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Abstract
Background  Arrhythmogenic right ventricular cardiomyopathy (ARVC) is diagnosed according to the Task Force Criteria 
(TFC) in which cardiovascular magnetic resonance (CMR) imaging plays an important role. Our study aims to apply an 
automatic deep learning-based segmentation for right and left ventricular CMR assessment and evaluate this approach for 
classification of the CMR TFC.
Methods  We included 227 subjects suspected of ARVC who underwent CMR. Subjects were classified into (1) ARVC 
patients fulfilling TFC; (2) at-risk family members; and (3) controls. To perform automatic segmentation, a Bayesian Dilated 
Residual Neural Network was trained and tested. Performance of automatic versus manual segmentation was assessed using 
Dice-coefficient and Hausdorff distance. Since automatic segmentation is most challenging in basal slices, manual correction 
of the automatic segmentation in the most basal slice was simulated (automatic−basal). CMR TFC calculated using manual 
and automatic−basal segmentation were compared using Cohen’s Kappa (κ).
Results  Automatic segmentation was trained on CMRs of 70 subjects (39.6 ± 18.1 years, 47% female) and tested on 157 
subjects (36.9 ± 17.6 years, 59% female). Dice-coefficient and Hausdorff distance showed good agreement between manual 
and automatic segmentations (≥ 0.89 and ≤ 10.6 mm, respectively) which further improved after simulated correction of the 
most basal slice (≥ 0.92 and ≤ 9.2 mm, p < 0.001). Pearson correlation of volumetric and functional CMR measurements 
was good to excellent (automatic (r = 0.78–0.99, p < 0.001) and automatic−basal (r = 0.88–0.99, p < 0.001) measurements). 
CMR TFC classification using automatic−basal segmentations was comparable to manual segmentations (κ 0.98 ± 0.02) with 
comparable diagnostic performance.
Conclusions  Combining automatic segmentation of CMRs with correction of the most basal slice results in accurate CMR 
TFC classification of subjects suspected of ARVC.
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Abbreviations
ARVC	� Arrhythmogenic right ventricular 

cardiomyopathy
CMR	� Cardiovascular magnetic resonance
DRN	� Dilated Residual Network
ED	� End-diastole
EDV	� End-diastolic volume
EDVI	� End-diastolic volume index
EF	� Ejection fraction
ES	� End-systolic
ESV	� End-systolic volume
ESVI	� End-systolic volume index
LV	� Left ventricle
RV	� Right ventricle
SV	� Stroke volume
TFC	� Task force criteria

Background

Arrhythmogenic right ventricular cardiomyopathy (ARVC) 
is an inherited heart disease that is characterized by ventricu-
lar dysfunction, predominantly affecting the right ventricle 
(RV), and potentially life-threatening ventricular arrhyth-
mias. Accurate recognition of this disease is vital since the 
implantation of an implantable cardioverter defibrillator can 
be life-saving. ARVC is diagnosed according to the revised 
2010 Task Force Criteria (TFC) [1]. Apart from electrical 
and family history criteria, an important role is given to the 
assessment of ventricular dysfunction and structural altera-
tions. Cardiac magnetic resonance (CMR) imaging is the 
modality of choice for the assessment of cardiac function 
and dimensions in ARVC [2] since the asymmetric geometry 
and the position of the RV in the chest hampers visualization 
of the entire RV by 2D echocardiography [3].

The CMR TFC are based on RV regional wall motion 
abnormalities combined with cut-off values for RV ejec-
tion fraction (EF) or sex-specific cut-off values for RV 
indexed end-diastolic volume (EDVI)[1]. CMR can deliver 
one minor or two major points of the necessary four TFC 
points for an ARVC diagnosis. Therefore, accurate RV 
assessment is essential. Segmenting CMRs to measure 
functional and structural parameters is a laborious task, 
taking about 25 min to segment both ventricles in end-
diastole (ED) and end-systole (ES) [4, 5]. Notably, RV 
segmentation takes two-thirds of this segmentation time 
and is prone to intra- and inter-observer variability [6]. 
RV segmentation difficulties can arise from the trabec-
ulated and complex RV geometry [7, 8]. In ARVC, RV 
and left ventricular (LV) anatomy can be further compli-
cated by pathological wall thinning and aneurysms due 
to fibrofatty replacement of the myocardial wall [2]. As a 
consequence, CMR misinterpretations are a key cause of 

over-diagnosis in ARVC [2]. The use of automatic meth-
ods for the segmentation of the ventricles may overcome 
these challenges. Over the last few years many state-of-
the-art deep learning segmentation approaches for short-
axis CMR have been developed [4, 9–11]. For automatic 
LV segmentation such methods can achieve performance 
level of human experts [12, 13]. However, previous studies 
also demonstrated that in manual and automatic segmen-
tation of short-axis CMR, the largest disagreements and 
errors occur in the most basal and apical slices [8, 12–15]. 
Moreover, previous methods have often been evaluated on 
CMR datasets with limited pathology especially related 
to the RV. In contrast, this study included a large hospital 
population being evaluated for ARVC, including subjects 
with structurally normal hearts and those with complex 
structural abnormalities. In this work we apply a previ-
ously validated state-of-the-art segmentation approach 
[16] on a large heterogeneous hospital population of 
patients suspected of ARVC. The purpose of this study 
was to (i) evaluate our previously developed deep learning 
segmentation approach for RV and LV CMR assessment in 
patients suspected of ARVC and (ii) evaluate the clinical 
implication of this approach for classification of the CMR 
TFC in subjects suspected of ARVC.

Methods

Study population

We included a consecutive cohort of subjects suspected of 
ARVC who underwent CMR as part of their clinical evalu-
ation between 2014 and 2019 at the University Medical 
Center (UMC) Utrecht. This yielded 241 subjects, of whom 
14 were excluded because of an equivocal diagnosis (ARVC 
neither confirmed nor rejected) (n = 12), prior chemotherapy 
(n = 1) and imaging artefacts due to irregular heart rhythm 
(n = 1). This led to a study population of 227 subjects 
who were classified into three groups: (1) ARVC patients 
diagnosed according to the 2010 TFC (n = 53); (2) fam-
ily members at-risk of developing ARVC (n = 96); and (3) 
control subjects initially suspected of ARVC but in whom 
ARVC was excluded after full clinical assessment (n = 78). 
Diagnosis in the control patients included RV outflow tract 
tachycardia (n = 45), premature ventricular contractions/non-
sustained ventricular tachycardia (n = 19), mutation-negative 
family members of mutation-positive ARVC patients (n = 3), 
healthy athletes (n = 3), syncope without a cardiac cause 
(n = 3) repolarization abnormalities with a structurally nor-
mal heart (n = 3) and pectus excavatum (n = 2). This study 
was reviewed by the UMC Utrecht Institutional Review 
Board and was granted a waiver of informed consent.
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ARVC diagnosis

ARVC diagnosis was based on the revised 2010 diagnos-
tic TFC [1]. In short, these consensus-based criteria rely 
on major and minor criteria for six different categories: (1) 
global and regional dysfunction and structural alterations; 
(2) tissue characterization; (3) repolarization abnormalities; 
(4) depolarization/conduction abnormalities; (5) arrhyth-
mias; and (6) family history/genetics. In each of these six 
categories subjects can score a minor criterium (one point), 
a major criterium (two points) or no criteria (0 points). A 
definite ARVC diagnosis was made if a subject has at least 
four points. The first category can be assessed by CMR, with 
minor criteria for regional RV wall motion abnormalities 
plus RVEF > 40 to ≤ 45% or RVEDVI ≥ 100 to < 110 ml/m2 
(males) or ≥ 90 to < 100 mL/m2 (females) and major criteria 
for RV regional wall motion abnormalities plus RVEF ≤ 40% 
or RVEDVI ≥ 110 ml/m2 (males) or ≥ 100 ml/m2 (females) 
[1].

CMR dataset

All subjects underwent CMR using either 1.5 or 3 Tesla 
Ingenia or Achieva Philips scanners (Best, the Netherlands). 
The CMR dataset consisted of conventional steady-state 
free precession sequence short-axis and longitudinal-axis 
(4-chamber, 2-chamber and 3-chamber of both ventricles) 
cine CMR images acquired during breath holds. For this 
work, we only included the short-axis CMR volumes con-
sisting of 12–18 contiguous slices covering both ventricles. 
The short-axis imaging parameters were as follows: each 
slice containing 25 to 40 phases covering one cardiac cycle 
with repetition time 2.6–3.4 ms and echo time 1.3–1.7 ms, 
flip angle 45–60 degrees. The CMR images have an in-plane 
resolution ranging from 1.11 to 1.45 with a slice thickness 
varying from 7 to 10 mm. Furthermore, reconstruction 
matrix of images ranges from 240 × 240 to 288 × 288 vox-
els. Expert radiology technicians made manual reference 
segmentations of the RV and LV endocardium for all CMR 
slices at ED and ES time frames. Both time points were 
manually chosen by the same experts. The CMR segmenta-
tion protocol was published previously [17] and adheres to 
the guidelines of the Society of Cardiovascular Magnetic 
Resonance (SCMR) [18]. Furthermore, the presence of RV 
and/or LV wall motion abnormalities was visually evaluated 
by an experienced cardiovascular radiologist on all available 
cine images and used for the calculation of the CMR TFC.

Automatic segmentation of CMR

Prior to segmentation, voxel intensities in CMR scans were 
normalized by rescaling the values between [0,1] based on 
their 1st and 99th percentiles per scan. Furthermore, voxels 

intensities below or above the 1st and 99th percentiles were 
clamped to 0 and 1, respectively.

To perform automatic segmentation of RV and LV in the 
2D short-axis CMR images, we trained a Bayesian Dilated 
Residual Neural Network (DRN) [19] that was previously 
developed and evaluated by Sander et al. [16]. The Bayes-
ian DRN was based on the original DRN from Yu et al. [19] 
for image segmentation. To convert the original DRN [19] 
into a Bayesian DRN, we implemented Monte Carlo drop-
out (MC dropout) introduced by Gal & Ghahramani [20]. 
Using a Bayesian, i.e. MC dropout approach is advantageous 
because multiple predictions for the same voxel can be aver-
aged to obtain an improved final prediction per voxel [16]. 
Furthermore, architecture and parameters of the Bayesian 
DRN were identical to the model described in [16]. The 
network used a 2D CMR image as input and had three output 
channels, each providing probability for the LV, RV or back-
ground. Softmax probabilities were calculated over the three 
tissue classes. To train the model a combination of soft-Dice 
[21] and cross-entropy was used as loss function. For com-
pleteness, we provide the equations for both loss functions:

where N denotes the number of voxels in an image, Rc is the 
binary reference image for class c and Ac is the probability 
map for class c.

where p denotes the probability for a specific voxel xi 
with corresponding reference label yi for class c ; and tic = 1 
if yi = c ; and 0 otherwise. Hyper-parameters of the network 
were determined in our previous work [16] using CMR 
images from the MICCAI 2017 Automated Cardiac Diag-
nosis Challenge (ACDC) [12]. Therefore, no validation set 
was required in the current work.

To train the model, patches of 160 × 160 voxels were 
randomly chosen from the training set. Training data were 
augmented by 90 degree rotations, elastic deformations 
and gamma transformations of the images. The model was 
trained for 160,000 iterations using mini-batch stochastic 
gradient descent with batch-size 16 and Adam as optimizer 
[22]. Learning rate was set to 0.001 and decayed with a 
factor of 0.1 after every 40,000 steps. To increase gener-
alization performance weight decay was used and set to 
0.0005. Furthermore, dropout percentage was set to 0.1. 
Enabling MC dropout during testing, tissue class per voxel 
was determined using the mean softmax probabilities over 
15 samples. Voxel wise segmentation may result in isolated 
(small clusters of) voxels. To address this, only the largest 

soft-Dicec =

∑N

i=1
Rc(i)Ac(i)

∑N

i=1
Rc(i) +

∑N

i=1
Ac(i)

,

Cross-Entropyc = −

N∑

i=1

ticlog p
(
yi = c|xi

)
,
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3D connected component for each class was retained in the 
automatic segmentations.

Simulation of the correction of automatic 
segmentation

Previous research demonstrated that most segmentation 
inaccuracies occur in the most basal slice on the CMR 
[8, 12–15]. To evaluate whether these inaccuracies of our 
method impact TFC classification, correction of the auto-
matic segmentation in the most basal slice of each CMR 
volume was simulated. This was achieved by replacing the 
automatic segmentation of the most basal slice with the cor-
responding manual reference defined by specially trained 
radiology technicians as a part of a regular clinical workup. 
We refer to this scenario as automatic−basal hereafter.

Automatic ED/ES phase selection

Accurate identification of ED and ES phase in the cardiac 
cycle is a prerequisite to automatically compute RVEDV 
and RVESV. To show the potential of the method to auto-
matically determine the ED and ES phase, we automatically 
segmented all CMR volumes of the patients in the test set, 
and derived the RV and LV volumes for all time points of 
the cardiac cycle. For each patient ED was identified as the 
phase in which the fully automatically segmented volume 
was maximal and ES as the phase in which the volume was 
minimal. Automatically identified phases were compared 
with the manually selected phases using Bland–Altman 
analysis. In these plots (e.g. Figure 2a), the distance between 
automatically and manually selected phases is expressed as 
percentage of a complete cardiac cycle. Evaluation was per-
formed for RV and LV separately, and for automatic and 
automatic−basal segmentations separately.

Evaluation of automatic segmentation

To evaluate performance of the automatic segmentation 
method 3D Dice-coefficient and 3D Hausdorff distance 
between manual and automatic segmentations were com-
puted. For this, the 2D automatic segmentation masks were 
stacked into a 3D volume per patient and cardiac phase. 
The Dice-coefficient quantifies overlap between manual 
and automatic segmentation and its value ranges between 0 
and 1. A higher Dice-coefficient indicates better agreement 
between manual and automatic segmentations. The Haus-
dorff distance evaluates segmentation along the boundary 
of the target structure by measuring the maximum distance 
between manual and automatic segmentation. Qualitative 
performance of the automatic segmentation method was 
visually assessed. To investigate whether segmentation 
errors accumulate at specific slice locations in the CMR 

volume the distribution of segmentation errors over slice 
location was computed. For this, four slice locations in a 
volume were distinguished: (i) most apical slice; (ii) most 
basal slice; (iii) mid-ventricular slices and (vi) slices located 
below the apex or above the base of the heart. Furthermore, 
to evaluate the clinical implications of our automatic CMR 
segmentation approach for the classification of the CMR 
TFC in subjects suspected of ARVC, the following CMR 
measurements were computed for manual, automatic and 
automatic−basal segmentations: LV end-diastolic volume 
(EDV); LV end-systolic volume (ESV); LV stroke volume 
(SV); LVEF; RVEDV; RVESV; RVSV and RVEF.

Statistical analysis

Statistical analysis was performed using RStudio Version 
1.3.1093 (Boston, MA, USA) and IBM SPSS Statistics 
(version 25, USA). Continuous values were presented as 
mean ± standard deviation or median [interquartile range]. 
Categorical data were displayed as absolute frequency (n) 
and percentages (%). For continuous comparisons of two 
groups, two-tailed Student’s t test was used. For continuous 
comparisons of three or more groups, one-way ANOVA was 
used. Categorical data were compared using the chi-squared 
test. A p value of < 0.05 was considered significant. Compar-
ison of automatic and manual absolute CMR measurements 
were assessed using Bland–Altman analysis and the Pear-
son correlation coefficient (r). CMR TFC was first classified 
using visual assessment of wall motion abnormalities and 
manually derived RVEDVI and RVEF, and next using visual 
assessment of wall motion abnormalities and automatically 
derived RVEDVI and RVEF.

CMR TFC classification agreement between manually 
vs. automatically derived CMR measurements was assessed 
using Cohen’s kappa (κ). Furthermore, sensitivity and speci-
ficity of CMR TFC by manual and automatic approach was 
determined and compared using the McNemar test.

Results

Study population

We included 70 subjects in the training set (mean age 
39.6 ± 18.1 years, 47% female) and 157 subjects in the test 
set (mean age 36.9 ± 17.6 years, 59% female). Patient char-
acteristics are shown in Table 1. The test set included 37 
ARVC patients, 66 at-risk family members and 54 controls 
subjects. The distribution of subjects across the three patient 
categories was the same for training and test sets (34% con-
trols, 42% at risk, 24% ARVC patients). No statistically 
significant difference in sex existed between the three sub-
groups (p = 0.37), but at-risk family members were younger 
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than ARVC patients (p = 0.021) and controls (p < 0.001). 
ARVC patients had a median of 5 [4–6] diagnostic TFC 
points, while at-risk family members had a median of 2 
[1–3] points (p < 0.001). In total, 84% of ARVC patients 
and 3% of at-risk family members had minor or major CMR 
TFC (RV wall motion abnormalities combined with abnor-
mal RVEF or RVEDVI cut-off values). Among 103 ARVC 
patients and at-risk family members, 90 (87%) carried a 
pathogenic variant, mostly in plakophilin-2 (n = 57, 63%) 
followed by phospholamban (n = 26, 29%) and desmoplakin 
(n = 5, 6%).

Assessment of segmentation performance

Table 2 lists quantitative results of the automatic segmenta-
tion. The automatic method achieved mean Dice-coefficient 
for ED and ES 0.96 ± 0.01 and 0.93 ± 0.03, respectively, for 
the LV and 0.93 ± 0.04 and 0.89 ± 0.04, respectively, for the 
RV. Visual assessment of automatic segmentation results 
depicted in Fig. 1 reveal that performance was higher for 
mid-ventricular slices (second and third rows Fig. 1) com-
pared with apical and basal slices (first and fourth row 
Fig. 1), while an under-segmentation of trabeculated areas 
occurred in the apical slices (first row Fig. 1). Furthermore, 
as depicted in Supplementary Fig. 1, visual assessment of 
the manual reference segmentation revealed a high variabil-
ity of the RV shape in the basal slices in both ED and ES 
time points. Furthermore, as listed in Table 3, comparison 
of automatic with manual reference segmentations disclosed 
that on average 24.5% of the segmentation errors, i.e. mis-
classified voxels were located in the most basal slice (30.7 
and 18.3% for RV and LV, respectively). In contrast, on aver-
age only 6.5% of the errors were located in an apical slice 
(5.4 and 7.6% for RV and LV, respectively).

Table 2 lists segmentation results after the simulated cor-
rection of the automatic RV and LV segmentation in the 
most basal slice. The results show an increased segmentation 
performance: mean Dice-coefficient for the ED and ES are 
0.97 ± 0.01 and 0.95 ± 0.03 (vs. 0.96 ± 0.01 and 0.93 ± 0.03 
uncorrected), respectively for the LV and 0.95 ± 0.02 and 
0.92 ± 0.03 (vs. 0.93 ± 0.04 and 0.89 ± 0.04 uncorrected), 
respectively for the RV (p < 0.001 [one side Wilcoxon 
signed-rank test]).

Automatic ED and ES phase selection

The Bland–Altman plots shown in Fig. 2a demonstrate 
the comparison between automatically identified car-
diac phases using the automatic segmentations with the 
manually selected ED and ES phases. The bias [limits of 
agreement] were – 0.87 [ – 6.26, 4.52]% for the ED-LV 
phase and – 1.64 [ – 10.28, 6.99]% for the ES-LV phase, 

respectively, and – 0.96 [ – 11.69, 9.76]% for the ED-RV 
phase and –0.05 [-7.62, 7.53]% for the ES-RV phase, respec-
tively. Figure 2b depicts the same comparison using the 
automatic−basal segmentations to automatically determine 
the ED and ES phases. For this scenario the bias [limits of 
agreement] were – 0.72 [ – 5.29, 3.85]% for the ED-LV phase 
and – 3.03 [ – 10.08, 4.03]% for the ES-LV phase, respec-
tively, and – 0.34 [ – 9.58, 8.89]% for the ED-RV and 0.48 
[ – 7.20, 8.17]% for the ES-RV.

Assessment of absolute CMR measurements

Automatically measured volumes (RV and LV EDV and 
ESV) are slightly underestimated compared to manually 
measured volumes (Supplementary Figs. 2 and 3). However, 
as shown in Table 4, the correlations of both RV and LV 
volumes were excellent (0.95–0.99, p < 0.001). For RV and 
LV EF and SV, automatic measurements seem to be slightly 
overestimated compared to manual measurements; nonethe-
less, correlations were excellent 0.82–0.89 for RV and good 
to excellent (0.78–0.93) for LV. After simulated manual 
correction of the basal slice, agreement between manual 
and automated measurements increased, as depicted in the 
Bland–Altman plots (Supplementary Figs. 2 and 3). This 
was also reflected in the Pearson correlation coefficient for 
both the volumetric (EDV, ESV) (r = 0.97–0.99, p < 0.001) 
as well as the functional (SV, EF) (r = 0.88–0.98, p < 0.001) 
CMR measurements.

Classification of ARVC TFC

Since agreement between manual and automatic measure-
ments was higher in the automatic−basal, we used these results 
for the further analysis. Supplementary Table 1 depicts the 
mean and standard deviation of the CMR measurements 
stratified per subgroup. The trends between the three sub-
groups (ARVC, at-risk family members and controls) were 
comparable between manual and automated measurements: 
ARVC patients had significantly reduced RVEF (p < 0.001) 
and LVEF (p = 0.002), as well as increased RVEDVI 
(p < 0.001), RVESVI (p < 0.001) and LVESVI (p < 0.013) 
compared to at-risk family members and controls. These 
trends between the subgroups were also observed in the box-
plots of Fig. 3.

We next compared CMR TFC classification using manual 
vs. automatic−basal CMR measurements. All but one subject 
(156/157, 99%) were correctly classified, showing an agree-
ment of κ 0.98 ± 0.02. As depicted in Fig. 4, subjects who 
classified as no (n = 130) or minor (n = 6) CMR TFC were 
correctly classified using the CMR measurements computed 
using the automatic segmentations obtained from the deep 
learning segmentation model. For major TFC, all but one 
subject were correctly classified; with one female subject 
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Table 1   Baseline characteristics

ARVC arrhythmogenic right ventricular cardiomyopathy, CMR cardiac magnetic resonance imaging, DSP 
desmoplakin, PKP2 plakophilin-2, PLN phospholamban, TFC Task Force Criteria
a Significant difference between control and ARVC patients
b Significant difference between control and at-risk subjects
c Significant difference between ARVC patients and at-risk subjects

ARVC patients 
(n = 37)

At-risk ARVC 
group (n = 66)

Control group (n = 54) p value

Demographics
 Age at CMR (years) 39.1 ± 19.0 30.7 ± 16.2b,c 42.9 ± 15.9  < 0.001
 Female (%) 20 (54) 43 (65) 29 (54) 0.37
 Proband (%) 10 (27) 0 (0)c na  < 0.001

Genetic status
 Pathogenic variant 36 (97) 56 (85) na 0.06
 PKP2 (%) 24 (71) 33 (59)
 PLN (%) 4 (12) 22 (39)
 DSP (%) 4 (12) 1 (2)
 Other (%) 4 (12) 0

Clinical phenotype
 Total TFC score 5 [4–6]a 2 [1–3]b,c 0 < 0.001
 Repolarization criteria
  Minor 10 (27) 0 (0)
  Major 8 (22) 3 (5)

 Depolarization criteria
  Minor 23 (62) 9 (14)
  Major 0 (0) 0 (0)

 Arrhythmia criteria
  Minor 25 (68) 6 (9)
  Major 2 (5) 0 (0)

 Structural criteria
  Minor 6 (16) 1 (3)
  Major 25 (68) 0 (0)

Table 2   Segmentation 
performance of deep learning 
segmentation model

Segmentation performance of deep learning segmentation model in terms of Dice-coefficient (higher is 
better) and Hausdorff distance (in millimeter, lower is better). Automatic + correction refers to the scenario 
in which the most basal slice of each automatic segmentation volume was replaced with the corresponding 
manual reference. Depicted values specify mean ± standard deviation
LV left ventricle, RV right ventricle

End-diastole End-systole

LV RV LV RV

Dice-coefficient
 Automatic 0.96 ± 0.01 0.93 ± 0.03 0.93 ± 0.04 0.89 ± 0.04
 Automatic + correction 0.97 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 0.92 ± 0.03

Hausdorff distance
 Automatic 6.42 ± 2.26 10.42 ± 2.99 6.58 ± 2.73 10.60 ± 3.50
 Automatic + correction 5.07 ± 2.27 9.19 ± 3.19 5.52 ± 2.47 9.09 ± 3.05
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Fig. 1   example automatic segmentation vs. manual segmentation. 
Qualitative segmentation results for left (yellow) and right (blue) ven-
tricles at end-systole for a patient included in the test set. Columns 
depict raw CMR (first column), CMR with manual reference segmen-

tation (second column) and CMR with automatic segmentation (third 
column). Rows show apical, mid-ventricular and most basal slices for 
LV (third row) and RV (fourth row), respectively
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being misclassified as minor CMR TFC. This classification 
discrepancy was based on a 5 ml/m2 difference in RVEDVI 
(102 ml/m2 using manual measurements and 97 ml/m2 using 
automatic measurements), whereby the cutoff for major 
CMR TFC is set at > 100 ml/m2 in women. The total TFC 
in this patient went from 5 to 4, which did not change the 
ARVC diagnosis. Sensitivity and specificity of minor and 
major CMR TFC for diagnosis of ARVC were comparable 
for manual (minor TFC 31% | 99% and major TFC 66% | 
100%) and for automatic−basal (minor TFC 35% | 100% and 
major TFC 65% | 100%, p = 0.32). CMR TFC classification 
using the uncorrected automatic measurements are depicted 
in Supplementary Fig. 5. This resulted in correct classifica-
tion of 149/157 (95%) subjects.

Discussion

In this study, we (i) evaluated our previously developed deep 
learning segmentation approach for RV and LV ventricular 
CMR assessment in patients suspected of ARVC and (ii) 
evaluated the clinical implication of this approach for clas-
sification of the CMR TFC in subjects suspected of ARVC. 
We demonstrated that CMR TFC classification using our 
automatic segmentation with limited manual correction in 
the most basal slice was comparable to classification using 
manual segmentation performed during clinical workup. 
Therefore, CMR TFC classification could potentially be 
performed using automatically measured CMR parameters 
with limited expert interaction.

Previous studies

Recently studies [15, 23, 24] have shown that deep 
learning segmentation methods outperform traditional 
approaches such as those exploiting level set, graph-
cuts, deformable models, cardiac atlases, and statisti-
cal models [25, 26]. Many current state-of-the-art deep 

learning biventricular segmentation algorithms have been 
evaluated on publicly available cine CMR data from the 
MICCAI 2017 ACDC [12]. The dataset contains CMR 
volumes from 150 patients distributed uniformly over 
normal cardiac function and four disease groups: dilated 
cardiomyopathy, hypertrophic cardiomyopathy, ischemic 
cardiomyopathy, and RV abnormality (RVEDVI greater 
than 110 mL/m2 for men, and greater than 100 mL/m2 for 
women, and/or a RVEF below 40%). The ACDC challenge 
showed that the largest segmentation inaccuracies were 
located in the most basal and apical slices of the short-
axis [12], which is in line with our results presented in 
Table 3. Comparable results were obtained in the recently 
held Multi-Centre, Multi-Vendor and Multi-Disease Car-
diac Segmentation (M&Ms) challenge [13]. Importantly, 
in contrast to the ACDC and M&Ms datasets, the clini-
cal annotation protocol used in our study adheres to the 
guidelines of the SCMR [18]. Segmentation of the RV, 
especially in basal slices, is more challenging when fol-
lowing SCMR guidelines compared with the protocol 
used for the ACDC and M&Ms datasets. For example, in 
the SCMR guideline the outflow tract is included as part 
of the RV blood volume which challenges segmentation 
of the basal slices due to the unclear ventricular-atrial 
transition.

Researchers [27, 28] have also trained and evaluated deep 
learning CMR segmentation algorithms on the large-scale 
annotated dataset from the UK Biobank [29], reaching a 
performance comparable with human experts. The dataset 
contains short-axis cine CMR volumes of 5008 subjects. 
As the majority of the subjects are healthy, the dataset is 
considered relatively homogenous [29]. In the present work, 
we trained and evaluated a previously developed deep learn-
ing segmentation algorithm [16] on a real-life dataset with 
subjects suspected of ARVC who underwent CMR as part of 
their clinical evaluation. Compared to the previously men-
tioned datasets [12, 13, 29], our dataset contains substan-
tially more subjects with RV complexity caused by ARVC 
due to possible aneurysms and wall thinning and contained 
CMR images acquired on different field strengths (1.5 and 3 
Tesla), pulse sequences and imaging parameters. Hence, the 
current work demonstrates that by only correcting a single 
slice per volume, an existing state-of-the-art segmentation 
method [16] is sufficiently reliable to be applied to a rel-
evant clinical problem. Furthermore, we are the first to com-
pare classification of the CMR TFC of subjects suspected 
of ARVC using manually and automatically derived CMR 
measurements and showing that the deep learning segmenta-
tion algorithm we use performs well in this diverse clinical 
environment.

Table 3   Distribution of segmentation errors across slices

Percentage of segmentation errors per target structure (LV and RV) 
located in basal, apical, all mid-ventricular or slices above base and 
below apex
LV left ventricle, RV right ventricle

Basal (%) Mid-ventric-
ular (%)

Apical (%) Slices above/
below base/apex 
(%)

LV 18.3 70 7.5 4.2
RV 30.7 61 5.4 2.9
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Comparison to manual segmentation

We showed a good to excellent agreement of manual 
and automated CMR measurements, which significantly 
increased after simulated correction of the most basal slice 
of the RV and LV (automatic (r = 0.78–0.99, p < 0.001) and 
automatic−basal (r = 0.88–0.99, p < 0.001) measurements). 
This was also reflected in the significant increase of the Dice 
coefficients and Hausdorff distance after basal correction 
(p < 0.001). This is in agreement with a recent study, show-
ing an improvement of the agreement between automatic 
and manual segmentation when manually adjusting the most 
basal slice [30].

Large intra- and inter-observer variability is currently the 
greatest source of error when manually segmenting CMRs 
[8, 31] with more variability seen for the RV compared to 
LV due to the RV geometrical complexity [18]. Previously 
published inter-observer variability ranges from 2.6 – 10.5% 
[32, 33] for the LV and 6.2–14.1% [33, 34] for the RV. The 
largest variability between manual readers also appears in 
the apical and basal slices [14] presumably due to low tis-
sue contrast ratios, hypertrabeculation and unclear ventric-
ular-atrial transition of especially the RV. The variability in 
contouring of the basal slice is illustrated in Supplementary 
Fig. 1. The corresponding manual segmentations convey the 
difficulty to determine the anatomical boundaries of cardiac 
structures in these slices. We presumed that such variability 
also hampers performance of the automatic segmentation 
method. This limitation can be alleviated by increasing the 
size training set. To further improve performance of deep 
learning segmentation approaches, especially of basal and 
apical short-axis slices, future work could exploit ana-
tomical information extracted from long-axis views (2-, 3-, 
4-chamber views) e.g. valve landmarks and apical point [35, 
36]. Furthermore, deep learning-based CMR segmentation 
methods would benefit from short-axis volumes with higher 
through-plane resolution (e.g. using super-resolution) [10, 
37, 38]. This would make application of 3D segmentation 
approaches more feasible and hence, those models could 
potentially harness any inter-slice dependencies. Finally, 

using explicit topological prior information [39] for model 
optimization is a promising training approach to prevent 
automatic models from generating anatomically implausi-
ble segmentation.

Clinical implementation of deep learning methods

Depending on the stage of disease, ARVC patients show a 
wide variety of ventricular changes that can be observed 
on CMR: ventricular wall motion abnormalities (e.g. aneu-
rysms, akinesia, dyskinesia), wall thinning (due to fibro-
fatty replacement of the myocardium), increased trabecu-
lations, dilatation and decreased functional measurements, 
that are especially present in the RV [2]. These challenges 
make ARVC eminently suitable to study the performance 
of machine learning algorithms on the RV. Previously pub-
lished algorithms showed better agreement for LV than RV 
volumes [40]. Although limits of agreement were smaller for 
the LV compared to the RV, we showed comparable segmen-
tation performance for RV and LV CMR measurements in 
this heterogenous study population. Furthermore, segmen-
tation performance was comparable between structurally 
normal hearts and hearts affected by ARVC.

Importantly, we showed that calculation of ARVC 
TFC from automatically computed CMR parameters is 
feasible when combining automatic segmentation with 
correction of the most basal slice only. The diagnostic 
performance of the CMR TFC calculated using automatic 
segmentations (sensitivity 32–58%, specificity 99–100%) 
were comparable to manual measurements in this and 
previously published studies (sensitivity 13–69%, speci-
ficity 88–100%) [41, 42]. Although the correlation of 
manual and automatic measurements is high, the differ-
ences in CMR TFC classification without basal correc-
tion demonstrates that a fully automatic segmentation 
approach without human intervention is not yet reliable. 
However, the conducted experiments reveal that current 
state-of-the-art deep learning segmentation models can 
substantially reduce manual effort to semi-automatically 
segment cardiac structures in a heterogeneous dataset: 
manual segmentation time would be approximately 2 min 
instead of 25 min. Recently, Huellebrand et al.[43] pro-
posed a human-in-the-loop approach that combines deep 
learning-based CMR segmentation and cardiac disease 
classification. The authors show that manual correction 
of automatic CMR segmentations by a clinical expert 
results in increased classification performance compared 
to a fully automatic segmentation approach. To identify 
volumes that contain segmentation failures the user can 
explore parallel coordinates plots that visualize CMR 

Fig. 2a   Bland–Altman plots with the agreement between the manu-
ally and automatically selected ED and ES phases for RV and LV, 
respectively, using automatic segmentations. b Bland–Altman 
plots with the agreement between the manually and automatically 
selected ED and ES phases for RV and LV, respectively, using auto-
matic−basal segmentations. Distance between automatically and manu-
ally selected phases is expressed as percentage of a complete cardiac 
cycle. Evaluation was performed for RV (top row) and LV (bottom 
row) separately. Higher opacity of colors correlates to higher density 
of data points. Abbreviations: ED = end-diastolic; ES = end-systolic 

◂
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measurements along with cardiac shape and texture fea-
tures. A similar approach was previously presented in 
Sander et al. [16] that combines automatic segmentation 
and assessment of segmentation uncertainty in CMR to 
automatically detect image regions containing local seg-
mentation failures. Subsequently, detected regions are 
manually corrected by a clinical expert. Such a semi-
automatic approach could lead to a large reduction in 
inter-observer variability. This is not only interesting for 
specialized tertiary ARVC centers, but even more for 
less experienced centers, since CMR misinterpretations 
are an important cause of over-diagnosis in ARVC and 
only 27% of people referred to a tertiary center with a 
suspected ARVC diagnosis finally meet diagnostic crite-
ria for ARVC [44]. Our work shows that our previously 
developed deep learning segmentation method is able 
to fulfill a diagnostic purpose by simplifying accurate 
calculation of functional and volumetric measurements 
for the CMR TFC, showing opportunities to facilitate and 
improve individual patients health.

Limitations

Although we automated the calculation of the dimensional 
and functional parameters, wall motion abnormalities are 
also part of the CMR TFC. This was evaluated visually by 
experienced cardiovascular radiologists in this work, but 
it is subject to inter-observer variation in less experienced 
readers. Due to anatomical challenges of the RV a fully 
automatic RV strain algorithm is not yet available. Future 
work should focus on automatic computation of RV strain 

and better automatic segmentation of the basal slice, which 
could contribute to full automatization and standardization 
of the CMR TFC.

Combining automatic segmentation with manual 
correction of the most basal slice, 99% of the CMR 
TFC were correctly classified, with misclassification of 
only one patient from major to minor CMR TFC. More-
over, one could argue that this latter classification falls 
within measurement error, and it did not change the 
diagnosis (total TFC score went from 5 to 4). Although 
the absolute differences in volumetric and functional 
parameters were small, due to the absolute cut-off val-
ues used for the CMR TFC, differences in classification 
can theoretically exist when the difference is as small 
as 1 ml/m2, and clinical interpretation of automatic 
measurements remains important. Notably, CMR is no 
gold standard for the diagnosis of ARVC, but rather 
part of the diagnostic process.

Conclusions

Automatic deep learning-based CMR segmentation has 
the ability to provide a fast, standardized and reproducible 
method to measure RV and LV volumetric parameters on 
CMR. We demonstrate that the applied automated segmen-
tations have a good agreement with manual segmentations. 
Furthermore, combining automatic segmentation with 
manual correction of the segmentation in the most basal 
slice results in accurate CMR TFC classification of subjects 
suspected of ARVC.

Table 4   Correlation between manual and automatic measurements

EF ejection fraction, SV stroke volume, EDV end-diastolic volume, ESV end-systolic volume
* p-value of correlation < 0.001

Mean absolute difference 
(vs. manual)

Correlation r (with manual) Mean absolute difference (vs. 
manual) Basal corrected

Correlation r (with manual)

Right ventricle
EF (%) 1.4 ± 4.7 0.82 (0.77–0.87)* 0.9 ± 3.9 0.88 (0.84–0.91)*
SV (ml)  – 2.0 ± 10.8 0.89 (0.84–0.91)* 0.7 ± 9.2 0.92 (0.90–0.94)*
EDV (ml)  – 9.9 ± 13.9 0.95 (0.94–0.97)*  – 5.5 ± 9.6 0.98 (0.97–0.98)*
ESV (ml)  – 7.9 ± 11.0 0.95 (0.93–0.96)*  – 4.8 ± 8.1 0.97 (0.96–0.98)*
Left ventricle
EF (%) 2.4 ± 3.6 0.78 (0.71–0.84)* 1.4 ± 2.1 0.92 (0.89–0.94)*
SV (ml) 1.4 ± 7.3 0.93 (0.91–0.95)* 0.04 ± 4.2 0.98 (0.97–0.98)*
EDV (ml)  – 4.6 ± 6.1 0.99 (0.98–0.99)*  – 4.4 ± 4.1 0.99 (0.99–1.00)*
ESV (ml)  – 6.0 ± 6.4 0.95 (0.93–0.96)*  – 4.4 ± 4.6 0.97 (0.96–0.98)*
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Fig. 3   Boxplots depicting RV and LV function and dimension. CMR 
measurements are given for controls, at-risk family members and 
ARVC patients, stratified per method (manual [orange] vs. automatic 
[blue]). These data represent the automatic + basal correction data, 

see Supplementary Fig.  4 for the boxplots of the uncorrected auto-
matic measurements. Abbreviations: EDVI = end-diastolic volume 
index; EF = ejection fraction; LV = left ventricle; RV = right ventricle 
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