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Abstract
Alzheimer’s disease (AD) is the most common neurological disease, which is
associated with gradual memory loss and correlated with synaptic hyperactiv-
ity and abnormal oscillatory rhythmic brain activity that precedes phenotypic
alterations and is partly responsible for the spread of the disease pathology.
Synaptic hyperactivity is thought to be because of alteration in the homeostasis
of phasic and tonic synaptic inhibition, which is orchestrated by the GABAA

inhibitory system, encompassing subclasses of interneurons and GABAA

receptors, which play a vital role in cognitive functions, including learning and
memory. Furthermore, the extracellular matrix, the perineuronal nets (PNNs)
which often go unnoticed in considerations of AD pathology, encapsulate the
inhibitory cells and neurites in critical brain regions and have recently come
under the light for their crucial role in synaptic stabilisation and excitatory-
inhibitory balance and when disrupted, serve as a potential trigger for
AD-associated synaptic imbalance. Therefore, in this review, we summarise
the current understanding of the selective vulnerability of distinct interneuron
subtypes, their synaptic and extrasynaptic GABAAR subtypes as well as the
changes in PNNs in AD, detailing their contribution to the mechanisms of
disease development. We aim to highlight how seemingly unique malfunction
in each component of the interneuronal GABA inhibitory system can be tied
together to result in critical circuit dysfunction, leading to the irreversible
symptomatic damage observed in AD.
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1 | AN OVERVIEW OF ALZHEIMER’S
DISEASE AND NETWORK
DYSFUNCTION

Alzheimer’s disease (AD) is the most common form of
dementia and neurodegenerative condition in humans,
with close to two-thirds of all patients diagnosed with
dementia being attributed to the onset of the disorder [1].
The cellular hallmarks of AD including, increased levels
of both amyloid β (Aβ) deposition and neurofibrillary
tangle formation, play an important function in activat-
ing neuroprotective mechanisms originating from both

microglia and astrocytes, which after a certain point,
begin to contribute towards the development of the path-
ogenesis associated with AD [2, 3]. A consistent pheno-
type of AD that spans from human studies to various
rodent models of AD is the abnormal synaptic hyperexci-
tation preceding phenotypic alteration of the disease,
which has been noted as a relevant therapeutic target
[4–6]. Although this hyperactivity has been shown to
originate in brain regions such as the lateral entorhinal
cortex, which makes synaptic connections with the hippo-
campus, involved in factual memory storage and retrieval
and is significantly affected in AD, it has been suggested
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that AD-related cortical neurodegeneration is associated
with the spread of this over-excitation that propagates
the pathology to other cortical regions [5, 7, 8]. This is
consistent with various in vitro and in vivo models of
AD, demonstrating that increased neuronal activity stim-
ulates the release of the microtubule-associated protein
tau, which further enhances tau pathology [9, 10], as well
as augmentation of Aβ depositions from presynaptic ter-
minals [11]. Thus, there is increasing evidence to suggest
abnormal proteins, Aβ and tau to be released/transferred
within abnormal hyperactive synaptic circuits.

The dysfunctional inhibitory circuitry and its recep-
tors has an emerging role in underlying the increased neu-
ronal activity, which will take us a step closer to
detecting the earliest stages of synaptic dysfunction in
AD, permitting the development of novel early-stage
therapeutic interventions to stop disease progression.

2 | INHIBITORY INTERNEURON
SUBTYPES AND THEIR FATE IN AD

Pyramidal cells are the most abundant neurons of the
neocortex, comprising �80%–90% of the entire neuronal
population. Interneurons containing the synthesising
enzyme glutamic acid decarboxylase (GAD) for the neu-
rotransmitter γ-aminobutyric acid (GABA) constitute
�10%–20% of the neurons. The pyramidal cells are a rel-
atively homogenous group when compared to interneu-
rons, and, as such, have been classified based upon a
wide range of criteria [12]. While each interneuron can
perhaps be thought of as being unique, similarities in
characteristics allow for the sorting of interneurons into
groups. Interneurons may vary in their neuroanatomical,
electrophysiological and molecular properties and fire at
distinct times during network oscillations in a cell-type-
specific manner. Each interneuron sub-type innervates
the somata, dendrites and axon initial segments of pyra-
midal cells to regulate their excitability and modulate the
net neuronal output. Interneurons are also intercon-
nected, where they innervate other interneurons, thus
forming a dense and complex inhibitory network which is
necessary for the generation of synchronised activity of
large neuronal populations. This synchronous activity
generates oscillations of varying frequency, associated
with the execution of various hippocampal tasks [13–15].

Classifying interneurons enables groups of cells with
similar properties to be linked to functional activity and
allows for comparisons to be made from different studies;
one particularly useful clarification of inhibitory cells is
the expression of molecular markers that may be used to
identify subgroups of cortical interneurons [12, 16]. In
addition to their primary neurotransmitter, interneurons
within the cortical regions can express neuropeptides such
as cholecystokinin (CCK), somatostatin (SOM), vasoac-
tive intestinal peptide (VIP) and neuropeptide Y (NPY).
They may also contain the calcium-binding proteins

calbindin D28k (CBD), calretinin (CR) and parvalbumin
(PV). These and additional proteins can be used to cate-
gorise interneuronal cells. Here, we will focus on the fate
of inhibitory circuity and interneurons in AD, according
to their neurochemistry.

2.1 | Temporal and spatial resilience of Ca2+
binding PV- and CR-expressing interneurons
during AD pathogenesis

PV and CR expression can be found in sub-classes of
interneurons, predominantly neocortical basket and
chandelier cells, whilst the hippocampus contains a larger
variety of PV+ interneurons including axo-axonic, bistra-
tified and oriens-lacunosum moleculare cells [17, 18].
Typically, PV-expressing basket cells display the fastest-
spiking biophysical properties [19] and make synaptic
contacts on postsynaptic cells proximally [20], where they
have powerful inhibitory effects mediated via specific α1
subunit-containing inhibitory GABAA receptors [21].
Fast-spiking PV interneuron dysfunction has been associ-
ated with a number of different neurological diseases
including AD and various other forms of dementia as
well as psychotic disorders including schizophrenia and
depression [22]. Cells expressing this calcium-binding
protein are also reported to be either preserved, increased
or decreased, depending on the cortical region reported
in various models of AD from early and late stages of the
disease [23–27], which could be associated with calcium
homeostasis.

Any decrement in PV-expressing interneurons in AD
looks to be a process specific to the dorsal entorhinal cor-
tex, which plays a vital function in the storage of episodic
and long-term memory, alongside the maintenance of
crucial cognitive functions in the murine brain. The loss
of PV interneurons here specifically, would cause hyper-
excitability in pyramidal cells, leading to neuronal necro-
sis and a loss of potential summation [28].

We have shown a selective regional loss of PV-
expressing cells that correlated with early-stage hyperac-
tivity in a mouse AD model, specifically, there is a loss of
PV cells in early AD in the lateral entorhinal cortex, but
in CA1, PV cells remain unchanged until later stages of
the disease [7]. Similar results have recently been reported
in a study conducted by Umeda et al. [29] who reported a
loss of PV expression in GABAergic interneurons and to
amyloid precursor protein [17] impairment specifically in
the dentate gyrus of mice provided with the E693Δ
(Osaka) mutation, where the study found a significant
reduction in both GAD67 and PV-expression within the
dentate gyrus as well as the entorhinal cortex (although
the PV depletion at this particular area was non-signifi-
cant). Under these circumstances, the loss of function of
PV cells was attributed to synaptic irregularities [30] in
mouse homozygotes as early as 4 months. Studies have
also shown that this phenomenon may not be specific to
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AD, since many similar neurological and psychiatric dis-
orders including schizophrenia and autism have been
reported to have a significant reduction in GAD65/67
expression located at the synaptic terminals of cerebellar
PV+ neurones [31–33]. Although the pathology of each
disease is distinctively unique, they do share certain char-
acteristics, including the accumulation of detrimental
proteins and the loss of neurons in particular positions of
the brain, suggesting that the mechanism of neuronal cell
death may be related in each condition [34]. One interest-
ing theory which attempts to explain the loss of function-
ality in PV+ interneurons present in the CA1, EC and
NC regions, is referred to as the Aβ ion channel hypothe-
sis. This postulates that the build-up of external Aβ senile
plaques will eventually conclude with the integration of
amyloid plaques into the neuronal membrane [35]. Once
integrated into the cell membrane, the plaques are made
permeable to cations, including Ca2+, which precedes
oxidative stress and disturbed energy metabolism [36].
Evidence from this investigation supports certain claims
made by this theory, since the largest accumulation of Aβ
plaques in post-phenotypic APPNL-F/NL-F mice can be
found at the boundary between the neocortex and the
dorsal entorhinal cortex. Likewise, a study carried out by
Garcia-Marin et al. [37] found that most diminished
GABA terminals were found to be adjacent to Aβ pla-
ques, which supports the statement that Aβ plaque accu-
mulation directly initiates cellular dysfunction in patients
affected by AD. By applying this theory to our own find-
ings, a valid argument can be made that Aβ plaques are
directly responsible for initiating PV+ cell neurodegenera-
tion by possibly allowing cells to become more permeable
to Ca2+, as both the dorsal entorhinal cortex and neocor-
tex are correlated with a loss of neuronal function whilst
neuronal cell deficiency can be found in the dorsal ento-
rhinal cortex.

The CR-containing interneurons are a major part of
the dis-inhibitory network governing other inhibitory
cells [38]. In contrast to PV-expressing interneurons, have
shown using a second-generation knock-in APP mouse
model, that CR interneurons in AD are preserved
anatomically and functionally, despite the presence of
post-phenotypic alterations, that is, the presence of neu-
roinflammation and pathological Aβ protein aggregation
[39]. This specific resilience is not just limited to cells, in
fact some regions like the presubiculum, also show
unique ‘preserved’ morphology with an intact functional
profile [40, 41].

In normal conditions, Ca2+ is able to regulate the cel-
lular membrane properties via voltage-gated Ca2+ chan-
nels and maintains homeostasis with other ions [42].
However, cellular membranes in AD can be altered by
Aβ, which causes increasing Ca2+ influx and Ca2+-
mediated excitotoxicity [43]. Studies have reported that
interneurons with calcium-binding proteins such as CR
might overcome the excitotoxicity induced by increasing
intracellular Ca2+ concentration [44], whereas interneu-
rons without calcium-binding proteins but expressing

neurotransmitters like CCK and SST are more likely to
degenerate in AD [25].

2.2 | Neuropeptide CCK- and SST-expressing
inhibitory circuitries are also vulnerable to
degeneration in AD

Neuropeptide CCK- and SST-expressing inhibitory inter-
neurons display an adapting firing pattern [15], prefer to
contact postsynaptic partners on proximal and distal den-
drites and are responsible for fine-tuning local circuitry
mediated via α2/3-subunit-containing GABAA recep-
tors [21].

We and others have shown that the CCK and SST
sub-classes of interneurons are particularly vulnerable to
neurodegeneration, as they are intrinsically hyperactive
in the early stages of AD, and that this hyperexcitability
leads to hypertoxicity [45], which is linked to infiltration
of Aβ peptides [39, 46, 47]. However, whether the hyper-
excitability of these cells results in Aβ production or
whether Aβ infiltration in the cells results in the hyperex-
cited state is yet to be fully explored.

What makes these cells vulnerable to degeneration in
AD could be linked to common cleavage mechanisms of
the peptides in combination with toxic soluble Aβ infiltra-
tion that triggers the aggregation and degradation of Aβ,
resulting in a high level of intracellular Aβ. For example,
the SST neuropeptide is known as ‘amyloidogenic’,
because similar cleavage processes for the formation of
SST and Aβ formation from APP exist, and it is this, that
is thought to contribute to the mechanisms by which SST
cells degenerate, as the similar cleavage mechanisms could
facilitate interactions between the two peptides before they
are released from cells [48]. As a result, the normal func-
tion of SST and CCK cells is destroyed, with an outcome
of cell death. Moreover, Aβ accumulation has been shown
to preferentially target GABA-producing interneurons
[49]. With the important role of these interneurons in learn-
ing and memory, and the pre-existing association of Aβ
plaque deposits and neuronal death, a reduction in the
density of CCK-positive neurons would be anticipated in
knock-in AD model mice compared to wild-type. The
interaction between the CCK-driven system and glutama-
tergic system, and its role in protecting neurons against the
toxic effects of glutamate [50] suggests that loss of CCK-
positive interneurons may also be responsible, at least in
part, for the progressive neurodegeneration observed in
AD, by potentiating neuronal cell death by excitotoxicity.

3 | ALTERATION IN GABAA
RECEPTOR EXPRESSION DURING THE
PATHOGENESIS OF AD

GABA receptors are heterooligomeric chloride channels
in the central nervous system gated by GABA. The chan-
nel is made up of five subunits selected from a pool of
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eight subunits with subclasses making it a total of
19 available subunit isoforms identified in the mamma-
lian species namely, 6α, 3β, 3γ, δ, ε, π, θ and 3ρ [51] with
a 20%–40% sequence identity among them [52, 53]. The
availability of 19 isoforms and thus multiple conforma-
tions make this receptor extremely diverse with unique
electrophysiological and pharmacological properties.

Three fundamental types of GABA receptors have
been identified, GABAA, GABAB and GABAC recep-
tors, although GABAC receptors are now considered part
of GABAA receptors made up of only ρ subunits [54] and
are mostly expressed in the retina [55]. While GABAA

and GABAC channels are ligand-gated ion channels,
GABAB receptors are exclusively made up of G-protein-
coupled metabotropic receptors. The most common
GABAA receptor subtype is the α1–3, β1–3 and γ2 recep-
tor, located synaptically. After binding with GABA, the
chloride channel opens for milliseconds thus hyperpolar-
izing the cell membrane and preventing action potential
transmission. This transient fast-responding inhibition is
also called phasic inhibition [56]. The subunits δ, ε and π
replace the γ subunit in extrasynaptically located GABA
receptors [57, 58]. Extrasynaptic receptors mediate a
large proportion of the total GABA-mediated inhibition
and are distinguished from the synaptic receptors through
their longer-lasting chloride currents spread over a large
area such as the neuron cell body as opposed to currents
lasting milliseconds at single synapses [59]. This type of
slow continuous inhibition, activated through ambient
levels of GABA, is also called tonic inhibition. Tonic
inhibition is constant over time and space and regulates a
huge area, possibly a network of neurons rather than just
a single cell, as opposed to phasic inhibition which relates
to rapid synchronous opening of a relatively small num-
ber of GABA channels on the postsynaptic membrane
within the synaptic cleft thus limiting the inhibition in
time and space, in response to an action potential at a
certain synapse [60].

GABA is a key player in AD pathogenesis, as multi-
ple studies have reported lower GABA levels in the CSF
and temporal cortex of AD patients, suggesting a core
inhibitory dysfunction [61, 62]. In fact, almost all compo-
nents of the GABAergic system in the AD brain have
been shown to be negatively affected, such as GABA
levels, expression levels of GABA receptors and the
GABAergic neural system [63]. At the molecular level,
alterations in the GABA receptor subunit composition
and expression might be the puzzle piece between AD
pathogenesis and GABAergic malfunction, connecting it
all together.

3.1 | Synaptic GABAARs change in AD

The subunit composition of GABAA receptors is known
to be severely altered in AD [63–66]. However, subunits
affected in AD and their expression profile remains a

controversial topic. Studies show reduced expression of
α1, α2, α4, δ and β2 mRNA in AD prefrontal cortex [67]
and of α1, α5 and β3 mRNA in the hippocampus [66,
68]. Reduced expression of α1, α2, α5, β2, β3 and γ2
mRNA transcripts was observed in AD brains associated
with decreased GABA currents in the temporal cortex
[69]. Furthermore, hippocampal regions severely affected
by plaques and tangles show diminished immunoreactiv-
ity for α1 and γ2, whereas an enhanced regulation of γ1
or γ3 is observed in the neuropil [70].

Tracking GABAA subunit changes with neurofibril-
lary tangle (NFT) severity in the AD hippocampus
revealed a substantial decrease in α1 protein levels and α1
and β3 mRNA levels, while β2 and β3 protein levels were
more or less preserved in Braak stages five and six [68,
71]. Further studies have reported a decrease in protein
and mRNA levels of the α5 subunit [65, 72] but no
change in β1 protein levels with NFT progression [65].
This suggests that during NFT formation and progres-
sion, each subunit is impacted differently and undergoes
unique consequences. Interestingly, cells immunopositive
for the γ subunit were found to be immunonegative for
NFT [70] which could point towards their protective role
for cells or their loss precedes NFT formation. As dis-
cussed previously, a working hypothesis suggests that the
loss of local inhibitory GABAergic networks causes exci-
totoxicity because of excessive Ca2+ influx leading to
hyperphosphorylation of tau causing formation and
aggregation into tangles [73, 74].

α1 and α5 have also been associated with sex-linked
changes, with strong anxiolytic-like effects and loss of
recognition memory observed in male APPNL-G-F mice
compared to females and wild-type animals in response
to low doses of diazepam [75]. This was attributed to the
upregulation of α1 and α5 transcripts in the hippocam-
pus of these animals [75] as diazepam’s sedative action is
mediated through the α1 subunit [76, 77] and the α5 sub-
unit is known to develop tolerance to diazepam as evi-
denced in α5-GABAA receptor mutant mice [78]. This is
supported in humans by another study reporting a prom-
inent increase in α1 and α5 expression in the CA1 and
CA3 regions of AD patients [64]. Kwakowsky et al. per-
formed a comprehensive study to show cell-layer specific
alterations in α1-3, β1-2 and γ2 in the hippocampus,
entorhinal cortex and superior temporal gyrus of AD
brain tissue. They found upregulated α1 in the CA3
region and dentate gyrus but a decrease in CA1 and
entorhinal cortex. A similar trend was also observed with
β2 and γ2 subunits in these regions. α3 and β1 were
found to be well preserved in all regions, while α2 was
upregulated in stratum oriens of CA1-3, radiatum of
CA2-3 and displayed reduced levels in CA1 stratum pyr-
amidale in the AD cases [64]. Moreover, an increase in
α1 labelling was mostly seen on interneuron processes
and on mossy fibres projecting to the polymorphic layer
of the DG in AD cases [79, 80]. This upregulation in the
DG has been shown to prevent rats from acquiring
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epilepsy, suggesting this increase in AD might be a com-
pensatory mechanism to the developed excitotoxicity
[81]. Furthermore, it has been shown in a mouse model
of epilepsy that the loss of GABAergic terminals under-
lies the abnormal expression of GABAA receptor sub-
units on DG granule cell dendrites and postsynaptic
neurons that contributes to neuronal hyperexcitability
[81]. Also, β3 subunit expression was found to be
decreased in stratum oriens of CA1, DG and the subicu-
lum [64] while β2 subunit expression was upregulated in
the CA2-3 regions in the human AD brain tissue [64,
68, 82]. γ2 was upregulated in all hippocampal regions
and the subiculum in AD [64]. In contrast, a decrease in
mRNA content of α1, and γ2 and an increase in α2, β1,
γ1 were recorded in AD human temporal cortex samples
[63] and this reduction was more prominent in areas
severely affected by plaques and tangles in the neuropil
[63, 68]. Thus, these changes in the AD brain point
towards not only compensatory mechanisms in the CNS,
but they also indicate that molecular reorganisation of
defined neuronal circuitry might be at play to restabilise
the abnormal GABAergic inhibitory tone in the AD net-
work. The physiological consequences of such alterations
are still unknown; however, they could be implicated in
cognitive and behavioural changes and evidence for these
changes can be gathered from knockout studies in ani-
mal models. It was reported that a γ2 subunit heterozy-
gous knockout mouse shows anxiety, often characterised
by explicit memory bias for threat signs and harm avoid-
ance behaviour, thus showing enhanced sensitivity for
negative associations [83]. They also showed a
depression-like phenotype [84]. β3 is essential for admin-
istering the effects of general anaesthesia [85] and an
α2β3γ2 combination of subunits mediates anxiolysis [76].
Thus, alterations in these subunits can cause defects in
behavioural phenotypes, especially those related to
depression, anxiety, amnesia and cognitive disorders as
well as altering the response to drugs that target these
phenotypes such as benzodiazepines. It is thus no wonder
that up to 98% of AD patients experience behavioural
and psychological symptoms including anxiety, halluci-
nations, agitation, sleep disturbances, aggression and
delusions [86, 87]. Besides behavioural changes, func-
tional alterations have also been reported in AD. Micro-
transplanted cell membranes of human temporal cortices
of AD patients showed a reduction in GABA current
amplitude, more profound in the younger cases [63]. This
was consistent with younger patients suffering from
major cortical atrophy hypometabolism and greater cog-
nitive impairment in early onset AD patients [88, 89].
Additionally, faster desensitisation and lower GABA
sensitivity was observed in AD cases which coincided
with an increase in α2 and γ1 since they are less sensitive
to GABA [90, 91] and in the β1 subunit, which is known
to accelerate desensitisation of inhibitory postsynaptic
currents in reticular thalamic neurons [92].

3.2 | Extrasynaptic GABAA receptor
subtypes in AD

Beyond the synaptic fast-acting receptors, a massive por-
tion of the total GABA-mediated inhibition is mediated
via extrasynaptic receptors; in fact, they participate in
more than 90% of the GABA-mediated transmission [93].
These receptors have also been shown to dynamically
alter cell inhibition by sensing the presynaptic GABA
levels in the thalamus [94]. These receptors show little
desensitisation at saturated levels of GABA, have acute
sensitivity to GABA and low maximum open state prob-
ability, thus they may remain active relatively longer than
the phasic γ receptors [59, 95]. Further, tonic inhibition is
implicated in cognitive functions (Lee et al. 2016), neuro-
genesis and synaptic plasticity [96]. Extrasynaptic
GABAA receptors are an important element in the fabric
of neuronal excitability and therefore, early modulation
of these receptors could be considered an effective treat-
ment for AD-mediated hyperexcitability and excitotoxi-
city. Although GABA appears to be only a partial
agonist of extrasynaptic receptors, (as they show low effi-
cacy in the presence of GABA with IMAX values three-
fold lower than the γ-containing receptors), higher
efficacy can be achieved with compounds such as THIP,
gaboxadol, muscimol and neurosteroids [97]. The sub-
units δ, α6, α5, ρ, π are found exclusively extrasynapti-
cally and affect slow continuous inhibition in the CNS
[98]. Of the extrasynaptic receptor subunits, the δ subunit
predominantly forms complexes with the α6 or α4 subu-
nit, α4βδ receptors have been localised to thalamic relay
neurons, dentate gyrus, striatal medium spiny neurons,
neocortical pyramidal cells [98] while the α6βδ complex
has been mapped to cerebellar granule cells [99]. The δ
subunit was found to be expressed in rosette-like inhibi-
tory cells such as the olfactory bulb, periglomerular cells,
granule cells of the cerebellar cortex and thalamocortical
neurons [53], thus the long channel open times coupled
with less desensitisation could lead to more sophisticated
and efficient inhibitory networks in these cells. Mutations
in the δ subunit have been associated with seizures in ani-
mal models and human patients [100]. Downregulation
of the δ subunit has also been reported in the middle tem-
poral gyrus tissue of AD patients studied in vitro, con-
tributing to excitatory-inhibitory imbalance and
cognitive impairment [101]. Moreover, δ receptors along
with other extrasynaptic receptors promote network
shunting and reduce seizure susceptibility. Slow recovery
of GABA currents shown by these receptors is important
for preventing seizures and their downregulation in the
dentate gyrus has been shown to produce seizure-like
events [102]. Thus, the silent epileptic activity or the
development of seizures in AD patients could be attrib-
uted to downregulation of δ subunit-containing GABAA

receptors, but further research is needed to elucidate the
mechanisms involved.
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As for α5, an increase in expression was reported in
the CA1 region and downregulation in the superior
temporal gyrus [64]. The α5 subunit plays a role in tonic
inhibition in the CNS, has an active role in
hippocampus-dependent learning and memory [103–108],
generates gamma oscillations and regulates network
excitability within the hippocampus [109–111]. While
some studies have reported a decrease in α5 subunit
mRNA and protein expression in the CA1-2 regions
[112, 113], other reports show preservation of the subunit
in the AD hippocampus [64, 114], subiculum, entorhinal
cortex and superior temporal gyrus [64], but a significant
increase in the stratum oriens and pyramidale of the CA1.
As a consequence, other subunits localised with α5 such
as β2 and γ2 were also found to be preserved/upregulated
in these regions [64]. Targeting these alterations might
show some promising results, as mice with an α5 point
mutation or knockout, show improved cognitive perfor-
mance [104, 105]. Additionally, using inverse agonists to
block α5-containing GABAA receptors shows improved
cognition in rodents [106, 115], primates and humans
[116]. Hence, evidence suggests that although compensa-
tory in nature, upregulation might not be a positive fea-
ture in the case of the α5 subunit in AD.

Moreover, targeting GABAA receptors has shown
some interesting and promising results. Activating
GABAA receptors with a positive allosteric modulator in
an AD mouse model for 8 weeks, decreased pathological
features of AD, including Aβ production, and improved
cognitive function [117]. Thus, GABAA receptors are
potential research and therapeutic targets in AD and are
a key target for a variety of neuropsychiatric disorders
such as epilepsy and anxiety [118] as well as a symptom-
atic target for neurodegenerative diseases such as AD.

4 | PERINEURONAL NETS (PNNS) AND
PV INTERNEURONS

PNNs, formed during development, are condensed chon-
droitin sulphate-glycosaminoglycan (CS-GAG)-
containing matrix structures in the brain, connected to a
backbone of hyaluronan, and stabilised by link protein
(HAPLN1) and tenascin-R. PNNs form part of the extra-
cellular matrix (ECM), important for providing anchor-
age for nerve cells and glial cells and for contributing to
normal brain communication and physiology in the adult
brain [119]. Development of PNNs is also classically
associated with the closure of the so-called ‘critical
period’ of postnatal development during which neuronal
circuits are highly plastic [120–124]. PNNs are built in an
activity-dependent manner, from components originating
from neurons, and also from surrounding astrocytes and
oligodendrocytes and are continually remodelled by
secreted matrix metalloproteases (MMPs) [125]. The
expression of PNNs appears to vary between and within
different brain areas, including the cortex, hippocampus,
amygdala, hypothalamus, basal ganglia, and cerebellum.

In the cortex, they are preferentially found around the
cell bodies and proximal dendrites of a population of
fast-spiking (non-adapting) GABAergic inhibitory inter-
neurons containing the calcium-binding protein PV, that
are important in excitatory/inhibitory balance and learn-
ing and memory [126]; (see also [127] for neurons in the
medial septum/diagonal band complex). PV-expressing
interneurons are known to be highly vulnerable to
stressors [128]. PNNs are thought to stabilise glutamater-
gic input to these neurons; thus, any disruption of PNN
integrity would be expected to reduce PV+ cell excitabil-
ity (and GABA release) and consequently increase target
pyramidal cell excitability as seen in AD. In the hippo-
campus, PNNs also protect and control the of excitability
of PV+ nerve cells, particularly in the hippocampal CA2
region [129, 130]. Interestingly, atypical PNNs in the
CA2 of BTBR mice showing autistic-like behaviour were
recently shown to be associated with social memory dys-
function in this model [131]. Also, [132] recently reported
that social memory deficits in a mouse model of AD
(Tg2576) were associated with disrupted PNNs around
PV+ cells in CA2 and these memory deficits and changes
in PNN levels could be prevented by local injection of
neuregulin-1 (NRG-1) (an important factor for PV cell
maturation), suggesting that protecting PV cell integrity
in this area may be important for retaining social mem-
ory in AD (see also [133], who suggested general target-
ing of PNNs for the treatment of impaired memory).

Being negatively charged, PNNs are also considered
to form a protective polyanionic microenvironment
around PV neurons, thus effectively acting as a cation
buffer to facilitate their fast-spiking properties [134].
They also protect them from detrimental oxidative stress
[135]. Histologically, PNNs can be readily identified in
brain sections by immunolabelling with Wisteria flori-
bunda agglutinin (WFA) lectin, which specifically binds
to chondroitin sulphate proteoglycans (CSPGs) (see
[136, 137]).

4.1 | PNNs are neuroprotective and may be
disrupted in AD

PNNs are not only involved in regulating neuronal activ-
ity and plasticity, but also have a vital neuroprotective
function. There is evidence that dysfunction in PNN
structure contributes to neurological brain disorders such
schizophrenia [138–140] bipolar disorder [141], epilepsy,
[142], Parkinson’s disease [143], as well as AD [136,
144, 145]; for reviews, see [146, 147]. There is therefore
much interest in devising novel therapeutic approaches
that target PNNs as a means of maintaining their role to
protect normal brain physiology and overcome brain dys-
function [148].

From the available literature, the association between
PNNs and AD appears to be complex and contradictory
(see [149]). In fact, the different components of the ECM
may have different roles to play in AD neuropathology
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[150]. Amyloid-beta (Aβ) precursor protein [17] is
involved in the formation of amyloid plaques, and tau
protein is involved in the formation of neurofibrillary
tangles. It has been suggested that PNNs provide some
degree of neuroprotection from tau pathology [151] and
moreover restrict tau protein dispersion and neuronal
internalisation [152]. Since interneurons are completely
surrounded by PNNs, they could also provide an effec-
tive protective physical barrier against Aβ neurotoxic-
ity [153].

There is increasing evidence from rodent AD models
and post-mortem human brain tissue studies, that PNNs
are extensively disrupted in AD [154]; however, aggrecan,
one key component of the PNN matrix, is present in
human dense-core Aβ plaques (perhaps as a neuroprotec-
tive mechanism), and consequently, it has been shown in
human cortical and subcortical AD brain tissue, that neu-
rons associated with aggrecan-based PNNs are somehow
resistant to tau pathology [151]. Moreover, it is believed
that microglia activated by neuroinflammation
(by releasing ECM-degrading proteases) [147] directly
contribute to the loss of PNNs. Interestingly, aggrecan-
based PNNs were claimed to be unaffected in the brains
of a transgenic mouse (Tg2576) model of AD [155]. Like-
wise, areas of the cortex that are rich in ECM chondroi-
tin sulphate proteoglycans are also less disrupted in
human AD tissue [136, 156]. Recently showed using the
5xFAD mouse model that chronic pharmacological
depletion of microglia with colony-stimulating factor
1 receptor inhibitor treatment (PLX5622) prevented the
loss of PNNs in their model. This model is of particular
interest, as it exhibits extensive Aβ plaque deposits and
gliosis from 3 months of age, in the cortex and particu-
larly, the hippocampal subiculum. The loss of PNNs has
an important consequence in altering the firing behaviour
of the PV+ interneurons in the areas affected, leading to
local network hyperexcitability, increased seizure propen-
sity and ultimately, cognitive deficits characteristic of
AD [157, 158]; see also: [159–162]. Whether PNNs are
affected in human AD, however, is controversial, possi-
bly because of procedural processing differences of post-
mortem tissue. [136] reported in their study, that AD
patient brains showed significantly decreased PNN num-
bers and more dense-core Aβ plaques in the cortex com-
pared with non-demented control brains. Overall, their
study concluded that the deleterious effects of plaque
accumulation in AD on PNN integrity are most likely
mediated by neuroinflammation-activated microglia. An
alternative view was recently presented by Scarlett et al.
[163], who suggested that PNNs are not lost but in fact
remodelled in AD and other neurocognitive disorders.

4.2 | PNN disruption in AD may affect PV
cell electrophysiology

Some idea of how the disruption loss of PNNs could
change the intrinsic excitability and firing properties of

the enshrouded PV+ fast-spiking interneurons can be
gleaned from various specific studies, not immediately
related to AD. Of particular relevance, a recent report
by Stevens et al. [164] showed that in the mouse fore-
brain of Ank1F/F; Dlx5/6-Cre mice, the loss of neuronal
intracellular Ankyrin-R (AnkR) (that is highly enriched
in PV+ fast-spiking interneurons), was associated with
a reduction and disruption of PNNs together with a
dramatic reduction in neuronal Kv3.1b (delayed
rectifier-type) K+ channels. As a consequence, the
action potential properties of the PV+ neurons were
affected and also a strong reduction in the amplitudes
of action potentials towards the end of spike trains.
Ankyrin-R is a member of a family of scaffolding pro-
teins that anchor specific ion channels, ion exchangers
and ion transporters in the plasma membrane, and is
encoded by the ANK1 gene.

Interestingly, hypermethylation and reduced expres-
sion of cortical ANK1 is associated with AD. Several
studies in AD patients have described neuropathology-
associated DNA hypermethylation of ANK1 [165–168];
however, whether this hypermethylation for AnkR pro-
tein expression (which apparently can be observed in pre-
symptomatic subjects) has functional consequences for
AD development is currently unknown. If the hypothesis
is that dysregulation of ANK1, leading to reduced AnkR
expression, PNN integrity and Kv3.1b channel density in
PV+ cells, could be a critical pathomechanism in AD,
then future strategies aimed at upregulating neuronal
AnkR protein levels or PNNs could prove therapeutically
beneficial.

A clue to how PNNs can maintain the fast-firing char-
acteristics of PV interneurons is provided by the study of
[169] conducted in mouse cortical brain slices, whereby sei-
zures induced by an implanted cranial tumour (glioma)
were accompanied by degradation of (PNNs) surrounding
peritumoral fast-spiking interneurons (FSNs), resulting in
a reduced firing rate of remaining cells. It was shown that
the measured membrane capacitance of the FSNs was sig-
nificantly increased, suggesting that PNNs have an addi-
tional physiological role as an electrostatic insulator, in
reducing interneuronal membrane capacitance under nor-
mal conditions. This allows the cells to characteristically
fire action potentials at high frequencies (100–800 Hz) to
maintain local GABAergic inhibition. Local degradation
of the PNNs was suggested to be because of tumour-
released proteolytic enzymes (MMPs), and showed that
protection of the PNNs by inhibition of this proteolytic
activity using the MMP inhibitor GM6001 (Ilomastat)
restored normal excitability of the FSNs. This finding has
some important potential therapeutic benefits for AD and
possibly other neurodegenerative/neurodevelopmental dis-
eases involving interneuronal dysfunction and excitatory/
inhibitory imbalance.

Experimentally, controlled degradation of PNNs in
the brain and confirmation of their relevance in main-
taining the integrity and function of PV interneurons
can also be accomplished by injecting a bacterial-
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F I GURE 1 (A) Schematic overview of perisomatic and dendritic inhibitory interneurons in the hippocampal CA1 subfields that show specific
regional and temporal vulnerability in AD. Examples represented are: CR interneurons (pink), CCK basket and CCK Schaffer collateral-associated
cells (red), PV basket, PV axo-axonic, PV oriens/lacunosum moleculare and PV bistratified cells (yellow), and SST oriens/lacunosum moleculare cells
(violet) with respect to CA1 subfields (dotted lines). Axonal locations are shown with respect to pyramidal cells shown in blue. CA1 layers: SLM
(stratum lacunosum moleculare), SR (stratum radiatum), SP (stratum pyramidale) and SO (stratum oriens). PV cells are shown enwrapped in PNNs
(green). PNNs are known to be disrupted in AD. Connections do not represent the entire inhibitory network of CA1. (B) Schematic shows suggested
alterations occurring at molecular level in AD. Neuroinflammation causes active microglia (pink) to release proteases that target PNNs, destabilising
PV cells. This instability manifests in reduced excitability (therefore, less GABA release), increased membrane capacitance and tau protein dispersion
as well as internalisation. This leads to local network hyperexcitability, hypersynchrony, increased seizure propensity and cognitive deficits. Increased
and unregulated neuronal activity is implicated in tau release causing tau pathology which reciprocally affects Aβ deposition from presynaptic
terminals. Loss of PV cells as well as loss of the GABA synthetic enzyme GAD67 has been reported in AD. The external Aβ build-up integrates into
cell membranes bringing on cation permeability including Ca2+ which precedes oxidative stress and overall disturbed energy metabolism.
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derived degradative enzyme, chondroitinase ABC
(ChABC) directly into the brain; such protocols were
described recently by Tewari et al. [170], using in situ
brain slices prepared from the cerebral cortex of a
mouse model of glioma-associated epilepsy, allowing
the biophysical properties of the FSNs to be assessed
by patch-clamp recordings (see also [171]). Interest-
ingly, in two mouse AD models, ChABC injection was
able to restore two different types of memory [172] also
suggesting some possible therapeutic benefit from PNN
protection.

Searching for other possible channel defects in AD, in
the report by Verret et al. [158] using human amyloid pre-
cursor protein (hAPP) transgenic mice (which show key
features of human AD), network hypersynchrony was
present, associated with impaired PV cell function and
decreased levels of the PV interneuron-specific voltage-
gated sodium channel subunit Nav1.1. Restoring Nav1.1
expression levels in the hAPP mice recovered inhibitory
synaptic activity and AD symptomology (see also [173]).
By a similar token, specific Nav1.1 sodium channel acti-
vators have even been suggested to be of possible thera-
peutic potential for AD [174].

4.3 | Degradation of PNNs,
neuroinflammation and AD

In conclusion, we feel that there is now sufficient accu-
mulated positive evidence to link the degradation of
PNNs with neuroinflammation, microglial activation
and consequent changes in numbers and firing properties
of the enshrouded GABAergic PV+ interneurons in spe-
cific brain areas that are principally affected in
AD. Changes in the function of these interneurons ulti-
mately lead to an imbalance of inhibition onto principal
neurons in target areas, thus hyperexcitability and
spreading neurotoxicity. Experimentally, the up or down
manipulations of PNNs and the resultant observed
changes would seem to support this conclusion and more-
over bring to light some exciting new possibilities for
novel therapeutic interventions that are distinct from the
current symptomatic strategies based on enhancing resid-
ual cholinergic function (donepezil, galantamine and riv-
astigmine) or blanket inhibition of glutamate receptors
(memantine).

Just like GABA, the glutamatergic system, a major
excitatory network is severely impaired in AD. Both
GABA and glutamate neurotransmitter energetics are
maintained by oxidative glucose metabolism which is
reported to be reduced in mouse models and AD patients
affecting cognition and even adult neurogenesis [175,
176]. Readers are referred to some excellent reviews on
discussing the role of changes in disturbed glutamate
metabolism and its effect on the GABAergic system
[177, 178].

5 | CONCLUSION

In summary, in this review, we describe the selective spa-
tial and temporal vulnerability of the central inhibitory
system, including GABA interneurons, their receptors
and support structures during the pathogenesis of
AD. Figure 1A shows a schematic of some of the major
inhibitory interneurons found in the CA1 region of the
hippocampus, and also throughout various cortical
regions and their specific regional and temporal fate in
AD. There are still missing gaps in our understanding of
the status of the GABAA receptors served by all of the
interneurons represented during AD progression. The
schematic (Figure 1B) also represents our hypothesis on
the mechanisms of the Aβ/tau-associated cascade of
destruction that leads to the disruption of the PNNs and
consequent PV interneuron dysfunction. The specific vul-
nerability of subclasses of interneurons, associated with
their postsynaptic, and/or extrasynaptic GABAA recep-
tors and the PNNs have sparked recent interest, as they
may be the key to targeting specific therapies to halt/
prevent early and late-stage symptoms associated
with AD.

Finally, the fact that activated microglia and neuroin-
flammation per se may be fundamental in regulating
PNN structure, we suggest that it is the early onset of
neuroinflammation that needs to be primarily addressed
(perhaps by selectively activating intrinsic regulatory
[protective] neuronal pathways together with its causes
and possible prevention/modulation in the first instance,
if we are to achieve substantial changes in AD incidence
and outcome in future generations of AD sufferers.
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