
Behavior policy learning:
Learning multi-stage tasks via
solution sketches and
model-based controllers

Konstantinos Tsinganos1†, Konstantinos Chatzilygeroudis1,2†,
Denis Hadjivelichkov3, Theodoros Komninos2,
Evangelos Dermatas1 and Dimitrios Kanoulas4*
1Department of Computer Engineering and Informatics (CEID), University of Patras, Patras, Greece,
2Computer Technology Institute and Press “Diophantus” (CTI), Patras, Greece, 3Centre for Artificial
Intelligence, University College London (UCL), London, United Kingdom, 4Department of Computer
Science, University College London (UCL), London, United Kingdom

Multi-stage tasks are a challenge for reinforcement learning methods, and

require either specific task knowledge (e.g., task segmentation) or big amount of

interaction times to be learned. In this paper, we propose Behavior Policy

Learning (BPL) that effectively combines 1) only few solution sketches, that is

demonstrations without the actions, but only the states, 2) model-based

controllers, and 3) simulations to effectively solve multi-stage tasks without

strong knowledge about the underlying task. Our main intuition is that solution

sketches alone can provide strong data for learning a high-level trajectory by

imitation, andmodel-based controllers can be used to follow this trajectory (we

call it behavior) effectively. Finally, we utilize robotic simulations to further

improve the policy and make it robust in a Sim2Real style. We evaluate our

method in simulation with a robotic manipulator that has to perform two tasks

with variations: 1) grasp a box and place it in a basket, and 2) re-place a book on a

different level within a bookcase. We also validate the Sim2Real capabilities of

our method by performing real-world experiments and realistic simulated

experiments where the objects are tracked through an RGB-D camera for

the first task.

KEYWORDS

imitation learning, multi-stage tasks, evolutionary strategies, reinforcement learning,
sim2real

1 Introduction and related work

Reinforcement learning (RL) (Sutton and Barto, 1998) provides a solid theoretical

framework that can give the ability to robotic systems to learn by trial-and-error. Recently,

there exists a renewed interest in RL in the robotics literature mainly driven by the recent

successes of deep learning (LeCun et al., 2015). A few success highlights outside of robotics

include RL-based agents that play many of the Atari 2,600 games better than humans, or

that can beat the world’s best human players at Go and chess with minimal human hard-

OPEN ACCESS

EDITED BY

Cosimo Della Santina,
Delft University of Technology,
Netherlands

REVIEWED BY

Matteo Saveriano,
University of Trento, Italy
Claudio Coppola,
Queen Mary University of London,
United Kingdom

*CORRESPONDENCE

Dimitrios Kanoulas,
d.kanoulas@ucl.ac.uk

†These authors have contributed equally
to this work and share first authorship

SPECIALTY SECTION

This article was submitted to Robot
Learning and Evolution,
a section of the journal
Frontiers in Robotics and AI

RECEIVED 21 June 2022
ACCEPTED 26 September 2022
PUBLISHED 12 October 2022

CITATION

Tsinganos K, Chatzilygeroudis K,
Hadjivelichkov D, Komninos T,
Dermatas E and Kanoulas D (2022),
Behavior policy learning: Learning
multi-stage tasks via solution sketches
and model-based controllers.
Front. Robot. AI 9:974537.
doi: 10.3389/frobt.2022.974537

COPYRIGHT

© 2022 Tsinganos, Chatzilygeroudis,
Hadjivelichkov, Komninos, Dermatas
and Kanoulas. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Robotics and AI frontiersin.org01

TYPE Original Research
PUBLISHED 12 October 2022
DOI 10.3389/frobt.2022.974537

https://www.frontiersin.org/articles/10.3389/frobt.2022.974537/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.974537/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.974537/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.974537/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.974537&domain=pdf&date_stamp=2022-10-12
mailto:d.kanoulas@ucl.ac.uk
https://doi.org/10.3389/frobt.2022.974537
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.974537

coded knowledge (Silver et al., 2017). These impressive results,

however, are difficult to achieve in robotics applications mainly

due to the data-hungry nature of the RL algorithms

(Chatzilygeroudis et al., 2019): for example, 4.8 million games

were required to learn to play Go from scratch (Silver et al.,

2017), 38 days of play (real time) for Atari 2,600 games (Mnih

et al., 2015), and, for example, about 100 h of simulation time

(much more for real time) for a 9-DOF mannequin that learns to

walk (Heess et al., 2017).

By contrast, robotic applications are on the other end of the

spectrum and have to face the micro-data challenge, that is to

learn by trial and error in a handful of trials (Chatzilygeroudis

et al., 2019). When learning with a physical robotic mechanism,

minimizing the interaction time is crucial. This is mainly

because: 1) the real world cannot be accelerated or

parallelized, 2) the physical robots can be damaged (RL

algorithms often try “unsafe” behaviors especially in the

beginning of the training), 3) the engineering work required

to keep a robot running for long periods of time is expensive, and

4) adaptation to novel situations is only useful if it can be done in

reasonable time.

Learning from demonstrations (LfD) (Billard et al., 2008;

Stulp and Sigaud, 2013; Vecerik et al., 2017) is a powerful

technique to accelerate learning on robotics systems. The

main idea behind it is to utilize expert (possibly human)

demonstrations about the task in order to bootstrap the

learning. Using this type of approaches, robotic manipulators

can learn to draw digits or perform complex trajectories using

only a few demonstrations (Khansari-Zadeh and Billard, 2011),

or even humanoids can learn how to navigate and co-manipulate

objects (Figueroa et al., 2020). LfD methods usually rely on

structured policies and model-based low-level controllers

(Chatzilygeroudis et al., 2019; Liang and Boularias, 2021).

Another promising direction is using robotic simulators to

learn robust policies that can generalize to many different

variations of physical/task properties (Tobin et al., 2017) or to

bootstrap learning with good initialization (Cutler and How,

2015). Sim2Real methods, as they are usually referred to, have

provided a wide range of successful applications in robotic

systems, ranging from manipulation tasks (James et al., 2017;

Chebotar et al., 2018; Peng et al., 2018) to multi-leg locomotion

problems (Chatzilygeroudis and Mouret, 2018; Tan et al., 2018;

Hwangbo et al., 2019; Lee et al., 2020).

Despite the successes of the above techniques, there are a few

limitations that prohibit their wide adoption in practical real

applications. Most LfD approaches require the knowledge of the

“optimal” actions/commands (Vecerik et al., 2017; Rajeswaran

et al., 2018) (or even policies (Ross et al., 2011)), which makes it

necessary to actually control the robot while performing the

demonstrations. This can be difficult to be done in safe-critical

tasks and collecting this type of demonstrations requires more

effort than collecting solution sketches either via kinesthetic

guidance or a GUI. Moreover, LfD approaches that operate in

the task-space usually require strong knowledge of the

underlying task and work best for point-to-point motions

(Billard et al., 2008; Khansari-Zadeh and Billard, 2011; Bahl

et al., 2020; Pirk et al., 2020). This practically means that we need

to split the task in subtasks by hand and provide the algorithm

with segmented data for it to work reliably. Moreover, most

successful approaches learn “reaction” policies, that is policies

that do not perform long-term planning, but react quickly to

what they see (Lee et al., 2020). Lastly, while there exist a few

approaches that attempt to learn with visual observations

(i.e., images) (Levine et al., 2016; James et al., 2017;

Mandlekar et al., 2021), they usually require a large amount

of examples that make it difficult to use them in practical

applications.

At the moment and to the best of our knowledge, no practical

imitation learning can learn how to solve multi-stage tasks by

utilizing only solution sketches and little to no interaction with

the physical robot. There are even fewer successful methods that

rely solely on vision sensors. In essence, the most successful

algorithms utilize external camera systems (e.g., motion capture

systems) to infer the state of the environment or require big

amount of interaction time, otherwise.

In this paper, we refer to solution sketches as demonstrations

consisting only of robot and environment state variables, but no

control commands. They are practically easy to be acquired

through kinesthetic guidance or a joystick (Figure 1), as there

is no need to program a controller for solving the task. These

sketches provide high-level information of the trajectory

followed while performing the task and of the state of the

environmental task-related objects as well. Thus, solution

sketches provide environment-specific information, as we

know the objects to be handled, but they do not require

specific information of the stages of the underlying task or the

controller to solve it. In this work, we propose a novel pipeline

that attempts to provide a practical approach that can tackle

multi-stage tasks effectively while having access only to visual

information about the environment, a simulator, and few

solution sketches.

We take inspiration from the LfD literature (Billard et al.,

2008; Khansari-Zadeh and Billard, 2011) and define a

structured policy that encodes the desired trajectory to

solve the task, but also takes as input environment-specific

information (Figure 2). Instead of modeling the trajectory via

dynamical systems or waypoints, we use neural networks in

order to provide the learning pipeline with more flexibility.

The goal of our work is to provide a practical pipeline for

tackling the challenge of learning multi-stage tasks from a few

solution sketches with realistic assumptions and observation

spaces.

Overall, the main contributions of this work are:

• Novel policy structure: we define a policy that takes as

input environment-specific data (e.g., distances to objects),

Frontiers in Robotics and AI frontiersin.org02

Tsinganos et al. 10.3389/frobt.2022.974537

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974537

but not task-specific (i.e., we do not need to have a

controller that solves the task), and encodes the desired

trajectory;

• Further validation of the need for structured policies and

that model-based low-level controllers are essential for fast

and stable learning;

FIGURE 1
An example of a solution sketch. The end-effector of a manipulator is controlled via a joystick to solve a pick and place task. High-level
information of the trajectory followed (e.g., robot and object states), consisting only of state variables, constitutes a solution sketch. As an example,
the states marked (A–D) in the figure showcase potential points on the trajectory with corresponding state information.

FIGURE 2
Overview of the proposed policy structure, where input includes environment-specific information (end-effector pose, end-effector to object
distance, environment object poses, gripper status) and outputs the desired trajectory (joint commands), using a neural network and a model-based
controller as the Behavior Policy Learning (BPL).

Frontiers in Robotics and AI frontiersin.org03

Tsinganos et al. 10.3389/frobt.2022.974537

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974537

• Practical approach that can learn with less than 50 solution

sketches and zero interaction with the physical robot.

Using our novel pipeline we were able to successfully learn

two multi-stage tasks. In particular, using our approach a

robotic manipulator was able to learn how to 1) grasp a box,

place it inside a basket and adapt to many unseen initial

positions of the box and the basket, and 2) grasp a book

from a book shelf, place it at a goal position in the top shelf of

the bookcase and adapt to unseen initial positions of the book.

We evaluate our approach in simulation and show that we

outperform classical policy structures, and achieve similar

performance with approaches that require extensive task

knowledge. For the first task, we evaluate our method both

with ground truth knowledge about the objects but also with a

perception module to emulate the reality gap. We also present

preliminary results of our method in a physical robot that has

to perform the first task to showcase the Sim2Real capabilities

of our method.

2 Proposed method

2.1 Behavior Policy Learning (BPL)

The key aspects of our proposed method, called Behavior

Policy Learning (BPL), are as follows:

• We collect a small number of solution sketches and create a

supervised learning problem where the task is to reproduce

the demonstrated trajectories;

• We devise a novel policy structure in order to capture the

task variations and generalize effectively;

• We use the RL policy search formulation coupled with

domain randomization to further optimize the policy in a

realistic simulator.

2.2 Policy structure

We model the robot and the environment jointly as a

discrete-time dynamical system that can be described by

transition dynamics of the form (deterministic dynamics and

Gaussian system noise):

xt+1 � f xt, ut() + w (1)

where the robot is at state xt ∈ RE at time t, takes control input

ut ∈ RF and ends up at state xt+1 at time t + 1, w is i. i.d. Gaussian

system noise, and f is a function that describes the unknown

transition dynamics. We assume that the system is controlled

through a parameterized policy π(u|x, θ) that is followed for T

steps (θ are the parameters of the policy). In this paper, we use

deterministic policies; a deterministic policy means that π(u|x, θ)
0u = π(x|θ).

We make the assumption that the state of the system can be

split into two parts: 1) a part that can be directly controlled (e.g.,

positions and velocities of the end-effector), and 2) a part that can

only be observed (e.g., obstacles/objects). In particular (we omit

the time notation, t, for clarity):

x � xc

xnc
[] ∈ Rdc+dnc , (2)

where xc is the part of the state that can be directly controlled and
xnc is the part of the state that can only be observed. dc and dnc are

the state-space dimensions for the controllable and non-

controllable parts, respectively.

This formulation allows us to create an interesting set of

policy structures; one of them we describe here. In the general

case, we assume that xc is any function of the full robot state, and

xnc can be any function that corresponds to the observed objects.

The former is usually accessible directly from the sensors of the

robot or its model, whereas the latter can be done through a

computer vision module (e.g., end-to-end object tracking).

In the experiments of this paper, we assume that xc contains
only the positions of the controllable system (i.e., no velocities),

that is the 3D position of the end-effector of our manipulator and

the gripper status (how open it is), and xnc is a concatenation of all
the 3D positions and distances from a fixed point on the robot to

the objects (of interest) in the environment. For example, in a

pick and place task, xnc is a 8D vector containing the 3D positions

of the object to pick and to the basket/drawer we need to put it in/

on and their distances to the end-effector.

The goal of BPL is to encode the desired trajectory that the

robot needs to follow. For this reason, we use the future

(controllable) states xct+k as the output of the policy (k > 0).

In essence, the policy predicts the next target for the low-level

controller at each timestep, which corresponds roughly in

learning the trajectory the robot has to follow to complete the

task (Figure 2). The parameters of the low-level controller can be

jointly learned with the rest of the policy parameters (Gupta et al.,

2019) but this is outside the scope of this work. Moreover, our

work provides strong evidence that using model-based low-level

controllers makes learning more stable and effective.

2.3 Learning from solution sketches

The policy structure defined in the previous section can be

used for pure RL, but also for learning from demonstrations. In

this paper, we will focus on the latter. We devise the following

setup:

• We collect solution sketches, that is demonstrations

containing only state variables, and no control inputs;

Frontiers in Robotics and AI frontiersin.org04

Tsinganos et al. 10.3389/frobt.2022.974537

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974537

• We create a dataset of the form xt → xct+k with k > 0;

• We use neural networks to parameterize the policy and

learn a deterministic policy that takes as input all the state

variables, and outputs the next target for the controllable

variables: π(xt|θ) → xct+k.

In our experiments, we set k = 10 and use small neural

networks with 2 hidden layers for the policy. The pipeline was

quite robust to the choice of k and values between 1 and 15 were

working similarly. Unlike previous approaches, we do not need

many demonstrations and we could achieve reasonable results

with as few as 10 demonstrations (Section 3). The minimum

number of demonstrations depends on the task specifications.

For example, if we are learning how to replicate a single trajectory

we can greatly decrease the number of demonstrations. On the

other hand, learning the pick and place task as described in

Section 3.1, where the position of the object and the basket varies

a lot, we need a few more demonstrations (i.e., with

50 demonstrations we got a good balance between the

number of demonstrations and quality of results).

Our approach can be used in high-level industrial settings,

where the objects of interest and vague task specifications are

known. For instance, we expect to know that we need to handle a

box in a pick and place scenario and also the boundaries of

possible configurations of the box. We foresee a use-case where a

human operator moves the robot with a joystick in a kinematic

simulator (with basic object interactions) and performs several

solution sketches. The initial configurations for collecting the

solution sketches are evenly spaced using a Centroidal Voronoi

Tesselation (CVT) (Du et al., 1999) of the space. Practically, the

user gives a desired number of demonstrations, and the

algorithm returns the generated initial configurations that

approximate a CVT (Vassiliades et al., 2017).

2.4 Policy improvement using a simulator

The policy learned from the solution sketches is already

effective (see Section 3.2), but our formalization allows for

further fine-tuning via RL. Our goal is to be able to use the

optimized policy directly to the physical world. In this paper, we

experiment with domain randomization (Tobin et al., 2017) to

robustify the policy to verify the idea. We frame the policy search

optimization as a black-box optimization, and seek the

maximization of a reward function J(θ) only by using

measurements of the function. In this paper, we assume that

the reward function returns sparse rewards, and the agent gets

1 if it succeeds in solving the task, and 0 otherwise. This type of

rewards is difficult for RL algorithms to optimize (Kaushik et al.,

2018), but quite intuitive for humans and easy to automate. We

use Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

(Hansen, 2006a), which is a stochastic, derivative-free method for

numerical optimization of non-linear or non-convex continuous

optimization problems and has been successfully used in RL

FIGURE 3
Pick and place task: evaluation configurations. We use 112 different initial configurations to evaluate the learned policies: 28 different box
positions for 4 different basket positions.

Frontiers in Robotics and AI frontiersin.org05

Tsinganos et al. 10.3389/frobt.2022.974537

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974537

settings (Chatzilygeroudis et al., 2019, 2017). In short, CMA-ES

models a population of points as a multivariate normal

distribution and performs the following steps at each

generation k (we defer to Hansen (2006b) for more details):

1) Sample λ new offspring according to a multi-variate Gaussian

distribution of mean mk and covariance σ2kCk, that is,

θi ~ N (mk, σ2kCk) for i ∈ 1, . . . , λ;

2) Rank the λ sampled candidates based on their performance

J(θi) and select the fittest μ individuals with μ ≤ λ;

3) To reflect the distribution of the μ best candidates, compute

mk+1 by averaging the μ individuals: mk+1 � 1
μ∑μ

i�1θi, and
σ2k+1Ck+1.

In the preliminary experiments, each candidate policy was

evaluated multiple times to reduce the variance. In each

evaluation we spawn a new initial configuration and add

small uniform noise to the observations. The noise is added to

emulate the noisy observations that would come from a realistic

object detection pipeline: thus we perform a type of domain

randomization. Each candidate policy returns the average reward

of the multiple evaluations which is computing the success rate. It

is important to note that one can use any other state-of-the-art

policy search algorithm as PPO (Schulman et al., 2017) or TD3

(Fujimoto et al., 2018); we chose CMA-ES because our policies

are relatively low-dimensional, CMA-ES is easier to tune, in low-

dimensional regimes performs adequately and is effective in

policy fine-tuning (Stulp and Sigaud, 2013). We perform only

a few iterations of CMA-ES with a small initial sigma (e.g. 1e − 3),

as we only need to fine-tune the policy and not attempt to find a

novel one.

3 Experimental results

In this paper, we deal mainly with manipulators and thus a

natural choice for a low-level controller can be: 1) joint-space

PID controller or 2) task-space PID controller. In our

experiments, we use a task-space PID controller and

transform the commands to the joint-space using the pseudo-

inverse of the jacobian (J†b) for the end-effector control and a

joint-space PI controller for the gripper. On the physical system,

we use an impedance Cartesian controller for the end-effector

control. If one has to deal with more complex robotic systems,

they can use any low-level model-based controller that is suited.

For example, if we want to learn with a humanoid robot, one can

utilize a Quadratic-Programming (QP) based low-level controller

(Escande et al., 2014). We perform experiments in simulation

with a Franka Panda manipulator in two tasks and provide

preliminary experiments with a physical setup. We aim at

answering the following questions:

1) How well does the proposed BPL perform at imitation

learning? How well does it generalize to variations/unseen

situations?

2) How does our proposed BPL compare to task-, robot-agnostic

policies (e.g., policies that aim to replicate the optimal

actions)?

FIGURE 4
Bookcase task: the robot needs to grasp a book (in blue) and place it in a goal position (in green).

Frontiers in Robotics and AI frontiersin.org06

Tsinganos et al. 10.3389/frobt.2022.974537

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974537

3) How does our proposed BPL compare to task-specific policies

(i.e., policies that utilize more task knowledge)?

4) How well does the whole BPL approach work in novel and

realistic scenarios (i.e., physical robot or simulation with

perception module)?

To answer to the above questions, we devise two different

scenarios: 1) a scenario where the manipulator has to pick up a

box and put it inside a basket, and 2) a scenario where the

manipulator has to grasp a book from a book shelf, and place it at

a goal position in the top self of the bookcase.

We perform two sets of experiments. In the first set, we

collect a few solution sketches and evaluate the imitation

learning capabilities of our approach. In essence, we do not

fine-tune the policy and we perform only the supervised

learning part of the method. Here we compare our BPL

structure with other policy structures. In the second set of

experiments, we evaluate the whole pipeline and how well it

can transfer to more realistic settings. First, we evaluate the

improvement of the policies in a simulated environment

where the robot is not given the ground truth locations of

the objects, but they are inferred via a simulated RGB-D

sensor. Lastly, we provide preliminary experiments with a

physical setup where the low-level controller, and the objects

are different from the ones used in simulation.

3.1 Experimental setup/tasks

For each of the two tasks, we created a simulated

environment using the DART simulator (Lee et al., 2018).

Both environments consist of a 7-DoF Franka Panda

manipulator with a gripper and other environmental objects

related to the task.

3.1.1 Pick and place task
In this scenario, the environment consists of the manipulator,

a box and a basket, where the positions of the box and the basket

vary (see Figures 2, 3). The manipulator has to perform the

following sequence of sub-tasks: 1) go above the box, 2) grasp the

box, 3) lift up the box, 4) go above the basket (with the gripper

closed), and 5) release the box. We provide extensive results on

this task.

3.1.2 Bookcase task
In this scenario the environment consists of the same

manipulator, a bookcase with two shelves, a book (blue color

in Figure 4) and a goal position (green color in Figure 4). The

book is initially placed in the bottom shelf and the manipulator

has to move it to the goal in the upper shelf. The initial position of

the book vary but the goal position is kept fixed. In this task,

the manipulator has to perform a longer and more precise

sequence of sub-tasks: 1) go to the book, 2) grasp the book, 3)

lift it slightly up, 4) pull it out of the bookcase, 5) go to the

upper shelf and 6) place the book in the goal position. We

provide limited results on this task, and we do not vary the goal

location.

FIGURE 5
Structure of each policy for the pick and place task. (A) The
structure of the proposed BPL for the pick and place task. The task-
specific policy has also the same structure, but the neural network
outputs the next 3D target for the end-effector to complete
the current stage of the task as provided by the FSM. (B) The
structure of the task-agnostic (joint space) policy. (C) The structure
of task-agnostic (task space) policy.

Frontiers in Robotics and AI frontiersin.org07

Tsinganos et al. 10.3389/frobt.2022.974537

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974537

3.2 Imitation learning evaluation

In this section, we aim at answering the first three questions

of Section 3. Thus, we utilize the two tasks and use only the

learning from solution sketches part of our method. We collect

one dataset and perform 10 independent supervised learning

trainings with different seeds. The neural network part of the

BPL accepts as input the state of the robot (end-effector position

FIGURE 6
The structure of the proposed BPL for the bookcase task.

TABLE 1 Environmental setup used during data collection.

Pick and place
task

Robotic manipulator initial configuration (joint positions for each DoF in
radians)

A1: 0, A2: 0, A3: 0, A4: − π/2, A5: 0, A6: π/2, A7: π/4

gripper initial configuration (m) 0.04

robotic manipulator position (m) x: 0.0, y: 0.0, z: 0.0

box position in polar coordinates r (m), θ (rad) r: U(0.4, 0.65)
θ: U(−π/4, π/4)

basket position in polar coordinates r (m), θ (rad) (we use θ1 in the first half
of the episodes and θ2 in the second one)

r: U(0.45, 0.65)

θ1: U(−π/2,−π/3)
θ2: U(π/3, π/2)

Bookcase task robotic manipulator initial configuration (joint positions for each DoF in
radians)

A1: 0.58747083, A2: − 1.19088859, A3: − 0.95177053, A4: − 2.81123903, A5:
− 2.89731855, A6: 2.78075701, A7: 2.8726956

gripper initial configuration (m) 0.04

robotic manipulator position (m) x: 0.0, y: 0.0, z: 0.0

bookcase position (m) x: 0.8, y: 0.0, z: 0.0

bottom shelf (z): 0.34

upper shelf (z): 0.52

book position (m) y: 10 evenly spaced numbers in the interval [− 0.18, 0.18] on the bottom shelf

goal position (m) y: 0.05 on the upper shelf

Frontiers in Robotics and AI frontiersin.org08

Tsinganos et al. 10.3389/frobt.2022.974537

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974537

and gripper status), the state of the environment (position of

objects of interest), and generic environment-specific

information (distance of end-effector to key objects/states).

We compare our BPL (Figures 5A, 6) to the following policy

structures:

• A policy structure that has the same inputs/outputs with

the BPL but is trained to predict the next target provided

from the hard-coded FSM (an expert policy): this policy

serves as a baseline that uses extensive task knowledge (we

refer to it as task-specific, Figure 5A);

• A policy structure with inputs the state of the robot and the

environment (no distances to objects), but that has access

to the control commands in joint space (i.e., the neural

network directly predicts the next velocity commands for

the joints): this policy is the traditional “Behavior Cloning”

policy in the literature (we refer to it as task-agnostic (joint

space), Figure 5B));

• A policy structure with inputs the state of the robot and the

environment, but that has access to the control commands in

end-effector space (i.e., the neural network directly predicts

the next velocity commands for the end-effector): this policy is

similar to the previous one, but uses the pseudo-inverse of the

jacobian of the end-effector to transform the commands from

end-effector space to joint space (we refer to it as task-agnostic

(task space), Figure 5C)).

3.2.1 Data collection and preprocessing
We collect the solution sketches in a dynamical simulator by

recording only the state variables while completing the task using a

hard-coded Finite State Machine (FSM) and a model-based

controller in end-effector space that operate at 40 Hz. During the

demonstrations collection, we vary the positions of the task-related

objects in the environment, but we keep the orientations fixed.

For the pick and place task, the 3D positions of the box and

the basket are sampled uniformly and their orientation is kept

constant. To generate episodes with different combinations of the

3D positions of the environment objects, we perform a

Centroidal Voronoi Tesselation (CVT) on a large number of

points, i.e. 100 k, that have been sampled uniformly on the 3D

space of the polar coordinates of the box and the basket (rbox, θbox
and rbasket). In addition, for each box position we generate the

episode twice with the basket placed on each side of the

TABLE 2 Policy network architecture for the pick and place task.

Behavior Task-specific Task-agnostic (task space) Task-agnostic (joint space)

Input (11) Input (11) Input (15) Input (40)

Dense (16) Dense (32) Dense (128) Dense (128)

Tanh() Tanh() Tanh() Tanh()

Dense (16) Dense (32) Dense (128) Dense (128)

Tanh() Tanh() Tanh() Tanh()

Dense (4) Dense (4) Dense (64) Dense (128)

[Linear(3),Sigmoid(1)] [Linear(3),Sigmoid(1)] Tanh() Tanh()

Dense (7) Dense (8)

[Linear(6),Sigmoid(1)] [Linear(7),Sigmoid(1)]

TABLE 3 Policy network architecture for the bookcase task.

Behavior

Input (12)

Dense (32)

Tanh()

Dense (32)

Tanh()

Dense (4)

[Linear(3),Sigmoid(1)]

TABLE 4 Training hyperparameters.

Task Policy Batch size Optimizer Epochs

Pick and place Behavior 256 Adam(3e-4) 600

Task-specific 256 Adam(3e-4) 600

Task-agnostic (task space) 256 Adam(3e-4) 1800

Task-agnostic (joint space) 256 Adam(3e-4) 1800

Bookcase Behavior 128 Adam(3e-4) 1,500

Frontiers in Robotics and AI frontiersin.org09

Tsinganos et al. 10.3389/frobt.2022.974537

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974537

manipulator. For the bookcase task, we vary only the position of

the book in the bottom shelf. The goal position is in the upper

shelf and remains the same in each episode. We provide

preliminary results for the bookcase task, and more advanced

versions of this task are to be examined in future work. The initial

configuration of the manipulator and the positions of the

environment objects are specified in Table 1 for both tasks.

We generate more episodes, i.e. 50, to collect solution sketches

for the pick and place task as we vary more parameters of the

environment and only 10 for the bookcase task.

In order to facilitate training and learn optimal policies for each

task, we take advantage of the full ground truth information of the

simulated environment. Thus, at each time step of an episode we

record proprioceptive data about the configuration of the robotic

manipulator, i.e. the joint positions and velocities, the end-effector

position and velocity, and information about the other objects of the

environment, i.e. position of the box and the basket without using a

perception module (we use a perception module in evaluation

phase). For the task-agnostic policies, we collect demonstrations

that also include the control commands. As a preprocessing step, we

standardize each column of the input vectors.

3.2.2 Neural network architecture
The neural network architecture of the proposed BPL for the

pick and place and bookcase task is specified in Tables 2, 3

respectively. In addition, for the first task we specify the network

architectures of the task-specific and task-agnostic policies to

which our proposed policy is compared.

3.2.2.1 Pick and place task

The input vector to the behavior and task-specific policies

consists of: 3D position of the end-effector, 3D position of the

box, 2D position of the basket (we assume that the z-axis

coordinate is not important for training the network), end-

effector to box distance, end-effector to basket distance and

joint position of the gripper. These two policies output the

next 3D position of the end-effector and a probability of the

next state of the gripper (open or close). The difference is that the

proposed BPL is trained to output the 3D target of the end-

effector k time-steps in the future, whereas the task-specific is

trained to output the 3D target of the end-effector for each stage

of the task as provided by an FSM. The task-agnostic (task space)

policy network takes as input the same 3D positions of the end-

effector, box and basket and the joint position of the gripper as in

the previous policies and the end-effector spatial velocity. Instead

of the 3D target position of the end-effector, this network is

trained to output the end-effector velocity commands that move

the end-effector to the target position. Finally, the task-agnostic

(joint space) policy takes as input the robot joint positions and

velocities of the previous and current time-step, the 3D position

FIGURE 7
Pick and place task results over 10 independent trainings. The number of stars indicates that the p-value of the Mann-Whitney U test is less than
0.05, 0.01, 0.001, and 0.0001 respectively. (A) Percentage of episodes completing the full task (grasp the box and place it inside the basket) for each
policy structure. (B) Percentage of episodes in which the box is successfully grasped but it was not placed inside the basket.

Frontiers in Robotics and AI frontiersin.org10

Tsinganos et al. 10.3389/frobt.2022.974537

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974537

of the box at the previous and current time-step and the 2D

position of the basket. The output vector consists of velocity

commands for each controllable DoF and the gripper command.

We use a larger network to represent the task-agnostic policies

due to the complexity of the function they have to approximate.

For the task-agnostic policy in joint space, we used the state of the

environment of the previous timestep as well since in preliminary

experiments, this was working better.

3.2.2.2 Bookcase task

The BPL network takes as input the 3D positions of the end-

effector, book and goal and the gripper status and outputs the 3D

target position of the end-effector and the gripper command as in

the first task.

3.2.2.3 Neural network hyperparameters

The values of the hyperparameters we use for training the

neural networks are specified in Table 4. For the networks of the

task-agnostic policies, specifically, we use a scheduler to adjust

the learning rate during training: starting from the value of 3e − 4

the learning rate decays if the loss in the validation dataset is not

improved for 10 epochs.

The loss function Ltotal (Eq. 3) that is used for training the

network of the proposed BPL is a combination of the mean

squared error of the 3D target position of the end-effector

(MSET), the binary cross entropy loss of the gripper

command (BCEG) and a L1 penalty term of the weights of the

network w.

Ltotal � αMSET + BCEG + λ∑m
i�1

|wi| (3)

We observed that the binary cross entropy loss of the gripper

command is much greater than the mean squared error of the 3D

target. Thus, we put a big value to the weight α to impose a larger

penalty to the target loss. In addition, the regularization weight λ

is set to 1e − 3. In the task-agnostic policies, specifically, we

noticed that the network could not learn (loss was high and not

decreasing) with this value of the regularization weight λ, but

only with a very small value, i.e. 1e − 6. Thus, we decided not to

use a L1 penalty term at all during the training of the task-

agnostic policies.

FIGURE 8
Bookcase task: evaluation configurations. We use 30 different initial book positions (denoted with blue color).

TABLE 5 Policy Fine-Tuning Results (the best three policies from the
imitation learning step).

Success rate (with perception module)

Before fine-tuning (%) After fine-tuning (%)

Policy #1 66 75

Policy #2 64 82

Policy #3 60 76

Frontiers in Robotics and AI frontiersin.org11

Tsinganos et al. 10.3389/frobt.2022.974537

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974537

3.2.3 Imitation learning results
3.2.3.1 Pick and Place task

For this task, as there are many variations in the initial poses of

the box and the basket, we collect 50 solution sketches. We evaluate

the learned policies with 112 different initial configurations (see

Figure 3). The results showcase that our BPL is comparable to the

policy that uses extensive task knowledge and much better than the

other baselines (Figure 7A). Overall, our BPL achieves a median

success rate of 50% over 10 independent trainings, while the task-

agnostic policies almost completely fail to achieve the task (medians

of 9% and 0% for end-effector and joint space respectively). The task

specific policy has the best performance and achieves a median

success rate of 66%.Moreover, our policy grasps box 75% of the time

even if it fails to complete the task, whereas the agnostic policies

grasp it less than 40% of the time; the task-specific policy grasps it

93% of the time (Figure 7B).

3.2.3.2 Bookcase task

Since we only alter the initial position of the book on the

shelf, we managed to produce very good results with as few as

10 solution sketches. We evaluate the learned policies using

30 different initial book positions, evenly spaced at the bottom

FIGURE 9
Physical robot setup: goal object to pick is in red, while the goal place is the box on the left.

FIGURE 10
BPL successful implementation on the real setup (times advances from left to right). The policy learned in simulation is able to achieve 67%
success rate on the physical setup despite the reality gap and mismatches on the low-level controller.

Frontiers in Robotics and AI frontiersin.org12

Tsinganos et al. 10.3389/frobt.2022.974537

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974537

shelf (Figure 8). In this task, an episode is considered

successful if a book is placed at a maximum distance of

5 cm from the goal position and the end-effector’s distance

from the final position of the book is at least 0.3 m for

10 consecutive time-steps. Our BPL managed to achieve a

median of 85% success rate over 10 independent trainings,

while the task-agnostic policies did not manage to solve the

task (less than 5% success rate). We also struggled to make the

task specific policy to work reliably: possibly because the FSM

for this task was more complex.

3.3 Behavior policy learning evaluation

In order to answer to the last question of Section 3 and evaluate

the full BPL pipeline in simulation, we devise a realistic version of the

pick and place task, where the objects are tracked through anRGB-D

camera and no ground truth information is given to the robot. The

visual sensor operates at a rate of 20 Hz to emulate the typical

frequency of real camera sensors and mismatch of control and

sensor frequencies. We have implemented a perception module

where: 1) a point cloud is extracted from the depthmap generated by

the calibrated RGB-D sensor, 2) the points which lie on the floor and

the body of the robot are filtered out and 3) the remaining ones are

clustered and the object positions are determined from the medians

of the two largest clusters. We provide preliminary results, and take

the best three policies from the imitation learning step and further

fine-tune them as described in Section 2.4. The results show that we

achieve an average improvement of 23% and the optimized policies

have a median success rate of 76% (see Table 5).

3.4 Physical robot results

In order to answer to the last question of Section 3, we also

provide preliminary results on a physical setting of the pick and

place task (Figure 9). We take one of the optimized policies of the

previous step (the complete BPL pipeline) and apply it on the real

robot. We evaluated the policy on 12 different initial configurations

(6 positions of the box for 2 different positions of the basket). Our

method achieves 67% success rate (8 out of 12) despite the fact that

we were using a different low-level controller, i.e. impedance

Cartesian controller, and the reality gap. Figure 10 shows a

policy execution on the physical setup.

4 Discussion and conclusion

Our BPL pipeline makes it possible to learn effective policies for

multi-stage tasks by utilizing few demonstrations and fine-tuning in

simulation. BPL also lifts the need of having demonstrations with

optimal actions, and only requires the state variables. We

demonstrated the effectiveness of our proposed policy structure

and pipeline in two different tasks in realistic simulations. We also

provided preliminary results on a physical setting.

Our policy is inspired from the LfD literature, and we attempted

to make the underlying policy structure more flexible and easier to

fine-tune with RL. Structured policies have been discussed and

analyzed in depth in the literature (Stulp and Sigaud, 2013; Martín-

Martín et al., 2019; Varin et al., 2019), andwe see our work as further

validation that the type of structure of a policy is crucial, and as an

analysis of the key parts of a policy for effective LfD. In essence, our

work provides a practical approach for learning only from a few

solution sketches, while utilizing useful and generic task-agnostic

information from the task (e.g., model of the robot, distances to

objects, etc.).

Moreover, many approaches have been proposed for combining

demonstrations in a policy search RL setting (e.g. (Rajeswaran et al.,

2018; Zhu et al., 2018; Thananjeyan et al., 2020)) with pipelines

similar to our method. There are three key differences compared to

our work: 1) we do not propose a novel learning method for any

policy structure, but rather a practical pipeline and specific structured

policy for effectively learning from very few demonstrations, 2) we

require very few solution sketches, whereas the proposed methods in

the literature usually need at least 100 full demonstrations (with

action commands), and 3) the policies learned from the imitation (or

behavior cloning) part of our method are already quite effective and

thus require only small fine-tuning with RL afterwards.

Here it is important to note that we consider the first part of

our approach being a pure imitation learning method that suffers

from all the well-known issues of BC. The most important

limitation is the well-known distribution shift (or covariate

shift) Osa et al. (2018); Bagnell (2015); Ravichandar et al.

(2020); in short, as the set of demonstrations is small, the test

distribution (i.e., the actual running of the learned policy) can

be–and usually is–different from the demonstrated conditions.

This leads to great deterioration of performance since the small

errors per step are compounding errors that eventually lead the

behavior in a space completely outside of the train distribution.

This is usually tackled with interaction with the system (applying

also algorithms for effective online demonstrations Bagnell

(2015)), stricter assumptions about the system (i.e., we know

more about the system) Billard et al. (2008), and/or extensive

domain randomization Rudin et al. (2022); Lee et al. (2020).

Another important thing to note is the fact that we view our

proposed policy structure as an effort to bridge the more

traditional LfD literature (Billard et al., 2008) with more

recent methods from the RL literature (Rajeswaran et al.,

2018; Gupta et al., 2019). In this view, we began from the LfD

literature (by creating a policy structure that encodes a trajectory)

and attempted to provide more flexibility so that we can take

advantage (in future work) of effective RL toolkit.

Even though using our BPL pipeline the learned policies

were effective, we provide no theoretical guarantees for

stability, which is important for robotic applications. In

future work, we will attempt to merge neural networks with

Frontiers in Robotics and AI frontiersin.org13

Tsinganos et al. 10.3389/frobt.2022.974537

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974537

dynamical systems in order to get the best of both worlds. In

(Bahl et al., 2020), a method to combine neural networks with

dynamical systems has been recently proposed, but since their

policy changes the dynamical system every N steps there are

still no theoretical guarantees for stability. We aim at filling

this gap.

Our approach relies on model-based object tracking (via an

RGB-D camera), and this can be difficult to have for any object. In

future work, we aim at defining object-agnostic structures (e.g., 3D

voxels) to be used as inputs to our final policy, and trained in

simulation via privileged learning (see for example (Hwangbo et al.,

2019)). Finally, in future work we will use state-of-the-art RL

methods for the policy fine-tuning part and perform more

extensive evaluations both in simulation and the physical world.

Data availability statement

The raw data supporting the conclusion of this article will be

made available by the authors, without undue reservation.

Author contributions

KC, KT, DK, ED, and TK contributed to conception and design

of the study. KT and KC contributed to code development. DH and

DK performed the experiments with the physical robot. KT and KC

wrote most of the manuscript and DK, ED, and TK contributed to

the writing of key parts of the manuscript. KC, KT, and DH

contributed to demo videos creation. All authors contributed to

manuscript revision, read, and approved the submitted version.

Funding

This work was funded in whole, or in part, by the UKRI

Future Leaders Fellowship [MR/V025333/1] (RoboHike). For the

purpose of Open Access, the author has applied a CC BY public

copyright licence to any Author Accepted Manuscript version

arising from this submission.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frobt.2022.

974537/full#supplementary-material.

References

Bagnell, J. A. (2015). “An invitation to imitation,” in Tech. rep. (Pittsburgh,
Pennsylvania: Carnegie-Mellon Univ Pittsburgh Pa Robotics Inst).

Bahl, S., Mukadam, M., Gupta, A., and Pathak, D. (2020). “Neural dynamic
policies for end-to-end sensorimotor learning,” in NeurIPS.

Billard, A., Calinon, S., Dillmann, R., and Schaal, S. (2008). “Robot programming
by demonstration,” in Springer handbook of robotics (Berlin, Germany: Springer),
1371–1394.

Chatzilygeroudis, K., and Mouret, J.-B. (2018). “Using parameterized black-box
priors to scale up model-based policy search for robotics,” in ICRA.

Chatzilygeroudis, K., Rama, R., Kaushik, R., Goepp, D., Vassiliades, V., and
Mouret, J.-B. (2017). “Black-box data-efficient policy search for robotics,” in
IROS.

Chatzilygeroudis, K., Vassiliades, V., Stulp, F., Calinon, S., and Mouret, J.-B.
(2019). A survey on policy search algorithms for learning robot controllers in a
handful of trials. IEEE Trans. Robot. 36, 328–347. doi:10.1109/tro.2019.
2958211

Chebotar, Y., Handa, A., Makoviychuk, V., Macklin, M., Issac, J., Ratliff, N., et al.
(2018). “Closing the sim-to-real loop: Adapting simulation randomization with real
world experience,” in ICRA.

Cutler, M., and How, J. P. (2015). “Efficient reinforcement learning for robots
using informative simulated priors,” in Icra.

Du, Q., Faber, V., and Gunzburger, M. (1999). Centroidal Voronoi tessellations:
Applications and algorithms. SIAM Rev. Soc. Ind. Appl. Math. 41, 637–676. doi:10.
1137/s0036144599352836

Escande, A., Mansard, N., and Wieber, P.-B. (2014). Hierarchical quadratic
programming: Fast online humanoid-robot motion generation. Int. J. Robotics
Res. 33, 1006–1028. doi:10.1177/0278364914521306

Figueroa, N., Faraji, S., Koptev, M., and Billard, A. (2020). “A dynamical system
approach for adaptive grasping, navigation and co-manipulation with humanoid
robots,” in 2020 IEEE International Conference on Robotics and Automation
(ICRA) (Paris, France: IEEE), 7676–7682.

Fujimoto, S., Hoof, H., and Meger, D. (2018). “Addressing function
approximation error in actor-critic methods,” in International Conference on
Machine Learning, 1582–1591.

Gupta, A., Kumar, V., Lynch, C., Levine, S., and Hausman, K. (2019). “Relay
policy learning: Solving long-horizon tasks via imitation and reinforcement
learning,” in Conference on Robot Learning (CoRL).

Hansen, N. (2006a). The CMA evolution Strategy: A comparing review. Berlin,
Germany: Springer. doi:10.1007/3-540-32494-1_4

Hansen, N. (2006b). Towards a new evolutionary computation. Stud. Fuzziness
Soft Comput. 192, 75–102.

Heess, N., Dhruva, T. B., Srinivasan, S., Jay, L., Josh, M., Greg, W., et al. (2017).
Emergence of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286.

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., et al.
(2019). Learning agile and dynamic motor skills for legged robots. Sci. Robot. 4,
eaau5872. doi:10.1126/scirobotics.aau5872

James, S., Davison, A. J., and Johns, E. (2017). “Transferring end-to-end
visuomotor control from simulation to real world for a multi-stage task,” in CoRL.

Frontiers in Robotics and AI frontiersin.org14

Tsinganos et al. 10.3389/frobt.2022.974537

https://www.frontiersin.org/articles/10.3389/frobt.2022.974537/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2022.974537/full#supplementary-material
https://doi.org/10.1109/tro.2019.2958211
https://doi.org/10.1109/tro.2019.2958211
https://doi.org/10.1137/s0036144599352836
https://doi.org/10.1137/s0036144599352836
https://doi.org/10.1177/0278364914521306
https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1126/scirobotics.aau5872
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974537

Kaushik, R., Chatzilygeroudis, K., and Mouret, J.-B. (2018). “Multi-objective
model-based policy search for data-efficient learning with sparse rewards,” in
Conference on Robot Learning (PMLR), 839–855.

Khansari-Zadeh, S. M., and Billard, A. (2011). Learning stable nonlinear
dynamical systems with Gaussian mixture models. IEEE Trans. Robot. 27,
943–957. doi:10.1109/tro.2011.2159412

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521,
436–444. doi:10.1038/nature14539

Lee, J., Grey, M. X., Ha, S., Kunz, T., Jain, S., Ye, Y., et al. (2018). Dart: Dynamic
animation and robotics toolkit. J. Open Source Softw. 3, 500. doi:10.21105/joss.
00500

Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., and Hutter, M. (2020). Learning
quadrupedal locomotion over challenging terrain. Sci. Robot. 5, eabc5986. doi:10.
1126/scirobotics.abc5986

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep
visuomotor policies. JMLR 17, 1–40.

Liang, J., and Boularias, A. (2021). “Self-supervised learning of long-horizon
manipulation tasks with finite-state task machines,” in Learning for Dynamics and
Control (PMLR), 484–497.

Mandlekar, A., Xu, D., Martín-Martín, R., Savarese, S., and Fei-Fei, L. (2021).
“Learning to generalize across long-horizon tasks from human demonstrations,” in
Robotics: Science and Systems (RSS).

Martín-Martín, R., Lee, M. A., Gardner, R., Savarese, S., Bohg, J., and Garg, A.
(2019). “Variable impedance control in end-effector space: An action space for
reinforcement learning in contact-rich tasks,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (Piscataway, NJ, USA:
IEEE), 1010–1017.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
et al. (2015). Human-level control through deep reinforcement learning. Nature
518, 529–533. doi:10.1038/nature14236

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel, P., Peters, J., et al.
(2018). An algorithmic perspective on imitation learning. FNT. Robotics 7, 1–179.
doi:10.1561/2300000053

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018). “Sim-to-real
transfer of robotic control with dynamics randomization,” in ICRA.

Pirk, S., Hausman, K., Toshev, A. T., and Khansari, M. (2020). “Modelling long-
horizon tasks as sequential interaction landscapes,” in Conference on Robot
Learning (CoRL).

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schulman, J., Todorov, E.,
et al. (2018). “Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations,” in Proceedings of Robotics: Science and
Systems (RSS).

Ravichandar, H., Polydoros, A. S., Chernova, S., and Billard, A. (2020). Recent
advances in robot learning from demonstration. Annu. Rev. Control Robot. Auton.
Syst. 3, 297–330. doi:10.1146/annurev-control-100819-063206

Ross, S., Gordon, G., and Bagnell, D. (2011). “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics (JMLR
Workshop and Conference Proceedings), 627–635.

Rudin, N., Hoeller, D., Reist, P., and Hutter, M. (2022). “Learning to walk in
minutes using massively parallel deep reinforcement learning,” in Conference on
Robot Learning (PMLR), 91–100.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
et al. (2017). Mastering the game of go without human knowledge. Nature 550,
354–359. doi:10.1038/nature24270

Stulp, F., and Sigaud, O. (2013). Robot skill learning: From reinforcement learning to
evolution strategies. Paladyn, J. Behav. Robotics 4, 49–61. doi:10.2478/pjbr-2013-0003

Sutton, R. S., and Barto, A. G. (1998). Reinforcement learning: An introduction.
Cambridge: MIT Press Cambridge.

Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner, D., et al. (2018). “Sim-
to-Real: Learning agile locomotion for quadruped robots,” in RSS.

Thananjeyan, B., Balakrishna, A., Rosolia, U., Li, F., McAllister, R., Gonzalez, J. E.,
et al. (2020). Safety augmented value estimation from demonstrations (saved): Safe
deep model-based rl for sparse cost robotic tasks. IEEE Robot. Autom. Lett. 5,
3612–3619. doi:10.1109/lra.2020.2976272

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017).
“Domain randomization for transferring deep neural networks from simulation to
the real world,” in 2017 IEEE/RSJ international conference on intelligent robots and
systems (IROS) (Vancouver, BC, Canada: IEEE), 23–30.

Varin, P., Grossman, L., and Kuindersma, S. (2019). “A comparison of action
spaces for learning manipulation tasks,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (Macau, China: IEEE), 6015–6021.

Vassiliades, V., Chatzilygeroudis, K., and Mouret, J.-B. (2017). Using centroidal
Voronoi tessellations to scale up the multi-dimensional archive of phenotypic elites
algorithm. IEEE Trans. Evol. Comput. 22, 623. doi:10.1109/TEVC.2017.2735550

Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B., et al. (2017).
Leveraging demonstrations for deep reinforcement learning on robotics problems
with sparse rewards. arXiv preprint arXiv:1707.08817.

Zhu, Y., Wang, Z., Merel, J., Rusu, A., Erez, T., Cabi, S., et al. (2018).
“Reinforcement and imitation learning for diverse visuomotor skills,” in
Proceedings of Robotics: Science and Systems, Pittsburgh, Pennsylvania. doi:10.
15607/RSS.2018.XIV.009

Frontiers in Robotics and AI frontiersin.org15

Tsinganos et al. 10.3389/frobt.2022.974537

https://doi.org/10.1109/tro.2011.2159412
https://doi.org/10.1038/nature14539
https://doi.org/10.21105/joss.00500
https://doi.org/10.21105/joss.00500
https://doi.org/10.1126/scirobotics.abc5986
https://doi.org/10.1126/scirobotics.abc5986
https://doi.org/10.1038/nature14236
https://doi.org/10.1561/2300000053
https://doi.org/10.1146/annurev-control-100819-063206
https://doi.org/10.1038/nature24270
https://doi.org/10.2478/pjbr-2013-0003
https://doi.org/10.1109/lra.2020.2976272
https://doi.org/10.1109/TEVC.2017.2735550
https://doi.org/10.15607/RSS.2018.XIV.009
https://doi.org/10.15607/RSS.2018.XIV.009
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974537

	Behavior policy learning: Learning multi-stage tasks via solution sketches and model-based controllers
	1 Introduction and related work
	2 Proposed method
	2.1 Behavior Policy Learning (BPL)
	2.2 Policy structure
	2.3 Learning from solution sketches
	2.4 Policy improvement using a simulator

	3 Experimental results
	3.1 Experimental setup/tasks
	3.1.1 Pick and place task
	3.1.2 Bookcase task

	3.2 Imitation learning evaluation
	3.2.1 Data collection and preprocessing
	3.2.2 Neural network architecture
	3.2.2.1 Pick and place task
	3.2.2.2 Bookcase task
	3.2.2.3 Neural network hyperparameters
	3.2.3.1 Pick and Place task
	3.2.3.2 Bookcase task

	3.3 Behavior policy learning evaluation
	3.4 Physical robot results

	4 Discussion and conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

