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Summary

In this paper, a decentralized tracking control scheme is proposed for a class of non-
linear interconnected systems with uncertainties using sliding mode technique. Both
matched nonlinear uncertainty and mismatched known nonlinear interconnections
are considered. Under the condition that the nominal isolated subsystems have rel-
ative degrees, a geometric transformation is applied to transfer the interconnected
system into a new nonlinear interconnected system with a special structure to facili-
tate the system analysis and design. Then, a composite sliding surface is designed in
terms of tracking errors, and decentralized controllers are proposed to drive the sys-
tem states to the designed sliding surface in finite time and maintain a sliding motion
on it thereafter. A set of conditions are developed to guarantee that the output tracking
errors converge to zero asymptotically while all system state variables are bounded.
The considered interconnected systems are nonlinear and it is not required that either
the isolated subsystems or the isolated nominal subsystems are linearisable. The
desired output signals are allowed to be time-varying. Finally, the developed results
are applied to an inverted coupled-pendulum system. Simulation demonstrates that
the proposed control scheme is effective.
KEYWORDS:
Decentralized control, Nonlinear interconnected systems, Output tracking, Sliding mode control, Robust
control.

1 INTRODUCTION

With the advancement of modern technology, there comes a need to deal with more complex systems, which may be large-scale,
meeting practical engineering requirements. Large-scale interconnected systems are usually composed of a set of dynamical
subsystems which might be distributed over large space2,3. The communications between those different subsystems may become
difficult or expensive due to the data transfer over large distances. In particular, when the data-transformation paths connecting
various subsystems are broken or blocked, some data may be lost, or in the worst case, no data from the other subsystems may
be available at all. Centralized control will not work in this case. Conversely, decentralized control needs local information
only, and it does not require any of the other subsystems’ state information. Thus it provides high reliability for the control of
large-scale interconnected systems in reality.

†The original version of this paper was presented in the 2021 American Control Conference (ACC), Online, USA, May 25-28, 2021. The current version is its
modification and extension in which more detailed information, definitions and new discussion/results have been added.
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During the past few decades, many results have been obtained for interconnected systems1. A fuzzy controller based on a
reduced-order observer is designed for interconnected systems using integral sliding mode technique in5. Mahmoud proposed
a decentralized control strategy for interconnected time-delay systems in6 where the considered system is linear. A finite-time
control strategy is presented for nonlinear interconnected systems with dead-zone input in8, and robust controllers are designed
for an interconnected multimachine power system using output feedback sliding mode techniques in9. Also, a decentralized
control scheme is proposed for fully nonlinear interconnected system with time delay in10. Recently, a decentralized predictor
method based controller is designed for large-scale systems in4 where the considered interconnected systems are linear and
strong limitation on the interconnections between subsystems is required. It should be noted that most of the existing results are
focused on stabilisation instead of tracking control using either state feedback or output feedback control. Compared with the
stabilisation, tracking problem is more difficult, and thus the results obtained for tracking control are much limited, particularly
for the large-scale nonlinear interconnected systems using decentralized control.

It is well known that tracking problem is a very interesting topic in engineering control. Most of existing work related to
tracking control is focused on centralized control (see, e.g.12,13,14). Although decentralized tracking control for interconnected
systems is studied in20,11, and distributed tracking control for interconnected systems with communication constraints is consid-
ered in21, it is required that the isolated subsystems of the considered interconnected systems are linear in20,11,21. Narendra and
Zhang study a class of linear interconnected systems in22 where model reference tracking control is focused. Tracking control for
interconnected systems is considered in23 using integral reinforcement learning. However, it is required that the interconnected
terms are matched. More recently, Han and Yan propose an observer-based adaptive tracking control of large-scale stochastic
nonlinear systems in24 which increases the dimension of the closed-loop system and thus it will increase the computational load
required for implementation. It should be pointed out that most of the existing results about tracking control for interconnected
systems are not decentralized, which implies the communication between each controller of one subsystem and all the other sub-
systems is essential with unobstructed channel for data transfer. This is not convenient for practical implementation. Li, Tong,
and Yang proposed a decentralized event-triggered control scheme in15 using observer based feedback control, which guarantees
that both the tracking performance and the stability of the closed-loop interconnected system but may increase the computation
load greatly. Decentralized event-triggered tracking control is also designed for nonlinear interconnected systems with unknown
interconnections in16. However, it is required, in15,16, that all of the isolated subsystems have a triangular structure. It should be
mentioned that sliding mode control, as a popular method due to its high robustness17,18, has been widely applied to deal with
tracking problems (see, e.g.25,7,26 and27). However, the results on decentralized tracking control using sliding mode techniques
for nonlinear interconnected systems are very few specifically when the desired signal is time-varying, and the tracking errors
are convergent to zero asymptotically. An adaptive fuzzy control based on dynamic surface sliding mode technique is designed
for prescribed output tracking in19 which can only be applied to the specific multi-machine power systems and unfortunately
the designed controller is not decentralized.

In this paper, a class of nonlinear interconnected systems is considered where both the matched uncertainty in the isolated
subsystems and the mismatched interconnections are considered. A nonlinear coordinate transformation is introduced to explore
the nominal isolated subsystems’ structure, which transfers the interconnected systems to the required form, facilitating the
system analysis and control design by using the structure of interconnections. The sliding surface is designed based on the
tracking errors, and the sliding mode stability is achieved as well. A decentralized sliding mode control scheme is proposed
to drive the nonlinear interconnected systems to the designed sliding surface in finite time. Compared with adaptive-control
approaches, there is a less restriction on the uncertainty bound and the structure when using sliding mode control, which means
the uncertainty is allowed to have a more general form. The main contributions in this paper can be summarised as follows:

• The designed controller is decentralized and the desired output signals are time-varying. This is in comparison with the
existing work for interconnected system which needs either the other subsystems information available for design or the
desired signals are constant.

• The developed result guarantees that the system outputs can track the desired outputs asymptotically while the system
states are bounded.

• The considered interconnected systems are nonlinear with nonlinear disturbances which are bounded by nonlinear
functions. It is not required that the nominal isolated subsystems are linearisable.

• The interconnection terms are mismatched, and the developed results has a high robustness.
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Finally, the obtained results are applied to a coupled-pendulums system, and the simulation demonstrates that the method
proposed in this paper is effective.

2 SYSTEM DESCRIPTION AND BASIC ASSUMPTIONS

Consider a nonlinear large-scale interconnected system formed by 𝑁 subsystems as follows
�̇�𝑖 = 𝑓𝑖(𝑥𝑖) + 𝑔𝑖(𝑥𝑖)(𝑢𝑖 + 𝜑𝑖(𝑥𝑖)) + 𝑝𝑖(𝑥𝑖)𝜓𝑖(𝑥)
𝑦𝑖 = ℎ𝑖(𝑥𝑖) 𝑖 = 1, 2, ..., 𝑁

(1)
where 𝑥𝑖 ∈ Π𝑖 ⊂ 𝑅𝑛𝑖 , 𝑢𝑖 ∈ 𝑅 and 𝑦𝑖 ∈ 𝑅 are the states, input and output of the 𝑖th subsystem respectively, Π𝑖 are neighbourhoods
of the origin, 𝑥 = 𝑐𝑜𝑙(𝑥1, 𝑥2, ..., 𝑥𝑁 ) ∈ Π, and Π ∶= Π1 × ... × Π𝑁 ∈ 𝑅

∑𝑁
𝑖=1 𝑛𝑖 . The terms 𝜑𝑖(𝑥𝑖) ∈ 𝑅 are matched uncertainties.

The terms 𝑝𝑖(𝑥𝑖)𝜓𝑖(𝑥) ∈ 𝑅𝑛𝑖 represent the interconnection of the 𝑖th subsystem where 𝑝𝑖(𝑥𝑖) ∈ 𝑅𝑛𝑖 are known used to describe
the structure of the interconnections, and the terms 𝜓𝑖(𝑥) ∈ 𝑅 are known which is used to describe the interconnections for
𝑖 = 1, 2,… , 𝑁 . All of the nonlinear terms are assumed to be smooth enough in their arguments to guarantee the existence and
uniqueness of the system solutions.

In this paper, the local case will be considered, and the considered domain may not be specified in the subsequence unless it is
necessary. It should be noted that each subsystem in system (1) is assumed to be single-input and single-output for simplifying
the analysis. The following definitions are introduced firstly for readers’ convenience.
Definition 1. Consider system (1). The system

�̇�𝑖 = 𝑓𝑖(𝑥𝑖) + 𝑔𝑖(𝑥𝑖)(𝑢𝑖 + 𝜑𝑖(𝑥𝑖))
𝑦𝑖 = ℎ𝑖(𝑥𝑖) 𝑖 = 1, 2, ..., 𝑁

(2)
is called the 𝑖th isolated subsystem of the system (1), and the system

�̇�𝑖 = 𝑓𝑖(𝑥𝑖) + 𝑔𝑖(𝑥𝑖)𝑢𝑖
𝑦𝑖 = ℎ𝑖(𝑥𝑖) 𝑖 = 1, 2, ..., 𝑁

(3)
is called the 𝑖th nominal isolated subsystem of the system (1).
Definition 2. Consider system (1) with desired output signals 𝑦𝑖𝑑(𝑡) for 𝑖 = 1, 2, ..., 𝑁 . If the controller 𝑢𝑖 of the 𝑖th subsystem
depends on the time 𝑡, the state 𝑥𝑖 and the desired output signal 𝑦𝑖𝑑(𝑡) of the 𝑖th subsystem only, i.e.,

𝑢𝑖 = 𝑢𝑖(𝑡, 𝑥𝑖, 𝑦𝑖𝑑), 𝑖 = 1, 2, ..., 𝑁 (4)
then (4) is called decentralized static state feedback tracking control.

The objective of this paper is, for a given desired output signal 𝑦𝑖𝑑(𝑡), to design a decentralized control such that the output
𝑦𝑖(𝑡) can track the desired signal 𝑦𝑖𝑑(𝑡) asymptotically, i.e.

lim
𝑡→∞

|𝑦𝑖(𝑡) − 𝑦𝑖𝑑(𝑡)| = 0 (5)
for 𝑖 = 1, 2, ..., 𝑁 , while all the state variables of the interconnected system (1) are bounded.

To deal with the tracking problem stated above, some assumptions on the considered system (1) are introduced at first.
Assumption 1. There exist known continuous functions 𝜌𝑖(𝑥𝑖) in domain Π𝑖 such that for 𝑥𝑖 ∈ Π𝑖 with 𝑖 = 1, 2, ..., 𝑁 .

|𝜑𝑖(𝑥𝑖)| ≤ 𝜌𝑖(𝑥𝑖).

Remark 1. Assumption 1 implies that the uncertainties 𝜑𝑖(𝑥𝑖) in the system (1) are required to be bounded for 𝑖 = 1, 2, ..., 𝑁 ,
and the bounds are known. The bounds on the uncertainties will be used to design a decentralized controller later to cancel the
effects of the corresponding uncertainties to enhance the robustness.
Assumption 2. For system (1), the triple (𝑓𝑖, 𝑔𝑖, ℎ𝑖) has an uniform relative degree 𝑟𝑎𝑖 in the domain Π𝑖, the triple (𝑓𝑖, 𝑝𝑖, ℎ𝑖) has
an uniform relative degree 𝑟𝑏𝑖 in the domain Π𝑖, and 𝑟𝑎𝑖 = 𝑟𝑏𝑖 for 𝑖 = 1, 2,… , 𝑁 . Furthermore, both distributions generated by
the column vectors of function matrices 𝑔𝑖(𝑥𝑖) and 𝑝𝑖(𝑥𝑖) respectively, are involutive in the domain Π𝑖 for 𝑖 = 1, 2,… , 𝑁 .
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Remark 2. The definition of the relative degree for a nonlinear control systems is available in28. The uniform relative degree
in Assumption 2 implies that, for any point 𝑥𝑖 ∈ Π𝑖, the system has relative degree, and the relative degree is independent of
𝑥𝑖 ∈ Π𝑖. For further discussion about the relative degree, see28.
Remark 3. Assumption 2 is the limitation to both the structure of the nominal isolated subsystems (3) and the structure of the
distribution of the interconnections of system (1). It should be pointed out that the methodology developed in this paper can be
directly extended to the case 𝑟𝑎𝑖 < 𝑟𝑏𝑖 . Here, the condition 𝑟𝑎𝑖 = 𝑟𝑏𝑖 is imposed on system (1) in Assumption 2 just for simplification
of the later analysis and description. Similar limitation has been employed in29.
Assumption 3. The desired output signals 𝑦𝑖𝑑(𝑡) and their time derivatives up to the 𝑟𝑎𝑖 th order are smooth, known and bounded
for all 𝑡 ∈ [0,∞).
Remark 4. Assumption 3 is the limitation to the desired signals. It requires that the ideal output signals 𝑦𝑖𝑑(𝑡) are differentiable
for sufficient times. This assumption is quite standard in tracking control and usually is satisfied in most cases in reality. However,
if the desired signal 𝑦𝑖𝑑(𝑡) is not continuous in reality due to some engineering limitation, this work may not be applied.

3 SYSTEM STRUCTURE ANALYSIS

Consider the nonlinear interconnected system in (1). Under Assumption 2, it follows from28 that there exist diffeomorphisms
𝑧𝑖 = 𝑇𝑖(𝑥𝑖) defined in Π𝑖, described by

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥𝑖,1
𝑥𝑖,2
⋮

𝑥𝑖,(𝑟𝑎𝑖 −1)
𝑥𝑖,𝑟𝑎𝑖
𝑥𝑖,(𝑟𝑎𝑖 +1)

⋮
𝑥𝑖,𝑛𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑧𝑖=𝑇𝑖(𝑥𝑖)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑧𝑖,1
𝑧𝑖,2
⋮

𝑧𝑖,(𝑟𝑎𝑖 −1)
𝑧𝑖,𝑟𝑎𝑖
𝑧𝑖,(𝑟𝑎𝑖 +1)

⋮
𝑧𝑖,𝑛𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=∶

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜉𝑖,1
𝜉𝑖,2
⋮

𝜉𝑖,(𝑟𝑎𝑖 −1)
𝜉𝑖,𝑟𝑎𝑖

𝜂𝑖,(𝑟𝑎𝑖 +1)
⋮
𝜂𝑖,𝑛𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6)

and the feedback transformation
𝑢𝑖 = 𝜛−1

𝑖 (𝑥𝑖)(−𝜍𝑖(𝑥𝑖) + 𝑣𝑖) (7)
where 𝜍𝑖(𝑥𝑖) and 𝜛𝑖(𝑥𝑖) are defined by

𝜍𝑖(𝑥𝑖) = 𝐿𝑟
𝑎
𝑖
𝑓𝑖
ℎ𝑖(𝑥𝑖) (8)

𝜛𝑖(𝑥𝑖) = 𝐿𝑔𝑖𝐿
𝑟𝑎𝑖 −1
𝑓𝑖

ℎ𝑖(𝑥𝑖) (9)
where 𝑣𝑖 is the new controller to be designed later, and the notation 𝐿𝑔𝑖𝐿

𝑟𝑎𝑖 −1
𝑓𝑖

ℎ𝑖(𝑥𝑖) denotes Lie derivative (see e.g.28).
In the new coordinates 𝑧𝑖, the terms 𝜍𝑖(𝑥𝑖) and 𝜛𝑖(𝑥𝑖) in (8) and (9) are, respectively, denoted by

𝛼𝑖(𝑧𝑖) = 𝜍𝑖(𝑥𝑖)|𝑥𝑖=𝑇 −1
𝑖 (𝑧𝑖)

𝛽𝑖(𝑧𝑖) = 𝜛𝑖(𝑥𝑖)|𝑥𝑖=𝑇 −1
𝑖 (𝑧𝑖).

Then, under the diffeomorphism (6) and the feedback transformation (7), it follows from28 that in the new coordinates 𝑧𝑖, the
system (1) can be described by
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�̇�𝑖,1 = 𝜉𝑖,2
�̇�𝑖,2 = 𝜉𝑖,3
...

�̇�𝑖,(𝑟𝑎𝑖 −1) = 𝜉𝑖,𝑟𝑎𝑖
�̇�𝑖,𝑟𝑎𝑖 = 𝑣𝑖(𝑡) + 𝛽𝑖(𝑧𝑖)𝜏𝑖(𝑧𝑖) + 𝛾𝑖(𝑧𝑖)𝛿𝑖(𝑧)

�̇�𝑖,(𝑟𝑎𝑖 +1) = 𝑞𝑖,(𝑟𝑎𝑖 +1)(𝑧𝑖) + Γ𝑖,(𝑟𝑎𝑖 +1)𝛿𝑖(𝑧)

...
�̇�𝑖,𝑛𝑖 = 𝑞𝑖,𝑛𝑖(𝑧𝑖) + Γ𝑖,𝑛𝑖𝛿𝑖(𝑧)
𝑦𝑖 = 𝜉𝑖,1

(10)

where 𝑧𝑖 ∶= 𝑐𝑜𝑙(𝜉𝑖, 𝜂𝑖) with 𝜉𝑖 ∶= 𝑐𝑜𝑙(𝜉𝑖,1, 𝜉𝑖,2,⋯ , 𝜉𝑖,𝑟𝑎𝑖 ) and 𝜂𝑖 ∶= 𝑐𝑜𝑙(𝜂𝑖,(𝑟𝑎𝑖 +1),⋯ , 𝜂𝑖,𝑛𝑖), 𝑧 = 𝑐𝑜𝑙(𝑧1, 𝑧2,⋯ , 𝑧𝑁 ), and
𝜏𝑖(𝑧𝑖) = 𝜑𝑖(𝑥𝑖)|𝑥𝑖=𝑇 −1

𝑖 (𝑧𝑖) (11)
𝛾𝑖(𝑧𝑖) = 𝐿𝑝𝑖𝐿

𝑟𝑏𝑖−1
𝑓𝑖

ℎ𝑖(𝑥𝑖)|𝑥𝑖=𝑇 −1
𝑖 (𝑧𝑖) (12)

𝛿𝑖(𝑧) = 𝜓𝑖(𝑥)|𝑥=𝑇 −1(𝑧). (13)
The system (10) can be expressed in a compact form as

�̇�𝑖 = 𝐴𝑖𝜉𝑖 + 𝐵𝑖[𝑣𝑖 + 𝛽𝑖(𝑧𝑖)𝜏𝑖(𝑧𝑖) + 𝛾𝑖(𝑧𝑖)𝛿𝑖(𝑧)] (14)
�̇�𝑖 = 𝑞𝑖(𝜉𝑖, 𝜂𝑖) + Γ𝑖(𝜉𝑖, 𝜂𝑖)𝛿𝑖(𝜉1, 𝜂1, ..., 𝜉𝑁 , 𝜂𝑁 ) (15)
𝑦𝑖 = 𝐶𝑖𝜉𝑖 𝑖 = 1, 2, ..., 𝑁 (16)

where 𝑧𝑖 = 𝑐𝑜𝑙(𝜉𝑖, 𝜂𝑖) with 𝜉𝑖 ∈ 𝑅𝑟𝑎𝑖 and 𝜂𝑖 ∈ 𝑅(𝑛𝑖−𝑟𝑎𝑖 ). The triple (𝐴𝑖, 𝐵𝑖, 𝐶𝑖) with appropriate dimensions has a standard
Brunovsky form as follows

𝐴𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1
0 0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐵𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
⋮
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(17)

𝐶𝑖 =
[

1 0 0 … 0
] (18)

𝑞𝑖(𝜉𝑖, 𝜂𝑖) and Γ𝑖(𝜉𝑖, 𝜂𝑖) are the last 𝑛𝑖 − 𝑟𝑎𝑖 rows of the vectors
[

𝜕𝑇𝑖
𝜕𝑥𝑖

𝑓𝑖(𝑥𝑖)
]

𝑥𝑖=𝑇 −1
𝑖 (𝑧𝑖)

and
[

𝜕𝑇𝑖
𝜕𝑥𝑖

𝑝𝑖(𝑥𝑖)
]

𝑥𝑖=𝑇 −1
𝑖 (𝑧𝑖)

respectively.
Remark 5. It should be pointed out that the diffeomorphism 𝑧𝑖 = 𝑇𝑖(𝑥𝑖) = 𝑐𝑜𝑙(𝜉𝑖, 𝜂𝑖) = 𝑐𝑜𝑙(𝜉𝑖,1, 𝜉𝑖,2,⋯ , 𝜉𝑖,𝑟𝑎𝑖 , 𝜂𝑖,(𝑟𝑎𝑖 +1),
⋯ , 𝜂𝑖,𝑛𝑖) given in (6) is not unique. From28, a way to choose the diffeomorphism can be given as follows: 𝜉𝑖 =
𝑐𝑜𝑙(ℎ𝑖(𝑥𝑖), 𝐿𝑓𝑖ℎ𝑖(𝑥𝑖), ..., 𝐿

𝑟𝑎𝑖
𝑓𝑖
ℎ𝑖(𝑥𝑖)), for 𝑖 = 1, 2, ..., 𝑁 . 𝜂𝑖 = 𝑐𝑜𝑙(𝜂𝑖,(𝑟𝑎𝑖 +1),⋯ , 𝜂𝑖,𝑛𝑖) where 𝜂𝑖𝑗 can be obtained by solving the

equations 𝐿𝑔𝑖𝜂𝑖𝑗 = 0 for 𝑖 = 1, 2, ..., 𝑁 and 𝑗 = 𝑟𝑎𝑖 + 1, ..., 𝑛𝑖.

Remark 6. However, from (14)-(16), it is clear to see that in this paper, it is not required that the nominal subsystems of system
(1) are feedback linearizable. If the relative degree 𝑟𝑎𝑖 = 𝑛𝑖, then the system (10) will have the following form

�̇�𝑖,1 = 𝜉𝑖,2
�̇�𝑖,2 = 𝜉𝑖,3
...

�̇�𝑖,(𝑛𝑖−1) = 𝜉𝑖,𝑛𝑖
�̇�𝑖,𝑛𝑖 = 𝑣𝑖(𝑡) + 𝛽𝑖(𝑧𝑖)𝜏𝑖(𝑧𝑖) + 𝛾𝑖(𝑧𝑖)𝛿𝑖(𝑧)
𝑦𝑖 = 𝜉𝑖,1.

(19)
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In this case the nominal isolated subsystem of interconnected system (14) is completely feedback linearisable and thus the
nonlinear part relating to the dynamics of variables 𝜂𝑖 in system (15) disappears.

4 DECENTRALIZED OUTPUT TRACKING CONTROL

In the subsequence, the nonlinear interconnected systems (14)-(16) are to be focused. The main results will be presented in this
section. Firstly, a sliding surface in terms of tracking errors will be proposed. Then, a decentralized controller based on sliding
mode technique will be designed to implement the output tracking, and the boundedness of the considered interconnected system
will be discussed.

4.1 Sliding Surface Design
It is assumed that the desired output signals 𝑦𝑖𝑑(𝑡) satisfy Assumption 3. For (16), the output tracking errors 𝑒𝑖 are defined by

𝑒𝑖 = 𝑦𝑖(𝑡) − 𝑦𝑖𝑑(𝑡). 𝑖 = 1, 2, ..., 𝑁 (20)
The following sliding functions are introduced

𝑆𝑖(⋅) = 𝑒(𝑟
𝑎
𝑖 −1)

𝑖 + 𝑎𝑖,1𝑒
(𝑟𝑎𝑖 −2)
𝑖 + ... + 𝑎𝑖,(𝑟𝑎𝑖 −2)𝑒

(1)
𝑖 + 𝑎𝑖,(𝑟𝑎𝑖 −1)𝑒

(0)
𝑖 (21)

where 𝑒(𝑟𝑎𝑖 −1)𝑖 , 𝑒(𝑟𝑎𝑖 −2)𝑖 , ⋯, and 𝑒(1)𝑖 denote the (𝑟𝑎𝑖 −1)th order, (𝑟𝑎𝑖 −2)th order, ⋯, and the 1st order derivatives of 𝑒𝑖(𝑡) respectively,
𝑒(0)𝑖 ∶= 𝑒𝑖(𝑡), and 𝑎𝑖,1, 𝑎𝑖,2, ..., 𝑎𝑖,(𝑟𝑎𝑖 −1) are a set of design parameters, which are chosen such that the following polynomials

𝜆𝑟
𝑎
𝑖 −1 + 𝑎𝑖,1𝜆𝑟

𝑎
𝑖 −2 + ... + 𝑎𝑖,(𝑟𝑎𝑖 −2)𝜆 + 𝑎𝑖,(𝑟𝑎𝑖 −1) (22)

are Hurwitz stable for 𝑖 = 1, 2,… , 𝑁 . Then, the composite sliding surface for interconnected system (14)-(16) can be described
by

{𝑆 = 𝑐𝑜𝑙(𝑆1, 𝑆2,⋯ , 𝑆𝑁 ) ∣ 𝑆𝑖 = 0, 𝑖 = 1, 2, ..., 𝑁} (23)
where 𝑆𝑖 are defined in (21). From the design above, it is clear to see that when 𝑆𝑖 = 0,

lim
𝑡→∞

|𝑒𝑖(𝑡)| = 0.

This implies that when sliding motion occurs,
lim
𝑡→∞

|𝑦𝑖(𝑡) − 𝑦𝑖𝑑(𝑡)| = lim
𝑡→∞

|𝑒𝑖(𝑡)| = 0 (24)
i.e. the outputs 𝑦𝑖(𝑡) of system (1) can track the ideal signal 𝑦𝑖𝑑(𝑡) asymptotically for 𝑖 = 1, 2,… , 𝑁 . The following result is now
ready to be presented:
Theorem 1. Consider the interconnected system (14)-(16). Under Assumption 3, when the system (14)-(16) is limited to moving
on the sliding surface (23), the following results hold:

i). lim
𝑡→∞

|𝑦𝑖(𝑡) − 𝑦𝑖𝑑(𝑡)| = lim
𝑡→∞

|𝑒𝑖(𝑡)| = 0 for 𝑖 = 1, 2, ..., 𝑁

ii). The state variables 𝜉𝑖 in (14) are bounded for 𝑖 = 1, 2, ..., 𝑁

Proof. The result in i) has been shown above (see (24)). The remains are to prove that the result in ii) holds.
When system (14)-(16) is constrained to the sliding surface (21), it follows that

𝑆𝑖 = 𝑒(𝑟
𝑎
𝑖 −1)

𝑖 + 𝑎𝑖,1𝑒
(𝑟𝑎𝑖 −2)
𝑖 + ... + 𝑎𝑖,(𝑟𝑎𝑖 −2)𝑒

(1)
𝑖 + 𝑎𝑖,(𝑟𝑎𝑖 −1)𝑒

(0)
𝑖 = 0.

Then,
𝑒(𝑟

𝑎
𝑖 −1)

𝑖 = −𝑎𝑖,1𝑒
(𝑟𝑎𝑖 −2)
𝑖 − ... − 𝑎𝑖,(𝑟𝑎𝑖 −2)𝑒

(1)
𝑖 − 𝑎𝑖,(𝑟𝑎𝑖 −1)𝑒

(0)
𝑖 .

Let
𝑒𝑖,1 ≜ 𝑒(0)𝑖 = 𝑒𝑖.

Then, the following error dynamics are obtained
�̇�𝑖,1 = 𝑒(1)𝑖 ≜ 𝑒𝑖,2
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�̇�𝑖,2 = 𝑒(2)𝑖 ≜ 𝑒𝑖,3
...

�̇�𝑖,(𝑟𝑎𝑖 −2) = 𝑒(𝑟
𝑎
𝑖 −2)

𝑖 ≜ 𝑒𝑖,(𝑟𝑎𝑖 −1)
�̇�𝑖,(𝑟𝑎𝑖 −1) = −𝑎𝑖,1𝑒𝑖,(𝑟𝑎𝑖 −1) − ... − 𝑎𝑖,(𝑟𝑎𝑖 −2)𝑒𝑖,2 − 𝑎𝑖,(𝑟𝑎𝑖 −1)𝑒𝑖,1.

Therefore the sliding mode dynamics of system (14)-(15) are given by the following equation by rewriting the system above in
a compact form

�̇�𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 0 … 1

−𝑎𝑖,(𝑟𝑎𝑖 −1) −𝑎𝑖,(𝑟𝑎𝑖 −2) −𝑎𝑖,(𝑟𝑎𝑖 −3) … −𝑎𝑖,1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐸𝑖

𝜖𝑖 (25)

where 𝜖𝑖 = 𝑐𝑜𝑙(𝑒𝑖,1, 𝑒𝑖,2,⋯ , 𝑒𝑖,(𝑟𝑎𝑖 −1)). It should be noted that the entries of the last row of matrix 𝐸𝑖: 𝑎𝑖,1, 𝑎𝑖,2, ..., 𝑎𝑖,(𝑟𝑎𝑖 −1) forms
the 𝐻𝑢𝑟𝑤𝑖𝑡𝑧 polynomial (22). Therefore, system (25) is 𝐻𝑢𝑟𝑤𝑖𝑡𝑧 stable which implies that

lim
𝑡→∞

|𝜖𝑖(𝑡)| = 0. (26)
Further, from (24) and (26)

lim
𝑡→∞

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

𝜉𝑖,1 − 𝑦
(0)
𝑖𝑑

𝜉𝑖,2 − 𝑦
(1)
𝑖𝑑

⋮

𝜉𝑖,(𝑟𝑎𝑖 −1) − 𝑦
(𝑟𝑎𝑖 −2)
𝑖𝑑

𝜉𝑖,𝑟𝑎𝑖 − 𝑦
(𝑟𝑎𝑖 −1)
𝑖𝑑

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

= 0.

From Assumption 3, the desired output signal 𝑦𝑖𝑑(𝑡) and its derivatives: 𝑦(1)𝑖𝑑 , 𝑦(2)𝑖𝑑 , ..., 𝑦(𝑟
𝑎
𝑖 −1)

𝑖𝑑 are bounded in 𝑡 ∈ [0,∞]. It follows
that the state variables 𝜉𝑖,1, 𝜉𝑖,2, ..., 𝜉𝑖,𝑟𝑎𝑖 are bounded and thus the states 𝜉𝑖 in (14) are bounded when the states of the system are
limited to the sliding surface (23).

Hence, the result follows.

Remark 7. It is well known that the sliding mode is a reduced-order system. Section 4.1 shows that for system (14)-(16) with the
sliding surface given in (23), the corresponding sliding mode dynamics are system (25). Theorem 1 shows that the sliding mode
is asymptotically stable and the partial of state variable 𝜉𝑖 is bounded. Next, the decentralized controllers are to be designed to
guarantee the reachability, and the boundedness of the partial states 𝜂𝑖 will be discussed as well.

4.2 Decentralized Sliding Mode Controller Design
Now, the objective is to design a decentralized state-feedback controller based on sliding mode technique such that the states of
the controlled system (14)-(16) can be driven to the designed sliding surface (21) in finite time.

Since 𝑧𝑖 = 𝑇𝑖(𝑥𝑖) is a diffeomorphism, from Assumption 1 and definitions of 𝜏𝑖(𝑧𝑖) and 𝛿𝑖(𝑧) in (11) and (13) respectively, it
follows that there are continuous functions 𝜌′𝑖(𝑧𝑖) such that in the considered neighbourhood of the origin

|𝜏𝑖(𝑧𝑖)| ≤ 𝜌′𝑖(𝑧𝑖). (27)
where 𝜌′𝑖(⋅) depends on the transformation 𝑧𝑖 = 𝑇𝑖(𝑥𝑖) and 𝜌𝑖(⋅) in Assumption 1. Since 𝜌𝑖(⋅) are known, the bound 𝜌′𝑖(⋅) can be
obtained from 𝑧𝑖 = 𝑇𝑖(𝑥𝑖).

For system (14)-(16), the following control law is proposed
𝑣𝑖 = −�̇�𝑖 + 𝑦

(𝑟𝑎𝑖 )
𝑖 −

(

𝐾𝑖(𝑧𝑖) + |𝛽𝑖(𝑧𝑖)|𝜌′𝑖(𝑧𝑖) +
1
2
|𝛾𝑖(𝑧𝑖)|2

)

𝑠𝑔𝑛(𝑆𝑖) 𝑖 = 1, 2, ..., 𝑁 (28)
where the function 𝐾𝑖(𝑧𝑖) is the feedback gain to be designed later. 𝑆𝑖(⋅) is given in (21) and 𝑠𝑔𝑛(⋅) is the 𝑠𝑖𝑔𝑛 function. It is

clear that the controllers 𝑣𝑖 in (28) are decentralized.
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Remark 8. From the structure of the control (28), it follows that only the variables 𝑧𝑖, 𝑦𝑖, 𝑦(𝑟
𝑎
𝑖 )

𝑖 and 𝑦𝑖𝑑(𝑡) are used in the 𝑖-th
control 𝑣𝑖, which are available locally. Specially from (10), 𝑦(𝑟𝑎𝑖 )𝑖 is actually the first order derivative of the state 𝑥𝑖,𝑟𝑎𝑖 , which
totally depends on the local state 𝑥𝑖,𝑟𝑎𝑖 . Therefore, from the coordinate transformation 𝑧𝑖 = 𝑇𝑖(𝑥𝑖) and the relationship between
𝑢𝑖 and 𝑣𝑖 in (7), it is straightforward to see that the designed controllers are decentralized.

Theorem 2. Under Assumptions 1 and 3, the nonlinear interconnected system (14)-(16) is driven to the sliding surface (21) in
finite time by the controller (28) if the control gain 𝐾𝑖(𝑧𝑖) satisfies

𝑁
∑

𝑖=1
𝐾𝑖(𝑧𝑖) >

1
2

𝑁
∑

𝑖=1
|𝛿𝑖(𝑧)|2 + 𝜎𝑖 (29)

where 𝜎𝑖 is a positive constant.
Proof. The closed-loop system obtained by applying control law (28) into system (14)-(16) can be described by

�̇�𝑖 = 𝐴𝑖𝜉𝑖 + 𝐵𝑖[−�̇�𝑖 + 𝑦
(𝑟𝑎𝑖 )
𝑖 −

(

𝐾𝑖(𝑧𝑖) + |𝛽𝑖(𝑧𝑖)|𝜌′𝑖(𝑧𝑖) +
1
2
|𝛾𝑖(𝑧𝑖)|2

)

𝑠𝑔𝑛(𝑆𝑖) + 𝛽𝑖(𝑧𝑖)𝜏𝑖(𝑧𝑖) + 𝛾𝑖(𝑧𝑖)𝛿𝑖(𝑧)] (30)
�̇�𝑖 = 𝑞𝑖(𝜉𝑖, 𝜂𝑖) + Γ𝑖(𝜉𝑖, 𝜂𝑖)𝛿𝑖(𝜉1, 𝜂1, ..., 𝜉𝑁 , 𝜂𝑁 ) (31)
𝑦𝑖 = 𝐶𝑖𝜉𝑖. 𝑖 = 1, 2, ..., 𝑁 (32)

With the special structure of the triple (𝐴𝑖, 𝐵𝑖, 𝐶𝑖) in (14)-(16), it follows
𝑦𝑖 = 𝜉𝑖,1
𝑦(1)𝑖 = 𝜉𝑖,2
...

𝑦(𝑟
𝑎
𝑖 −1)

𝑖 = 𝜉𝑖,𝑟𝑎𝑖
𝑦(𝑟

𝑎
𝑖 )

𝑖 = �̇�𝑖,𝑟𝑎𝑖 = −�̇�𝑖 + 𝑦
(𝑟𝑎𝑖 )
𝑖 −

(

𝐾𝑖(𝑧𝑖) + |𝛽𝑖(𝑧𝑖)|𝜌′𝑖(𝑧𝑖) +
1
2
|𝛾𝑖(𝑧𝑖)|2

)

𝑠𝑔𝑛(𝑆𝑖) + 𝛽𝑖(𝑧𝑖)𝜏𝑖(𝑧𝑖) + 𝛾𝑖(𝑧𝑖)𝛿𝑖(𝑧).

(33)

From the last equation in (33),
�̇�𝑖 = −

(

𝐾𝑖(𝑧𝑖) + |𝛽𝑖(𝑧𝑖)|𝜌′𝑖(𝑧𝑖) +
1
2
|𝛾𝑖(𝑧𝑖)|2

)

𝑠𝑔𝑛(𝑆𝑖) + 𝛽𝑖(𝑧𝑖)𝜏𝑖(𝑧𝑖) + 𝛾𝑖(𝑧𝑖)𝛿𝑖(𝑧). (34)
Then, from (27) - (34), and according to the basic inequality 𝑎𝑏 ≤ 1

2
(𝑎2 + 𝑏2),

𝑆⊤�̇� =
𝑁
∑

𝑖=1
𝑆𝑖�̇�𝑖

=
𝑁
∑

𝑖=1

(

−
(

𝐾𝑖(𝑧𝑖) + |𝛽𝑖(𝑧𝑖)|𝜌′𝑖(𝑧𝑖) +
1
2
|𝛾𝑖(𝑧𝑖)|2

)

|𝑆𝑖| + 𝛽𝑖(𝑧𝑖)𝜏𝑖(𝑧𝑖)𝑆𝑖 + 𝛾𝑖(𝑧𝑖)𝛿𝑖(𝑧)𝑆𝑖
)

≤
𝑁
∑

𝑖=1

(

−𝐾𝑖(𝑧𝑖)|𝑆𝑖| −
1
2
|𝛾𝑖(𝑧𝑖)|2|𝑆𝑖| +

1
2
(|𝛾𝑖(𝑧𝑖)|2 + |𝛿𝑖(𝑧)|2)|𝑆𝑖|

)

=
𝑁
∑

𝑖=1

(

−𝐾𝑖(𝑧𝑖) +
1
2
|𝛿𝑖(𝑧)|2

)

|𝑆𝑖|.

(35)

It follows from (35), (29) and the basic inequality
(

∑𝑁
𝑖=1 |𝑆𝑖|

)2
≥
∑𝑁
𝑖=1 |𝑆𝑖|

2 that

𝑆𝑇 �̇� < −𝜎
𝑁
∑

𝑖=1
|𝑆𝑖| ≤ −𝜎‖𝑆‖ (36)

where 𝜎 ∶= 𝑚𝑖𝑛𝑖{𝜎𝑖} > 0 due to 𝜎𝑖 > 0 for 𝑖 = 1, 2, ..., 𝑁 , meaning that the reachability condition holds for the closed-loop
interconnected system (30)-(31). Hence, the result follows.
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Remark 9. Based on the analysis above and from the feedback transformation (28), it follows that the decentralized controller
𝑢𝑖 = 𝜛−1

𝑖 (𝑥𝑖)
[

− 𝜍𝑖(𝑥𝑖) − �̇�𝑖 + 𝑦
(𝑟𝑎𝑖 )
𝑖 −

(

𝐾𝑖(𝑇𝑖(𝑥𝑖)) + |𝜛𝑖(𝑥𝑖)|𝜌𝑖(𝑥𝑖) +
1
2
|𝐿𝑝𝑖𝐿

𝑟𝑏𝑖−1
𝑓𝑖

ℎ𝑖(𝑥𝑖)|2
)

𝑠𝑔𝑛(𝑆𝑖)
]

(37)
can drive the system (1) to the corresponding sliding surface in finite time, where 𝑝𝑖 = 𝑝𝑖(𝑥𝑖), 𝑓𝑖 = 𝑓𝑖(𝑥𝑖) and 𝑆𝑖 is defined in
(21).

4.3 The Boundedness of System States
In this subsection, the boundedness of the closed-loop system (30)-(31) is analysed. The following assumptions are needed.
Assumption 4. The functions 𝑞𝑖(𝜉𝑖, 𝜂𝑖) in system (30)-(31) satisfy the 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 condition with the 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 constants 𝐿𝑞𝑖uniformly for 𝜂𝑖 in the considered domain. Moreover, there exists a 𝐿𝑦𝑎𝑝𝑢𝑛𝑜𝑣 function 𝑉𝑖0(𝜂𝑖) such that

𝜒𝑖1 ∥ 𝜂𝑖 ∥2≤ 𝑉𝑖0(𝜂𝑖) ≤ 𝜒𝑖2 ∥ 𝜂𝑖 ∥2

𝜕𝑉𝑖0
𝜕𝜂𝑖

𝑞𝑖(0, 𝜂𝑖) ≤ −𝜒𝑖3 ∥ 𝜂𝑖 ∥2

‖

‖

‖

‖

𝜕𝑉𝑖0
𝜕𝜂𝑖

‖

‖

‖

‖

≤ 𝜒𝑖4 ∥ 𝜂𝑖 ∥

(38)

where 𝜒𝑖1, 𝜒𝑖2, 𝜒𝑖3, and 𝜒𝑖4 are positive constants for 𝑖 = 1, 2,⋯ , 𝑁 .
Remark 10. The Assumption 4 implies that

∥ 𝑞𝑖(𝜉𝑖, 𝜂𝑖) − 𝑞𝑖(0, 𝜂𝑖) ∥ ≤ 𝐿𝑞𝑖 ∥ 𝜉𝑖 − 0 ∥ . (39)
Assumption 4 is the limitation to the nonlinear term 𝑞𝑖(𝜉𝑖, 𝜂𝑖) in (30)-(31). It also implies that the zero dynamics �̇�𝑖 = 𝑞𝑖(0, 𝜂𝑖)
of the nominal system of system (30)-(31) is asymptotically stable.
Assumption 5. There exist positive constants 𝜅1𝑗 and 𝜅2𝑗 such that

∥ Γ𝑖(𝜉𝑖, 𝜂𝑖)𝛿𝑖(𝜉1, 𝜂1, ..., 𝜉𝑁 , 𝜂𝑁 ) ∥≤
𝑁
∑

𝑗=1
(𝜅1𝑗 ∥ 𝜉𝑗 ∥ +𝜅2𝑗 ∥ 𝜂𝑗 ∥) (40)

for 𝑖 = 1, 2,⋯ , 𝑁 .
Remark 11. Assumption 5 will hold if the inequalities ∥ Γ𝑖(𝜉𝑖, 𝜂𝑖) ∥≤ 𝜅1𝑖 ∥ 𝜉𝑖 ∥ +𝜅2𝑖 ∥ 𝜂𝑖 ∥ hold for 𝑖 = 1, 2,⋯ , 𝑁 .
Theorem 3. Under Assumptions 3-5, the states of the closed-loop system (30)-(31) are bounded if the matrix 𝑊 𝑇 + 𝑊 is
positive definite where the matrix 𝑊 is defined as

𝑊 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝜒13 − 𝜒14𝜅21 −𝜒14𝜅22 … −𝜒14𝜅2𝑁
−𝜒24𝜅21 𝜒23 − 𝜒24𝜅22 … −𝜒24𝜅2𝑁

⋮ ⋮ ⋱
−𝜒𝑁4𝜅21 −𝜒𝑁4𝜅22 … 𝜒𝑁3 − 𝜒𝑁4𝜅2𝑁

⎤

⎥

⎥

⎥

⎥

⎦

(41)

where 𝜒𝑖𝑗 and 𝜅𝑙𝑗 satisfy the Assumptions 4 and 5 for 𝑖 = 1, 2,⋯ , 𝑁 , 𝑗 = 1, 2, 3, 4 and 𝑙 = 1, 2.
Proof. From Theorem 1, it follows that the variables 𝜉𝑖 = 𝑐𝑜𝑙(𝜉𝑖,1, 𝜉𝑖,2, ..., 𝜉𝑖,𝑟𝑎𝑖 ) with 𝑖 = 1, 2,… , 𝑁 are bounded when the sliding
motion occurs if Assumption 3 holds. Theorem 2 shows that the interconnected system can be driven to the sliding surface in
finite time. From Theorems 1 and 2, it follows that the variables 𝜉𝑖 = 𝑐𝑜𝑙(𝜉𝑖,1, 𝜉𝑖,2, ..., 𝜉𝑖,𝑟𝑎𝑖 ) with 𝑖 = 1, 2,… , 𝑁 are bounded.
Therefore, there exist constants 𝐶𝑖 > 0 such that in the considered domain,

∥ 𝜉𝑖 ∥ ≤ 𝐶𝑖. 𝑖 = 1, 2, ..., 𝑁 (42)
The remain is to prove that the variables 𝜂𝑖 in the closed-loop system (30)-(31) are bounded for 𝑖 = 1, 2, ..., 𝑁 .

It should be noted that from (42), the variables 𝜉𝑖 in the system (31) are bounded and can be considered as parameters defined
in a compact set. For this system, consider the following 𝐿𝑦𝑎𝑝𝑢𝑛𝑜𝑣 candidate function

𝑉 (𝜂1, 𝜂2, ..., 𝜂𝑁 ) =
𝑁
∑

𝑖=1
𝑉𝑖0(𝜂𝑖)



10 AUTHOR ONE ET AL

where 𝑉𝑖0(𝜂𝑖) is defined in Assumption 4. Then, the time derivative of the 𝐿𝑦𝑎𝑝𝑢𝑛𝑜𝑣 function 𝑉 (⋅) along the trajectories of
system (30)-(31) is given by

�̇� (𝜂1, 𝜂2, ..., 𝜂𝑁 )

=
𝑁
∑

𝑖=1

𝜕𝑉𝑖0(𝜂𝑖)
𝜕𝜂𝑖

[

𝑞𝑖(𝜉𝑖, 𝜂𝑖) + Γ𝑖(𝜉𝑖, 𝜂𝑖)𝛿𝑖(𝜉1, 𝜂1, ..., 𝜉𝑁 , 𝜂𝑁 )
]

=
𝑁
∑

𝑖=1

[𝜕𝑉𝑖0(𝜂𝑖)
𝜕𝜂𝑖

𝑞𝑖(0, 𝜂𝑖) +
𝜕𝑉𝑖0(𝜂𝑖)
𝜕𝜂𝑖

(𝑞𝑖(𝜉𝑖, 𝜂𝑖) − 𝑞𝑖(0, 𝜂𝑖))
]

+
𝑁
∑

𝑖=1

𝜕𝑉𝑖0(𝜂𝑖)
𝜕𝜂𝑖

[

Γ𝑖(𝜉𝑖, 𝜂𝑖)𝛿𝑖(𝜉1, 𝜂1, ..., 𝜉𝑁 , 𝜂𝑁 )
]

. (43)
Further, from (44) and Assumptions 4 and 5, it follows

�̇� (𝜂1, 𝜂2, ..., 𝜂𝑁 )

≤
𝑁
∑

𝑖=1
(−𝜒𝑖3 ∥ 𝜂𝑖 ∥2 + 𝜒𝑖4𝐿𝑞𝑖𝐶𝑖 ∥ 𝜂𝑖 ∥ +||

|

|

|

|

𝜕𝑉𝑖0(𝜂𝑖)
𝜕𝜂𝑖

|

|

|

|

|

|

∥ Γ𝑖(𝜉𝑖, 𝜂𝑖)𝛿𝑖(𝜉1, 𝜂1, ..., 𝜉𝑁 , 𝜂𝑁 ) ∥)

≤
𝑁
∑

𝑖=1
(−𝜒𝑖3 ∥ 𝜂𝑖 ∥2 + 𝜒𝑖4𝐿𝑞𝑖𝐶𝑖 ∥ 𝜂𝑖 ∥ +𝜒𝑖4 ∥ 𝜂𝑖 ∥

𝑁
∑

𝑗=1
(𝜅1𝑗 ∥ 𝜉𝑗 ∥ +𝜅2𝑗 ∥ 𝜂𝑗 ∥))

≤
𝑁
∑

𝑖=1
(−𝜒𝑖3 ∥ 𝜂𝑖 ∥2 + 𝜒𝑖4𝐿𝑞𝑖𝐶𝑖 ∥ 𝜂𝑖 ∥ +

𝑁
∑

𝑗=1
𝜒𝑖4𝜅1𝑗𝐶𝑖 ∥ 𝜂𝑖 ∥ +

𝑁
∑

𝑗=1
𝜒𝑖4𝜅2𝑗 ∥ 𝜂𝑖 ∥∥ 𝜂𝑗 ∥)

= −(
𝑁
∑

𝑖=1
𝜒𝑖3 ∥ 𝜂𝑖 ∥2 −

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝜒𝑖4𝜅2𝑗 ∥ 𝜂𝑖 ∥∥ 𝜂𝑗 ∥ −

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝜒𝑖4𝐶𝑖(𝐿𝑞𝑖 + 𝜅1𝑗) ∥ 𝜂𝑖 ∥)

= −1
2
(

∥ 𝜂1 ∥, ..., ∥ 𝜂𝑁 ∥
)

(𝑊 +𝑊 𝑇 )

⎛

⎜

⎜

⎜

⎜

⎝

∥ 𝜂1 ∥
∥ 𝜂2 ∥
⋮

∥ 𝜂𝑁 ∥

⎞

⎟

⎟

⎟

⎟

⎠

+
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝜒𝑖4𝐶𝑖(𝐿𝑞𝑖 + 𝜅1𝑗) ∥ 𝜂𝑖 ∥

≤ −1
2
𝜆𝑚𝑖𝑛(𝑊 +𝑊 𝑇 ) ‖𝜂‖2 +

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝜒𝑖4𝐶𝑖(𝐿𝑞𝑖 + 𝜅1𝑗) ∥ 𝜂𝑖 ∥

= −1
2
𝜆𝑚𝑖𝑛(𝑊 +𝑊 𝑇 )

𝑁
∑

𝑖=1
‖𝜂𝑖‖

2 +
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝜒𝑖4𝐶𝑖(𝐿𝑞𝑖 + 𝜅1𝑗) ‖‖𝜂𝑖‖‖

= −1
2

𝑁
∑

𝑖=1

{

𝜆𝑚𝑖𝑛(𝑊 +𝑊 𝑇 )‖𝜂𝑖‖ −
𝑁
∑

𝑗=1
𝜒𝑖4𝐶𝑖(𝐿𝑞𝑖 + 𝜅1𝑗)

}

‖

‖

𝜂𝑖‖‖

≤ 0 (44)
where ‖𝜂‖ ∶= ‖(∥ 𝜂1 ∥, ∥ 𝜂2 ∥ , ..., ∥ 𝜂𝑁 ∥)𝑇 ‖, if

‖

‖

𝜂𝑖‖‖ ≥
∑𝑁
𝑗=1 𝜒𝑖4𝐶𝑖(𝐿𝑞𝑖 + 𝜅1𝑗)

𝜆𝑚𝑖𝑛(𝑊 )
.

Then, from Theorem 4.18 in30, the variables 𝜂𝑖 are bounded for 𝑖 = 1, 2,… , 𝑁 .
Hence, the result follows.

Remark 12. From Remark 6, if 𝑟𝑎𝑖 = 𝑛𝑖, the considered system can be fully linearised and thus the dynamical equation (31)
disappears. In this case, Assumptions 4-5 are unnecessary, and the interconnection terms are completely matched. This can be
regarded as a special case of the results developed in this paper.

5 SIMULATION EXAMPLE

Consider two inverted pendulums connected by a spring as shown in Fig.1. Each pendulum is controlled by a servomotor which
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FIGURE 1 Two inverted pendulums connected by a spring

provides a torque input 𝑢𝑖 at the pivot. It is assumed that 𝜃𝑖 and �̇�𝑖 represent the angular position and velocity of the pendulums
respectively for 𝑖 = 1, 2.The model which describes the motion of the pendulums is given by (see,31)

�̇�1,1 = 𝑥1,2

�̇�1,2 =
𝑢1
𝐽1

+ 𝛽1(𝑥1)𝜏1(𝑥1) + 𝛾1(𝑥1)𝛿1(𝑥) +
𝑘𝑟
2𝐽1

(𝑙 − 𝑏)

𝑦1 = 𝑥1,1

(45)

and
�̇�2,1 = 𝑥2,2

�̇�2,2 =
𝑢2
𝐽2

+ 𝛽2(𝑥2)𝜏2(𝑥2) + 𝛾2(𝑥2)𝛿2(𝑥) −
𝑘𝑟
2𝐽2

(𝑙 − 𝑏)

𝑦2 = 𝑥2,1

(46)

where 𝑥1,1 = 𝜃1, 𝑥2,1 = 𝜃2, 𝑥1,2 = �̇�1 and 𝑥2,2 = �̇�2 are system states. It is assumed that 𝑥1,1 and 𝑥2,1 are measurable, which are
system outputs.

It should be pointed out that system (45)-(46) above has already been in the form of system (14) where
𝛽1 =

𝑚1𝑔𝑟
𝐽1

− 𝑘𝑟2

4𝐽1
, 𝛽2 =

𝑚2𝑔𝑟
𝐽2

− 𝑘𝑟2

4𝐽2
𝜏1(𝑥1) = 𝑠𝑖𝑛(𝑥1,1), 𝜏2(𝑥2) = 𝑠𝑖𝑛(𝑥2,1)

𝛾1(𝑥1) =
𝑘𝑟2

4𝐽1
, 𝛾2(𝑥2) =

𝑘𝑟2

4𝐽2
𝛿1(𝑥) = 𝑠𝑖𝑛(𝑥2,1), 𝛿2(𝑥) = 𝑠𝑖𝑛(𝑥1,1).

From31, the parameters are chosen as 𝑚1 =2 kg and 𝑚2 = 2.5 kg represent the end masses of the pendulum. 𝐽1 = 0.5 kg⋅ m2

and 𝐽2 = 0.625 kg⋅ m2 are the moments of inertia. 𝑔 = 9.81 m/s2 is the gravitational acceleration. 𝑘 = 100 N/m is the spring
constant of the connecting spring. 𝑟 = 0.5m is the pendulum height and 𝑙 = 0.5m is the natural length of the spring. The distance
between the pendulum hinges is 𝑏 = 0.5m, where 𝑏 = 𝑙.

By direct calculation
|𝜏1(𝑥1)| = |𝑠𝑖𝑛(𝑥1,1)| ≤ 1 = 𝜌1(𝑥1)
|𝜏2(𝑥2)| = |𝑠𝑖𝑛(𝑥2,1)| ≤ 1 = 𝜌2(𝑥2).

Here, both the value of 𝜎𝑖 for 𝑖 = 1, 2 are designed as 0.1. It can be verified that the relative degree 𝑟𝑎𝑖 = 𝑟𝑏𝑖 = 2 for 𝑖 = 1, 2.
The nominal subsystems can be feedback linearised. For simulation purposes, the initial states are chosen as 𝑥1,1(0) = 1 and
𝑥2,1(0) = −0.8. And the desired output signals 𝑦𝑖𝑑(𝑡) are chosen as

𝑦1𝑑 = 0.5 sin(𝑡), 𝑦2𝑑 = 5𝑒−𝑡. (47)
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It is clear that Assumption 3 is satisfied. Let
𝑒1 = 𝑦1 − 𝑦1𝑑 , 𝑒2 = 𝑦2 − 𝑦2𝑑
�̇�1 = �̇�1 − �̇�1𝑑 , �̇�2 = �̇�2 − �̇�2𝑑

𝑆1 = �̇�1 + 𝑎1 ⋅ 𝑒1, 𝑆2 = �̇�2 + 𝑎2 ⋅ 𝑒2

(48)

where the sliding function parameters are chosen as 𝑎1 = 2 and 𝑎2 = 3. Then from (28), the control laws can be described by
𝑢1 = 𝐽1

(

−�̇�1 + 𝑦
(2)
1 −𝐾1(𝑥1)sgn(𝑆1)

)

(49)
and

𝑢2 = 𝐽2
(

−�̇�2 + 𝑦
(2)
2 −𝐾2(𝑥2)sgn(𝑆2)

)

(50)
where, based on (29), the value of the control gain 𝐾𝑖(⋅) is chosen as 19.72 for 𝑖 = 1, 2. By direct calculation, Assumptions 4-5
as well as the conditions of Theorems 1-3 are satisfied. Therefore, the outputs of the closed-loop system formed by applying
controllers (49)-(50) to the system (45)-(46) can track the desired signals in (47) asymptotically.

The tracking results are shown in Fig.2 with a good tracking performance as expected. Each angular position 𝑦𝑖 of the sub-
system can track the ideal reference 𝑦𝑖𝑑 for 𝑖 = 1, 2, at around 2 seconds despite the interactions between the subsystems. The
time responses of the states of the system (45)-(46) are presented in Fig.3 where the system states are bounded. The simulation
demonstrates that the results developed in this paper are effective and in consistence with the theoretical results.
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FIGURE 2 Time responses of system’s output, the desired output (upper), and controller inputs of system (45)-(46).

6 CONCLUSIONS

A decentralized sliding mode control scheme for output tracking of a class of nonlinear interconnected systems has been proposed
in this paper. The developed results can guarantee asymptotic output-tracking performance while the bounded state variables
are maintaining across the closed-loop systems. The designed controllers are decentralized and the desired reference signals are
time-varying. It is not required that either the interconnected system or the isolated subsystems of the interconnected systems
are linearisable. Also, the developed results can be extended to the case when the isolated subsystems have multiple-input and
multiple-output. Thus, the method developed in this paper is suitable for a wide class of large-scale nonlinear interconnected
systems.
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FIGURE 3 Evolution of state variables of system (45)-(46).
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