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Abstract—In this work we exploited Partial Least Squares
(PLS) model for analyzing the genetic underpinning of grey
matter atrophy in Alzheimer’s Disease (AD). To this end, 42
features derived from T1-weighted Magnetic Resonance Imaging,
including cortical thicknesses and subcortical volumes were con-
sidered to describe the imaging phenotype, while the genotype in-
formation consisted of 14 recently proposed AD related Polygenic
Risk Scores (PRS), calculated by including Single Nucleotide
Polymorphism passing different significance thresholds. The PLS
model was applied on a large study cohort obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
including both healthy individuals and AD patients, and validated
on an independent ADNI Mild Cognitive Impairment (MCI)
cohort, including Early (EMCI) and Late MCI (LMCI). The
experimental results confirm the existence of a joint dynamics
between brain atrophy and genotype data in AD, while providing
important generalization results when tested on a clinically
heterogeneous cohort. In particular, less AD specific PRS scores
were negatively correlated with cortical thicknesses, while highly
AD specific PRSs showed a peculiar correlation pattern among
specific subcortical volumes and cortical thicknesses. While the
first outcome is in line with the well known neurodegeneration
process in AD, the second could be revealing of different AD
subtypes.

Index Terms—Partial Least Squares, Imaging Genetics, grey
matter atrophy, Polygenic Risk Scores

I. INTRODUCTION

Alzheimer’s Disease (AD) is the most common cause of
dementia, affecting 46.8 million people worldwide [1]. The
pathophysiology of AD and its genetic drivers have been
widely studied in recent years. On the imaging side, studies
based on structural magnetic resonance imaging (MRI) data
have consistently observed both global and local atrophic
changes during early stages of AD, mainly localised in the
medial temporal lobe structures including the amygdala, hip-
pocampus, entorhinal cortex, and parahippocampal gyrus [2].
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However, recent studies have proved the involvement of other
brain regions, such as basal ganglia, in the disease progression
[3], while others were able to identify AD subtypes showing
distinct atrophy patterns, starting and spreading across dif-
ferent areas [4]. On the genetic side, Polygenic Risk Scores
(PRS) are gaining popularity since they represent a single (or
few) score(s) combining the effects of multiple independent
genetic variants in a subject’s genome derived from a large
genome-wide association study (GWAS) study. The PRS are
informative about the individual overall genetic disease risk
enabling the associations between genetic profiles and imaging
features on smaller cohorts. This in particular is the target
of Imaging Genetics (IG) which aims at investigating the
effects of genetic variations on brain function and structure
and in which our work is framed. Such methods, applied
in particular to AD onset, allowed a better understanding
of the genetic underpinnings on brain modulations [5]. PRS
for AD have been shown to be associated with clinical
diagnosis and disease progression [6], cognitive decline [7]
and imaging biomarkers [7]–[9] both on healthy and cognitive
impaired patients. Previous studies have generally focused on
the hippocampal volume solely to evaluate its association with
PRS for AD in cognitive impaired cohorts, considering its
central role in AD pathophysiology [6], [7]. A wider range of
brain morphometric features was investigated in association
with PRS for AD in clinically normal cohorts [9]. To the best
of our knowledge, the interaction between PRS for AD and
a complete set of brain structural imaging phenotypes, such
as cortical thickness and subcortical volumes, has not been
deeply investigated in a cognitive impaired cohort. Typically,
univariate models have been applied to characterize IG asso-
ciations, however such methods do not account for potential
cross features interactions and are highly prone to multiple
comparison problems leading to underpowered discoveries
of significant associations [10]. Multivariate methods, on the
other hand, can address such limitations. Latent variable and



Fig. 1. First and second PLS components weights (rows) for the phenotype and the genotype features (columns).

multi-view models, for example, aim at finding a latent low
dimensional space by the optimization of a target function
such that the projections of the features hold some maximized
joint properties. Partial Least Squares (PLS) maximizes the
covariance between the latent projections, further addressing
features collinearity which generally affects both imaging and
genetics derived features. PLS is increasingly being exploited
in IG studies, particularly in imaging transcriptomics aiming
at investigating the association between imaging phenotypes
and gene expression values in brain disorders [11]. Moreover,
relying on different genetic features, such as Single Nucleotide
Polymorphism (SNPs), Lorenzi et al. [10] exploited PLS to
uncover the genetic underpinnings of brain atrophy in AD.
Despite these promising results, the potentialities of a classical
statistical model as PLS in the AD domain are still under in-
vestigated, though could help to disambiguate the associations
between different feature sets considering its inherent ability to
provide a straightforward explanation of the outcomes, which
is not always the case for complex deep models.

The objective of our work was the characterization of the
different stages of AD in the PLS latent space representation,
which is indeed generated by meaningful associations found
between brain morphometric features and PRS in AD. More-
over, in order to assess the generalization capability of our
model computed on AD and healthy controls, an unseen cohort
of subjects affected by mild cognitive impairment (MCI) was
used for testing.

II. MATERIALS AND METHODS

Phenotypes and genotypes used in this study were derived
from the AD Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). The full cohort comprehended 826 subjects from
the ADNI-1,ADNI-2 and ADNI-GO phases including 243
Controls (CN), 289 Early MCI (EMCI), 179 Late MCI (LMCI)
and 115 AD patients (age: 72.9± 6.2, 71.2± 7.2, 71.9± 7.7,
and 74.8±7.9; females/males: 131/112, 126/163, 79/100, and
47/68). AD and CN subjects were considered as the discovery
cohort, while EMCI and LMCI were kept for testing. The
considered imaging features were region-based morphometric
descriptors derived from T1-w MRI images extracted by UCSF
using FreeSurfer version 5.1 and accessed through the ADNI
website (date accessed 18/02/2022). 84 anatomical regions of

interest (ROIs) were included. The average thickness and the
volume were considered for cortical and subcortical ROIs,
respectively. The subcortical volumes were normalized by the
intracranial volume of the respective subject. 42 features were
finally obtained by averaging left and right hemispheres and
were considered as phenotype. The genetic information was
represented by the 14 PRS proposed in [6]. Briefly, each PRS
was calculated by including all independent SNPs passing a p-
value threshold in the most recent GWAS [12]. The thresholds
adopted were 1e−08, 1e−07, 1e−06, 1e−05, 1e−04, 0.001,
0.01, 0.05, 0.1, 0.2, 0.4, 0.5, 0.75, 1. The related PRS will be
named as PRS threshold value. SNPs in the extended APOE
locus were excluded from the PRS construction to enable
investigations of risk independent from APOE. We refer to
[6] for further details on PRS computation. A standardization
to reach zero mean and unitary standard deviation was applied
to the feature sets. Age was then regressed out from the image-
derived features, while the first two principal components,
describing the genetic information of the whole population
on which the PRS were calculated, were regressed out from
the genetic features, following [6]. PLS was finally applied
in order to model the joint variation between phenotype and
genotype observed in healthy and AD individuals, following
[8], [10]. Then, the generalization capability of our model
was assessed on an unseen cohort of MCI subjects. The data
variability explained by each component was calculated, and
the number of components was chosen in order to allow to
represent at least the 60% of it. A permutation test based on
the obtained singular values was finally performed to assess the
significance of the model In brief, the test checked whether
the singular values obtained by the model were higher than
the ones obtained by randomly permuting all rows of the
phenotype matrix (10e4 permutations were used). The Mann
Whitney non-parametric U-test was performed to assess the
significance of the latent space projection difference across
groups. Finally, the generalization of the PLS model was tested
on the MCI group by statistically assessing the ability of
the estimated PLS components in splitting EMCI and LMCI
subjects, through group-wise comparison of the projections in
the latent space.



III. RESULTS

Two latent components were needed to explain at lest the
60% of data variability, accounting for 54% and 18% of data
variability, respectively. The PLS weights of phenotype and
genotype in the first and second latent component of the
model are shown in Fig. 1. The PLS model associates a
weight to each input feature reflecting its relevance in shaping
the latent space, that is in the association between genotype
and phenotype. The first component revealed a widespread
negative correlation between phenotype and genotype. The
five most relevant brain regions were postcentral gyrus, cau-
dalanterior cingulate, insular cortex, lingual gyrus and cuneus.
On the genetics side, the less AD specific PRS, hence the ones
having a less stringent p-value threshold for SNPs inclusion,
showed the highest weights. Moving to the second component,
pallidum, hippocampus, caudate, entorhinal and inferiortem-
poral appeared as the most relevant regions. More in detail,
pallidum was anticorrelated to the hippocampus volume, and
entorhinal and inferiortemporal thicknesses, while it appeared
to be correlated with the caudate volume. On the genetic
side, this component highlighted the most AD specific PRS,
hence the ones including SNPs peculiar for AD. These were
positively correlated with pallidum and caudate volumes, while
a negative correlation was found with hippocampus. Moreover,
the permutation test confirmed the significance of our model
resulting in p = 0.0428. The latent space representation of AD

Fig. 2. Latent representation of the discovery set and MCI cohort validation
set (rows) on the first two PLS components (columns) (AD: blue, CN: grey,
EMCI: green, LMCI: violet).

and CN groups is shown in Fig. 2 for the two PLS components.
Both showed a separation between the two classes, particularly
evident in the second one. The projection in the latent space
led to significant group-wise differences for the phenotype
on both PLS components, reaching p < 1e−12 on the first
and p < 1e−17 for the second one. Conversely, a trend
towards significance was found for the AD vs CN difference
in the genotype latent space projection, with p = 0.086 and
p = 0.121 for the first and second component respectively.

Fig. 2 proves also the model generalization capability by
showing the projection of the MCI independent set on the

latent space generated by AD and CN subjects. While the first
component showed a major overlapping between EMCI and
LMCI, the second one allowed a clearer separation, with the
LMCI being distributed in the same latent space region as the
AD and the EMCI being more central.

Finally, Fig. 3 summaries the PLS latent space projections
scores for the MCI group on both components, separately for
genotype and phenotype. A significant difference was found
for phenotype in both components, p = 0.042 and p = 0.007,
respectively. The genotype differences did not reach the sig-
nificance, though a moderate trend towards significance was
present in the second component (p = 0.130).

Fig. 3. Latent space projection scores of the MCI cohort on the first two PLS
components. Significant differences between EMCI (blue) and LMCI (orange),
as revealed by the Mann Whitney non-parametric U-test, are highlighted in
red for both phenotype and genotype features.

IV. DISCUSSION

In this work we modeled the relation between gray matter
atrophy and PRS via joint multivariate statistical modeling in
AD, showing a good generalization of the results by testing the
model on an unseen cohort of MCI subjects. Results showed
that two PLS components explained a sufficient amount of data
variability (> 60%). Both components showed a significant
separation between AD and CN in the latent space, confirmed
also in the MCI projection. Moreover, the latent spatial dis-
tribution observed between AD and CN was replicated by the
distribution of EMCI and LMCI in the same space.

The association between PRS and brain atrophy has been
mainly addressed in literature via general linear model regres-
sion. In Scelsi et al. [6], for example, the authors focused
on the hippocampus volume and found a significant negative
correlation between such measure and AD specific PRS in
cognitively impaired subjects, in line with our findings. The
PRS association with a series of cortical features was explored
by Sabunco et al. [9] on an healthy cohort. They calculate PRS
involving up to 26 independent common sequence variants
associated with AD and showed a correlation between late-
onset AD PRS and cortical thickness in several AD-specific
regions such as entorhinal cortex, temporopolar cortex, lateral



temporal cortex, inferior parietal cortex, inferior parietal sul-
cus, posterior cingulate cortex, and inferior frontal cortex.

The PLS model, on the other side, is a well established
method for multivariate analysis and has been widely em-
ployed in IG studies. In the work by Lorenzi and colleagues
[10], it was used to link brain atrophy to the complete set of
SNPs from AD patients, uncovering a significant link between
the TRIB3 gene and the stereotypical pattern of grey matter
loss in AD. They relied on few structural MRI features for
collecting IDPs, while on the full set of SNPs for the genotype.
A similar approach was followed in [13], where they were able
to stratify the early stages of AD in the PLS latent space by
exploiting T1-w features and cerebrospinal fluid levels of t-tau,
p-tau and amyloid-beta biomarkers.

Thanks to the straightforward PLS explainabilty, we were
able to recover the features leading the correlation between
imaging and genetic features. The analysis of the weights as-
sociated to each feature can indeed allow to compare their rel-
ative importance and directly evaluate the genotype/phenotype
association, highlighting those having a higher impact on the
latent space derivation. In our model, the first component
represented the great majority of data variability (54%) re-
vealing an anticorrelation between less specific PRS scores
and cortical thicknesses, that is inline with the well-known
neurodegeneration process in AD. Indeed, the PRS included
in this study were associated with disease progression and
diagnosis, with an increasing score being correlated with the
worsening of the disease. The negative correlation with the
phenotype hence could be associated to a decrease in cortical
thickness, typical of AD progression [2].

The second component, even if it explained a smaller
fraction of the full data variability (18%), showed the most
significant separation (p < 1e − 12) between AD and CN,
for the phenotype, that was well preserved in the independent
MCI cohort (p = 0.007). The PRS having the highest as-
sociated weights were the ones showing low p-value cut-offs,
namely PRS 1e-07, PRS 1e-06 and PRS 1e-08, indeed scores
that include established AD risk variants. Such PRS showed
an anticorrelation with hippocampus volume and entorhinal
cortex thickness among the others, being among the well
known most affected regions in AD [2]. Of interest, they
were also correlated with pallidum and caudate volumes, with
the former showing the highest associated weight. Singleton
and colleagues [14] have shown that a significant difference
in pallidum volume was present between two AD subtypes,
namely typical AD and behavioural AD, with the former
featuring an increased pallidum volume compared to the latter.
Moreover, Chen et al. [4] found a difference between AD
subtypes related to the starting site of atrophy, and were able
to identify three AD subtypes: (i) typical, for which atrophy
begins in hippocampus and amygdala, (ii) cortical, where
atrophy starts in the temporal lobe, followed by cingulate
and insula and (iii) subcortical with atrophy beginning in
pallidum, putamen and caudate. Therefore, we hypothesize
that the second component obtained by our model could
explain particular differences found across AD groups. In fact,

it appears to explain data variability highly specific for AD,
due to the high weights associated with the most conservative
PRS. On the phenotype, at the same time, high importance
was assigned to regions which have been demonstrated to play
a role in AD subtypes identification. Further investigation is
however needed to strengthen our hypothesis.

V. CONCLUSION

The presented PLS model confirms that there exists a joint
variation between grey matter atrophy and PRS in AD, spread-
ing over all the regions considered in the study. Moreover,
we were able to capture volumetric modulations that possibly
relate to different AD subtypes.
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