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Abstract

Phylogenetic trees based on copy number alterations (CNAs) for multi-region samples of a
single cancer patient are helpful to understand the spatio-temporal evolution of cancers, especially
in tumours driven by chromosomal instability. Due to the high cost of deep sequencing data, low-
coverage data are more accessible in practice, which only allow the calling of (relative) total copy
numbers due to the lower resolution. However, methods to reconstruct sample phylogenies from
CNAs often use allele-specific copy numbers and those using total copy number are mostly distance
matrix or maximum parsimony methods which do not handle temporal data or estimate mutation
rates. In this work, we developed a new maximum likelihood method based on a novel evolutionary
model of CNAs, CNETML, to infer phylogenies from spatio-temporal samples taken within a single
patient. CNETML is the first program to jointly infer tree topologies, node ages, mutation rates,
and ancestral states from total copy numbers when samples were taken at different time points.
Our extensive simulations suggest CNETML performed well even on relative copy numbers with
subclonal whole genome doubling events and under slight violation of model assumption. The
application of CNETML to real data from Barrett’s esophagus patients also generated consistent
results with previous discoveries and novel early CNAs for further investigations.
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1 Introduction

Phylogenetic trees have been widely used in the study of cancer, providing important insights into
tumour evolution [1]. Various markers have been used for phylogeny inference, including data derived
from comparative genomic hybridisation (CGH), single nucleotide polymorphism (SNP) array, fluo-
rescence in situ hybridization (FISH), and next-generation sequencing (NGS) technologies. The rapid
advances of NGS, such as whole genome sequencing (WGS) and whole exome sequencing (WES),
allow the generation of huge amounts of genomic data from patient samples. NGS-derived somatic
variants, mainly single nucleotide variants (SNVs) and copy number alterations (CNAs), have become
common markers for phylogeny inference. CNAs are more complex than SNVs and often related to
chromosomal instability (CIN) which may generate different types of structural variations (SVs) or
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aneuploidy [2]. Although most phylogeny inference approaches use SNVs, a number of methods are
based solely on CNAs [1, 3–10]. One reason is that it is hard to detect point mutations for some cancers
mainly driven by SV or CIN [11], such as high grade serous ovarian cancer [12], oesophageal cancer
[13], and osetosarcoma [14]. Another reason is that it is difficult to detect SNVs from low-coverage
data whereas the larger sizes of CNAs provide more signal for reliable detection.

Given different input data and aims, the trees reconstructed from CNAs called from a single patient
are of four major types: 1) mutation tree when the order and evolutionary history of mutational events
are of interest [15], as in SCICoNE [5] and CONET [7], where each tip represents copy number events
and cells are attached to each node; 2) clone tree when clonal deconvolution is feasible, as in CNT-MD
[4] and DEVOLUTION [8], where each tip represents a clone; 3) cell tree when CNAs can be called
for each cell, as in FISHtree [16, 17], sitka [6], and NestedBD [10], where each tip represents a cell; 4)
sample tree when each sample is assumed to be homogeneous, as in MEDICC [18], MEDICC2 [9] and
PISCA [3], where each tip represents a sample.

Intra-tumour heterogeneity (ITH) causes difficulty in analysing bulk DNA sequencing (bulk-seq)
data, where only the aggregated signals can be observed. Therefore, phylogeny inference from bulk-seq
data is often coupled with clonal deconvolution that determines the number and fraction of clones in
a sample [1]. Reliable quantification of subclonal CNAs and ITH requires deep sequencing on samples
of good quality and is expensive. Single cell DNA sequencing (sc-seq) circumvents the need to infer
clone structure, but the data are still very noisy [15, 19]. Low-coverage bulk-seq, such as shallow WGS
(sWGS), are instead more cost-effective and accessible, especially for SV-driven cancers [20]. They
have been widely applied to detect CNAs, particularly on formalin-fixed paraffin-embedded (FFPE)
samples, which are commonly available for diagnostics but have low DNA quality [11, 13, 21–23], and
cell-free DNA in plasma [24, 25]. There have been sWGS data for patient samples taken over time and
space during a long time period, such as in the surveillance of Barrett’s esophagus (BE) [13]. These
longitudinal samples also provide temporal information to estimate node ages and mutation rates,
which are important parameters in cancer evolution. However, only a few reliable methods exist to
detect CNAs from sWGS data, especially absolute copy numbers [26]. Most of the previous sample
phylogeny inference methods are designed for absolute allele-specific integer copy numbers which are
often called from SNP arrays and high-coverage NGS data, such as MEDICC [18], MEDICC2 [9],
and PISCA [3]. To better understand cancer progression from these sWGS data, it is important to
have methods that can build sample trees based solely on (relative) total copy numbers, which will be
addressed in this paper.

The model of CNA evolution is critical for phylogeny inference, but it is challenging to propose a
model which maintains a good trade-off between biological relevance and complexity [19]. The under-
lying mechanisms of CNAs are often very complicated, such as chromothripsis, breakage fusion bridges,
and failure in cell cycle control [22]. As a result, CNAs vary from small focal duplication/deletion to
chromosome-level gain/loss and whole genome doubling (WGD) at different rates [27], which creates
complex dependencies across the genome, such as overlaps, back mutations, convergent and parallel
evolution [28]. Therefore, the infinite sites or perfect phylogeny assumption, which is commonly used
in inferring tumour phylogeny from SNVs, is often violated, as is the infinite alleles or multi-state per-
fect phylogeny assumption [19]. The models for genome rearrangement, microsatellite, and multigene
families seem relevant yet hard to transfer to CNAs [19, 29].

Some methods transform original copy number calls into presence or absence of changes (break-
points) [6, 30], which are less likely to overlap, so that the infinite sites assumption is well approximated.
Although this representation simplifies the complex spatial correlations across sites, it does not use the
full copy number data. Other methods represent the genome as a vector of copy number values, often
called copy number profile (CNP) [4]. Based on CNPs, some methods build trees without a model,
such as the maximum parsimony (MP) method with the Fitch algorithm [23, 31] and distance matrix
methods based on Euclidean [32] or Manhattan [33] distance, and hence they may underestimate the
true evolutionary distance as no correction of hidden changes is applied [9, 30]. Other methods use
copy number transformation models that allow the computation of minimum evolutionary distance
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between CNPs, which is the shortest sequence of events that transform one CNP to the other. One
such model was implemented in FISHtree [16, 17], which assumes each event (single gene gain/loss,
chromosome gain/loss, or WGD) affects a single unit (gene or chromosome or genome) independently,
with or without weights for different types of events. Another well-studied model, within MEDICC
[18], assumes an event (segment duplication/deletion) may affect contiguous segments of variable size.
This model deals with horizontal dependencies caused by overlapping CNAs and hence is less likely
affected by convergent evolution. It has been extended to allow weights on CNAs of different po-
sition, size, and type (duplication/deletion) [34] and WGD [9, 35]. The weighted versions of both
models allow the estimation of CNA rates in term of event probabilities [17, 34], but mutation rates
by calendar time cannot be estimated. A few CNP-based methods use the finite sites models, or
continuous-time Markov chains, which have good theoretical properties and are frequently used to
model nucleotide changes [36]. Although Markov model often assumes independent sites to simplify
computation, which is violated by overlapping CNAs, it corrects multiple hits at the same site and
serves as a workable model of CNAs. For example, SCONCE used a Markovian approximation that
combines the temporal Markov process with a spatial hidden Markov model (HMM) to detect CNAs
in sc-seq data [37]; Elizalde et al. used the product of 23 Markov chains to model numerical CIN
of individual chromosomes in clonally expanding populations [38]. Markov model makes it possible
to use statistical methods to infer CNA-based trees, mutation rates by time, and ancestral genomes,
such as maximum likelihood (ML) method and Bayesian method. PISCA used such a Markov chain
to model gain, loss, and conversion of haplotype-specific copy numbers called from SNP array data
[3]. NestedBD used a birth-death model, a special type of Markov chain where transitions from state
i can only go to state i + 1 or i − 1, for total copy numbers called from sc-seq data, where a birth
(death) event corresponds to copy number amplification (deletion) [10]. Both PISCA and NestedBD
are implemented as packages in the popular Bayesian evolutionary analysis platform BEAST [39, 40],
and hence are not easily adapted for more bespoke mutation models that will be required for under-
standing tumour evolution. In addition, most phylogeny inference methods based on CNPs cannot
handle multiple scales of chromosomal changes due to the inherent complexity. Notable exceptions
are FISHtree, which was designed for FISH data and is not scalable for longer CNPs [16, 17], and
MEDICC2 which only considered segment duplication/deletion and WGD but excluded chromosome
or arm level gain/loss [9].

In this paper, we developed an approach based on a novel Markov model of duplication and
deletion, CNETML, to do maximum likelihood inference of single patient tumour phylogeny from
total copy numbers of spatio-temporal samples. To the best of our knowledge, this is the first method
to jointly infer tree topology, node ages, and mutation rates of temporal patient samples from total
CNPs. CNETML is applicable to haplotype-specific CNPs as well, which is the basis of our model and
considered as missing information when total CNPs are taken as input. We also developed a program to
simulate CNAs from patient samples, CNETS (Copy Number Evolutionary Tree Simulation), which
was used to validate sample phylogeny inference methods. Our programs are mainly implemented
in C++, available at https://github.com/ucl-cssb/cneta. The results on extensive simulations
suggest that CNETML accurately recovered tree topology, node ages, mutation rates, and ancestral
CNPs when there were sufficient CNAs present in the data and large time differences among samples.
CNETML on total CNPs performed as well as haplotype-specific CNPs when less than 10% of copy-
neutral CNAs existed in the simulated data. CNETML also had good performance when applied to
relative CNPs from simulated data with subclonal WGDs, which is desirable for applications to sWGS
data. Moreover, the simulations suggest CNETML was robust to slight violations of model assumption
and that it obtained reasonable inferences on data of typical focal CNA size. We applied CNETML
on relative CNPs called from two BE patients in existing literature and obtained results consistent
with previous findings and novel early CNAs from reconstructed ancestral CNPs which worth further
validations, suggesting the practicability of CNETML.
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Figure 1: The schematic overview of CNETML. Given the CNPs and/or sampling times of all patient
samples, CNETML aims to infer a sample tree in which tips correspond to observed CNPs in samples
and internal nodes correspond to ancestral CNPs. From the root, which represents the last unaltered
common ancestor with normal copy number state (LUCA), there is a branch of length zero (dashed
line), which leads to a tip representing the normal CNP for illustration purpose. LUCA is connected
to the most recent common ancestor (MRCA) of the patient samples. We added an additional node
before LUCA to show the CNP at the birth time. The state transition diagram of the Markov chain
shows the duplication (red arrow) and deletion (blue arrow) of haplotype-specific copy number, with
the maximum total copy number being 3. The Markov model allows the computation of tree likelihood
by taking the product over all sites along the genome. The CNPs of internal nodes (including MRCA)
are unknown and inferred with ancestral reconstruction algorithms. Samples taken at different time
points are denoted by different colours.

2 Results

Overview of CNETML

The input of CNETML (Figure 1) includes a set of integer total/haplotype-specific CNPs for multiple
samples of a patient and/or sampling timing information (in year) if available (see section 4 for details
on input preparation). The length of each CNP is the number of sites in a sampled genome, which
can be either bins or segments, and we assume all genomes have the same sites. Here, a bin is a
genomic region of fixed size and a segment is a genomic region of variable size which may be obtained
by merging consecutive bins with the same copy number. In CNA detection, the general steps include
binning, bias removal, segmentation, and copy number assignment [19, 41]. In binning, the genome
is divided into bins of certain size, usually fixed, and reads aligned to each bin are counted. In
segmentation, the genome is partitioned into a series of segments whose copy number is different from
that of the adjacent segment. Therefore, although a site is not as well defined as when modelling
SNVs on individual nucleotides, it is feasible to consider a bin or a segment as a site.
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We treat an integer copy number at each site as a discrete trait whose states are dependent on the
maximum possible copy number. To maintain model simplicity, we assume copy numbers at the sites
of a genome change independently of each other (independent sites assumption) and the change of
copy number at each site follows a continuous-time non-reversible Markov chain. The Markov chain
naturally starts from the normal copy number and has an absorbing state when no copy remains. Due
to the difficulty in incorporating CNAs of different scales, we propose a model of site duplication and
deletion at haplotype-specific level, which is similar to that in PISCA [3] yet designed for processing
total CNPs. Moreover, we consider CNA rate (or mutation rate) per haplotype per site per year and
allow user-specified maximum copy number.

Suppose cmax is the maximum total copy number, then each site has S possible states {0, 1, 2, ..., S−
1}, where

S =

{
cmax + 1 total CNP input,
(cmax+1)∗(cmax+2)

2 haplotype-specific CNP input.
(1)

The change of haplotype-specific copy numbers on each site via duplication (deletion) at rate u (e)
per haplotype per site per year is specified by the rate matrix Q (see Supplementary Table 1 for Q at
cmax = 4). In Q, we list haplotype-specific copy numbers in order of increasing total and haplotype A
copy number so that each combination of cA and cB, (cA, cB), corresponds to a unique state, where cA
and cB represent the copy numbers for two haplotypes respectively. For example, normal copy number
(1, 1) is represented by state 4, and copy number (4, 0) is represented by state 14. Suppose a genome
j has m sites and cij is the copy number state at site i, which is either the total copy number or the
state corresponding to the haplotype-specific copy number in Q, then its observed CNP is denoted
as (c1j , c2j , ..., cmj) . The CNPs for all the n sampled genomes were converted into a data matrix
D = {cij} of n rows and m columns. The observed copy number states across all samples at a site i
is called a site pattern, denoted by si = (ci1, c

i
2, ..., c

i
n). We say site i is invariant if si is composed of

normal copy number states only, and variant otherwise.
The likelihood for a tree T of n samples with parameters θ, L(T ), is the probability of observing

D at the tips of T given θ, whose computation is critical in phylogeny inference. The Markov model
specified by Q allows the computation of L(T ) by taking the products of likelihoods at individual
sites:

L(T ) = P (D|θ) =
m∏
i=1

P (D(i)|θ), (2)

where D(i) is the ith column of D. When the input are total CNPs, we revise L(T ) to incorporate
haplotype-specific copy numbers as missing information, which is similar to the handling of ambiguities
in a nucleotide substitution model [36]:

L(T ) =
m∏
i=1

(
∑
H(i)

P (H(i)|θ)), (3)

where H is a data matrix of unknown haplotype-specific copy number states that determine D, H(i)

is the ith column of H, and there may be multiple such matrices for D. For example, the probability
of observing total copy number 3 is a sum over all compatible haplotype-specific copy numbers (0, 3),
(1, 2), (2, 1), and (3, 0).

We computed L(T ) with Felsenstein’s pruning algorithm [42] and a few adaptations which are
described in section 4. L(T ) was maximised by minimizing its negative logarithm function with L-
BFGS-B algorithm [43], a numerical iterative method with bound constraints, which starts with initial
guesses of the parameters and improves the estimations iteratively until convergence or the maximum
number of iterations is reached. Due to the super-exponentially increasing number of trees with the
number of tips, we implemented two approaches to search the tree space and get the ML tree. One is
exhaustive search which enumerates all the possible tree topologies for trees of less than seven samples.
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The other is stochastic search for larger trees, adapted from the approach in IQ-TREE [44], a popular
ML phylogeny inference program.

When there are samples taken at different times, it is feasible to estimate mutation rates according
to the differences of CNPs and sampling times, similar to the dating of virus divergences [36]. Although
mutation rates during tumour progression are likely to change over time due to CIN [3], it is unlikely
that they can be estimated reliably, so we assumed constant mutation rates under a global clock for
simplicity. We jointly estimated tree topology, mutation rates, and node ages (starting from 0 at birth
time) with the following constraints in optimization: 1) Each internal node must be younger than its
youngest descents; 2) The root node must be younger than the patient age at the first sample time
or the tree height in year is smaller than the patient age at the last sample time. We transformed
node age variables to encode the constraints imposed by patient ages at different sampling times so
that θ = (x1, x2, ..., xn, u, e), where xi is the transformed variable for age of an internal node i and
converted back to branch length in year later (see section 4 for more details). When all the samples are
taken at the same time, there is no information to estimate mutation rates and node ages at the same
time, so θ = (l1, l2, ..., l2n−1), where li = (u0 + e0) ∗ ti is the length of branch i measured by expected
number of CNAs per site, u0 (e0) is the pre-specified duplication (deletion) rate per haplotype per site
per year, and ti is the time in year covered by branch i.

Ancestral reconstruction may suggest early CNAs that are likely cancer driver events and useful for
early diagnostics, so we reconstructed ancestral states at variant sites with unique site patterns based
on the obtained ML tree using classical methods. Both marginal reconstruction of the most recent
common ancestor (MRCA) node and joint reconstruction of all ancestral nodes were implemented,
which just differ in the number of ancestral nodes in consideration [36]. For marginal reconstruction,
we computed the posterior probability of each possible copy number state for MRCA. For joint recon-
struction, we used the dynamic programming algorithm in [45], assuming the likelihood of the best
reconstruction is when the root has normal copy number states.

We used bootstrapping to measure the uncertainties of an estimated ML tree Tm [36]. To get a
bootstrap tree, we sampled sites from the input data matrix D with replacement to get a pseudo-
sample D′ with the same dimension as D and built a ML tree from D′. The branch support value
in Tm is defined as the percentage of bootstrap trees including this branch (split) and computed with
function pro.clade in R library ape [46].

Validation on simulated data

Data simulation and comparison metrics

To validate CNETML, we developed CNETS to simulate CNAs along a phylogenetic tree of multiple
patient samples (Figure 2, see section 4 for more details). In CNETS, we first generated a coalescence
tree to represent the genealogical relationships among samples, the subtree starting from MRCA,
under either the basic coalescent or an exponential growth model with rate β. We then added another
node before MRCA to represent the last unaltered common ancestor with normal copy number state
(LUCA) and a branch of length zero from LUCA to a new tip which represents a normal genome.
The time from LUCA to MRCA was sampled from an exponential distribution with rate which was
either based on the exponential growth rate β or sampled from an uniform distribution U(0, 1). To
get different sampling times, we increased the terminal branch lengths by random integer multiples of
dt (in year), with the maximum multiple being the number of samples. We implemented two modes of
simulating CNPs which differ in the types of CNAs and recorded details. When only site-level CNAs
are considered and the exact mutational events are not of interest, CNPs were simulated directly along
each branch of the tree according to the rate matrix Q with each site being a segment of variable size
[36]. When CNAs of multiple scales are considered, events were simulated by waiting times with each
site being a bin of fixed size (4,401 bins of 500 Kbp by default), which allows more complex models
of evolution and the recording of more detailed information for each event. CNETS generates files
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Figure 2: The schematic overview of CNETS. A: Two modes of simulation implemented in CNETS.
One is simulating CNPs directly for site duplication/deletion based on segments of variable size, which
follows exactly the Markov model used for phylogeny inference. The other is simulating waiting times
for events of multiple scales based on bins of fixed size, in which at most five types of events (site
duplication/deletion, chromosome gain/loss, and WGD) are allowed and the duplication/deletion size
in terms of bins is sampled from an exponential distribution of the user-specified mean size. B: The
simulated tree and CNPs (red: duplication, blue: deletion, brown: normal), where coloured tips
represent patient samples taken at different time points.

that record haplotype-specific/total CNPs, sampling times in year, tree topology, and CNAs along the
branches respectively. The simulated CNPs at the tips and/or tip timing information serve as input
for CNETML.

In tests, we simulated trees with parameters used in [3], which approximate an exponentially
expanding haploid cancer cell population with MRCA being 20 years from the present (Supplementary
Table 2). To ensure that the model used for simulation and phylogeny inference are the same, we used
the simulation mode of evolving CNPs when only site-level mutations were considered. We simulated
trees with n = 5 samples when not testing the performance of tree searching, as it is fast to enumerate
all the possible trees for such small trees. Without loss of generality, we set cmax = 6 and used the
same rates for duplication and deletion. To get a reasonable range of mutation rates suitable for
phylogeny inference, we performed tests with u = e ∈ {0.0001, 0.001, 0.01, 0.1, 1} (per haplotype per
site per year) (Supplementary Figure 1). This analysis suggests that intermediate rates {0.001, 0.01}
(per haplotype per site per year) are more informative for phylogeny inference, which were used in
our subsequent tests.

To quantify the differences of both topologies and branch lengths between the simulated (true)
tree and the inferred tree, we computed normalized Robinson–Foulds (RF) distance [47] and branch
score distance [48], with smaller values indicating more accurate estimations. These distances were
computed with function treedist in R library phangorn [49]. The branch length was measured by
time in year when computing branch score distance and (u0, e0) was set to be real values used for
simulation when the mutation rates were not estimated. We also computed the differences between
estimated and true rates and LUCA age to check the accuracy of their estimations. To measure the
accuracy of ancestral reconstruction, we computed the fraction of correctly recovered states over the
number of variant sites with unique site patterns for each internal node and the mean fraction over
all internal nodes under joint reconstruction.
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Performance on reconstructing trees and ancestral states

In principle, ML phylogeny inference is consistent, which means that it is more likely to recover the
true tree given more sites [36]. To check the consistency of CNETML, we applied it on data simulated
with different number of sites and mutation rates. To reduce confounding effects, we simulated trees
with n = 5 samples at the same time and did not infer mutation rates. As shown in Figure 3A, all
the simulated trees were better recovered with more sites and higher mutation rates, which confirms
the consistency of CNETML. In the subsequent simulations, we fixed the number of sites m = 1000.

We showed that the stochastic tree search algorithm performed well on simulated data with 10,
20, and 30 samples under different mutation rates (Supplementary Figure 2). Given more samples,
the estimated tree topologies did not deteriorate much, whereas the branch score distances to the true
trees were slightly increased. As expected, the reconstructed trees were more similar to the ground
truth with more mutations.

We also checked the performance of CNETML on reconstructing ancestral states on the simulated
data with 1000 sites under different mutation rates. To reduce the effect of incorrect tree topologies,
we supplied the simulated true tree and real mutation rates as input. The results suggest that more
than 90% of the unique variant sites were accurately reconstructed, except when doing marginal recon-
struction (Figure 3B). Joint reconstruction appeared more accurate, probably because it computes the
joint probability of all the internal nodes [36]. The fraction of accurately reconstructed sites decreased
with larger mutation rate due to the presence of more variant unique sites.

With total copy numbers, copy-neutral loss of heterogeneity (cn-LOH) and mirrored subclonal
allelic imbalance (MSAI) events (CNAs affecting different alleles of the same sites in different samples)
cannot be detected. To see how total CNPs deteriorates the inference, we applied CNETML on
haplotype-specific CNPs and found that the results were not largely different except when there
were more than 10% sites with cn-LOH or MSAI events (Figure 3A,C)). However, the accuracies of
reconstructing ancestral states were better with haplotype-specific CNPs (Figure 3B). The analysis
on PCAWG dataset [50] shows that around 80% samples have no more than 10% of the genome with
cn-LOH (Supplementary Figure 3), and hence these results suggest that total CNPs can provide good
approximations in practice despite information loss.

Performance on jointly estimating the tree and mutation rates

One major utility of CNETML is to jointly estimate tree topology, node ages, and mutation rates
when the samples were taken at different time points. The reliability of estimations depends on the
extent of time differences at the tips, with larger differences providing more information for inference
[51]. Since the sampling time differences for a patient may range from one year to 15 years [13], we
simulated data under different mutation rates and temporal signal strengths (dt = 1 year and dt = 5
years), where the range of simulated sampling times approximated real data and samples simulated
under a larger dt generally had larger time differences (Supplementary Figure 4). Because the L-
BFGS-B optimization algorithm is iterative, the initial values of parameters θ0 = (x01, x

0
2, ..., x

0
n, u

0, e0)
are required, where (x01, x

0
2, ..., x

0
n) is derived from the initial tree (see section 4 on how to get initial

trees)) and (u0, e0) has to be specified manually. To test the sensitivity of inference to initial mutation
rates, we tried four initial values, u0 = e0 ∈ {0.0005, 0.001, 0.005, 0.01} (per haplotype per site per
year), and found that CNETML was robust, except when the real mutation rate was low (0.001) and
a high initial mutation rate (0.005 or 0.01) was supplied (Supplementary Figure 5). Therefore, we
recommend using smaller initial mutation rates in real data when the range of rates is unknown and
reported the results with u0 = e0 = 0.0005 (per haplotype per site per year) in Figure 4.

As shown in Figure 4A-B, CNETML accurately estimated both tree topology and mutation rates
when there was sufficient information in the data, with larger mutation rates or sampling time differ-
ences leading to higher accuracies. The estimated median LUCA ages were closer to real values when
dt = 5 years despite larger variances which is because the variances of simulated LUCA ages were
about four times larger than those when dt = 1 year. We also ran CNETML on haplotype-specific
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Figure 3: The performance of CNETML on reconstructing trees and ancestral states with total or
haplotype-specific CNPs when all the samples are taken at the same time. A: The accuracy of
phylogeny inference on data simulated with different number of sites and mutation rates. B: The
accuracy of ancestral state reconstruction on simulated data with 1000 sites under different mutation
rates. C: The fraction of cn-LOH and MSAI events in the simulated data. There are five samples
at the same time in each simulated tree and 100 datasets for each parameter setting. The plots are
grouped by mutation rates. The box plots show the median (centre), 1st (lower hinge), and 3rd (upper
hinge) quartiles of the data; the whiskers extend to 1.5× of the interquartile range (distance between
the 1st and 3rd quartiles); data beyond the interquartile range are plotted individually.
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Figure 4: The performance of CNETML on jointly estimating tree topology, node ages, and mutation
rates on data simulated with different values of dt and mutation rates. A: The accuracy of phylogeny
inference. B: The accuracy of mutation rate estimation. C: The accuracy of the estimations of
mutation rate and LUCA age with total or haplotype-specific CNPs on simulated data with dt = 5.
There are five samples in each simulated tree and 100 datasets for each parameter setting. Grey
dashed line: real values. Box plots as those in Figure 3.

CNPs of data simulated with dt = 5 years to see the extent of underestimation when using total
copy numbers (Figure 4C), but similar to our previous results in Figure 3, we did not observe large
differences.

Performance on relative copy numbers

CNAs called from sWGS data with common tools, such as QDNAseq [21], are often relative values,
which are hard to interpret, but they provide a way to mitigate the effect of WGD in phylogeny
inference. For example, PISCA used a baseline strategy to convert absolute haplotype-specific copy
numbers to relative values, which lead to better phylogeny inference and more accurate rate estimation
on simulated data with WGD [3]. The basic idea is to divide the observed copy numbers by an
estimated baseline (rounded mean copy number) for each haplotype and then round the values up or
down randomly to reduce bias when the remainder is not zero. This is a simple strategy to process
the absolute CNPs for reasonable phylogeny inference when WGD is present, as it is just one event
changing ploidy, and the normalization by baseline copy number may cancel its effect. We adopted a
similar strategy in CNETS to simulate relative haplotype-specific copy numbers by using the known
ploidy as the baseline and relative total copy numbers by using 2NWGD as the baseline. CNETS
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output simulated relative total CNPs by reducing the normalized copy numbers with the ploidy of the
genome, with values smaller than -2 and larger than 2 set it to be -2 and 2 respectively for consistency
with QDNAseq output.

To see how CNETML performs on relative copy numbers, we ran CNETML on relative total and
haplotype-specific CNPs simulated with cmax = 8, dt = 1 year, u = e = 0.001 per haplotype per
site per year and WGD rate 0.05 per year. When running CNETML on relative total CNPs, we
added the copy numbers with normal ploidy so that all values are positive. As a comparison, we also
ran MEDICC2 [9], the only method to infer CNA-based phylogenies from NGS data at the presence
of WGDs, on allele-specific CNPs which were converted from haplotype-specific CNPs by custom R
scripts and CNETML on total CNPs respectively.

The results are grouped into four types by the distribution of WGD among samples: clonal WGD
where WGD appears in all samples, multiple WGDs where there are more than one WGD across the
tree but each sample has at most one WGD, single WGD where there is only one WGD across the tree,
and no WGD. As expected, CNETML on absolute total CNPs reconstructed inaccurate phylogenies
and missestimated mutation rates in most cases whenever WGD was present, with duplication rates
largely overestimated especially on data with clonal WGD and deletion rates slightly underestimated.
On data with single or multiple subclonal WGD(s), CNETML on relative CNPs can achieve similar
performance in phylogeny inference to MEDICC2 on absolute allele-specific CNPs and the mutation
rates were also accurately estimated with slight underestimation of deletion rates on relative haplotype-
specific CNPs (Figure 5). On data without WGD, the performances of CNETML were similar on all
types of data, which suggests using relative copy numbers still conserves the information for phylogeny
inference and rate estimation. On data with clonal WGD, CNETML on relative CNPs reconstructed
phylogenies less similar to the truth and underestimated mutation rates, particularly deletion rates on
relative haplotype-specific CNPs, which is probably due to greater signal loss when converting copy
numbers relative to a doubled ploidy. In summary, it seems entirely feasible to get good phylogeny
inference directly from relative copy numbers, such as those from QDNAseq, when WGD is not clonal.
For further validation of the inference, empirical information or methods to detect WGD [52] or call
absolute copy numbers [26] from sWGS data may be used to estimate the presence of clonal WGD.

Performance under violation of independent sites assumption

Classically, the ML approach was shown to be highly robust to assumption violations [36]. As our
model of CNA evolution strongly depends on the independent sites assumption, we ran CNETS using
the waiting time approach to generate duplications and deletions of different sizes to examine how
overlapping CNAs affect the performance of CNETML. We simulated trees with dt = 1 year so that
rate estimation is feasible and introduced duplications/deletions along the tree with rate u = e = 0.001
per haplotype per site per year and mean size being 1, 10, and 100 bins (500 Kbp, 5 Mbp, and 50
Mbp), respectively. These sizes were chosen because focal CNAs are typically defined as CNAs of size
no larger than 3 Mbp [53] and 50 Mbp is larger than p-arm size of 15 autosomes and q-arm size of
4 autosomes to include arm-level CNAs. We built trees with CNETML using original bin-level data
(site as bin) and post-processed segment-level data (site as segment, see section 4 for details of the
post-processing).

As expected, the inferences were more dissimilar to the ground truth with larger CNA sizes due to
information loss as a result of overlaps, with more overestimated branch lengths and mutation rates and
slightly more underestimated LUCA age (Figure 6A). However, when the mean duplication/deletion
size was 5 Mbp, shorter than the typical focal CNA size, the extent of misestimation was not very large,
and the tree topologies were still recovered well. In addition, when we scaled the estimated rates by
the mean duplication/deletion size, the estimation errors were much smaller (Figure 6B). These results
suggest that slight violation of independent sites assumption seems acceptable in phylogeny inference,
and the estimated mutation rates may be scaled to account for the size of CNAs. On the other hand,
the differences of using bin-level and segment-level data were slight because the site patterns in the
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Figure 5: The performance of CNETML on relative copy number data. There are 200 simulated
datasets in total, which are divided into four groups by the types of WGDs. The number of datasets
in each group is shown in brackets. MEDICC2 was excluded when comparing branch score distance
because the branch length in a tree built by it represents the number of events between genomes of
two nodes. Outlier values larger than 0.02 on datasets with subclonal WGDs are excluded in the plot
of mutation rates. Box plots as those in Figure 3.
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input data were consistent in both cases, except that bin-level data might contain more sites and a
larger number of the same pattern which lead to larger likelihoods and longer computing time (Figure
6C). The rates and LUCA age were slightly overestimated with bin-level data on larger CNAs, which
is probably due to larger overdispersion caused by dependencies between adjacent bins with the same
copy numbers [54]. Therefore, we recommend using segment-level data for faster computation, less
correlation between segments, and better interpretability in practice.

Application to Barrett’s esophagus patients

To demonstrate the applicability of CNETML on real data, we applied it to data for two BE patients
in Figure 1 of [13], where CIN was used to predict risk progression (Figure 7). QDNAseq was applied
on sWGS data to get relative CNPs in 589 bins of fixed size (about 5 Mbp) for each patient, which
were normalized across the cohort of 777 endoscopy samples from 88 patients. One nonprogressor
patient, 51, has 15 samples taken from 2006 to 2011, which shows similar CNPs across samples. The
other progressor patient, 20, has 12 samples taken from 1998 to 2008, which shows more copy number
variation across samples. Although WGD was shown to be prevalent in BE patients [3], it seems less
likely to have clonal WGDs for these two patients given the large span of sampling times and diverse
sampling locations. We rounded the provided fractional copy numbers to the nearest integers and
merged consecutive bins with the same copy numbers across all samples into segments. Since the
exact patient ages were not provided, the patient age at the first sampling time was set to be 60 (the
mean age of all nonprogressors in the cohort) for patient 51 and 62 (the mean age of all progressors
in the cohort) for patient 20, respectively, which provides good approximations of the upper bounds
of the tree heights during optimization.

We first ran CNETML 100 times on the input data, selected the tree with largest likelihood, Tb,
and did 100 bootstraps to get branch support values for Tb. Then we fixed the tree topology to be the
same as that of Tb and did optimization of node ages and mutation rates to get T ′

b, with the initial
mutation rates set to be the estimated rates on Tb. We ran another 100 bootstraps with the topology
of T ′

b to get the confidence intervals (2.5th and 97.5th percentile) of node ages and mutation rates in
T ′
b. Lastly, we reconstructed ancestral CNPs based on T ′

b and checked the biological significance by
computing their overlap with cancer-related genes from COSMIC Cancer Mutation Census (CMC)
with keyword ”oesophag” in the description of disease [55] and 75 regions selected by the elastic-net
regression model as being predictive of BE progression (predictive regions) in [13].

The tree topology for patient 20 had bootstrap support values of more than 80% except for two
branches. Although the branch connecting the samples taken at 12 months location 2 and 108 months
location 1 (times before final endoscopy) had the lowest support value, they shared a loss on gene
SMAD4, which was shown to promote tumorigenesis from BE toward esophageal cancer [56]. In
contrast, the tree topology for patient 51 had much poorer support due to the lack of changes in
copy numbers. The estimated mutation rate of patient 20 was slightly higher than that of patient
51, around 0.006 and 0.004 per haplotype per site per year respectively, which is as excepted because
progressors tend to have higher mutation rates, and both estimations seem consistent with previous
results for BE patients [3]. The LUCA age for patient 20 was about 40 years before the first sample,
about 10 years earlier than patient 51. From the reconstructed CNPs of the MRCA of both patients
(node 25 for patient 20 and node 31 for patient 51 in Figure 7), we found gene LRP1B included in a
region on chr 2q with copy number gain (see Supplementary Table 2 for the complete list of overlaps).
The original average relative copy number for patient 20 (1.4) across all samples is about twice as
that for patient 51 (0.6), suggesting more gain in patient 20. Although most common alterations
involving LRP1B are simple somatic mutations or copy number losses, 4.89% cases have copy number
gains in the TCGA-ESCA cohort [57]. The MRCA CNP of patient 20 also had a region of gain on
chr 4, which overlapped with the predictive region whose associated coefficient of variation for the
relative risk (CV) is 1.018 (ranked 15th among 75 regions) [13]. The MRCA CNPs of patient 51
and the top and bottom lineages of patient 20 (node 20 and 22 in Figure 7), all overlapped with the
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Figure 6: The performance of CNETML with different types of sites on data simulated with mean
duplication/deletion of different sizes. A: The accuracy of phylogeny inference. B: The accuracy of
mutation rate estimation before and after scaling. C: The number of variant sites used for likelihood
computation and the negative log likelihoods for the ML trees. There are five samples in each simulated
tree and 100 datasets for each parameter setting. Box plots as those in Figure 3.
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Figure 7: The ML trees and ancestral states reconstructed by CNETML for patient 20 and 51. The
bootstrap support values are shown in coloured rectangles with lighter colours suggesting stronger sup-
port. The light red bars at the internal nodes show the confidence intervals of node ages. Each sample
is denoted by ”patientID timeID locationID”, where timeID is the month before final endoscopy and
locationID is the relative esophageal sample location. The cancer-related genes overlapping with the
reconstructed CNPs are shown on the branches (red: copy number gain, blue: copy number loss). The
confidence intervals of duplication/deletion rates are shown in round brackets in the title of the plot
for each patient.

predictive region whose associated CV is 5.090 (ranked 6th among 75 regions). [13]. The MRCA
CNP of the bottom lineages of patient 20 also overlapped with gene NFE2L2 on chr 2q, which has
about 11.41% cases with copy number gains in TCGA-ESCA cohort [57]. For patient 51, the lineage
starting from node 21 had a unique gain overlapping with gene ZNF814, which has 13.04% cases in
TCGA-ESCA cohort [57]. All these findings suggest that the phylogenies and mutation rates inferred
by CNETML are biologically meaningful and additional insights into tumour evolution can be gained
from the reconstructed ancestral CNPs.

3 Discussion

In summary, we developed CNETML, a new ML method to reconstruct the evolutionary history of
multiple samples taken from a single patient at different locations and/or times, which can take as
input (relative) total integer copy numbers called from sWGS data. CNETML is capable of jointly
estimating node ages and mutation rates by year when patient samples were sampled at different times.
This capability is derived from a novel Markov model of CNA evolution, which assumes the sites (bins
or segments) in a CNP are independent and hence allows the usage of classical methods for phylogeny
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inference and ancestral reconstruction. We evaluated CNETML on data simulated with CNETS, our
novel program of general utility to simulate CNAs along a phylogenetic tree. The simulations suggest
that CNETML performed well when there were sufficient CNAs and/or timing information in the data,
even on relative CNPs with subclonal WGDs. The ability to work on relative CNPs makes CNETML
applicable to a wide range of sWGS data obtained from cancer patients, which was demonstrated by
its application on two BE patients, where we inferred sample phylogenies along with ancestral CNPs
which suggest the time MRCA arose and early CNAs driving the malignancy. Although caution is
still required when interpreting the inference on relative CNPs without knowing the exact presence
of clonal WGDs, the inference on relative copy numbers provide a reference for further improvement.
CNETML is also applicable to allele-specific CNPs if they are phased, and the performances were
similar to those on total CNPs when there were less than 10% of copy-neutral CNA events (such as
cn-LOH and MSAI) across all sites. Despite the independent sites assumption, CNETML was robust
to considerable amounts of overlaps among simulated focal CNAs.

Although CNETML aims to build a sample tree where each tip is a CNP from a patient sample,
it can be used to build trees of tumour clones or single cells, since the main input is simply an integer
copy number matrix for any taxa of interest. The input CNPs are assumed to be called from sWGS
data and hence cover the whole genome, but it may be applicable to SNP array or WES data if the
gaps between segments with atypical copy numbers are filled to avoid acquisition bias [58].

In principle, the likelihood-based approach adopted in CNETML is more sophisticated than dis-
tance matrix and MP methods. To allow for more flexible evolutionary models specific for tumour
evolution, we implemented a novel tool rather than using existing frameworks designed for traditional
phylogenetic inferences, such as BEAST [39, 40]. Future development of the model could include
Markov chains at different scales to incorporate chromosomal and/or arm level gain/loss and WGD,
and the use of regularization in the optimization to get better inference when there are insufficient in-
formation in the data [59]. Another development would be the estimation of varying mutation rates in
different lineages under a relaxed local clock [60]. Finally we can extend to a fully Bayesian approach,
which can impose informative prior distribution and naturally provide a measure of uncertainty of the
inference (posterior probabilities of sampled trees).

The inference of tumour phylogeny from CNAs called from sWGS data is a very challenging
problem. Although CNETML makes progresses in tackling some issues, it still has a few limitations in
data handling. First, we assumed the input CNPs are complete and accurate, which is often violated
in reality. Errors in copy number calls, which may arise from poor calling or missing data, directly
affect the inference, since just one wrong copy number called at a site of a sample may lead to a unique
site pattern and bias likelihood computation. Methods developed for sc-seq data often incorporate
approaches to deal with data noise [19], which may be extended to CNAs called from sWGS data,
such as combining CNA calling from raw read counts with phylogeny inference [5, 7] and incorporating
false positives and false negatives into the model directly [6]. Moreover, we assume each sample is
homogeneous with only one clone and do not deal with clonal deconvolution. This is reasonable to
some extent as CNAs detected from sWGS data typically represent the dominant clone in a sample,
which is different from sample trees built from SNVs that often represent highly admixed cell lineages
[61]. However, given data of higher resolution, it would be helpful to quantify ITH and how it affects
the monoclonal assumption.

In summary, we have provided a tool that can enhance the use of sWGS and allow for spatio-
temporal inferences of tumour evolution in patients. Due to its relatively low cost we believe this
approach will have increasing impact in understanding the biology of tumour evolution and will un-
derlie future clinical applications.
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4 Methods

Preprocessing of input data

The input CNPs for CNETML are mainly obtained from common CNA calling methods for sWGS
data. For example, QDNAseq [21] is often used to get relative copy numbers by computing read counts
in fixed-sized bins, doing segmentation, and calling copy numbers with CGHcall [62] which classifies
copy numbers into: double deletion (-2), single deletion (-1), normal (0), gain (1), and amplification
(2). To get the data matrix D, we assume the same binning or segmentation across all samples to get
consistent sites. When raw copy number calls are at bin level, segments can be obtained by merging
consecutive variant bins on the same chromosome with the same copy number across all samples.

The input sampling dates are converted to years (divided by 365). For convenience, the time for
the first sample is set to 0 and the time for other samples is then counted as the number of years
starting from the first sample.

The computation of likelihood

According to Felsenstein’s pruning algorithm [42], a vector of conditional probabilities was computed
for each node i at each possible haplotype-specific copy number state di on each site. We define Li(di),
partial likelihood, as the conditional probability of observing data at tip(s) below a node i which has
copy number state di and an incoming branch of length ti. When node i is an internal node with
children node j and k,

Li(di) = (
∑
dj

pdidj (tj)Lj(dj))(
∑
dk

pdidk(tk)Lk(dk)), (4)

where pdidj (tj) represents the transition probability of di becoming dj after time tj . When the input
are total copy numbers, there may be multiple states corresponding to one observed copy number
and all the relevant states are assigned to one when initializing the likelihood values for tip nodes.
Suppose St is a set of haplotype-specific copy number states corresponding to the observed total or
haplotype-specific copy number at a tip node t, then |St| = 1 when the input are haplotype-specific
copy numbers and |St| >= 1 when the input are total copy numbers. The partial likelihood for tip t
is then

Lt(dt) =

{
1 dt ∈ St,

0 otherwise.
(5)

The root can only be in the normal state, so there is no need to make a weighted average of all possible
states as the original algorithm. Suppose the root (LUCA node) is r with dr = 4 and an outgoing
branch of length tm leading to MRCA node m, then the conditional probability of observed CNPs at
a site p is:

P (D(p)|θ) = Lr(dr) = pdrdm(tm)Lm(dm). (6)

To improve efficiency in likelihood computation, transition probability matrix, P (tj) = {pdidj (tj)} =

eQtj , was computed once with scaling and squaring method [63] for each branch of length tj and used
for all sites. Lr(dr) for two sites with the same site patterns were computed once too, as they have
the same probability of being observed. In addition, the invariant sites were excluded when parsing
the input and later corrected by a straightforward reconstituted method, which multiplies the number
of invariant sites by the likelihood of observing an invariant site [58].

Statistical phylogeny inference with maximum likelihood method

An important aspect in optimization of likelihood function L(T ) is the incorporation of bound con-
straints in L-BFGS-B algorithm. To avoid negative branch length, we define a minimal branch length
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lm (1e-3 by default). To encode the constraints imposed by patient ages at different sampling times,
we define a new variable xi for an internal node i with child j on a tree T of n samples:

xi =

{
t1 i = 1,
tj−tmj −lm
ti−tmi −2lm

1 < i <= n− 1,
(7)

where i is from 1 (the root) to n − 1, ti is the age of node i, and tmi is the maximum age of the tips
below node i. Because the parent age should always be smaller than those of the children nodes, xi
has bounds as below:

d+ nlm <= x1 <= A0 + d,

0.01 <= xi <= 0.9, 1 < i <= n− 1,
(8)

where A0 is the patient age at the first sample and d is the time difference between the last and first
sample.

For exhaustive tree search, we simulated all the possible tree topologies for the given number of
samples, computed their maximum likelihoods, and ordered optimized trees by likelihoods to get the
ML tree. To get all the possible tree topologies for n samples, we generated a random coalescence tree,
represented it with a string, ordered the string in a specific way to represent the topology only, and
repeated this procedure until the number of simulated unique tree topologies equals to the number of
rooted trees for n tips. For stochastic tree search, we started with a number of initial trees (100 by
default), selected those with unique topologies, and computed their approximate likelihoods. Then we
selected the top n1 (20 by default) trees ordered by decreasing likelihoods to do hill-climbing nearest
neighbor interchanges (NNIs) [44] and kept the top n2 (5 by default) trees with largest likelihoods for
further optimization to get the ML tree. To avoid local optima, we built parsimony-based stepwise
addition trees as initial trees, which were obtained by using function random.addition in R library
ape [46] and transformed into the formats acceptable by CNETML.

Data simulation

The overall procedure of simulations in CNETS is as follows:

1. Generate a random coalescence tree of n samples. Available trees can also be given as input.
Optionally simulate temporal samples from a patient of specified age with two steps below.

(a) Assign random times (in year) to the tips by changing terminal branch lengths.

(b) Rescale the tree so that its height is no larger than the patient age at the last sampling
time.

2. Simulate CNPs on the tree with the Markov model of CNAs.

(a) Generate the CNP for the root (normal diploid genome).

(b) Simulate CNPs directly at the end of each branch according to the transition probability
matrix or simulate mutational events along each branch by using exponential waiting times.

3. Output result files.

When simulating CNPs directly given the total number of sites (segments), we distributed the
sites roughly according to the size of each chromosome with Dirichlet distribution. Each genome with
m sites was represented by its CNP (c1, c2, ..., cm) whose initial values at all sites are 2 for total copy
number data or 4 for haplotype-specific copy number data. For a site i with state ci, we sampled its
target state from the discrete distribution specified by row i of transition probability matrix P (l) for
a branch of length l.

When simulating events of multiple scales by waiting times, we pre-specified the number of sites
(bins) on each autosome of the reference genome with an array [367, 385, 335, 316, 299, 277, 251, 243,
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184, 210, 215, 213, 166, 150, 134, 118, 121, 127, 79, 106, 51, 54], which were extracted from QDNAseq
output on real data with bins of 500 Kbp. Each genome with m sites was initially represented by the
set of sites, denoted as G = (l1, l2, ..., lm). To simulate a diploid genome, we copied another set of
sites after the first set to represent the other haplotype, namely, Gd = [G,G]. The final CNP of the
genome (c1, c2, ..., cm) was computed by adding up the number of copies of the same site across all the
haplotypes when considering total copy number or the specific haplotype when considering haplotype-
specific copy number. Some constraints were imposed to get more realistic data: 1) Chromosomal gain
and WGD were only possible when the resultant maximum copy number is smaller than the specified
cmax; 2) The duplication/deletion stopped at the end of a chromosome. For the simulation of specific
mutational events along a branch of length l from initial time t = 0, we used the following steps:

1. Generate a random waiting time e from the exponential distribution with rate r, where r is the
total mutation rate across the genome, obtained by adding up the duplication and deletion rates
across all sites along the genome, chromosomal gain and loss rates across all chromosomes, and
WGD rate.

2. Generate a mutation, whose type is randomly chosen based on the relative rates of different
event types which are summarized at different scales.

(a) For segment duplication/deletion, randomly choose the start bin based on the rates across
sites, the haplotype, and the size in terms of bins, where a duplication can be either tandem
(duplicated at the end of the current location ) or interspersed (inserted in any position
across the genome) with equal possibilities.

(b) For chromosome gain/loss, randomly select the chromosome according to the rates across
chromosomes and the haplotype.

3. t = t+ e.

4. Stop when t >= l.
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Table 1: The rate matrix Q when the maximum total copy number cmax = 4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0/0 0/1 1/0 0/2 1/1 2/0 0/3 1/2 2/1 3/0 0/4 1/3 2/2 3/1 4/0



0/0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0/1 e −(u+ e) 0 u 0 0 0 0 0 0 0 0 0 0 0
1/0 e 0 −(u+ e) 0 0 u 0 0 0 0 0 0 0 0 0
0/2 0 e 0 −(u+ e) 0 0 u 0 0 0 0 0 0 0 0
1/1 0 e e 0 −2(u+ e) 0 0 u u 0 0 0 0 0 0
2/0 0 0 e 0 0 −(u+ e) 0 0 0 u 0 0 0 0 0
0/3 0 0 0 e 0 0 −(u+ e) 0 0 0 u 0 0 0 0
1/2 0 0 0 e e 0 0 −2(u+ e) 0 0 0 u u 0 0
2/1 0 0 0 0 e e 0 0 −2(u+ e) 0 0 0 u u 0
3/0 0 0 0 0 0 e 0 0 0 −(u+ e) 0 0 0 0 u
0/4 0 0 0 0 0 0 e 0 0 0 −e 0 0 0 0
1/3 0 0 0 0 0 0 e e 0 0 0 −2e 0 0 0
2/2 0 0 0 0 0 0 0 e e 0 0 0 −2e 0 0
3/1 0 0 0 0 0 0 0 0 e e 0 0 0 −2e 0
4/0 0 0 0 0 0 0 0 0 0 e 0 0 0 0 −e

1

ziheng
Highlight
is the word "total" necessary?



Table 2: Parameters used for tree generation in CNETS.

effective population size Ne 90000
generation time in year (365 days) t 0.002739726

exponential growth rate β 1.563e-3
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Figure 1: The distribution of possible total copy numbers at the end of one branch under the Markov
model. The plots are grouped by mutation rates. In each group, the x-axis shows branch length at
size 1, 10, 20, ..., 50. The y-axis shows the probability of changing from normal total copy number (2)
to each possible total copy number. We computed the final states of the Markov chain for one branch
of varying lengths starting at normal state, copy number (1,1)). When the mutation rate is very low
(0.0001 per haplotype per site per year), there are only a few mutations and most sites stay normal.
When the mutation rate is too high (0.1 per haplotype per site per year), given longer branch lengths,
more sites reach absorbing states (copy number 0).
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Figure 2: The performance of CNETML (stochastic tree search) on data simulated with different
mutation rates and number of samples. All the simulated samples are at the same time. The plots
are grouped by mutation rates. There are 100 datasets for each parameter setting.

0

100

200

0.00 0.25 0.50 0.75
Fraction of genome with LOH

co
un

t

A

0

300

600

900

0.0 0.2 0.4 0.6 0.8
Fraction of genome with copy−neutral LOH

co
un

t

B

Figure 3: The distribution of the fractions of genome with loss of heterozygosity (LOH) on 2778
samples from PCAWG dataset. A: The distribution of the fractions of genome with LOH. B: The
distribution of the fractions of genome with copy-neutral LOH.
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Figure 4: The range of simulated sampling times under different temporal signal strengths and mu-
tation rates. A: The average of the relative times at the tips (assuming the first sample is at time
0) in the simulated trees. B: The average of pairwise absolute difference of the relative times at the
tips in the simulated trees. The plots are grouped by mutation rates. There are 100 datasets for each
parameter setting.
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Figure 5: The sensitivity of CNETML to initial mutation rates when jointly estimating tree topology,
node ages, and mutation rates on data simulated with different temporal signal strengths and mutation
rates. A-C: The accuracy of tree inference under different initial mutation rates. D: The accuracy of
mutation rate estimation under different initial mutation rates.
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