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Abstract

Background Arrhythmogenic right ventricular cardiomyopathy (ARVC) is diagnosed according to the Task Force Criteria
(TFC) in which cardiovascular magnetic resonance (CMR) imaging plays an important role. Our study aims to apply an
automatic deep learning-based segmentation for right and left ventricular CMR assessment and evaluate this approach for
classification of the CMR TFC.

Methods We included 227 subjects suspected of ARVC who underwent CMR. Subjects were classified into (1) ARVC
patients fulfilling TFC; (2) at-risk family members; and (3) controls. To perform automatic segmentation, a Bayesian Dilated
Residual Neural Network was trained and tested. Performance of automatic versus manual segmentation was assessed using
Dice-coefficient and Hausdorff distance. Since automatic segmentation is most challenging in basal slices, manual correction
of the automatic segmentation in the most basal slice was simulated (automatic™**). CMR TFC calculated using manual
and automatic°*%! segmentation were compared using Cohen’s Kappa (k).

Results Automatic segmentation was trained on CMRs of 70 subjects (39.6 +18.1 years, 47% female) and tested on 157
subjects (36.9 +17.6 years, 59% female). Dice-coefficient and Hausdorff distance showed good agreement between manual
and automatic segmentations (> 0.89 and < 10.6 mm, respectively) which further improved after simulated correction of the
most basal slice (>0.92 and 9.2 mm, p <0.001). Pearson correlation of volumetric and functional CMR measurements
was good to excellent (automatic (r=0.78-0.99, p <0.001) and automatic ™ (r=0.88-0.99, p<0.001) measurements).
CMR TEC classification using automatic "% segmentations was comparable to manual segmentations (k 0.98 +0.02) with
comparable diagnostic performance.

Conclusions Combining automatic segmentation of CMRs with correction of the most basal slice results in accurate CMR
TFC classification of subjects suspected of ARVC.
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Abbreviations

ARVC  Arrhythmogenic right ventricular
cardiomyopathy

CMR  Cardiovascular magnetic resonance

DRN  Dilated Residual Network

ED End-diastole

EDV  End-diastolic volume

EDVI  End-diastolic volume index

EF Ejection fraction

ES End-systolic

ESV End-systolic volume
ESVI  End-systolic volume index
LV Left ventricle

RV Right ventricle

SV Stroke volume

TFC Task force criteria
Background

Arrhythmogenic right ventricular cardiomyopathy (ARVC)
is an inherited heart disease that is characterized by ventricu-
lar dysfunction, predominantly affecting the right ventricle
(RV), and potentially life-threatening ventricular arrhyth-
mias. Accurate recognition of this disease is vital since the
implantation of an implantable cardioverter defibrillator can
be life-saving. ARVC is diagnosed according to the revised
2010 Task Force Criteria (TFC) [1]. Apart from electrical
and family history criteria, an important role is given to the
assessment of ventricular dysfunction and structural altera-
tions. Cardiac magnetic resonance (CMR) imaging is the
modality of choice for the assessment of cardiac function
and dimensions in ARVC [2] since the asymmetric geometry
and the position of the RV in the chest hampers visualization
of the entire RV by 2D echocardiography [3].

The CMR TFC are based on RV regional wall motion
abnormalities combined with cut-off values for RV ejec-
tion fraction (EF) or sex-specific cut-off values for RV
indexed end-diastolic volume (EDVI)[1]. CMR can deliver
one minor or two major points of the necessary four TFC
points for an ARVC diagnosis. Therefore, accurate RV
assessment is essential. Segmenting CMRs to measure
functional and structural parameters is a laborious task,
taking about 25 min to segment both ventricles in end-
diastole (ED) and end-systole (ES) [4, 5]. Notably, RV
segmentation takes two-thirds of this segmentation time
and is prone to intra- and inter-observer variability [6].
RV segmentation difficulties can arise from the trabec-
ulated and complex RV geometry [7, 8]. In ARVC, RV
and left ventricular (LV) anatomy can be further compli-
cated by pathological wall thinning and aneurysms due
to fibrofatty replacement of the myocardial wall [2]. As a
consequence, CMR misinterpretations are a key cause of

over-diagnosis in ARVC [2]. The use of automatic meth-
ods for the segmentation of the ventricles may overcome
these challenges. Over the last few years many state-of-
the-art deep learning segmentation approaches for short-
axis CMR have been developed [4, 9-11]. For automatic
LV segmentation such methods can achieve performance
level of human experts [12, 13]. However, previous studies
also demonstrated that in manual and automatic segmen-
tation of short-axis CMR, the largest disagreements and
errors occur in the most basal and apical slices [8, 12—15].
Moreover, previous methods have often been evaluated on
CMR datasets with limited pathology especially related
to the RV. In contrast, this study included a large hospital
population being evaluated for ARVC, including subjects
with structurally normal hearts and those with complex
structural abnormalities. In this work we apply a previ-
ously validated state-of-the-art segmentation approach
[16] on a large heterogeneous hospital population of
patients suspected of ARVC. The purpose of this study
was to (i) evaluate our previously developed deep learning
segmentation approach for RV and LV CMR assessment in
patients suspected of ARVC and (ii) evaluate the clinical
implication of this approach for classification of the CMR
TFC in subjects suspected of ARVC.

Methods
Study population

We included a consecutive cohort of subjects suspected of
ARVC who underwent CMR as part of their clinical evalu-
ation between 2014 and 2019 at the University Medical
Center (UMC) Utrecht. This yielded 241 subjects, of whom
14 were excluded because of an equivocal diagnosis (ARVC
neither confirmed nor rejected) (n=12), prior chemotherapy
(n=1) and imaging artefacts due to irregular heart rhythm
(n=1). This led to a study population of 227 subjects
who were classified into three groups: (1) ARVC patients
diagnosed according to the 2010 TFC (n=53); (2) fam-
ily members at-risk of developing ARVC (n=96); and (3)
control subjects initially suspected of ARVC but in whom
ARVC was excluded after full clinical assessment (n="78).
Diagnosis in the control patients included RV outflow tract
tachycardia (n=45), premature ventricular contractions/non-
sustained ventricular tachycardia (n = 19), mutation-negative
family members of mutation-positive ARVC patients (n=3),
healthy athletes (n=3), syncope without a cardiac cause
(n=3) repolarization abnormalities with a structurally nor-
mal heart (n=3) and pectus excavatum (n=2). This study
was reviewed by the UMC Utrecht Institutional Review
Board and was granted a waiver of informed consent.
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ARVC diagnosis

ARVC diagnosis was based on the revised 2010 diagnos-
tic TFC [1]. In short, these consensus-based criteria rely
on major and minor criteria for six different categories: (1)
global and regional dysfunction and structural alterations;
(2) tissue characterization; (3) repolarization abnormalities;
(4) depolarization/conduction abnormalities; (5) arrhyth-
mias; and (6) family history/genetics. In each of these six
categories subjects can score a minor criterium (one point),
a major criterium (two points) or no criteria (0 points). A
definite ARVC diagnosis was made if a subject has at least
four points. The first category can be assessed by CMR, with
minor criteria for regional RV wall motion abnormalities
plus RVEF > 40 to <45% or RVEDVI > 100 to < 110 ml/m?
(males) or > 90 to < 100 mL/m? (females) and major criteria
for RV regional wall motion abnormalities plus RVEF <40%
or RVEDVI> 110 ml/m? (males) or> 100 ml/m? (females)

[1].
CMR dataset

All subjects underwent CMR using either 1.5 or 3 Tesla
Ingenia or Achieva Philips scanners (Best, the Netherlands).
The CMR dataset consisted of conventional steady-state
free precession sequence short-axis and longitudinal-axis
(4-chamber, 2-chamber and 3-chamber of both ventricles)
cine CMR images acquired during breath holds. For this
work, we only included the short-axis CMR volumes con-
sisting of 12—18 contiguous slices covering both ventricles.
The short-axis imaging parameters were as follows: each
slice containing 25 to 40 phases covering one cardiac cycle
with repetition time 2.6-3.4 ms and echo time 1.3-1.7 ms,
flip angle 45-60 degrees. The CMR images have an in-plane
resolution ranging from 1.11 to 1.45 with a slice thickness
varying from 7 to 10 mm. Furthermore, reconstruction
matrix of images ranges from 240 X 240 to 288 X 288 vox-
els. Expert radiology technicians made manual reference
segmentations of the RV and LV endocardium for all CMR
slices at ED and ES time frames. Both time points were
manually chosen by the same experts. The CMR segmenta-
tion protocol was published previously [17] and adheres to
the guidelines of the Society of Cardiovascular Magnetic
Resonance (SCMR) [18]. Furthermore, the presence of RV
and/or LV wall motion abnormalities was visually evaluated
by an experienced cardiovascular radiologist on all available
cine images and used for the calculation of the CMR TFC.

Automatic segmentation of CMR
Prior to segmentation, voxel intensities in CMR scans were

normalized by rescaling the values between [0,1] based on
their 1% and 99" percentiles per scan. Furthermore, voxels
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intensities below or above the 1% and 99" percentiles were
clamped to 0 and 1, respectively.

To perform automatic segmentation of RV and LV in the
2D short-axis CMR images, we trained a Bayesian Dilated
Residual Neural Network (DRN) [19] that was previously
developed and evaluated by Sander et al. [16]. The Bayes-
ian DRN was based on the original DRN from Yu et al. [19]
for image segmentation. To convert the original DRN [19]
into a Bayesian DRN, we implemented Monte Carlo drop-
out (MC dropout) introduced by Gal & Ghahramani [20].
Using a Bayesian, i.e. MC dropout approach is advantageous
because multiple predictions for the same voxel can be aver-
aged to obtain an improved final prediction per voxel [16].
Furthermore, architecture and parameters of the Bayesian
DRN were identical to the model described in [16]. The
network used a 2D CMR image as input and had three output
channels, each providing probability for the LV, RV or back-
ground. Softmax probabilities were calculated over the three
tissue classes. To train the model a combination of soft-Dice
[21] and cross-entropy was used as loss function. For com-
pleteness, we provide the equations for both loss functions:

> RDAG)
Y RG)+ YV AL

soft-Dice, =

where N denotes the number of voxels in an image, R, is the
binary reference image for class ¢ and A, is the probability
map for class c.

N
Cross-Entropy, = — Z ticlogp(y,- = C|xi)s
i=1

where p denotes the probability for a specific voxel x;
with corresponding reference label y; for class c; and ;. = 1
if y; = c; and O otherwise. Hyper-parameters of the network
were determined in our previous work [16] using CMR
images from the MICCAI 2017 Automated Cardiac Diag-
nosis Challenge (ACDC) [12]. Therefore, no validation set
was required in the current work.

To train the model, patches of 160 x 160 voxels were
randomly chosen from the training set. Training data were
augmented by 90 degree rotations, elastic deformations
and gamma transformations of the images. The model was
trained for 160,000 iterations using mini-batch stochastic
gradient descent with batch-size 16 and Adam as optimizer
[22]. Learning rate was set to 0.001 and decayed with a
factor of 0.1 after every 40,000 steps. To increase gener-
alization performance weight decay was used and set to
0.0005. Furthermore, dropout percentage was set to 0.1.
Enabling MC dropout during testing, tissue class per voxel
was determined using the mean softmax probabilities over
15 samples. Voxel wise segmentation may result in isolated
(small clusters of) voxels. To address this, only the largest



Clinical Research in Cardiology (2023) 112:363-378

367

3D connected component for each class was retained in the
automatic segmentations.

Simulation of the correction of automatic
segmentation

Previous research demonstrated that most segmentation
inaccuracies occur in the most basal slice on the CMR
[8, 12—15]. To evaluate whether these inaccuracies of our
method impact TFC classification, correction of the auto-
matic segmentation in the most basal slice of each CMR
volume was simulated. This was achieved by replacing the
automatic segmentation of the most basal slice with the cor-
responding manual reference defined by specially trained
radiology technicians as a part of a regular clinical workup.
We refer to this scenario as automatic~**** hereafter.

Automatic ED/ES phase selection

Accurate identification of ED and ES phase in the cardiac
cycle is a prerequisite to automatically compute RVEDV
and RVESV. To show the potential of the method to auto-
matically determine the ED and ES phase, we automatically
segmented all CMR volumes of the patients in the test set,
and derived the RV and LV volumes for all time points of
the cardiac cycle. For each patient ED was identified as the
phase in which the fully automatically segmented volume
was maximal and ES as the phase in which the volume was
minimal. Automatically identified phases were compared
with the manually selected phases using Bland—Altman
analysis. In these plots (e.g. Figure 2a), the distance between
automatically and manually selected phases is expressed as
percentage of a complete cardiac cycle. Evaluation was per-
formed for RV and LV separately, and for automatic and
automatic "% segmentations separately.

Evaluation of automatic segmentation

To evaluate performance of the automatic segmentation
method 3D Dice-coefficient and 3D Hausdorff distance
between manual and automatic segmentations were com-
puted. For this, the 2D automatic segmentation masks were
stacked into a 3D volume per patient and cardiac phase.
The Dice-coefficient quantifies overlap between manual
and automatic segmentation and its value ranges between 0
and 1. A higher Dice-coefficient indicates better agreement
between manual and automatic segmentations. The Haus-
dorft distance evaluates segmentation along the boundary
of the target structure by measuring the maximum distance
between manual and automatic segmentation. Qualitative
performance of the automatic segmentation method was
visually assessed. To investigate whether segmentation
errors accumulate at specific slice locations in the CMR

volume the distribution of segmentation errors over slice
location was computed. For this, four slice locations in a
volume were distinguished: (i) most apical slice; (ii) most
basal slice; (iii) mid-ventricular slices and (vi) slices located
below the apex or above the base of the heart. Furthermore,
to evaluate the clinical implications of our automatic CMR
segmentation approach for the classification of the CMR
TFC in subjects suspected of ARVC, the following CMR
measurements were computed for manual, automatic and
automatic~"*% segmentations: LV end-diastolic volume
(EDV); LV end-systolic volume (ESV); LV stroke volume
(SV); LVEF; RVEDV; RVESV; RVSV and RVEF.

Statistical analysis

Statistical analysis was performed using RStudio Version
1.3.1093 (Boston, MA, USA) and IBM SPSS Statistics
(version 25, USA). Continuous values were presented as
mean + standard deviation or median [interquartile range].
Categorical data were displayed as absolute frequency (n)
and percentages (%). For continuous comparisons of two
groups, two-tailed Student’s ¢ test was used. For continuous
comparisons of three or more groups, one-way ANOVA was
used. Categorical data were compared using the chi-squared
test. A p value of <0.05 was considered significant. Compar-
ison of automatic and manual absolute CMR measurements
were assessed using Bland—Altman analysis and the Pear-
son correlation coefficient (). CMR TFC was first classified
using visual assessment of wall motion abnormalities and
manually derived RVEDVI and RVEF, and next using visual
assessment of wall motion abnormalities and automatically
derived RVEDVI and RVEF.

CMR TFC classification agreement between manually
vs. automatically derived CMR measurements was assessed
using Cohen’s kappa (k). Furthermore, sensitivity and speci-
ficity of CMR TFC by manual and automatic approach was
determined and compared using the McNemar test.

Results
Study population

We included 70 subjects in the training set (mean age
39.6 + 18.1 years, 47% female) and 157 subjects in the test
set (mean age 36.9 +17.6 years, 59% female). Patient char-
acteristics are shown in Table 1. The test set included 37
ARVC patients, 66 at-risk family members and 54 controls
subjects. The distribution of subjects across the three patient
categories was the same for training and test sets (34% con-
trols, 42% at risk, 24% ARVC patients). No statistically
significant difference in sex existed between the three sub-
groups (p=0.37), but at-risk family members were younger
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than ARVC patients (p=0.021) and controls (p <0.001).
ARVC patients had a median of 5 [4-6] diagnostic TFC
points, while at-risk family members had a median of 2
[1-3] points (p <0.001). In total, 84% of ARVC patients
and 3% of at-risk family members had minor or major CMR
TFC (RV wall motion abnormalities combined with abnor-
mal RVEF or RVEDVI cut-off values). Among 103 ARVC
patients and at-risk family members, 90 (87%) carried a
pathogenic variant, mostly in plakophilin-2 (n=57, 63%)
followed by phospholamban (n =26, 29%) and desmoplakin
(n=5, 6%).

Assessment of segmentation performance

Table 2 lists quantitative results of the automatic segmenta-
tion. The automatic method achieved mean Dice-coefficient
for ED and ES 0.96 +0.01 and 0.93 +0.03, respectively, for
the LV and 0.93 +0.04 and 0.89 4+ 0.04, respectively, for the
RV. Visual assessment of automatic segmentation results
depicted in Fig. 1 reveal that performance was higher for
mid-ventricular slices (second and third rows Fig. 1) com-
pared with apical and basal slices (first and fourth row
Fig. 1), while an under-segmentation of trabeculated areas
occurred in the apical slices (first row Fig. 1). Furthermore,
as depicted in Supplementary Fig. 1, visual assessment of
the manual reference segmentation revealed a high variabil-
ity of the RV shape in the basal slices in both ED and ES
time points. Furthermore, as listed in Table 3, comparison
of automatic with manual reference segmentations disclosed
that on average 24.5% of the segmentation errors, i.e. mis-
classified voxels were located in the most basal slice (30.7
and 18.3% for RV and LV, respectively). In contrast, on aver-
age only 6.5% of the errors were located in an apical slice
(5.4 and 7.6% for RV and LV, respectively).

Table 2 lists segmentation results after the simulated cor-
rection of the automatic RV and LV segmentation in the
most basal slice. The results show an increased segmentation
performance: mean Dice-coefficient for the ED and ES are
0.97+0.01 and 0.95+0.03 (vs. 0.96+0.01 and 0.93 +0.03
uncorrected), respectively for the LV and 0.95+0.02 and
0.92 +0.03 (vs. 0.93+0.04 and 0.89 + 0.04 uncorrected),
respectively for the RV (p <0.001 [one side Wilcoxon
signed-rank test]).

Automatic ED and ES phase selection

The Bland—Altman plots shown in Fig. 2a demonstrate
the comparison between automatically identified car-
diac phases using the automatic segmentations with the
manually selected ED and ES phases. The bias [limits of
agreement] were—0.87 [-6.26, 4.52]% for the ED-LV
phase and—1.64 [-10.28, 6.99]% for the ES-LV phase,
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respectively, and—0.96 [-11.69, 9.76]% for the ED-RV
phase and —0.05 [-7.62, 7.53]% for the ES-RV phase, respec-
tively. Figure 2b depicts the same comparison using the
automatic " segmentations to automatically determine
the ED and ES phases. For this scenario the bias [limits of
agreement] were—0.72 [-5.29, 3.85]% for the ED-LV phase
and-3.03 [-10.08, 4.03]% for the ES-LV phase, respec-
tively, and—0.34 [-9.58, 8.89]% for the ED-RV and 0.48
[-7.20, 8.17]% for the ES-RV.

Assessment of absolute CMR measurements

Automatically measured volumes (RV and LV EDV and
ESV) are slightly underestimated compared to manually
measured volumes (Supplementary Figs. 2 and 3). However,
as shown in Table 4, the correlations of both RV and LV
volumes were excellent (0.95-0.99, p <0.001). For RV and
LV EF and SV, automatic measurements seem to be slightly
overestimated compared to manual measurements; nonethe-
less, correlations were excellent 0.82—0.89 for RV and good
to excellent (0.78-0.93) for LV. After simulated manual
correction of the basal slice, agreement between manual
and automated measurements increased, as depicted in the
Bland—Altman plots (Supplementary Figs. 2 and 3). This
was also reflected in the Pearson correlation coefficient for
both the volumetric (EDV, ESV) (r=0.97-0.99, p <0.001)
as well as the functional (SV, EF) (r=0.88-0.98, p <0.001)
CMR measurements.

Classification of ARVC TFC

Since agreement between manual and automatic measure-
ments was higher in the automatic %, we used these results
for the further analysis. Supplementary Table 1 depicts the
mean and standard deviation of the CMR measurements
stratified per subgroup. The trends between the three sub-
groups (ARVC, at-risk family members and controls) were
comparable between manual and automated measurements:
ARVC patients had significantly reduced RVEF (p <0.001)
and LVEF (p=0.002), as well as increased RVEDVI
(»<0.001), RVESVI (p <0.001) and LVESVI (p <0.013)
compared to at-risk family members and controls. These
trends between the subgroups were also observed in the box-
plots of Fig. 3.

We next compared CMR TFC classification using manual
vs. automatic™®*% CMR measurements. All but one subject
(156/157, 99%) were correctly classified, showing an agree-
ment of k¥ 0.98+0.02. As depicted in Fig. 4, subjects who
classified as no (n=130) or minor (n=6) CMR TFC were
correctly classified using the CMR measurements computed
using the automatic segmentations obtained from the deep
learning segmentation model. For major TFC, all but one
subject were correctly classified; with one female subject
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Table 1 Baseline characteristics ARVC patients  At-risk ARVC Control group (n=>54) p value
(n=37) group (n=066)
Demographics
Age at CMR (years) 39.1+19.0 30.7+16.2°¢ 42.9+15.9 <0.001
Female (%) 20 (54) 43 (65) 29 (54) 0.37
Proband (%) 10 (27) 0 (0)° na <0.001
Genetic status
Pathogenic variant 36 (97) 56 (85) na 0.06
PKP2 (%) 24 (71) 33 (59)
PLN (%) 4(12) 22 (39)
DSP (%) 4(12) 1(2)
Other (%) 4(12) 0
Clinical phenotype
Total TFC score 5 [4-6]* 2 [1-3]°¢ 0 <0.001
Repolarization criteria
Minor 10 (27) 0(0)
Major 8(22) 3(5
Depolarization criteria
Minor 23 (62) 9(14)
Major 0(0) 0(0)
Arrhythmia criteria
Minor 25 (68) 6 ()
Major 2(5) 0(0)
Structural criteria
Minor 6 (16) 1(3)
Major 25 (68) 0(0)

ARVC arrhythmogenic right ventricular cardiomyopathy, CMR cardiac magnetic resonance imaging, DSP
desmoplakin, PKP2 plakophilin-2, PLN phospholamban, TFC Task Force Criteria

#Significant difference between control and ARVC patients

®Significant difference between control and at-risk subjects

“Significant difference between ARVC patients and at-risk subjects

Table2 Segmentation
performance of deep learning

End-diastole

End-systole

segmentation model LV RV LV RV
Dice-coefficient
Automatic 0.96+0.01 0.93+0.03 0.93+0.04 0.89+0.04
Automatic + correction 0.97+0.01 0.95+0.02 0.95+0.02 0.92+0.03
Hausdorff distance
Automatic 6.42+2.26 10.42+2.99 6.58+2.73 10.60+3.50
Automatic + correction 5.07+2.27 9.19+3.19 5.52+2.47 9.09+3.05

Segmentation performance of deep learning segmentation model in terms of Dice-coefficient (higher is
better) and Hausdorff distance (in millimeter, lower is better). Automatic + correction refers to the scenario
in which the most basal slice of each automatic segmentation volume was replaced with the corresponding
manual reference. Depicted values specify mean + standard deviation

LV left ventricle, RV right ventricle
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CMR without segmentation Manual segmentation Automatic segmentation

" | “ " 1

Fig.1 example automatic segmentation vs. manual segmentation. tation (second column) and CMR with automatic segmentation (third
Qualitative segmentation results for left (yellow) and right (blue) ven- column). Rows show apical, mid-ventricular and most basal slices for
tricles at end-systole for a patient included in the test set. Columns LV (third row) and RV (fourth row), respectively

depict raw CMR (first column), CMR with manual reference segmen-
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Table 3 Distribution of segmentation errors across slices

Basal (%) Mid-ventric- Apical (%) Slices above/
ular (%) below base/apex
(%)
LV 18.3 70 7.5 4.2
RV 30.7 61 54 2.9

Percentage of segmentation errors per target structure (LV and RV)
located in basal, apical, all mid-ventricular or slices above base and
below apex

LV left ventricle, RV right ventricle

being misclassified as minor CMR TFC. This classification
discrepancy was based on a 5 ml/m? difference in RVEDVI
(102 ml/m? using manual measurements and 97 ml/m? using
automatic measurements), whereby the cutoff for major
CMR TFEC is set at> 100 ml/m? in women. The total TFC
in this patient went from 5 to 4, which did not change the
ARVC diagnosis. Sensitivity and specificity of minor and
major CMR TFC for diagnosis of ARVC were comparable
for manual (minor TFC 31% | 99% and major TFC 66% |
100%) and for automatic™®*¥ (minor TFC 35% | 100% and
major TFC 65% | 100%, p=0.32). CMR TFC classification
using the uncorrected automatic measurements are depicted
in Supplementary Fig. 5. This resulted in correct classifica-
tion of 149/157 (95%) subjects.

Discussion

In this study, we (i) evaluated our previously developed deep
learning segmentation approach for RV and LV ventricular
CMR assessment in patients suspected of ARVC and (ii)
evaluated the clinical implication of this approach for clas-
sification of the CMR TFC in subjects suspected of ARVC.
We demonstrated that CMR TFC classification using our
automatic segmentation with limited manual correction in
the most basal slice was comparable to classification using
manual segmentation performed during clinical workup.
Therefore, CMR TFC classification could potentially be
performed using automatically measured CMR parameters
with limited expert interaction.

Previous studies

Recently studies [15, 23, 24] have shown that deep
learning segmentation methods outperform traditional
approaches such as those exploiting level set, graph-
cuts, deformable models, cardiac atlases, and statisti-
cal models [25, 26]. Many current state-of-the-art deep

learning biventricular segmentation algorithms have been
evaluated on publicly available cine CMR data from the
MICCAI 2017 ACDC [12]. The dataset contains CMR
volumes from 150 patients distributed uniformly over
normal cardiac function and four disease groups: dilated
cardiomyopathy, hypertrophic cardiomyopathy, ischemic
cardiomyopathy, and RV abnormality (RVEDVI greater
than 110 mL/m? for men, and greater than 100 mL/m? for
women, and/or a RVEF below 40%). The ACDC challenge
showed that the largest segmentation inaccuracies were
located in the most basal and apical slices of the short-
axis [12], which is in line with our results presented in
Table 3. Comparable results were obtained in the recently
held Multi-Centre, Multi-Vendor and Multi-Disease Car-
diac Segmentation (M&Ms) challenge [13]. Importantly,
in contrast to the ACDC and M&Ms datasets, the clini-
cal annotation protocol used in our study adheres to the
guidelines of the SCMR [18]. Segmentation of the RV,
especially in basal slices, is more challenging when fol-
lowing SCMR guidelines compared with the protocol
used for the ACDC and M&Ms datasets. For example, in
the SCMR guideline the outflow tract is included as part
of the RV blood volume which challenges segmentation
of the basal slices due to the unclear ventricular-atrial
transition.

Researchers [27, 28] have also trained and evaluated deep
learning CMR segmentation algorithms on the large-scale
annotated dataset from the UK Biobank [29], reaching a
performance comparable with human experts. The dataset
contains short-axis cine CMR volumes of 5008 subjects.
As the majority of the subjects are healthy, the dataset is
considered relatively homogenous [29]. In the present work,
we trained and evaluated a previously developed deep learn-
ing segmentation algorithm [16] on a real-life dataset with
subjects suspected of ARVC who underwent CMR as part of
their clinical evaluation. Compared to the previously men-
tioned datasets [12, 13, 29], our dataset contains substan-
tially more subjects with RV complexity caused by ARVC
due to possible aneurysms and wall thinning and contained
CMR images acquired on different field strengths (1.5 and 3
Tesla), pulse sequences and imaging parameters. Hence, the
current work demonstrates that by only correcting a single
slice per volume, an existing state-of-the-art segmentation
method [16] is sufficiently reliable to be applied to a rel-
evant clinical problem. Furthermore, we are the first to com-
pare classification of the CMR TFC of subjects suspected
of ARVC using manually and automatically derived CMR
measurements and showing that the deep learning segmenta-
tion algorithm we use performs well in this diverse clinical
environment.
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«Fig. 2a Bland—Altman plots with the agreement between the manu-
ally and automatically selected ED and ES phases for RV and LV,
respectively, using automatic segmentations. b Bland—Altman
plots with the agreement between the manually and automatically
selected ED and ES phases for RV and LV, respectively, using auto-
matic~*** segmentations. Distance between automatically and manu-
ally selected phases is expressed as percentage of a complete cardiac
cycle. Evaluation was performed for RV (top row) and LV (bottom
row) separately. Higher opacity of colors correlates to higher density
of data points. Abbreviations: ED = end-diastolic; ES =end-systolic

Comparison to manual segmentation

We showed a good to excellent agreement of manual
and automated CMR measurements, which significantly
increased after simulated correction of the most basal slice
of the RV and LV (automatic (»=0.78-0.99, p <0.001) and
automatic % (r=0.88-0.99, p <0.001) measurements).
This was also reflected in the significant increase of the Dice
coefficients and Hausdorff distance after basal correction
(»<0.001). This is in agreement with a recent study, show-
ing an improvement of the agreement between automatic
and manual segmentation when manually adjusting the most
basal slice [30].

Large intra- and inter-observer variability is currently the
greatest source of error when manually segmenting CMRs
[8, 31] with more variability seen for the RV compared to
LV due to the RV geometrical complexity [18]. Previously
published inter-observer variability ranges from 2.6 -10.5%
[32, 33] for the LV and 6.2—-14.1% [33, 34] for the RV. The
largest variability between manual readers also appears in
the apical and basal slices [14] presumably due to low tis-
sue contrast ratios, hypertrabeculation and unclear ventric-
ular-atrial transition of especially the RV. The variability in
contouring of the basal slice is illustrated in Supplementary
Fig. 1. The corresponding manual segmentations convey the
difficulty to determine the anatomical boundaries of cardiac
structures in these slices. We presumed that such variability
also hampers performance of the automatic segmentation
method. This limitation can be alleviated by increasing the
size training set. To further improve performance of deep
learning segmentation approaches, especially of basal and
apical short-axis slices, future work could exploit ana-
tomical information extracted from long-axis views (2-, 3-,
4-chamber views) e.g. valve landmarks and apical point [35,
36]. Furthermore, deep learning-based CMR segmentation
methods would benefit from short-axis volumes with higher
through-plane resolution (e.g. using super-resolution) [10,
37, 38]. This would make application of 3D segmentation
approaches more feasible and hence, those models could
potentially harness any inter-slice dependencies. Finally,

using explicit topological prior information [39] for model
optimization is a promising training approach to prevent
automatic models from generating anatomically implausi-
ble segmentation.

Clinical implementation of deep learning methods

Depending on the stage of disease, ARVC patients show a
wide variety of ventricular changes that can be observed
on CMR: ventricular wall motion abnormalities (e.g. aneu-
rysms, akinesia, dyskinesia), wall thinning (due to fibro-
fatty replacement of the myocardium), increased trabecu-
lations, dilatation and decreased functional measurements,
that are especially present in the RV [2]. These challenges
make ARVC eminently suitable to study the performance
of machine learning algorithms on the RV. Previously pub-
lished algorithms showed better agreement for LV than RV
volumes [40]. Although limits of agreement were smaller for
the LV compared to the RV, we showed comparable segmen-
tation performance for RV and LV CMR measurements in
this heterogenous study population. Furthermore, segmen-
tation performance was comparable between structurally
normal hearts and hearts affected by ARVC.

Importantly, we showed that calculation of ARVC
TFC from automatically computed CMR parameters is
feasible when combining automatic segmentation with
correction of the most basal slice only. The diagnostic
performance of the CMR TFC calculated using automatic
segmentations (sensitivity 32-58%, specificity 99-100%)
were comparable to manual measurements in this and
previously published studies (sensitivity 13-69%, speci-
ficity 88-100%) [41, 42]. Although the correlation of
manual and automatic measurements is high, the differ-
ences in CMR TFC classification without basal correc-
tion demonstrates that a fully automatic segmentation
approach without human intervention is not yet reliable.
However, the conducted experiments reveal that current
state-of-the-art deep learning segmentation models can
substantially reduce manual effort to semi-automatically
segment cardiac structures in a heterogeneous dataset:
manual segmentation time would be approximately 2 min
instead of 25 min. Recently, Huellebrand et al.[43] pro-
posed a human-in-the-loop approach that combines deep
learning-based CMR segmentation and cardiac disease
classification. The authors show that manual correction
of automatic CMR segmentations by a clinical expert
results in increased classification performance compared
to a fully automatic segmentation approach. To identify
volumes that contain segmentation failures the user can
explore parallel coordinates plots that visualize CMR
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Table 4 Correlation between manual and automatic measurements

Mean absolute difference Correlation r (with manual)

(vs. manual)

Mean absolute difference (vs. Correlation r (with manual)

manual) Basal corrected

Right ventricle

EF (%) 1.4+4.7 0.82 (0.77-0.87)*
SV (ml) -2.0+10.8 0.89 (0.84-0.91)*
EDV (ml) -99+13.9 0.95 (0.94-0.97)*
ESV (ml) -79+11.0 0.95 (0.93-0.96)*
Left ventricle

EF (%) 24436 0.78 (0.71-0.84)*
SV (ml) 1.4+73 0.93 (0.91-0.95)*
EDV (ml) -4.6+6.1 0.99 (0.98-0.99)*
ESV (ml) -6.0+6.4 0.95 (0.93-0.96)*

0.9+3.9 0.88 (0.84-0.91)*
0.7+9.2 0.92 (0.90-0.94)*
-55+9.6 0.98 (0.97-0.98)*
-4.8+8.1 0.97 (0.96-0.98)*
1.4+2.1 0.92 (0.89-0.94)*
0.04+4.2 0.98 (0.97-0.98)*
-4.4+4.1 0.99 (0.99-1.00)*
-4.4+4.6 0.97 (0.96-0.98)*

EF ejection fraction, SV stroke volume, EDV end-diastolic volume, ESV end-systolic volume

“p-value of correlation <0.001

measurements along with cardiac shape and texture fea-
tures. A similar approach was previously presented in
Sander et al. [16] that combines automatic segmentation
and assessment of segmentation uncertainty in CMR to
automatically detect image regions containing local seg-
mentation failures. Subsequently, detected regions are
manually corrected by a clinical expert. Such a semi-
automatic approach could lead to a large reduction in
inter-observer variability. This is not only interesting for
specialized tertiary ARVC centers, but even more for
less experienced centers, since CMR misinterpretations
are an important cause of over-diagnosis in ARVC and
only 27% of people referred to a tertiary center with a
suspected ARVC diagnosis finally meet diagnostic crite-
ria for ARVC [44]. Our work shows that our previously
developed deep learning segmentation method is able
to fulfill a diagnostic purpose by simplifying accurate
calculation of functional and volumetric measurements
for the CMR TFC, showing opportunities to facilitate and
improve individual patients health.

Limitations

Although we automated the calculation of the dimensional
and functional parameters, wall motion abnormalities are
also part of the CMR TFC. This was evaluated visually by
experienced cardiovascular radiologists in this work, but
it is subject to inter-observer variation in less experienced
readers. Due to anatomical challenges of the RV a fully
automatic RV strain algorithm is not yet available. Future
work should focus on automatic computation of RV strain

@ Springer

and better automatic segmentation of the basal slice, which
could contribute to full automatization and standardization
of the CMR TFC.

Combining automatic segmentation with manual
correction of the most basal slice, 99% of the CMR
TFC were correctly classified, with misclassification of
only one patient from major to minor CMR TFC. More-
over, one could argue that this latter classification falls
within measurement error, and it did not change the
diagnosis (total TFC score went from 5 to 4). Although
the absolute differences in volumetric and functional
parameters were small, due to the absolute cut-off val-
ues used for the CMR TFC, differences in classification
can theoretically exist when the difference is as small
as 1 ml/m?, and clinical interpretation of automatic
measurements remains important. Notably, CMR is no
gold standard for the diagnosis of ARVC, but rather
part of the diagnostic process.

Conclusions

Automatic deep learning-based CMR segmentation has
the ability to provide a fast, standardized and reproducible
method to measure RV and LV volumetric parameters on
CMR. We demonstrate that the applied automated segmen-
tations have a good agreement with manual segmentations.
Furthermore, combining automatic segmentation with
manual correction of the segmentation in the most basal
slice results in accurate CMR TFC classification of subjects
suspected of ARVC.
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Fig.4 Classification of CMR criteria of TFC (no, minor and major)
for manual and automatic+basal correction CMR measurements.
The thick blue arrows indicate the matching subjects (between man-
ual and automatic + basal correction), the thinner blue arrows indicate
the number of patients that change CMR classification category when
using automated measurements. See Supplementary Fig. 5 for uncor-
rected automatic measurements. Abbreviations: CMR = cardiovascu-
lar magnetic resonance; N=number of subjects; TFC="Task Force
Criteria
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