock chains to reduce the possibility of

nwanted interaction effects between them. The full arrangement yields

pproximately 800 source-detector pairs (‘channels’, ∼400 pre-frontal,

400 occipital) within the 10–45 mm source-detector separation range

xpected to provide viable measurements. 

.2. Subject and experimental protocol 

The study considered a single, healthy participant (author RJC, male,

6 years old at time of study) with normal vision and no known neu-

ological conditions. Fourteen experimental sessions took place over a

eriod of three weeks and under lockdown conditions due to the COVID-

9 outbreak. The protocol employed was approved by the UCL research

thics committee under application 1133/001. However, as in this case
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Fig. 1. Wearable HD-DOT system and registration. a) The LUMO tile module; b) neoprene cap fitted with a 24-module LUMO system and a subset of frames used 

during the photogrammetry process (de-identified), derived from a video recording that comprised three full rotations of the head at different heights; c) a final 

3D surface mesh model of the participant’s head showing the location of head landmarks (yellow circles) and module markers (red circles); d) source-detector and 

channel layout in pre-frontal and occipital regions showing channels with source–detector separation ≤ 40 mm. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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he study was performed by the investigator on himself in a home en-

ironment, it was confirmed prior to commencement that the study fell

utside the remit of the UCL research ethics committee. Each experi-

ental session was carried out in a quiet and dimly lit room. First, the

articipant fitted himself with the neoprene cap and adjusted it with

 Velcro chin strap. The cap was positioned to ensure that the same

oint on the cap (marked with a notch on the neoprene surface) was

ositioned over the inion, the distance of the cap above the ears was ap-

roximately equal on both sides, and the cap’s frontline sat just above

he eyebrows. The participant sat in an adjustable chair in front of a 27-

nch computer monitor at a viewing distance of 90 cm; the full screen

ubtended a radial angle of 12°. A video recording of the participant

or full length of the experiment was made to verify that he complied

ith the protocol, which included: sitting in a relaxed position, having

ull attention on the screen, and remaining awake and alert. All sessions

ere performed between 10:00–12:00 BST. Food and caffeine intake

ere also consistent, with the subject having had 1 cup of coffee and

o food prior to recording. Each resting-state recording session lasted

welve minutes during which the subject attended to a fixation cross

isplayed on a 50% grey background. [Vidal-Rosas et al., 2021] 

.3. Optode registration 

The 3D digitization of the optode locations was performed using pho-

ogrammetry. [Vidal-Rosas et al., 2021] Briefly, the registration pro-

ess began by having a second individual record a video of the par-

icipant using a smartphone (iPhone XR, Apple Inc.). This video con-

isted of three panning rotations around the subject’s head at different

eights ( Fig. 1 b ), while the participant was seated and still with their

yes closed. The video was imported into a commercial photogramme-

ry software package (Metashape, Agisoft LLC ), where between 140 and

00 frames were automatically extracted and used to produce a three-

imensional mesh model. A custom-made program written in MATLAB

 MathWorks, Inc. ) allowed the manual selection of the locations of the

ranial landmarks and tile markers (the corner of green and pink trian-

le stickers on the HD-DOT modules) that were then used to determine

he location of the sources and detectors on the subject’s scalp. An ex-

mple of the participant’s digitized head model is displayed in Fig. 1 c ,
3 
long with the cranial landmarks (yellow circles) and tile marker po-

itions (red circles). Since the dimensions of the tiles and light guides

re fixed and known, the location of the seven optical contact points on

he scalp could be computed from the locations of the tile marker posi-

ions without further approximation. Fig. 1 d shows the array layout for

re-frontal and occipital regions. 

.4. Head modelling and registration 

MRI images of the participant were available from a previous ex-

eriment. [Zhao et al., 2020] This provided T 1 - and T 2 -weighted

agnetic resonance (MR) images that were linearly co-registered

Avants et al., 2011] and used to obtain a five-layer tissue head

odel using the unified segmentation algorithm. [Ashburner and Fris-

on, 2005] The head model included scalp, skull, cerebrospinal fluid

CSF), grey matter (GM), and white matter (WM) tissue layers, which

ere converted into a high-resolution tetrahedral mesh using Iso2mesh

github.com/fangq/iso2mesh), a MATLAB mesh generation and pro-

essing toolbox. [iso2mesh 2020] The head volume mesh contained

2 × 10 6 elements and ∼3 × 10 5 nodes. The mesh included the MRI-

erived cranial landmarks, which were used to register the digitized

ource and detector positions onto the surface of the mesh by means of

 rigid transformation. Additionally, a surface mesh of the GM was built

o aid visualisation of the imaging results. The pipeline for the registra-

ion process is illustrated in Fig. 2 . 

.5. Signal processing and HD-DOT image reconstruction 

Each step in the data pre-processing pipeline was undertaken us-

ng functions from the Homer2 fNIRS processing package ( www.homer-

nirs.org ), or modified versions thereof. Channels were discarded if their

ean intensity values fell outside of the range of 5 × 10 − 5 V to 2.5 V; if

heir coefficient of variation (standard deviation/mean intensities) ex-

eeded 8%; or if they were outside of the distance range of 0–60 mm.

ntensity data were then converted to absorbence (optical density, OD)

nd then to changes in oxy- and deoxy-haemoglobin concentrations

HbO and HbR). Motion correction was not used in preprocessing given

hat the data were motion free as per visual inspection (see Supplemen-

ary Figures 1–4 ), the benchmark adult RSFC HD-DOT study did not

http://www.homer-fnirs.org
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Fig. 2. Data collection and analysis 

pipeline. Pipeline for head modelling, 

registration, data preprocessing, and the 

reconstruction of images of hemodynamic 

changes. 
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se motion correction, [White et al., 2009] and the effects of motion

orrection techniques on data and results are variable. [ Cooper et al.,

012 , Sherafati et al., 2020 ] To account for extracerebral contamina-

ion, we employed a local short-separation regression approach. [Vidal-

osas et al., 2021] In this approach, the average of the signals derived

rom all the short channels that share the source or the detector of a

iven long channel are regressed from the signal of that long channel.

he rationale behind this approach is that extracerebral contamination

f a long-channel signal is primarily due to changes in haemoglobin con-

entrations directly beneath its source and its detector, [Gagnon et al.,

012] and thus the single short channel closest to the mid-point of that

ong channel (which is typically used as a regressor) is unlikely to be the

ptimal choice. Following short separation regression, temporal filter-

ng to the RSFC range was performed using a nuisance regression model.

Caballero-Gaudes and Reynolds, 2017] Sine and cosine functions for

requencies above 0.08 Hz were included in the model to remove the

ontribution of physiological noise sources (e.g., respiration and cardiac

ulsation), and up to 5th order Legendre polynomials were included

o account for fluctuations at very low frequencies. Finally, data were

ownsampled to one-fourth of the original frequency (to 1.25 Hz) to

educe data dimensionality for image reconstruction. 

For image reconstruction, the forward problem was modelled using

he diffusion approximation. [Arridge, 1999] The Jacobian matrix was

alculated using the discretized diffusion equation using the finite ele-

ent method in Toast ++ [Schweiger and Arridge, 2014] which was ap-

lied to our subject-specific head mesh. The Jacobian was calculated in a

ne regular grid with size of 30 × 30 × 30 voxels and then projected into

he tetrahedral head model. [Schweiger and Arridge, 2003] The optical

roperties of each tissue layer of the mesh were derived from literature

alues, [Bevilacqua et al., 1999] linearly interpolated to provide values

t the required wavelengths. Images of changes in absorption coefficient

ere calculated via inversion of the forward model using zeroth-order

ikhonov regularization. The recovered images of the changes in absorp-

ion coefficient at the two wavelengths were then converted to images

f changes in HbO and HbR concentrations. [Cope, 1991] For visualiza-

ion and further analysis, these haemoglobin images were then mapped

rom the tetrahedral volume mesh to the GM surface mesh. Following

his, a sensitivity map of the array setup was calculated by first finding a

ensitivity mask for each individual session. To create a sensitivity mask

or each session, we set a threshold of 5% of the maximum value of the

ormalized Jacobian such that nodes exhibiting a sensitivity above this

alue were set equal to one in a binary mask. All sessions’ binarized

asks were then summed to compute a group-level mask. 

.6. Cortical parcellation 

In the image space, computing HbO and HbR functional connec-

ivity (FC) matrices based on tens of thousands of GM surface mesh

odes is highly computationally expensive. To reduce data dimension-

lity, a cortical parcellation approach was used. In this approach, the
4 
M surface mesh is divided into parcels. The HbO and HbR values for

ll nodes within each parcel are averaged to produce a single HbO and

bR value for each parcel at each time point. In this study, the Schaefer

tlas [Schaefer et al., 2018] was used for parcellation as it is based on

oth anatomical and functional information. The atlas comprises 1000

arcels across the brain volume and was developed from the applica-

ion of gradient-weighted Markov Random Field model to the MRIs of

489 participants. For this study, the Schaefer atlas, which exists in

he same space as the Colin27 model, [Collins et al., 1994] was con-

erted from voxel form to node positions. We non-linearly registered

he T 1 -weighted Colin27 MRI template to the space of the participant’s

 1 -weighted MR image. This transform was used to transform the node

ositions from the Schaefer parcellation to the space of the subject. Each

ode in the participant’s GM surface was assigned an anatomical label

ccording to the label of the nearest transformed node from the Schaefer

tlas. 

The group level sensitivity mask was then applied to the parcel-

ated GM surface mesh, producing a map of parcels that the array was

ensitive to ( Fig. 3 ). Parcels were included if the array was sensitive

o at least 50% of the GM surface mesh nodes belonging to that par-

el (as determined by the GM sensitivity mask, see above) and across

t least twelve out of fourteen sessions (85%). These parameters were

he highest possible values for number of sessions and nodes that still

ncluded full cortical coverage over the regions of interest. Once the

ensitivity profile of the system was applied to the parcellated cor-

ex, 154 parcels remained within the field-of-view of our experiment

 Fig. 3 ). 

.7. Parcel assignment to resting state functional connectivity networks 

Following parcellation, parcels were clustered into RSFC networks

s described by Yeo et al. (2011, below referred to as Yeo Networks ).

Thomas Yeo et al., 2011] This was performed to visualize which RSFC

etworks the array was sensitive to; serve as the ground truth for our

patial ICA analysis (see Section 2.8.1 ); and allow for the assessment

f individual RSFC networks in our similarity and reliability analy-

es (see Section 2.8.2 ). The Yeo Networks were originally identified

sing resting state fMRI in 1000 adult subjects, and define the spa-

ial cortical maps of the brain’s RSFC networks. [Thomas Yeo et al.,

011] The Schaefer parcellation scheme was developed based on the

eo Networks, [Schaefer et al., 2018] such that each parcel has a cor-

esponding Yeo Network. For this dataset, the 154 Schaefer parcels that

ur HD-DOT system was sensitive to were assigned to Yeo Networks

ased on their spatial overlap. On this basis, our system was sensitive to

ix Yeo Networks: the visual central network, the visual peripheral net-

ork, dorsal attention network, salience network, the control, and the

efault mode network (DMN). These networks were split into left and

ight hemispheres for analysis purposes but are presented as unified in

ig. 3 . 
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Fig. 3. Cortical parcellation and parcel as- 

signment to resting state functional con- 

nectivity networks. Parcellation of the sub- 

ject’s grey matter surface mesh according to the 

Schaefer parcellation scheme was combined 

with the binary sensitivity mask of the 24- 

module array. Remaining parcels after appli- 

cation of the sensitivity mask to the parcel- 

lated grey matter surface mesh were clustered 

according to the Yeo Networks. Each parcel 

was included in one of six Yeo Networks (vi- 

sual central, visual peripheral, dorsal attention, 

salience, control, and default mode network) to 

which the system was sensitive. (For interpre- 

tation of the references to colour in this figure 

legend, the reader is referred to the web version 

of this article.) 

2

2

 

g  

r  

a  

[  

s  

g  

w  

t  

o  

t  

[  

c  

m  

o  

v  

t  

a  

a  

m  

t  

B

 

w  

Y  

t  

n  

w  

e  

d  

t  

o  

t  

i  

w  

m  

c  

d  

n

2

s

 

(  

n  

s  

d  

n  

t  

q  

m  

c  

a  

T  

c  

m  

a  

s  

G  

a  

a  

t  

m

 

P  

(  

s  

l  

p  

p  

a  

c  

(  

[  

g  

m  

p  

t  

g  

m  

t  

o  

m  

(  

e  

i

 

t  

p  

p  

t  
.8. Functional connectivity analyses 

.8.1. Spatial group independent component analysis (sGICA) 

Group-level RSFC networks were computed by means of a spatial

roup ICA [Beckmann et al., 2009] by temporally concatenating all

ecording sessions’ datasets after time-series normalization to zero mean

nd unit variance, producing a single group dataset with dimensions

parcels x haemoglobin chromophores (2)] x [time points x fourteen

essions]. The FastICA algorithm [Hyvarinen, 1999] was applied to the

roup dataset to extract 21 independent components (ICs). This number

as chosen because it is equal to the number of principal components

hat explain 70% of the group data variance. These parameters are based

n the consistency of the ICA components across multiple realizations of

he algorithm and the temporal anti-correlation of HbO and HbR maps.

Blanco et al., 2021] The results of this sub-analysis are presented for

ompleteness in Supplementary Figure 5 . The session-specific spatial

aps associated with each of the 21 independent RSFC networks were

btained using a dual-regression approach. This two-step method in-

olves an initial spatial regression of the sGICA maps of interest against

he session-specific dataset to obtain the session-specific time courses

ssociated with each group-level IC. Then, that time course is used as

 regressor in a simple linear model to estimate session-specific spatial

aps. T-stat maps were computed based on these session-specific spa-

ial maps and multiple comparisons correction was performed using the

onferroni method. 

To avoid the subjective selection of IC maps to represent RSFC maps,

e identified RSFC maps by quantitatively comparing them with the

eo Networks using a Dice coefficient ( Fig. 4 ). We used permutation

esting to ascribe a p-value to the obtained Dice coefficients for each

etwork. To create a null distribution, we computed 1000 permutations,

here for each permutation the location of parcel labels was randomly

xchanged in each session’s dataset. This resulted in a ‘parcel-label ran-

omized dataset’. Then, the parcel-label randomized dataset was input

o sGICA as described in the paragraph above. Following each iteration

f sGICA, the Dice coefficient was computed for each spatial map and

he associated Yeo Networks. The maximum Dice coefficient, represent-

ng the spatial map with highest overlap with any of the Yeo Networks,

as stored to create an empirical estimate of the null distribution of

aximal values. Finally, we estimated the p-value of the Dice coeffi-

ient associated with each network as the number of values in the null

istribution that are larger than the observed value divided by the total

umber of permutations. 

.8.2. Assessment of similarity across sessions and reliability across 

canning durations 

In the fMRI literature, precision functional connectivity mapping

PFM) is a technique that can be used to characterize the similarity of FC
5 
etwork features of individual brains across recording sessions (i.e., how

patially consistent the identified networks are from session to session,

ay to day) and the reliability across recording durations (i.e. how stable

etworks are as a function of the duration of the dataset used to resolve

hem). [ Gordon et al., 2017 , Lynch et al., 2020 ] PFM considers large

uantities RSFC data obtained from individual subjects (such as through

ultiple scanning sessions or a single multi-hour session) as opposed to

ollecting single-session, short-duration data from multiple subjects in

 group. [ Gordon et al., 2017 , Lynch et al., 2020 , Gratton et al., 2020 ]

he subject is considered ‘densely sampled’, in a manner equivalent to

ollecting single datasets from multiple individuals. For example, Lau-

ann et al. (2015) analysed 84 sessions of resting-state fMRI data of

 single individual and found networks to be highly similar across ses-

ions within the sampled individual. [Laumann et al., 2015] Relatedly,

ordon et al. (2017) investigated the reliability of RSFC matrices and

 set of graph theory metrics (e.g., global efficiency and modularity)

cross a range of scanning durations and found that the scanning dura-

ion required to obtain a reliable characterization varied from 10 to 90

inutes depending on the measure. [Gordon et al., 2017] 

Here, the computation of RSFC network similarity was adapted from

FM approaches employed by Gordon et al. (2017) and Laumann et al.

2015). [ Gordon et al., 2017 , Laumann et al., 2015 ] First, for each ses-

ion, we generated a parcel-to-parcel FC matrix. This involved calcu-

ating the correlation (Pearson correlation coefficient, r ) between each

arcel’s time-course and the time-courses of all other parcels, effectively

roviding a 154 × 154 FC matrix for each session, and for both HbO

nd HbR. Then, for each session, a ‘ground truth’ FC matrix was cal-

ulated based on the concatenated data of all 13 of the other sessions

note we use the term ‘ground truth’ here as defined in previous studies

Lynch et al., 2020] for consistency). Next, we divided individual and

round truth FC matrices into networks, such that each new ‘network’

atrix contained only the parcels that fell within that network. To com-

ute the similarity matrix for each network, we vectorized the upper

riangular part of the session specific FC matrix and its corresponding

round truth, performed Fisher’s r-to-z transformation to improve nor-

ality, and computed the correlation of vectorized functional connec-

ivity matrix within a given session with vectorized FC matrices of all

ther sessions and with the session specific ground truth. The resulting

atrix is symmetric, with dimensions (14 sessions + 1 ground truth) x

14 sessions + 1 ground truth). Similarity matrices were computed for

ach of the six RSFC networks and for the complete connectome that

ncluded all parcels. 

In addition, the computation of RSFC network reliabilit y, as a func-

ion of recording duration, was adapted from the PFM approach em-

loyed by Lynch et al. (2020). [Lynch et al., 2020] For each session, a

arcel-to-parcel RSFC matrix was calculated for each network (and for

he complete connectome) using data segments of length one to twelve
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Fig. 4. Networks derived from spatial group 

independent component analysis (HbO) . a) 

Each column displays the spatial map from 

the extracted independent components (IC). 

ICs were selected based on their stability over 

multiple realizations of the FastICA algorithm. 

Maps are presented as Bonferroni-corrected t- 

stat maps. b) Spatial maps corresponding to the 

Yeo visual central network, Yeo visual periph- 

eral network, Yeo salience network and Yeo 

DMN, and Yeo control network and Yeo DMN 

(dark red). Scientific colormaps [Crameri et al., 

2020] used for t-stat maps and in below figures. 

(For interpretation of the references to colour 

in this figure legend, the reader is referred to 

the web version of this article.) 
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inutes (the full duration of each session). These blocks were extracted

sing a sliding window approach with a step of 30 seconds. This ap-

roach generated different numbers of data blocks for each recording

uration (e.g., 23 blocks of one minute duration, one block of twelve-

inute duration per session). For each data block, the associated RSFC

aps were compared with the corresponding ground truth matrix cre-

ted using the complete concatenated data of all other sessions as de-

cribed above. Reliability was calculated for the complete connectome

nd for each network as the average spatial correlation (R 

2 ) between in-

ividual session and ground truth RSFC maps after Fisher’s r-to-z trans-

ormation. While Laumann et al. (2015) and Gordon et al. (2017) used

earson’s r as a measure of reliability, we chose to use R 

2 as per Lynch

t al. (2020). Thus, high and low reliability values indicate that the FC

f a specific network, using the specified amount of data from a single

ession, was similar or dissimilar to FC of that same network when calcu-

ated using a large amount of independent data. Reliability curves were

btained by finding the median reliability score of all data segments ex-

racted at each recording duration and across testing sessions. Finally,

e also computed the percent change in reliability between consecu-

ive time windows (e.g., one minute time window vs. two minutes time

indow). 

. Results 

.1. Spatial group ICA demonstrates the presence of prominent RSFC 

etworks 

The RSFC networks obtained via the spatial group ICA analysis are

resented in Fig. 4 . RSFC networks were selected based on their spatial

onfiguration and overlap with the Yeo Networks based on the Dice

oefficient. Due to the high similarity between HbO and HbR maps,

bO maps are presented in the main text and HbR maps are presented

n supplementary materials (see Supplementary Figure 6 ). RSFC net-

orks are depicted as Bonferroni-corrected t-stat maps, which were

omputed from one-sample t-tests on the session-specific reconstructed

patial maps in the parcel space (using the dual-regression approach de-

cribed above). The observed components were robust across multiple

ealizations of the ICA algorithm (see Supplementary Figure 5 ). 

The first spatial map presented in Fig. 4 was identified as the visual

entral network due to its prominence in the central visual field and

patial overlap with the Yeo visual central network (HbO Dice coeffi-

ient = 0.61, p < 0.001). There is clear asymmetry in this network in this

ubject, with a larger component apparent in the right visual network.

owever, this is consistent with the observed stronger right hemisphere
6 
isual field activation in the same subject in response to a rotating vi-

ual stimulus in our prior study. [Vidal-Rosas et al., 2021] The second

lot displays an spatial map that was labelled as the visual peripheral

etwork for its strong anatomical overlap with the Yeo visual peripheral

etwork (HbO Dice coefficient = 0.49, p = 0.001). The third spatial map

hows a symmetric pattern over the dorsolateral pre-frontal cortex, asso-

iated with the salience network that is anticorrelated with a symmetric,

trongly significant pattern over the anterior pre-frontal cortex, belong-

ng to the DMN (HbO Dice coefficients for salience = 0.48, p = 0.001, for

MN = 0.7, p < 0.001). The last plot shows a spatial map over the ventro-

ateral pre-frontal cortex and parietal lobule, overlapping with the Yeo

ontrol network, which is anticorrelated with a symmetric pattern over

he anterior pre-frontal cortex that is consistent with the Yeo DMN (HbO

ice coefficient for control = 0.52, p < 0.001, for DMN = 0.48, p = 0.001).

one of the extracted IC maps showed a significant spatial overlap with

he Yeo dorsal attention network. 

.2. Similarity and reliability of RSFC network features 

Individual parcel-based FC matrices for each session were used for

imilarity. Fig. 5 presents the averaged group-level FC matrix with

arcels ordered according to the Yeo Networks. Example of individ-

al session FC matrices are presented in supplementary materials ( Sup-

lementary Figures 1–4 ). For each Yeo Network, the total number of

arcels included was: visual central, 44; visual peripheral, 13; dorsal

ttention, 26; salience, 14; control, 29; default mode, 28. At the group

evel, off-diagonal correlations are evident (see green arrows in Fig. 5 ),

s are interhemispheric correlations within network across hemispheres

see dashed yellow squares in Fig. 5 ). 

Fig. 6 a presents the similarity matrix as computed from all parcels

cross all sessions with results for both HbO and HbR. The values on

he diagonal indicate the correlation of each session with itself, and

ff-diagonal values indicate a given session’s correlation with all other

essions or the session-independent ground truth (last column and last

ow). This plot indicates high similarity between sessions for both chro-

ophores, with inter-session FC matrix correlations typically exceed-

ng 0.79 for HbO and 0.78 for HbR, and correlation with the session-

ndependent ground truth averaging 0.64 for HbO and 0.64 for HbR.

ig. 6 b and 6 c show the reliability values computed for each session

nd across data blocks of different durations, for the FC matrices in-

luding all parcels. These figures describe how similar the FC matri-

es are when calculated from different recording durations versus using

arge amounts of data from the session-independent ground truth. Re-

ults show that reliability scores increase with recording duration. Here,
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Fig. 5. Group-level functional connectivity 

matrix. Group-level (all session) functional 

connectivity matrix with parcels ordered ac- 

cording to Yeo Networks and divided into left 

(LH) and right (RH) hemispheres for HbO (a) 

and HbR (b). Black squares along the diago- 

nal indicate parcels as they belong to each Yeo 

Network. Abbreviations: visual central (VC), 

visual peripheral (VP), dorsal attention (DA), 

salience (SA), control (CO), and default mode 

(DMN) networks. Dashed yellow squares and 

yellow arrows indicate apparent structure in 

network connectivity between the contralateral 

hemispheres for HbO (i.e. strong correlation 

between the left and right hemisphere for the 

visual central network in the upper yellow box, 

and between the left and right hemisphere for 

the dorsal attention network in the lower yel- 

low box). Green arrows indicate networks with 

strong off diagonal correlations for HbO. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Similarity and reliability of functional connectivity across all networks. a) Similarity across sessions for the complete connectome including all parcels 

and with session-independent ground truth functional connectivity matrix for HbO (upper row) and HbR (lower row); b) Reliability index for each session displayed 

as a function of the length of data used to compute the functional connectivity matrix. This index is based on the spatial correlation between functional connectivity 

matrices using varying data durations from an individual session and the session-independent ground truth (GT) functional connectivity matrix. c) Reliability curves 

for HbO (red lines and right y-axis) and HbR (blue lines and right y-axis). Values approaching 1 indicate better reliability. Dotted lines are session-specific reliability 

curves, and the solid line is the averaged curve for all sessions. On the same plot, grey bars represent the median percent difference in reliability values across 

consecutive time windows. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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alues approaching 1 indicate better reliability. The largest changes in

eliability are observed within the first two minutes of the recording,

fter which, reliability values begin to plateau at around 4–5 minutes

f data for most sessions. Overall, fairly reliable ( > 0.5) and stable val-

es are obtained after this point, with the percent change in reliability

etween consecutive time windows (in grey) drops below 10% for both

bO and HbR. 

Fig. 7 presents the similarity matrices and reliability curves sep-

rately for every RSFC network. Visual inspection of these figures

emonstrates that some networks have greater stability across ses-

ions, such as the visual peripheral network, dorsal attention network,

MN, and salience network, as compared to visual central and con-

rol networks. Nonetheless, all demonstrate high levels of similarity

etween sessions: inter-session correlation values ranged from 0.69 to

.83 for all networks for HbO and from 0.73 to 0.88 for all networks

or HbR ( Table 1 ). This is also the case for each session compared

ith the ground truth: session-ground truth correlation values ranged

rom 0.82 to 0.91 for all networks for HbO and from 0.84 to 0.93
7 
or all networks for HbR ( Table 1 ). Reliability curves support these

bservations. 

For reliability, similar outcomes are observed when considering each

etwork separately as when using the complete FC matrix including all

arcels. Overall, the largest increases in reliability scores are observed

uring the first two minutes, but the point in which reliability scores be-

ome relatively stable (i.e., a change < 10% between consecutive time

indows) varies across functional networks ( Fig. 7 ). For example, the

isual central network showed stable and fairly reliable ( > 0.5) values

fter three minutes recordings in HbO and four minutes in HbR. The

isual peripheral network achieved this point at just two minutes (HbO

nd HbR) with values exhibiting high reliability ( > 0.8). In the dorsal

ttention network stable reliability values were achieved with two- and

hree-minute recordings for HbO and HbR respectively, with high reli-

bility values ( > 0.7) observed after this point. In the salience network

he largest changes in reliability values were observed during the first

hree minutes (HbO and HbR), reaching high reliability values ( > 0.7)

uring this period. The control network showed fairly reliable values
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Fig. 7. Network-specific similarity and reliability plots. Similarity across sessions in six RSFC networks (each row represents a different RSFC network) and with 

session-specific ground truth (GT) functional connectivity matrix for HbO (first two columns) and HbR (third and fourth columns). To the right of each similarity 

matrix, the reliability curve for each session calculated for a set of time windows is displayed. Grey bars represent the median percent difference in reliability values 

across consecutive time windows. 

Table 1 

Session-to-ground truth (GT) and inter-session similarity values. 

Session-GT HbO Session-GT HbR Inter-session HbO Inter-session HbR 

mean [min – max] mean [min – max] mean [min – max] mean [min – max] 

Visual Central 0.82 [0.7 – 0.89] 0.84 [0.8 – 0.92] 0.69 [0.5 – 0. 82] 0.73 [0.61 – 0.82] 

Visual Peripheral 0.91 [0.83 – 0.95] 0.93 [0.9 – 0.96] 0.83 [0.62 – 0.92] 0.88 [0.77 – 0.95] 

Dorsal Attention 0.90 [0.8 – 0.95] 0.89 [0.85 – 0.93] 0.82 [0.66 – 0.93] 0.81 [0.73 – 0.89] 

Salience 0.90 [0.71 – 0.93] 0.89 [0.68 – 0.94] 0.82 [0.58 – 0.92] 0.80 [0.52 – 0.95] 

Control 0.84 [0.73 – 0.93] 0.85 [0.73 – 0.92] 0.73 [0.47 – 0.86] 0.74 [0.59 – 0.89] 

DMN 0.88 [0.83 – 0.93] 0.87 [0.78 – 0.92] 0.80 [0.66 – 0.9] 0.77 [0.65 – 0.87] 

All parcels 0.79 [0.72 – 0.85] 0.78 [0.69 – 0.85] 0.64 [0.5 – 0.76] 0.64 [0.47 – 0.76] 

8 
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 > 0.5) after four-minute recordings in HbO and after three minutes in

bR. Lastly, the DMN displayed the largest changes over the first three

inutes for HbO and HbR, displaying reliability values of > 0.5. 

. Discussion 

Resting state functional connectivity mapping from densely sampled

ndividuals can provide critical information about meaningful traits of

he human brain, but this approach has not typically been performed

n non-laboratory environments. Here, we used a wearable, 24-module

D-DOT system (LUMO, Gowerlabs, Ltd .) to assess the feasibility of col-

ecting RSFC data in the home environment across multiple sessions over

 period of three weeks during COVID-19 lockdown conditions. As an

nitial validation of our dataset, we used sGICA to identify the presence

f RSFC networks and found them to be consistent with those previously

dentified in the fMRI literature. [Thomas Yeo et al., 2011] We investi-

ated the similarity of identified RSFC networks across sessions, and the

eliability of these networks across recording durations using techniques

dapted from the fMRI literature. [ Gordon et al., 2017 , Lynch et al.,

020 , Gratton et al., 2020 ] Our results demonstrate similarity across

essions of all investigated RSFC networks, and that fairly reliable re-

ults can be obtained at shorter scanning times, allowing some variation

n minimum times across functional networks. This study represents the

rst demonstration on the use of wearable HD-DOT as a complimentary

ool to fMRI for brain imaging in a non-laboratory environment. The

echnology and application described here have the potential to gen-

rate a wave of resting state functional brain imaging applications in

on-traditional environments to study both neurotypical and neurodi-

ergent populations of all ages. 

One of the main aims of this study was to demonstrate that wearable

D-DOT could be used to obtain RSFC networks that demonstrated high

imilarity and reliability across imaging sessions. In assessing the sim-

larity of networks, we observed that session-to-session RSFC networks

ere highly similar in this individual, with average inter-session corre-

ation values ranging from r = 0.64–0.83 for HbO and r = 0.64–0.88 for

bR ( Table 1 ). These reliability and similarity values are higher than

hose observed in the fMRI literature in the above cited studies that em-

loyed PFM approaches. For example, Lynch et al. 2020 showed values

R 

2 =∼ 0.2–0.6) using 30 minutes of single-echo fMRI data, and Gor-

on et al. (2017) reported values (R 

2 =∼ 0.36–0.64) using 30 minutes

f single-echo fMRI data. Similar findings of network reproducibility

ave been previously reported as the basis for connectivity-based “fin-

erprinting ” of individuals. [ Anderson et al., 2011 , Finn et al., 2015 ,

iranda-Dominguez et al., 2014 , Xu et al., 2016 ] However, it is of

ote that direct comparisons between the findings here and the re-

orted fMRI similarity values are not entirely appropriate as fMRI in-

ludes the entire cortical surface and subcortical regions. Therefore,

hile high similarity could be demonstrated using HD-DOT, this find-

ng should be interpreted within its own methodological context. Ad-

itionally, while reproducibility was high, in this study some within-

ubject variability was also observed, with visual central and control

etworks demonstrating slightly lower average inter-session similarity

alues as compared to the DMN, salience, visual peripheral, and dor-

al attention networks. This finding is consistent with those of Laumann

t al. (2015), in which higher inter-session variability was observed in

isual regions as compared to frontoparietal, default mode, and ventral

ttention regions. 48 Individual variability in RSFC network characteris-

ics has been previously described as partially attributable to biological

ources, such as diurnal rhythms [Hodkinson et al., 2014] and variations

n metabolic state. [Rack-Gomer et al., 2009] However, in this study

ll sessions were performed at approximately the same time of day (be-

ween 10:00–12:00 BST), thus this likely was not a significant contribut-

ng effect. Sleep quality was not controlled for in this subject, which may

ave contributed to observed sources of variability. There may also have

een subtle changes in how well the subject fixated on the central cross,

hich were not accounted for such as by using eye-tracking as a re-
9 
ressor. Moreover, numerous studies have demonstrated specific effects

f different cognitive and behavioural contexts on resting-state activ-

ty. [ Gordon et al., 2014 , Tambini et al., 2010 ] These cognitive contexts

ould not be entirely controlled from session to session and therefore

ay have contributed to cross-session variability. Nonetheless, our re-

ults from this exploratory study suggest a high level of inter-session

orrelation and low cross-session variability overall. 

In assessing the reliability of RSFC networks, we observed that fairly

table reliability values (stable described as a < 10% change between

ime windows) could be obtained with relatively short recording du-

ations. This finding demonstrates that longer scanning times may not

lways be necessary to study basic features of RSFC networks. When re-

iability curves were calculated for each network individually, some dif-

erences were noted in the minimum scanning time required to achieve

table reliability values. For example, the visual central, control and

MN showed stable reliability values after approximately four min-

tes of recording, while visual peripheral, dorsal and salience networks

chieved this point during the first three minutes. It is of note that the

isual central and control networks included a greater proportion of cor-

ical surface ( n = 44 parcels for visual central, n = 29 parcels for con-

rol) as compared to the visual peripheral ( n = 13 parcels). It is possible

hat a greater scanning time is required to compensate for the greater

umber of parcels, and thus the greater number of potential sources of

ariability. Previous studies in the fMRI literature have also noted the

ate at which measures of FC become reliable varies by brain region.

 Lynch et al., 2020 , Noble et al., 2017 ] In the context of this study, this

ay also be related to the sensitivity and associated signal-to-noise ra-

io, such that larger areas of the cortex will provide greater signal as

ompared to smaller or more shallow areas. 

The other main aim of this study was to demonstrate that a wide

eld-of-view, wearable HD-DOT system can be used to perform func-

ional brain imaging outside of the traditional laboratory environment.

n this work, we implemented a wearable 24-module HD-DOT system

hat was sufficient to cover the full adult visual and pre-frontal cortices

nd perform functional brain imaging in the home environment. The

erformance capabilities are comparable to those of traditional fibre-

ased systems, [ White et al., 2009 , White and Culver, 2010 ] yet with

ignificant advantages due to its wearable and ergonomic design. This

ystem also provides a relatively large field of view for a HD-DOT de-

ice. However, it was still limited in its coverage, which restricts the

umber of RSFC networks we could interrogate. Here, we demonstrated

he feasibility of using this system in the home environment over re-

eated sessions, yet other naturalistic environments may be of consid-

ration. The ergonomics of this system also open new opportunities for

epeated-session, individual-specific functional brain imaging for use in

linical applications (i.e., at the bedside) and for vulnerable populations

i.e., infants and young children). 

The system described in this work is designed to allow for expansion

o whole-head coverage, allowing for high density, full field-of-view HD-

OT of the human cortex. Indeed, our group is currently piloting a 54-

ile version of this system. If demonstrated to be feasible, future studies

ay consider employing this whole-head version to probe the reliability

nd similarity of all RSFC networks across the superficial cerebral cortex

n ecologically meaningful settings. Future studies should also consider

ultiple subjects for validation of this technique across multiple individ-

als (hampered here somewhat by COVID-19 circumstances), compari-

on with fMRI-based acquisition (also hampered by COVID-19 circum-

tances), and the addition of task-based imaging for demonstration of

orrespondence between resting-state and task-based FC. Another con-

ideration is whether the decay of the reliability curves or the strength of

he correlation values in the similarity matrices is related to the differen-

ial sensitivity of our array to these regions. Validation across different

opulations (infants, children, and clinical populations) is also a prior-

ty. To conclude, while much work is still needed, there is a multitude

f possible applications of the methods and technology described here

n diverse subject populations and ecological contexts. 
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