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Abstract: We introduce simplicial persistence, a measure of time evolution of motifs in networks
obtained from correlation filtering. We observe long memory in the evolution of structures, with
a two power law decay regimes in the number of persistent simplicial complexes. Null models
of the underlying time series are tested to investigate properties of the generative process and its
evolutional constraints. Networks are generated with both a topological embedding network filtering
technique called TMFG and by thresholding, showing that the TMFG method identifies high order
structures throughout the market sample, where thresholding methods fail. The decay exponents of
these long memory processes are used to characterise financial markets based on their efficiency and
liquidity. We find that more liquid markets tend to have a slower persistence decay. This appears to
be in contrast with the common understanding that efficient markets are more random. We argue
that they are indeed less predictable for what concerns the dynamics of each single variable but they
are more predictable for what concerns the collective evolution of the variables. This could imply
higher fragility to systemic shocks.

Keywords: network theory; topological filtering; network motif; motif persistence; long memory;
complex systems; time series analysis; financial networks

1. Introduction

Networks representing the structure of the interactions within complex systems have
been increasingly studied in the last few decades [1]. Applications range from biological
networks to social networks, infrastructures and finance [2]. In finance—mainly due to
the abundance of time-series data regarding economic entities and the lack of data on
direct relationships between them—there has been an extensive focus on the estimation
of interactions between financial variables from cross-correlations [3]. The need to extract
significant links from noisy correlation matrices has triggered the development of filtering
techniques which yield significant sparse network structures [4–7] based on a limited set of
statistical or topological hypotheses.

There are three main approaches to network filtering: (i) thresholding, (ii) statisti-
cal validation, and (iii) topological filtering. These methods have demonstrated that a
meaningful and consistent taxonomy of financial assets emerges from sparse network
structures [3,8–10]. Thresholding methods remove edges which are less significant based
on their strength (or its absolute value); quantile thresholding is one of these methods,
which we use in this paper. This method considers the distribution of edge strengths and
removes edges with strength below a certain quantile level. It is often applied to financial
correlation matrices due to its lack of assumptions on the underlying distribution. Statisti-
cal validation—which constitutes a generalisation of simpler thresholding methods—has
been used to establish the significance of edges in correlation matrices, with applications
to economics and finance as well as to other fields [11–15]. Statistical validation can be
implemented by comparing the empirical correlations with null-hypothesis correlations
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generated from time-series randomized over the time dimension to remove dependency.
Topological filtering was initially suggested by Mantegna [3] by means of the Minimum
Spanning Tree (MST) technique and then it was extended to planar graphs with the Planar
Maximally Filtered Graph (PMFG) [16] and more recently to chordal graphs with pre-
defined motif structure, as the Triangulated Maximally Filtered Graphs (TMFG) in [17]
and the Maximally Filtered Clique Forest (MCFC) in [18]. In the present work we make
use of the TMFG which is constructed from the correlation matrix by starting from the
maximal weight tetrahedron, then it proceeds by adding vertices within triangular faces
iteratively so that the total weight is maximised. This generates a planar graph which is a
tree composed of tetrahedral cliques. This algorithm is computationally highly efficient.

In this paper, we make use of filtering networks to investigate the temporal evolution
of the market structure and we compare the persistence of certain network motifs with
different levels of market efficiency. Market efficiency can be viewed as an emergent
property of a system whose state is determined by the interaction of multiple agents which
compete to exploit the system’s inefficiencies, thereby making the system’s dynamics more
random as predictability in those dynamics is exploited (and thereby reduced) until ideally
it is no longer present. Liquidity in markets can be viewed as a form of systemic pressure
on the system’s dynamics. More liquid markets are characterised by more agents and
interactions which reduce noise in the dynamic process of the emergent variable (the price).

Market efficiency imposes the absence of temporal memory in price returns, but the
presence of long memory in higher-order moments of returns and long-term dependence
(autocorrelation) of absolute and squared returns have been observed and are now con-
sidered among the important stylised facts in markets [19]. For instance, in [20,21], later
extended in [22], it was shown that order signs obey a long memory process, balanced by
anti-correlated volumes which guarantee market efficiency. In financial time series analysis,
through the generalised Hurst exponent analysis, it was observed that memory effects
are related to the stage of maturity of the market, with more mature markets being more
random [23]. However, these memory effects have been so far observed on the stochastic
evolution of each single variable and not on the collective evolution of the dependency
structure of the market.

With the present paper we provide the missing piece, connecting market structure
and market memory by analysing the autocorrelation of market structures [24], through
persistence of its filtered correlation matrix [25].

In this work, we indeed demonstrate that there exists a stable sub-structure in the
system which is found via the higher order relation approach (i.e., beyond pairwise sim-
plicial relations). We observe weak evidence that more efficient markets have more stable
structures. We study how simplicial motifs —patterns of edges which define simplicial
complexes on a graph [26,27], e.g., edges, triangles and tetrahedra—are persisting or de-
caying through the time evolution of the filtered networks computed over a rolling time
window. In order to test the multivariate long memory properties of financial time series,
we compare the motif persistence in networks from real data with motif persistence from
a range of null models [28]—corresponding to a range of parsimonious assumptions on
the underlying generative processes—for groups of time series. Each null model preserves
different aspects of the time series, allowing to validate hypotheses about the long memory
of market structures by ranking persistence decays of real time series against null models.

The persistence that we analyse in these systems can be compared with the auto-
correlation in spin glasses. Indeed, in the physics of spin glasses, slow relaxation and
correlation persistence have been studied for a very long time [29,30]. Simulation results
and experiments reveal that the dynamic correlation function decays as a power law in
the proximity and below the glass transition [31] in a similar way to what we report in
the present work. In such systems one also observes aging effects which show an initial
exponentially fast decay of the spin–spin autocorrelation function and then a freeze into
slow dynamics [29]. Intriguingly, this was observed also in simulated network systems [32]
and in real systems in the present work.
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Edge persistence is also studied in Network Science in the form of survival (hard
persistence) [33–36] as well as in Econophysics [37–41]. Further, ref. [42] defines one step
node persistence analogously to the definition for edges in the present work.

In the present work we aim to demonstrate that topological filtering is a better suited
tool to identify multivariate persistent structures with respect to the thresholding methods.
We indeed observe that quantile thresholding yields analogous results to planar filtering
for edge persistence, but it fails to identify higher dimensional motifs generating instead
highly localised and clustered structures.

Further, we seek to demonstrate that our findings have a practical application by
introducing an unsupervised technique to identify groups of stocks which share strong
fundamental price drivers. This technique can be of particular use in less traded markets,
where identifying structures with shared fundamental price drivers might otherwise require
in-depth knowledge of the companies.

The rest of the paper is structured as follows. Section 2 describes the data, methods
and definitions used for this work, Section 3 outlines the main findings, Section 4 discusses
these findings and Section 5 concludes the work with suggestions for future works.

2. Materials and Methods

In this section, we describe the data used in this work, followed by a description of
the time series null models and the filtering techniques applied to the correlation matrices.
We then describe methods used to study the persistence of motifs.

2.1. Data

We select the 100 most capitalised stocks from four stock markets: NYSE, Italy, Ger-
many and Israel (400 stocks in total). These markets range from highly liquid and more
developed ones such as the New York Stock Exchange and the Frankfurt Stock Exchange to
less liquid markets such as the Italian Stock Exchange and the Tel Aviv Stock Exchange.

We investigate daily closing price data from Bloomberg for:

• New York Stock Exchange (3 January 2014–31 December 2018);
• Frankfurt Stock Exchange (3 January 2014–28 December 2018);
• Borsa Italiana (Italian Stock Exchange) (3 January 2014–28 December 2018);
• Tel Aviv Stock Exchange (5 January 2014–1 January 2019).

The data includes 1258 daily prices observations for the NYSE, 1272 for FSE and BI
and 1225 for TASE.

2.2. Time Series Null models

We generate ensembles of null models which preserve an increasing number of prop-
erties of the real time series.

2.2.1. Random Return Shuffling

Individual stock log-return (rt = log Pricet − log Pricet−1) time series are randomly
shuffled, i.e., a random permutation along the time dimension of each variable is applied,
to obtain a null model for noisy, spurious correlations. This model maintains the overall
statistics of the values of each time series but eliminates any correlation structure.

2.2.2. Rolling Univariate Gaussian Generator

We calculate the rolling mean µt−δt ,t and standard deviation σt−δt ,t of the log-return
series over the time window (t− δt, t] for each node (stock) separately. We then generate
ensembles by sampling the return rt at each point in time from the (rolling) univariate
Gaussian distributions with sample mean and standard deviation rt ∼ N (µt−δt ,t, σ2

t−δt ,t),
with N (µ, σ2) being a normal distribution with mean µ and standard deviation σ. This
intends to simulate the process as a simple moving average with uncorrelated time-varying
Gaussian random noise.
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2.2.3. Stable Multivariate Gaussian Generator

We calculate the mean µ (for each node) and covariance matrix Σ throughout the
whole length of the log-return time series. We then generate ensembles by sampling the
vector of returns rt at each point in time for all stocks from the fixed multivariate Gaussian
with empirical means and covariance matrix, rt ∼ N (µ, Σ). This intends to represent an
underlying fixed market structure with sampling noise.

2.2.4. Rolling Multivariate Gaussian Generator

After obtaining the log-return time series, we calculate the rolling mean µt−δt ,t (for
each node) and covariance matrix Σt−δt ,t between the series. We generate ensembles by
sampling the return at each point in time rt for all stocks from the (rolling) multivariate
Gaussian distributions with sample means and covariance matrices rt = N (µt−δt ,t, Σt−δt ,t).
This intends to detect the changing market structure and simulate the process as being
generated by a multivariate Gaussian distribution with time-varying constraints on struc-
tural relations.

2.3. Correlation Matrix Estimation

We then compute for the time series correlation matrices with exponential smoothing
from rolling windows of δ = 126 trading days -corresponding to half a year- with smoothing
factor of θ = 46 days, following for an easy comparison the choices in [43]. This is done for
all realisations of each null model ensemble and for the real data.

Correlations are noisy measures of co-movements of financial asset prices, which are
often non-stationary within the observation window. Longer time windows benefit the
measure’s stability, as we have more observations to estimate the N(N − 1)/2 parameters
of the matrix of N assets. However, a longer observation window can come with the
disadvantage of weighting more and less recent co-movements equally with the risk of
averaging over a period in which the values are non-stationary. In order to compensate for
this effect, we apply the exponential smoothing method for Kendall correlations [43]. This
yields to more stable correlations, as the method applies an exponential weighting to the
correlation window, prioritising more recently observed co-movements.

2.4. Filtering: Quantile Thresholding and TMFG

We apply two filtering techniques with fundamental differences. The first filtering
method is quantile thresholding, which corresponds to hard thresholding to generate an
adjacency matrix through the binarisation of individual correlations. For a correlation
value vq corresponding to the quantile level q of the matrix values, the adjacency matrix is
defined as

Ai,j =

{
ρi,j ≥ vq, 1
ρi,j < vq, 0.

where ρi,j is the estimated correlation matrix from the different models and from the
real data. This filtering technique is entirely value-based with no structural or other con-
straints. We apply it by providing a quantile level q which yields edge sparsity analogous
to that of the corresponding TMFG filter.

The second filtering technique is the TMFG method [17]. This topological filtering
technique embeds the matrix with topological constraints on planarity in a graph composed
of simplicial triangular and tetrahedral cliques. Edges are added in a constrained fashion
with priority according to their (absolute) value. The graph essentially corresponds to tiling
a surface of genus 0. This technique represents a filtering method that accounts for values,
but also imposes an underlying chordal structural form which might help regularising the
filtered graph also for probabilistic modeling [44]. Furthermore, this technique imposes
higher order structures, namely triangles and tetrahedra, which are known to be a feature
of financial markets and social networks.
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2.5. Simplicial Persistence

We focus on temporal persistence of tetrahedral and triangular simplicial complexes
(motifs) in the TMFGs and graphs filtered via quantile thesholding constructed from
correlations over rolling windows. TMFG networks can be viewed as trees of tetrahedral
(maximal) cliques connected by triangular faces, these are triangular cliques with different
meaning in the taxonomy, called separators. If removed, separators split the graph into two
parts. Not all triangular faces of the tetrahedral cliques are separators and we will refer to
those which are not as triangles.

This distinction is discarded for the results in Section 3.2 in order to account for
all triangles in the filtered graph, as quantile thresholding does not distinguish between
triangular faces and separators.

A motif corresponding to clique Xc is considered soft-persistent at time t + τ if and
only if the motif is present at both the initial time t and at t + τ. A visual intuition for motif
(triangle) persistence through time is provided in Figure 1.

( ((a) (b)(b) (c)

Figure 1. Motif persistence visualisation. (Color online) Visual representation of a TMFG structure’s
motif (triangle) persistence in time. The green triangle in (a) is persistent through (c), while other
two triangles (present in (a) within the red triangle) do not persist due to the rewiring of an edge.
(b) shows one of non-persistent triangles with dashed contour. The rewired edge is also dashed
and colors are used for visualisation purposes to “track” the triangles through the rewiring. This
visualisation aims at showing the impact of edge rewiring on motif persistence and the difference
between edge and motif persistence.

We investigate the decay in the number of persistent motifs between filtered correlation
networks with observation windows progressively shifted by one trading day and we
quantify how the average persistence decays with the time shift τ.

Here we use a form of soft persistence which is different from hard persistence (sur-
vival) of motifs which is more common in the literature [45,46]. In hard persistence a motif
is found in a whole sequence of estimated networks without fail, in soft persistence we just
require the motif to be found both at the beginning and at the end of a time interval. If we
consider a generic motif c, defined as a specific collection of edges, and C as the set of all
the partitions of the edges in a graph. The binary persistence value of motif c ∈ C at time t
and t + τ is

Pm(X t,t+τ
c ) = (Xc ∈ X t

C) ∧ (Xc ∈ X t+τ
C ). (1)

The average persistence for the entire clique set over T starting points at time shift τ is

〈Pm(X τ
c )〉T,C =

1
T
· 1
|C| ·

T

∑
t=0

∑
c∈C

Pm(X t,t+τ
c ). (2)

Where, considering the motif sets X t
C = {X t

i }i=c1,...,c|C| and X t+τ
C = {X t+τ

i }i=c1,...,c|C| .
We observe that persistence decays as a power law with two regimes: one with a

faster decay followed by one with a slower decay. The transition point between these two
regimes, τplat, is computed by minimising the unweighted average mean squared error
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(MSE) between the two power law fits over all possible transition points in time. The
average motif persistence in the plateau regime is defined as

〈Pm(Xc)〉T,T =
1
T
· 1
T − τplat

·
T

∑
t=0

T
∑

τ=τplat

Pm(X t,t+τ
c ). (3)

In order to verify that the persistence decay of motifs is not simply the consequence of
the persistence decay of individual edges, we test the null hypothesis that motifs are formed
by edges in the network whose existence is not mutually dependent. The assumption would
imply that motif structures have no extra persistence beyond the individual edges that
form them. The hypothesis being tested implies that motif persistence is simply the result
of persistence characterising their component edges (c1, c2, c3):

Pm(χ
t,t+τ
c ) = Pm(χ

t,t+τ
c1

) · Pm(χ
t,t+τ
c2

) · Pm(χ
t,t+τ
c3

), (4)

We also compare the decay exponents for multiple random stock selections over
different markets to identify whether the steepness of motif decay (edge, closed triad
or tetrahedron clique) is indicative of market stability/development stage. We further
investigate more liquid markets such as the NYSE from both a quantitative and qualitative
point of view.We classify motifs in the plateau by their soft persistence and study the sector
structure of the most persistent motifs.

In order to provide an application to systemic risk (which can be quantified from
the aggregate volatility in the system), we construct a portfolio containing all stocks in
the ten most persistent motifs in the plateau region, as defined in Equation (3) (for each
market). We then compare its volatility with that of random portfolios with the same
number of assets.

3. Results

The main findings of this work are described in this section, starting with an overview
of results on the long memory of edges and simplicial complexes in TMFG-filtered correla-
tion networks. The section continues with an analysis of null models of financial market
structures, described in Section 2.2, and a comparison with real data to gain insights about
the generative process of the stochastic structure. We then suggests how soft persistence
captures the underlying change in market structure by relating its decay exponent to the
efficiency (a proxy for stability) or average traded volume in the market (a proxy for fluid-
ity which yields well-defined stable structures). We conclude the section with results in
systemic risk applications to financial portfolios where we show that the most persistent
motifs correspond to stocks in the same sector and demonstrate how the portfolio of 10
most persistent motifs is highly volatile and systemic.

3.1. Long-Term Memory of Motif Structures

The plot in Figure 2 shows the power law decay (evident from the linear trend in
log-log scale) in 〈Pm(X τ)〉T=200,C vs. τ, followed by a plateau region that also decays as
a power law, but with a smaller exponent. We also observe that all motif decays have
τplat ∈ [δtwindow/2, δtwindow], where δtwindow represents the length of the estimation window
of the correlation matrix. The window used has δtwindow = 126 trading days and a value
of θ = 46 for exponential smoothing, as per [43]. The choice of δtwindow corresponds to
roughly 6 months of trading and satisfies N < δtwindow, with N the number of assets in the
correlation matrix. The correlation matrix is hence well-conditioned and invertible. On the
other hand the exponential smoothing with θ = 46 mainly considers recent observations
from the latest few months.
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Figure 2. Persistence Decay. Decay of triangular clique faces, separators and clique motifs persistence
for 100 NYSE stocks, as a function of time interval τ = [0, 900] (average over 200 starting points). The
motifs and network are obtained via TMFG filtering. The two power-law regimes are identified by
the minimum MSE sum of the fits. The second region in termed “plateau” in contrast with the strong
decay observed in the “decay” region although we recongnise that

There are N−3 = 97 tetrahedral cliques in the starting TMFG networks and 3N− 8 = 292
face triangles.

In Figure 2 we notice that the minimum MSE for the two linear fits is achieved at
the transition point between the decay phase and the plateau. The transition point τplat
can therefore be identified by minimising a standard fit measure with two phases, which
strengthens the unsupervised nature of our method. The method for minimum MSE search
is described Section 2.5.

3.2. Null Models of Persistence in Filtered Structures

We report results for the edge and motif (triangle) persistence for real data as well as
for the null models described in Section 2.2. We compare real data with null models and
TMFG filtering with quantile thresholding.

Figure 3 shows the decay in edge persistence for both filtering methods. We notice
that the random shuffling null model lies at the bottom, as it should produce completely
random structures with little residual persistence due to probabilistic combinatorics and
structural filtering constraints in the TMFG. This shows that persistence is not an artifact of
any of the filtering techniques used and not a mere result of return volatility of individual
assets (which is preserved by return shuffling). From Figure 3 we also notice that the rolling
univariate Gaussian model lies just above as it does not account for structure at all and
only preserves rolling means and standard deviations, this shows how persistence cannot
merely be attributed to common long term trends or volatility variations. This null model
carries some broad sense of structure and market direction and it shows how persistence
does not merely originate from overall market trends. We then find a second cluster, of
structured models, with the rolling multivariate Gaussian at the bottom. This shows how
market persistence goes beyond asset means and covariance, even after spurious structures
have been removed. We then find the real data, just below the stable multivariate Gaussian.
This shows how markets have slowly evolving structures.

Figure 4 shows the decay in triangular motif persistence for both filtering methods.
We notice results analogous to those in Figure 3 for TMFG filtered graphs. Graphs filtered
through quantile thresholding instead show a high level of noise in their top cluster (where
structure is present). A higher number of motifs than those of the TMFG is found, but
the ranking of null models is at times inconsistent, as well as the position of the decay
curve for real data. We would have expected some triangles to break when looking at edge
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persistence only, as well as to find that the clustering coefficient decreases in persistent
graphs (as it does in TMFG graphs). The clustering coefficient for quantile thresholding-
persistent graphs is also found to be much higher, suggesting that the filtered structure
is highly localised and clustered, while that of the TMFG is more distributed, identifying
systemic groups of stocks throughout the market structure.
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Figure 3. Decay of number of persistent edges in null models. Decay in the number of persistent
edges with δτ = 126 for the time series null models of market returns and real data for the NYSE. We
notice how for both TMFG filtering and quantile thresholding the real data lies between the rolling
multivariate Gaussian ensemble and the stable multivariate Gaussian ensemble. This indicates that
the real market structure does evolve slowly in time, but with persistence beyond what can be inferred
from estimates of its covariance structure. Here we plot the number of persistent edges instead of
persistence as a probability to show that both filtering methods start from the same edge sparsity.
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Figure 4. Decay of number of persistent motifs (triangle) in null models. Decay in the number of
persistent motifs with δτ = 126 for the time series null models of market returns and real data for
the NYSE. We notice how for TMFG filtering the real data still lies between the rolling multivariate
Gaussian ensemble and the stable multivariate Gaussian ensemble (as in Figure 3). We instead
notice that the decay ordering is noisier for quantile thresholding, showing how the method’s focus
on individual connections affects it generalisation to motifs. This is despite the higher number of
motifs in the quantile thresholding graph. Here we plot the number of persistent motifs instead of
persistence as a probability to show that in spite of both filtering methods starting from the same
edge sparsity (Figure 3) the number of initial cliques and persistent cliques is very different across
methods. This is likely due to the highly clustered structure of thresholding-based networks.

3.3. Market Classification via Decay Exponent

We now consider how the decay exponent of TMFG graphs behaves across markets.
Table 1 compares the decay exponents for cliques (4-cliques), triangular motifs and clique
separators in the NYSE, German stock market, Italian stock market and Israeli stock market.
The decay exponent α is obtained from the power law decay fit:
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〈Pm(X τ)〉T,C = β · τα (5)

Table 1. Exponents for the decay power law regime computed with MSE.The analysis refers to 100
randomly selected stocks amongst the 500 most capitalised, over time intervals τ = [0, 900) and
t = [0, . . ., 200) different initial temporal network layers. For all motif analyses in this work, triangles
and separators constitute non-overlapping sets, as these represent theoretically and taxonomically
different structures and decay characteristics.

Market Clique Triangular Motif Clique Separator

NYSE −0.392 −0.493 −0.245
Germany −0.792 −0.598 −0.381

Italy −0.785 −0.811 −0.174 *
Israel −1.024 −0.866 −0.728

* Result compromised by regimes not well identified for motif decay in large systems (≈100 stocks).

We notice from the results in Table 1 that the NYSE, which is clearly the most developed
and liquid stock market, has the lowest decay exponent (in modulus, which corresponds
to the slowest decay) for both cliques and triangles. This indicates that its correlations are
more stable on a shorter time window. Germany and Italy have similar values for clique
exponents, with Germany seemingly more stable in terms of triangular motifs. Israel, a
younger and less liquid stock market, follows with a faster decay in both tetrahedral cliques
and triangular motifs. The ordering of these markets is not clearly identifiable in clique
separators as noise in the data does not allow for the two decay regimes to be correctly
identified in all markets (in this case for Italy). Separators have a distinct role and meaning
in the graph’s taxonomy and further work should allow for a more thorough analysis
of those.

We observe promising results for a monotically increasing relation between the decay
exponent and the average daily volume of the market. The solidity of this result shall be
investigated in future works.

In Table 1 the decay exponent is not adjusted by the probability that all edges in the
clique must be present in the temporal layer for the clique to exist. We show in Table 2 that,
when adjusted by the probability of all its edges existing simultaneously, triangular motifs
have a slower decay than individual edges. The results in Table 2 are obtained from a set of
randomly selected stocks different to those used for Table 1. This adds further confidence
in the results and their generality.

Table 2. Exponent for the power law decay regime identified by MSE in different sample markets.
The analysis refers to 100 randomly selected stocks amongst the 500 most capitalised, over time
intervals τ = [0, 900] and t = [0, . . ., 200] different initial temporal network layers.

Market Edge Triangular Motif Triangular Motif **

NYSE −0.164 −0.398 −0.133
Germany −0.265 −0.471 −0.157

Italy −0.144 * −0.458 −0.153
Israel −0.397 −0.830 −0.277

* Result compromised by regimes not well identified for edge decay in large systems (≈100 stocks); ** Motif
exponent adjusted by the probability of simultaneous edge persistence in the motif).

We stress that Table 2 falsifies the hypothesis that motifs are formed by edges in the
network whose existence is not mutually dependent (Equation (4)). This is falsified by
the consistently lower decay exponent (in modulus) for adjusted persistence of triangular
motifs. We can then conclude that motifs are more stable structures across temporal layers
of the network, with significant interdependencies in their edges’ existence.
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3.4. Sector Analysis in Persistent Motifs

Figure 5 provides a visualisation of the network components formed by the ten most
persistent triangles in the NYSE. We observe that all strongly persistent triangles have
elements which belong to the same industry sector. Table 3 shows this for the same ten
triangles displayed in Figure 5. We notice that stock prices in the sectors in Table 3 are
mostly driven by sector-wide fundamentals, which justify the persistent structure in the
long term Figure 5. Other motifs are constituted by ETFs and their main holdings (The
reason for the existence of these motifs is intuitive and does not affect our analysis, as
ETF-related motifs are unlikely to be present in the network formed by a random selection
of stocks or by stocks in a portfolio. These motifs are present here as we focus on the 100
most capitalised stocks in the NYSE, which include ETFs).

Figure 5. Persistent NYSE motifs visualised. Network representation of the ten most persistent
triangular motifs in the TMFG layers for the 100 most capitalised stocks of the NYSE.

We also investigate whether motif persistence and motif structures can be easily
retrieved from the original correlation matrix. The purpose of this is to check that our
TMFG filtering method is not redundant and trivially replaceable. To test this, we consider
the ten most present persistent triangles across the plateau region and check their overlap
with the ten most correlated triplets in each unfiltered correlation matrix. We find that no
more than one triangle lies in the intersection between the two sets, in each temporal layer.
We also check the correlation between motif persistence and the average sum or product
(results are equivalent for our purpose) of its individual edges’ correlation for all unfiltered
correlation layers. We observed through the Pearson and Kendall correlation values that
the two measures are only loosely related, as correlation explained no more than 20% of
the variance in the set of variables with large persistence.
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Table 3. Motif components and Financial Times sector affiliation for the ten most persistent motifs in
the NYSE’s 100 most capitalised stocks.

Node 1 Node 2 Node 3 FT Sector

Biogen Inc. Gilead Sciences Inc. Celgene Corp Biopharmaceutical

UnitedHealth Group
Inc. Cigna Corp Anthem Inc. Health Care

Biogen Inc. Gilead Sciences Inc. Amgen Inc. Biopharma/tech

Bank of America Corp JPMorgan Chase & Co Morgan Stanley Financials-Banks

Vanguard FTSE ETF ** MSCI EAFE ETF Vanguard FTSE ETF *** Index ETFs

Invesco QQQ Trust * Amazon.com Inc Alphabet Inc Tech

ConocoPhillips Schlumberger NV Exxon Mobil Corp Oil & Gas

NVIDIA Corp Texas Instruments Inc. Broadcom Inc. Tech Hardware

Chevron Corp Schlumberger NV Exxon Mobil Corp Oil & Gas

Chevron Corp ConocoPhillips Schlumberger NV Oil & Gas
* ETF on NASDAQ—Top Holdings include Amazon, Facebook, Apple, Alphabet; ** Vanguard FTSE Developed
Markets Index Fund ETF Shares; *** Vanguard FTSE Emerging Markets Index Fund ETF Shares

3.5. Portfolio Volatility and Systemic Risk of Persistent Motifs vs. Random Portfolios

We check that a subgraph (a portfolio, i.e., group of stocks) formed by the 10 most
persistent motifs in each market has a highly enhanced out of sample standard deviation
σsub (volatility—standard deviation of the mean log-return of the subgraph elements’ prices)
due to its stable correlations.

To do this, we consider the σsub of the motif subgraph and a distribution of σsub for 105

randomly selected subgraphs with the same number of nodes (stocks).
As expected, we observe that the persistent motif subgraph is characterised by a σsub

over two standard deviations above the mean of the distribution as well as above its 75%
quantile throughout the considered markets. We should highlight that the σsub of subgraphs
is evaluated out of sample with respect to the period the persistence was calculated on,
showing that this method is not only observational, but also predictive.

Due to the more theoretical nature of this work, we refer the interested reader the work
by some of the authors of this paper for a more thorough analysis of subgraph applications
and forecasting [47].

4. Discussion

The power law decay of edge and simplicial motifs persistence, reported in Figure 2,
suggests that market structures are characterised by a slow evolution with long memory.
This decay type is in contrast with an exponential decay of the persistence which would
imply instead short or no memory in the system. This observation is in line with the
works by Bouchaud et al. and Lillo at al. in [20,22,23,48], where power law decays in
autocorrelation are identified as manifestations of long-memory processes in efficient
markets. However, it extends the concept to higher order structures.

The comparison between soft persistence in correlation structures from real data and
artificial data generated from different null models (Figures 3 and 4) demonstrates that
the persistence of real structures goes beyond all univariate null models, hence confirming
long memory as a characteristic requiring structural constraints. Additionally, we demon-
strate that real structures overcome the persistence of the rolling multivariate Gaussian,
suggesting that pairwise covariances and moving averages do not suffice to induce the
long memory present in real markets. As per the analysis on motif persistence beyond that
of individual edges, we suggest that higher order relations in terms of structural evolution
are present. The ordering of null models in Figure 4 further supports the validity of the
persistence measure.

The comparison of simplicial persistence of triangles between quantile thresholding
and TMFG filtered graphs, reported in Figure 4, reveals that quantile thresholding struggles
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to separate the decay of real structures from that of rolling Gaussian generated ones.
This could be attributed to the “local” nature of the method, which matches the pairwise
interpretation of relations generated from a rolling Gaussian. TMFG filtered graphs instead,
perhaps due to their non-local embedding, provide a consistent ordering of null models
with relatively low noise.

The ability to correctly identify persistent motifs throughout the market sample is
essential as the most persistent motifs were found to be highly systemic (Section 3.5). Per-
sistent structures in quantile thresholded graphs present higher and more stable clustering
coefficients. This suggests a very localised and compact structure. TMFG filtered graphs
instead present a lower clustering coefficient and a slower decay with τ, as expected since
some structures break. This is further evidence of the ability of the TMFG filtering method
to identify meaningful persistent structures throughout the market. The issue with quan-
tile thresholding is likely due to the method being merely value-based with no sensible
structural constraint, differently from the TMFG.

The ranking of national markets based on their decay exponents in Table 1 can be
interpreted in terms of the reduction of estimation noise in more liquid markets, as large
deviations become less likely and correlations as well as prices more reflective of the
underlying generative processes and structures. Structures are perhaps clearer too and
deviations are exploited more quickly if they emerge. This suggests that more efficient
and capitalised markets are characterised by structures which are more stable in time and
better reflected by the data. The decay exponent ranking also leads to the conclusion that
more developed markets are characterised by more meaningful underlying structures and
cliques, suggesting that systemic risk may represent a greater threat in developed markets.

The results in Table 2 support the hypothesis that motifs constitute meaningful struc-
tures in markets, beyond their individual edges. These results test the independence null
model of individual edges in motif formation and show solid evidence to reject it. We can
then conclude that highly persistent motifs are not a mere consequence of highly persistent
individual edges, but also of the correlation in those edges existing concurrently. This
results ties in with the above discussion on the issues with locality of filtering methods and
generative processes.

Table 3 strengthens the importance of persistent motifs. Indeed, the ten most persistent
motifs visualised in Figure 5 are representative of industry sectors in the NYSE. These
sectors are not identified by the motifs with higher edge correlation, which instead are
dominated by motifs often due to correlation noise in high volatility stocks. Persistence
and the identification of persistent motifs are hence found to be non-trivial with respect to
correlation strength of individual edges or motifs. The impact on portfolio diversification
(reduction in the variability σsub) of the motifs in Figure 5 indicates that these structures
are highly relevant for systemic risk and portfolio volatility, with high predictive power
provided by the long memory property of persistence, which is an intrinsic temporal
feature. As these motifs are not characterised by noticeably strong correlations, a common
variance optimisation of the portfolio is unlikely to optimise the weights to sufficiently
minimise the risk from these highly systemic structures.

The systemic relevance of persistent motifs as well as their out of sample forecasting
power are shown by the results in Section 3.5 and in [47], where significantly higher out
of sample portfolio volatility is observed for the subgraph of persistent motifs. The motif
subgraph σsub is significantly above both the mean and median of the random subgraphs’
σsub distribution.

This is an example of how just selecting nodes (stocks) from the ten most persistent
motifs forms a subgraph with higher long term variability σsub. Clearly when aiming for a
reduction in systemic risk, low σsub (the opposite) is the objective. The observations from
Section 3.5 and [47] lay the ground for the construction of portfolios where asset weights
aim to reduce the volatility originating from persistent correlations in motif structures.
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5. Conclusions

The present work introduces the concept of simplicial persistence, focusing on the
soft persistence in simplicial cliques. This measure is applied to a complex system with
a slowly evolving stochastic structure, namely financial markets. The graph structures
are obtained from Kendall correlations with exponential smoothing and filtered with the
TMFG or through quantile thresholding. The slow evolution of these systems with time
manifests long memory in their structure with a two regime power law decay in persistence
with time. The transition point between regimes is identified in an unsupervised way with
mean-squared error minimisation.

Null models of market structure are then used to test hypotheses about the generative
process underlying the system. Two persistence decay clusters are observed, where the
least persistent corresponds to null models with no structural constraints and the upper
one (most persistent) comprises the rolling multivariate Gaussian (lowest), real data, and
the stable multivariate Gaussian (highest).

Decay exponents for different markets are then observed to provide a ranking cor-
responding to their efficiency, which suggests that, despite these systems being less pre-
dictable in their individual series, they are more stable and predictable in terms of structure.
Most persistent motifs are found to correspond to sectors where the price of stocks is mostly
driven by sector-wide fundamentals.

Based on the ability of simplicial persistence to forecast and identify strongly correlated
clusters of stocks, the impact of persistence-based systemic risk on portfolio volatility is
verified with a comparison between the ten most persistent motifs portfolio and random
portfolios of the same size [47]. Simplicial persistence of higher order structures in real
data and null models is hardly recognised by value-based thresholding methods which are
unable to identify persistent cliques throughout the market sample.

The present work provides further evidence of how network analysis and complex
systems can enhance our understanding of real world systems beyond traditional methods.
Our results and methods lay the ground for future studies and modelling of the evolution
of stochastic structures with long memory.
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