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ABSTRACT: 

 

In this paper, we address the problem of planning police patrol routes to regularly cover street segments of high crime density 

(hotspots) with limited police forces. A good patrolling strategy is required to minimise the average time lag between two 

consecutive visits to hotspots, as well as coordinating multiple patrollers and imparting unpredictability in patrol routes. Previous 

studies have designed different police patrol strategies for routing police patrol, but these strategies have difficulty in generalising to 

real patrolling and meeting various requirements. In this research we develop a new police patrolling strategy based on Bayesian 

method and ant colony algorithm. In this strategy, virtual marker (pheromone) is laid to mark the visiting history of each crime 

hotspot, and patrollers continuously decide which hotspot to patrol next based on pheromone level and other variables. Simulation 

results using real data testifies the effective, scalable, unpredictable and extensible nature of this strategy. 
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1. INTRODUCTION 

Police patrolling is one of the most important methods for crime 

prevention and emergency response in urban areas. Due to its 

importance, many strategies for police patrolling have been 

developed and used in practice, such as random preventive 

patrolling (Weisburd and Eck 2004), high-visibility 

patrolling(Braga 2001), and hotspot policing (Braga 2001; 

Koper 1995). Hotspot patrolling, which “focuses on small 

geographic places or areas where crime is concentrated”(Koper 

2014), is considered one of the most important innovations in 

policing in recent years, and is currently used by many police 

departments (Weisburd et al. 2003). 

 

In policing operations, a high-level strategy of hotspot 

patrolling needs to be turned into detailed patrol routes. So far 

there have been different approaches in designing police patrol 

routes. Reis et al. (2006) designed the patrol routes based on 

Genetic Algorithms, and tested this algorithm using a 

simulation of a constant number of criminals and police officers 

as agents moving around an open area. This solution is designed 

and tested in a simplified scenario and requires substantial 

improvements before it can be applied to police operational 

planning. Chawathe et al. (2007) modelled the patrolled road 

network as an edge-weighted graph, and organized hot-spot 

police patrol routes based on the importance of segments and 

topology of the road network. The resulting patrol patterns of 

this approach are deterministic, depending entirely on crime rate 

distribution and the topology of the road network, and might be 

predicted by offenders. Chen et al. (Chen and Yum 2010) 

developed an algorithm for patrol route planning based on a 

cross entropy method. This method was developed for single 

patrol unit planning, and faces challenges when extended to 

multiple-unit patrolling. Tsai et al. (Tsai et al. 2010) derived a 

strategy for police resource allocation based on modelling the 

interactions between police and terrorists as an attacker-

defender Stackelberg game. However, this method assumes that 

a player always predicts his opponent’s behaviour and chooses 

the best response, and may have difficulty in generalizing to 

large numbers of agents and multiple crime types. 

 

More generally, police patrol can be broadly classified as multi-

agent patrolling, which is a problem that has been well 

developed in robotics and related domains. Researchers have 

developed distinct methods for multi-agent patrolling problem 

based on a variety of concepts, including a probabilistic ants 

algorithm (Fu and Ang 2009) and Bayesian strategy (Portugal 

and Rocha 2013), etc. However, these methods are not directly 

applicable to police patrol, because of the complexity of 

implementation (Almeida et al. 2004) and oversimplification of 

the patrolling environment (static environment, uniform 

distance, etc.) (Fu and Ang 2009). Moreover, one fundamental 

assumption underlying most previous methods is that patrolling 

targets are treated as points or nodes so that there is no time cost 

in traversing targets (Portugal and Rocha 2013). However, 

police patrol takes place on street segments with physical 

length, and traversing segments indeed costs some time. 

Consequently, a detailed police patrol route design on street 

segments is urgently needed for efficient policing as daily 

practice. 

 

In this work, we present a police patrol routing strategy for 

patrolling road network based on Bayesian strategy and the ant 

colony algorithm. In Section 2, we formulate the police 

patrolling problem on road network. In Section 3, we describe 

the Bayesian Ant Patrolling Strategy (BAPS). In Section 4, we 

present the result of simulation tests of BAPS and compare it 

with the benchmark strategy. In Section 5, we introduce the 

extension of BAPS with varied pheromone decay rate. In 

Section 6, we present our discussion and discuss topics for 

future study. 
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2. PROBLEM FORMULATION 

In this work, the problem of effectively patrolling a road 

network on foot is studied. The environment is the road 

network, with certain road segments being identified as hotspots 

through crime mapping and crime prediction (Ratcliffe 2010) 

based on historical data. Patrollers move on the road network, 

and communicate frequently with the control centre. Every time 

a patroller finishes patrolling a hotspot, he or she sends a 

message to the control centre, and the control centre calculates 

and sends back the position of next hotspot. Patrollers have a 

priori map of the environment and always travel to the next 

hotspot via shortest path. This procedure is a simplification of 

real police patrol. A more complex model may involve 

emergency response and cooperating with mobile patrol, which 

might be addressed in future study. 

 

Informally, a good strategy is the one that minimizes the time 

lag between two patrols to the same hotspot and for all hotspots. 

Several criteria have been suggested to quantify the 

effectiveness of patrolling strategies, including the idleness of 

targets, the frequency of visits, or the distance travelled by 

agents (Iocchi et al. 2011). In this study the idleness of targets is 

used as the main metric, as it records the duration since last 

visit, and is intuitive to understand and analyse. To explain this 

metric, some important variables use in this work will be 

defined. 

 

The set of hotspot road segments is denoted 

as 1 2{ , ,..., }nH h h h , with ih  representing one hotspot and 

n representing the total number of hotspots. The set of vertices 

associated with hotspot segments is denoted as 

11 12 21 22 1 2{ , , , ,..., , }n nV v v v v v v , with 1iv and 2iv  

representing the two vertices of hotspot segment ih . Note that 

V  is a multi-set that allows multiple instances of a vertex as 

some segments may have common vertices. The minimum 

distance a patroller must travel from any position p  on the 

street network to finishing patrolling ih  is denoted 

as ( , )idmin p h , which is defined as:  

 

1 2( , ) min{ ( , ), ( , )}i i idmin p h dmin p v dmin p v   (1) 

   

where  1 2( , )dmin p p  = the minimum distance 

between 1p  and 2p  on street network. 

 

The instantaneous idleness (or idleness) of a hotspot ih H at 

time t is given by: 

 

 ( )( )
i ih l hI t t t   (2) 

  

where ( )il h
t  = the last time hotspot ih  was visited by any 

patroller. 

 

Thus the average idleness of a hotspot ih  at time t is defined as: 

 

 0( ) ( ) / ( 1)
i ih hI t t t C   (3) 

 

where  0t = starting time 

 
ih

C = number of visits to ih . 

 

The global average idleness of all hotspots, represented as 

( )HI t , is defined as: 

 

 

1

( ) 1 / ( )
i

n

H h
i

I t n I t   (4) 

 

One assumption from other works (Chevaleyre 2004; Machado 

et al. 2002) is used in the beginning of patrolling, namely that 

for any hotspot ih H  , ( 0) 0
ih
I t , as if every hotspot 

had just been visited when patrol started. Consequently there is 

a transitory phase when the global average idleness tends to be 

low. For this reason, the final ( )HI t  value is evaluated after 

convergence in the stable phase, as will be seen below. 

 

Considering a patrol path as an array of hotspots, the police 

patrolling problem may be described as the optimisation 

problem of finding a set of paths p which visit all hotspots, 

using a team of R patrollers, with the overall goal of 

minimizing ( )HI t : 

 

 
p

argmin( ( ))Hf I t   (5) 

  

where  

p 1 2{ , ,..., }Rp p p  

such that 

' b'

' b'

'

{ , ,...} { , , , , ...}
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, ,... ,
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{1,2}, {1,2} , , ,...
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p h h v v v v
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h h H

v v v v V

k k k i a b

 

 

As has been mentioned before, in this work the patrolling route 

of each patroller is computed online by the control centre 

according to the state of the system. Patrollers decide the path 

from current position to the next hotspot, although they always 

use the shortest paths on road network. 

 

3. BAYESIAN ANT PATROLLING STRATEGY 

This section describes the Bayesian Ant Patrolling Strategy 

(BAPS). This strategy is inspired by the probabilistic ant 

algorithm (Fu and Ang 2009) and state exchange Bayesian 

strategy (Portugal and Rocha 2013). This Bayesian-based model 

represents the possibility of moving from the current position to 

any hotspot, based on previous visits of the hotspot, travelling 

distance, coordination between patrollers, and other factors. For 

n hotspots, the model is applied independently n times and the 

final decision of which hotspot to visit next is made via 
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comparison of moving possibility among n hotspots. There are 

two relevant components of BAPS, namely the pheromone 

formalization (deposit and decay) and the Bayesian decision 

model. In the following sections, these two components will be 

described in sequence. 

 

3.1 Pheromone Deposit and Decay 

The use of pheromone comes from the ant colony algorithm 

(Dorigo et al. 1991). The ant colony algorithm is a type of 

algorithm for solving various optimisation problems by 

simulating ants’ behaviour in seeking food (Dorigo et al. 1991). 

The ant colony algorithm has been used in multi-agent 

patrolling algorithm (Fu and Ang 2009; Doi 2013). As 

suggested by the probabilistic ants algorithm (Fu and Ang 

2009), the introduction of pheromone decay would indicate the 

frequency and time of recent visits to a location. For this reason 

we use pheromone trails to mark visits to hotspots in this study.  

 

A location’s pheromone level is affected by several factors: the 

pheromone decay rate λ, the amount of pheromone deposited 

during a visit dPh , and the duration of time since the last 

deposit was made. The pheromone level is updated after a visit 

is made: 

 

 d( ) ( 1)
i ih hPh t Ph t Ph   (6) 

  

Pheromone decay occurs at each time step and at each hotspot. 

The update of pheromone level after a duration of (t-t0) is as 

follows: 

 

 λ 0
0( ) ( )

i i i

t t
h h hPh t Ph t   (7) 

 

where λ
ih

= the pheromone decay rate at hotspot ih , and 

λ (0,1)
ih

.  

 

Note that due to the exponential decay process, the decay rate 

should be chosen to be large enough to avoid extremely low 

levels of pheromone resulting from decay over a long time. 

The combination of pheromone deposits and pheromone decay 

over time will build a kind of continuous potential field 

(Parunak et al. 2001) across all hotspots, which will push 

patrollers towards hotspots with lower pheromone levels. 

 

3.2 Bayesian decision model 

After patrolling a hotspot, a patroller is faced with a decision 

stage where it must decide the next hotspot it should patrol, 

among all n-1 other hotspots.  

 

The probability of moving to a hotspot ih is calculated using the 

following formula, applying Bayes rule: 

 

 

(move( ) | , ) (move( ))

( | move( )) / ( )

( | move( )) / ( )

i i

i i

i i

i h h i

h i h

h i h

P h G S P h

P G h P G

P S h P S

  (8) 

 

In the first part of Equation (9), (move( ))iP h represents prior 

knowledge in the problem. For example some special hotspots 

may require higher visiting frequency than others, which would 

be represented in this part. In this work, the prior is not used 

and defined as uniform. 

 

In the second part of Equation (9),
ih

G  is the gain of patrolling 

a hotspot ih at time t, defined as: 

 

 ( ) 1 / (t) ( , )
i ih h iG t Ph NORMdmin p h   (9) 

 

Where (t)
ih

Ph  = the pheromone level of ih  

( , )iNORMdmin p h  = the normalized value of 

( , )idmin p h , which is defined in Equation (1).  

 

The normalisation is done to avoid local optima where 

patrollers repeatedly visit vertices that are very close to each 

other. The normalisation is conducted on the set of distances 

from the current position to all other hotspots. 

 

As suggested in the state exchange Bayesian strategy (Portugal 

and Rocha 2013), 
ih

G is a continuous random variable with a 

probability density function f(g)., and ( )f g  may be defined as:  

 

( ) 1 / ln(1 / ) exp( ln(1 / ) / )f g M L L g M   (10) 

   

where , 0LM  and g M . 

 

L and M are constants that control the distribution function. L 

controls the probability values for zero gain and M is the gain 

saturation (Portugal and Rocha 2013). These parameters are 

simply defined as a value close to 0 for L, and M is calculated 

using the lower bound of the pheromone level and normalised 

distance. 

 

( | move( ))
ih iP G h  is part of likelihood, representing the 

posterior distribution modelling the gain of patrolling ih , and is 

calculated as ( | move( )) ( )
i ih i hP G h f G . ( )iP G  is often 

regarded as a normalisation factor (Jensen and Nielsen 2007) 

and is usually omitted for simplification.  

 

In the third part of Equation (9), ( | move( ))
ih iP S h  and 

( )
ih

P S  is used to better coordinate multiple patrollers. The 

basic idea is that a patroller should avoid patrolling the same 

hotspot as his teammates. Hence, 
ih

S is defined as a discrete 

variable that represents the number of patrollers intending to 

visit ih and tracks the intentions of the teammates. Similar to 
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state exchange Bayesian strategy (Portugal and Rocha 2013), 

the distribution of ( )
ih

P S s is defined as: 

 

 ( 1)( ) 2 / (2 1)
i

R s R
hP S s   (11) 

  

where R = the number of patrollers and R>1. 

 

Thus, the probability of moving to hotspot ih  is given as: 

 

(move( ) | , ) c exp ln(1 / ) / /2
h
i

i i

s

i h h
P h G S L g M   (12) 

  

where c is constant across all ih . 

 

The next hotspot to patrol is the one with the highest 

probability: 

 

 argmax (move( ) | , )
i i

i

next i h h
h

h P h G S   (13) 

 

If more than one hotspot has the highest probability, the next 

hotspot is selected from these candidates with equal probability. 

 

4. SIMULATION EXPERIMENT 

To assess the performance of BAPS and compare it with other 

strategies, simulation trials using an agent-based simulation 

were conducted. 

 

Agent-based modelling (ABM) is a simulation technique that 

seeks to capture how individual behavioural units – agents – 

interact with their environment and with each other, allowing 

higher-order behaviours and structures to emerge from these 

interactions (Epstein and Axtell 1996). The model framework 

used in this work is built in Java, using the MASON simulation 

toolkit (available at http://cs.gmu.edu/~eclab/projects/mason/). 

The simulation trial proceeds at a physical scale of 1m2 

resolution, and is updated on a temporal scale of five seconds 

per step. 

 

To represent the context in which police patrol is conducted, the 

simulation combines information about the real-world road 

network and the real crime records. The study area is Camden 

Borough in Inner London. Roads are drawn from the Ordnance 

Survey MasterMap Integrated Transport Network Road (ITN) 

dataset, and are partitioned into individual segments. Locations 

of crime incidents are drawn from the records of the Call Aided 

Despatch (CAD) system of the Met Police, and are pre-

processed before use. The locations of six police stations, which 

factor into activities of police officers, are taken from the data 

provided by the Met Police.  

 

The crime density of one segment is defined as the ratio of the 

number of crime incidents on the segment to its length. Among 

all segments, the 311 with the highest crime density and 

covering 5% of total length are selected as crime hotspots. 

Figure 1 shows the road network map of Camden Borough, with 

hotspot segments highlighted.  

 
Figure 1. Map of Camden Borough 

 

The benchmark test is also conducted using the same 

environment. Previous research has shown that optimal 

patrolling can be obtained if all agents follow the same TSP or 

Hamilton cycle, equally distributed in time and space (Smith 

and Rus 2010; Pasqualetti et al. 2012). However, this is based 

on topological representation of the environment in which 

patrolling targets are treated as points. In this work an adjusted 

algorithm is adopted to fit the problem that patrolling targets are 

segments with physical length. The problem to solve, known as 

the Rural Postman Problem (Christofides et al. 1981), is to find 

a shortest circuit that traverses a subset of required segments 

(hotspots) at least once of a connected undirected graph. One 

well-known algorithm for this problem, the Christofides 

Algorithm (Christofides et al. 1981), is used in this work as the 

benchmark strategy. Note that this is a heuristic solution and 

has been proved that in the case where the underlying network 

satisfies the triangular inequality property, the performance of 

this algorithm has a bound of 3/2, which means the performance 

is bound accordingly: (Christofides Solution)/(Optimal 

Solution) 3/2(Pearn and Wu 1995). In the following 

discussion, the patrolling strategy based on Christofides 

algorithm is referred to as the Christofides Cycle Patrolling 

Strategy (CCPS). 

 

Both BAPS and CCPS were tested in the above environment 

with different sizes of patroller groups (18, 30, 48, 60, 72, and 

90). Each simulation went on for 11 patrol cycles. The global 

average idleness is considered to have converged when its value 

after any patrol cycle converges with no more than 1% 

difference to that of the previous cycle.  

 

In the BAPS simulation, the distances from current position to 

hotspots were normalized to the range of [1, 32], a range which 

was determined experimentally. Without loss of generalization, 

the amount of pheromone deposit at each visit is set as 1 unit. 

As has been mentioned above, the decay rate should be large 

enough to avoid extremely low pheromone levels. The threshold 

of pheromone level is set as 0.001 unit, and according to some 

pilot experiments, the largest value of idleness is smaller than 

100000. Thus the decay rate is selected as 0.99993, based on 

Equation (8). Accordingly, M, representing gain saturation, is 

set as 1000. L, controlling the probability for zero gain, is set as 

0.001, as suggested by Portugal & Rocha(Portugal and Rocha 

2013).  
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Table 2 presents the simulation result, where ( )HI t was 

measured and used as the metric of patrolling performance and 

relative change (Bennett and Briggs 2005) taking CCPS 

idleness as reference value is defined as: 

  

 
CCPS BAPS

(BAPS,CCPS)
(CCPS)

( ) ( )

H

H HRC
I

I I
  (14) 

 

From Table 2, for different patroller sizes, BAPS has lower 

global average idleness and better performance than CCPS. 

When team size is relatively small, the difference is noticeable. 

The difference becomes smaller as team size rises to 72 or 

larger. This is possibly due to the increasing possibility of 

visiting the same hotspots as the number of patrollers increases.  

 

Team Size 18 30 48 60 72 90 

BAPS 2860 1667 1073 868 756 624 

CCPS 3476 2040 1253 1017 853 682 

Relative 

Change 
0.215 0.224 0.168 0.172 0.128 0.093 

Table 2. Global average idleness from simulation with BAPS 

and CCPS ( ( )HI t  value in seconds) 

 

Another important aspect of a good patrolling strategy is 

unpredictability (Yin et al. 2012; Sherman et al. 2014), because 

predictable patterns in patrolling routes are likely to be 

exploited by criminals or offenders. In this work, we use the 

standard deviation of idleness of each hotspot to measure the 

unpredictability of patrolling routes.  

 
Figure 3. Comparison of BAPS and CCPS result. 

(a) Average idleness of each hotspot. (b) Standard deviation of 

idleness on each hotspot 

 

Table 2 shows that for over 78% of all hotspots, the average 

idleness from BAPS is smaller than CCPS, and for 100% of all 

hotspots, the standard deviation of idleness from BAPS is larger 

than CCPS. The low idleness deviation of CCPS may be 

explained by the even distribution of patrollers on the cycle and 

the same patrolling cycle used by all patrollers. However, low 

standard deviation indicates observable patterns which can be 

adopted by smart criminals.  By contrast, the high deviation of 

idleness in BAPS, or the high randomness of patrol routes, 

would create a perceived "omnipresence" of the police that 

deters crime in crime hotspots (Sherman and Eck 2002). 

 

5. EXTENSION OF BAPS - WEIGHTED BAYESIAN 

ANT PATROLLING STRATEGY 

Another advantage of BAPS is its great extensibility. For 

instance, different decay rates can be adopted to differentiate 

hotspots. With the other factors fixed, lower decay rates lead to 

higher gain of patrolling and consequently higher visiting 

frequency. By setting different decay rates, patrollers are able to 

pay more attention to higher crime rate hotspots as well as 

keeping an eye on all hotspots. This variation is called 

Weighted Bayesian Ant Patrolling Strategy (WBAPS). To test 

this new functionality, another simulation is conducted, in 

which hotspots are classified, and a new metric of patrolling 

performance is defined. The 311 hotspots are divided into five 

classes (1-5), with Class 1 representing group of lowest crime 

density and Class 5 highest crime density, and with approximate 

number of hotspots in each class. Figure 3 shows a hotspots 

map of different classes. 

 
Figure 4. Hotspot map of different classes 

 

Meanwhile the metric called weighted global average idleness is 

defined, and the weight of hotspots is equal to its class order. 

The weighted global average idleness is defined as: 

 

 W
1 1

( ) ( ) /
i i i

n n

h h h
i i

I t W I t W   (15) 

 

The global average idleness is a special case of weighted global 

average idleness in which all hotpots have the same weight. In 

the simulation to minimize ( )WI t  with 30 patrollers, different 

decay rates are used as Table 5 shows. The decay rate for Class-

1 is the same as the BAPS simulation test, while the other decay 

rates decrease in order from Class 2 to Class 5. 

 
Hotspot 

Class 
1 2 3 4 5 

Decay 

Rate 
0.99993 0.99992 0.99991 0.99990 0.99989 

Table 5. Decay rate for different hotspot classes 
 

This simulation used the same setting as the above simulation 

except the different decay rate for different hotspot classes, and 

the result is compared with ordinary BAPS, as showed in Table 

6. 
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Weighted 

Global 

Average 

Idleness 

Global 

Average 

Idleness 

Global Average Idleness Of Each Class 

1 2 3 4 5 

BAPS 1653 1671 1718 1725 1697 1700 1607 

WBAPS 1623 1712 2054 1872 1720 1620 1456 

Table 6. Simulation result of BAPS and WBAPS (all values in 

seconds) 
 

From Table 6, the new strategy, WBAPS, decreased the 

weighted global average idleness by about 1.8%, in the cost of 

2.4% rise in global average idleness. Specifically, the average 

idleness of Class-4 and Class-5 hotspots reduced significantly 

by 4.7% and 9.4% when the WBAPS is used. This is due to the 

adoption of stratified decay rates. However, the adjustment of 

decay rate is still an open question for future research, which is 

related with the spatial distribution and crime rate distribution 

of hotspots. 

 

6. CONCLUSIONS 

In this work, the Bayesian Ant Patrolling Strategy was 

introduced to solve the problem of police patrol routing on road 

networks. The motivation of this strategy is to minimise the 

global average idleness of all hotspots while avoiding overly 

predictable patrol patterns. We have shown its effectiveness by 

agent-based simulation using empirical GIS data and real crime 

incident data and comparing its performance with the typical 

cycling algorithm. Moreover, due to its online and probabilistic 

nature, the strategy can reduce the predictability in the patrol 

routes.  

 

Future work will be built upon this strategy, aiming at including 

the relevant dynamics of police activity. In particular, factoring 

the influence of frequent emergency calls on patrol activity can 

present a more realistic patrolling scenario, and adjusting the 

existing strategy to this dynamic environment will vastly 

improve its usefulness. Research into coordinating patrollers of 

different types will provide insight into a practical patrolling 

strategy. Another interesting direction would be customising the 

patrolling strategy for alleviating specific crime type rather than 

general crime. 
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