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A B S T R A C T

The artificial intelligence (AI) revolution offers significant opportunities to capitalise on the growth of
digitalisation and has the potential to enable the ‘system of systems’ approach required in increasingly complex
infrastructure systems. This paper reviews the extent to which research in economic infrastructure sectors has
engaged with fields of AI, to investigate the specific AI methods chosen and the purposes to which they
have been applied both within and across sectors. Machine learning is found to dominate the research in this
field, with methods such as artificial neural networks, support vector machines, and random forests among
the most popular. The automated reasoning technique of fuzzy logic has also seen widespread use, due to its
ability to incorporate uncertainties in input variables. Across the infrastructure sectors of energy, water and
wastewater, transport, and telecommunications, the main purposes to which AI has been applied are network
provision, forecasting, routing, maintenance and security, and network quality management. The data-driven
nature of AI offers significant flexibility, and work has been conducted across a range of network sizes and at
different temporal and geographic scales. However, there remains a lack of integration of planning and policy
concerns, such as stakeholder engagement and quantitative feasibility assessment, and the majority of research
focuses on a specific type of infrastructure, with an absence of work beyond individual economic sectors.
To enable solutions to be implemented into real-world infrastructure systems, research will need to move
away from a siloed perspective and adopt a more interdisciplinary perspective that considers the increasing
interconnectedness of these systems.
1. Introduction

Artificial intelligence (AI) methods enable machines to learn and
infer from large volumes of data (Ertel, 2017). As infrastructure systems
become increasingly interconnected, complex and digitalised, AI will
be crucial in providing and maintaining services that ever-increasing
numbers of people depend upon every day (Luckey et al., 2021). How-
ever, as interest in AI continues to grow, research into its application
to infrastructure systems remains largely siloed. Most papers focus on
a specific problem in isolation, and the handful of review papers cover
either a specific subset of AI methods (Suganthi et al., 2015; Veres and
Moussa, 2019), or a specific infrastructure sector (Abduljabbar et al.,
2019). This review looks at the extent of research into the use of AI in
infrastructure systems, focusing on the economic infrastructure sectors
of energy, water and wastewater, transport, and telecommunications,
and the intersections between sectors. As interdependent systems, there
is a clear benefit to reviewing infrastructure networks as a whole,
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recognising areas of overlap such as the water–energy nexus, elec-
tric vehicles, and vehicular ad-hoc networks (VANETs), and common
challenges, such as supply and demand forecasting, inspection, and
maintenance. Not only does this review seek to ascertain which AI
techniques are popularly used in infrastructure systems, but to compare
the maturity and depth of research across systems, in the hope that
potential research gaps can be discovered, and potential solutions
informed by existing work in other fields.

2. Method

This paper adopts a systematic literature review approach in com-
bination with a snowballing literature review method proposed by
Wohlin (2014), which was applied to review papers or highly signif-
icant papers. Wohlin’s systematic literature review with snowballing
was chosen over a sole database search-based review due to the in-
terdisciplinary nature of the research area, which spans a range of sec-
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Table 1
AI terminology.

Artificial intelligence terms

Artificial intelligence Fuzzy logic
Artificial neural network Knowledge representation
Automated reasoning Machine learning
Autonomous robotics Natural language processing
Computer vision Ontology
Convolutional neural network Robotics
Deep learning Semantic web
Expert system

tors, making it challenging to formulate comprehensive search strings.
This helped to overcome the additional difficulty of creating precise
searches, with the risk of yielding many irrelevant or redundant papers
(Wnuk and Garrepalli, 2018).

The systematic selection of a tentative starting set of papers was
undertaken. Search terms are divided into two categories: AI terms and
infrastructure terms. AI terms cover the range of subtopics within the
field (Table 1). Infrastructure terms vary across systems, so these terms
can be subdivided into the infrastructure systems of transportation,
energy, water/wastewater and telecommunications (Table 2). These
terms were used for a primary search, the results of which informed
the purposes chosen for discussion later in this paper. To ensure the key
papers were covered for each purpose, a range of more general terms
pertaining to purpose were applied to multiple infrastructure sectors as
part of a secondary search (Table 3).

The reviewed papers were categorised by AI method, infrastructure
sector (or sectors), and purpose. Finally, an analysis framework, orig-
inally proposed by Sharifi for the assessment of smart city indicators
(Sharifi, 2019), was selected and expanded for critical analysis of the
selected papers. This enabled the literature to be evaluated against a
set of criteria designed to account for various elements of planning,
problem-solving, and implementation. A smart city framework was
chosen as the basis of this analysis as this represents a complex system
of interconnected sub-systems, spanning disciplines including engineer-
ing, governance, and politics. As infrastructure systems have both the
same interconnected structure and interdisciplinary nature, a smart city
perspective offers a solid foundation for analysis. Two further criteria
were added to the original framework: comparison and vulnerability.
The former covers the extent to which the reviewed work has compared
alternative approaches, and the latter is concerned with the ability of
the system to cope with failure. The inclusion of a comparison criterion
was deemed necessary in order to recognise the wide range of AI
models, particularly in machine learning. As linear systems, it is crucial
that consideration is given to the ability of infrastructure systems
to withstand failure events, justifying the addition of a vulnerability
criterion.

Initial searching combined each AI term with the sector-specific
infrastructure terms. An expert in telecommunication systems was con-
sulted in order to ensure domain-specific terminology was included.
Search strings combining multiple infrastructure sectors were also used,
to find papers covering overlaps in infrastructure sectors such as the
water–energy nexus. The results of this initial search informed the
infrastructure purpose terminology selected. In an additional step, the
purpose terms identified from the primary search results were then
used in a secondary search, where they were combined with AI terms
in order to account for key papers pertaining to specific applications.
Results were subject to title screening to ensure relevance. Further
exclusionary criteria were applied, which removed those not written in
English, those that fell outside of the scope of infrastructure systems,
or those that explored algorithms outside of machine learning models.
Papers were collated, and those concerned with the same infrastructure
and purpose were assessed, with factors considered including date of
publication, number of citations and number of comparative models

studied. Papers were also labelled to identify those that could be
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described as review papers. Review papers and the most relevant and
comprehensive of non-review papers were then subject to snowballing.
Title screening of results established relevance, and a secondary ab-
stract screening was sufficient to apply exclusion criteria in the majority
of cases. Where this was not the case, the full paper was assessed prior
to inclusion. Papers were screened by a number of criteria to ensure
quality. The final number of papers included in this review is 186, of
which 40 are considered to be review papers.

The 186 papers included in this review were published between
1991 and 2021. 83% of papers were published in the year 2014 or
later, with the publishing years of all papers shown in Fig. 1. Of the
186 selected for inclusion, 147 papers were published in journals, with
the remaining being conference papers. As shown in Fig. 2, 25 journals
contributed two or more papers to this review, comprising 93 papers
in total.

3. Artificial intelligence fields

Alan Turing proposed his ‘Turing test’ to offer an operational def-
inition of AI, stating that a truly intelligent system must be capable
of matching human cognitive performance to an extent that a human
interrogator cannot tell the different between human and machine
when interacting via a teletype system (Russell and Norvig, 2002). In a
‘total’ Turing test, perception and physical abilities are tested alongside
cognitive functioning. Each of the following components represents a
field of AI that help to attain one or more of the Turing test’s goals:

• knowledge representation, to store data
• automated reasoning, to infer and make use of conclusions from

the stored data
• machine learning, to identify patterns and modify behaviour
• computer vision, to perceive the environment
• robotics, to interact with the physical environment
• natural language processing, to communicate in human language

While these components can describe attributes of an ideal intelligent
computer system, they can also be considered topics in the field of AI
research, each concerned with techniques that contribute to an element
of system intelligence.

There is significant overlap between fields, with automated rea-
soning inherently dependent on the knowledge base it reasons from,
machine learning techniques – particularly convolutional neural net-
works – increasingly utilised in computer vision systems, and such
vision systems often integrated into intelligent robots. Models which in-
clude both a reasoning and machine learning element, such as adaptive
neuro-fuzzy inference systems (ANFIS), are also growing in use.

As the most widely adopted fields of AI in infrastructure research,
machine learning and computer vision methods are reviewed below.
The methods described in this section are not a comprehensive review
of all techniques in machine learning and computer vision but rather
the most common methods found in the body of work reviewed, as to
provide context for further discussion.

3.1. Machine learning

Machine learning is the process by which machines, able to access
the necessary knowledge, can modify and adapt their actions to learn
independently how to solve problems (Marsland, 2009). There are
a large range of machine learning models, which generally utilise
three widely recognised types of learning: supervised, unsupervised and
reinforcement. Learning styles typically address how, and the extent to
which, models are trained.

3.1.1. Learning types

Supervised Learning
In this type of learning, the system is trained using a set of examples

with the desired responses provided (Li et al., 2017). Given sufficient

training, which can take hours, days, or longer, the system can gener-
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Fig. 1. Publishing years of papers included in review.
Table 2
Search terminology for different infrastructure sectors.

Transportation Energy Water and wastewater Telecommunications

Transport Energy Water Telecom
Rail Smart grid Wastewater Data demand
Highway Renewable Sewage Customer churn
Motorway Wind Water treatment Smartphone
Road Solar Pollutant removal Network design
Traffic Nuclear Irrigation Network management
Vehicle Oil Water quality Software defined network
Freight Gas Traffic routing
Shipping Bioenergy 4G
Car Hydropower 5G
Bus Electricity Passive optical network
Electric vehicle Generation Satellite
Accident forecasting VANET
Navigation
Table 3
Purpose terms used in secondary search.

Infrastructure purpose terms

Forecasting Anomaly detection
Demand forecasting Maintenance
Supply forecasting Inspection
Price forecasting Monitoring
Site selection Quality
Security Routing

alise in order to map inputs to outputs for new data sets. This can also
be described as learning from exemplars (Marsland, 2009). Supervised
learning models may require retraining to account for changes in their
inputs over time.

Unsupervised Learning
Unlike in supervised learning, in unsupervised learning, the correct

outputs are not provided alongside inputs. Instead, an unsupervised
learning agent has to rely on its own ability to identify the embedded
structures or patterns in inputs, so that those with similarities can be
categorised together (Marsland, 2009; Li et al., 2017). This approach to
learning typically aims to discover analogous input groups, a process
known as clustering, or to establish the distribution of data within
the input space, a statistical approach known as density estimation
(Fernández Maimó et al., 2018).

Reinforcement Learning
In reinforcement learning, there are no pre-classified examples, but

there is some form of long-term objective. An agent ‘experiments’ with
3

a system, and receives rewards or punishments based on these inter-
actions. The agent tries different possibilities, optimising its behaviour
over numerous iterations in order to maximise rewards and minimise
punishments (Kubat, 2017b). While the agent is never explicitly given
instructions as to how to achieve its goal, acting in ways that maximise
the cumulative reward allows it to develop optimal behaviours, in as
many iterations as needed (Li et al., 2017). In most cases, the longer a
model is run, the more refined the solution will be.

3.1.2. Common machine learning models
Although the specific details of a model’s architecture and algorithm

vary for each individual case, there are a number of popular machine
learning models that have established themselves as some of the best
performing.

Artificial Neural Networks (ANNs)
Artificial neural networks (ANNs) are a popular type of machine

learning model that simulates the mechanism of learning in the human
brain, which contains networks of billions of nerve cells. In ANNs, a
neuron is a computational unit consisting of ‘dendrite’ inputs scaled
with ‘synaptic’ weights that affect the function computed at that unit,
and an ‘activation’ internal state (Aggarwal, 2018b). Neurons exist in a
network, forming a directed, weighted graph that is typically arranged
in layers. The learning process occurs by modifying the weights and
thresholds of the network to achieve accurate results.

Although there are so many variations of ANNs in use today that
it is impossible to cover all of them in detail, a few of the most
popular model structures are outlined here. ANNs can be divided
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Fig. 2. Journals contributing two or more papers to this review.
nto two classes based on their general architecture: feed-forward and
eed-back networks. Feed-forward networks are non-recurrent networks
omprised of inputs, hidden layers, and outputs, where signals can
nly travel in one direction. Examples include multilayer perceptrons
MLPs) and radial basis function (RBF) networks. Use cases in infras-
ructure research have seen MLP models employed to predict energy
onsumption (Azadeh et al., 2008) and for pollutant removal (Fan
t al., 2018) in water networks. RBF networks have also been applied
o water treatment (Fan et al., 2018). Conversely, feed-back networks
ermit signals to travel in either direction, owing to the inclusion of
eed-back loops. In feed-back networks, also called recurrent neural
etworks (RNNs), neurons can be connected in any possible format,
hich can account for dependencies between neurons. Popular RNNs
re echo state networks (ESNs), and long short-term memory (LSTM)
etworks. Interesting examples in infrastructure have seen ESNs ap-
lied to demand forecasting in water networks (Xu et al., 2019b), while
STM networks can be found in a range of forecasting applications,
here they have been used to predict energy use (Bedi and Toshniwal,
019), telecommunication traffic (Alawe et al., 2018) and accident risk
n transport networks (Ren et al., 2018), to give just a few examples.

Another type of ANN, convolutional neural networks (CNNs), have
een widely used for image classification and object detection purposes.
his particular application of AI can be described as computer vision
nd is covered separately.

upport Vector Machines (SVMs)
Support vector machines (SVMs) are popular machine learning

odels widely used in classification and regression tasks, although
sed most extensively for the former. When applied to regression tasks,
VMs may be described as support vector regression (SVR). SVMs work
y mapping input vectors into a high dimensional feature space and

inding an optimal hyperplane to classify the data. The dimension of
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the feature space is dependent on the number of input features (Cortes
and Vapnik, 1995). The SVM algorithm seeks to maximise the margin
between data points and hyperplane, which it does using a loss function
named hinge loss. SVM-based approaches have been used in energy
demand and price forecasting (Ahmad et al., 2014; Ghoddusi et al.,
2019), for routing in vehicular networks (Zhao et al., 2016), and to
assess and improve quality and security in telecommunication systems
(Wang et al., 2016; Mata et al., 2018; Musumeci et al., 2019).

Decision Trees (DTs) and Random Forests (RFs)
Another technique that has been applied to both classification and

regression tasks is decision trees (DTs). In decision trees, inputs begin
at a root node, where a specific attribute is tested, with the result
dictating the branch down which the unit is sent. This process is
repeated, with different tests at each node, until a terminal, or ‘leaf’,
node is reached (Kubat, 2017a). Regression trees, which are applied to
continuous variables, obtain leaf node values from the mean response
of regional observations. However, the leaf node values of classification
trees, which deal with categoric variables, are the mode of regional
observations.

Random Forest (RF) models consist of large numbers of DTs oper-
ating as an ensemble. Building units using random feature selection
results in low correlation between the trees, limiting the spreading of
errors between them (Breiman, 2001). RFs have seen wider exploitation
than DTs in infrastructure systems, where they have been applied to
quality of experience (QoE) prediction (Casas et al., 2017) and anomaly
detection (Gulenko et al., 2016) in telecommunication networks, price
prediction (Xu et al., 2019a) and pollutant removal (Fan et al., 2018;
Ye et al., 2020) in water systems, and behaviour prediction in transport
(Koushik et al., 2020).

K-means Clustering
One of the most common unsupervised learning tools is k-means

clustering, which assigns inputs to a cluster based on the distance from
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cluster centroids in order to maximise similarities within groups (Kubat,
2017c). In infrastructure, k-means has been used in telecommunica-
tion routing (Saravanan and Ganeshkumar, 2020) and for behavioural
prediction in transportation modelling (Koushik et al., 2020).

3.1.3. Deep learning
Deep learning is a relatively new branch of machine learning, de-

scribing computational models composed of multiple processing layers
that learn representations of data with multiple levels of abstraction
(LeCun et al., 2015). While the first deep learning algorithms and ar-
chitectures were developed in the 1960s and 1970s, massive advances
in computer hardware are responsible for the deep learning revolution
of the past ten years.

In practice, deep learning applies specifically to ANN models, al-
though architectures can show significant variation. Deep ANNs are
any that contain multiple hidden layers. Examples of deep neural
networks include Deep Belief Networks (DBNs), autoencoders, LSTM
and CNNs. The depth of these networks allows very complex functions
to be learned. Models such as DBNs and autoencoders often include an
unsupervised pre-training stage, which capture the main variations in
inputs and can yield better generalisation (Erhan et al., 2010).

Capable of handling problems with very large quantities of data,
deep learning has proven to be very successful at tackling particularly
complex problems, such as image classification, natural language pro-
cessing, and speech recognition. However, deep learning is not without
drawbacks. Large datasets, in addition to the increased computational
complexity of deep ANNs, can result in longer training and run times,
which are of particular concern for real-time applications.

3.2. Computer vision

Computer vision is concerned with learning the relationships be-
tween an observed image data and aspects of the world, such as the
3D structure or the object class, and exploits this knowledge to make
new inferences from new image data (Prince, 2012). Both biological
and computational vision systems require several basic components: a
radiation source, a camera, a sensor, a processing unit, an actor. A com-
plete computer vision system uses these to cover a range of processes
from image construction to formulating a response to perceived actions
(Jahne, 2000).

Traditional methods in computer vision have utilised feature-based
approaches such as scale invariant feature transform (SIFT), speeded up
robust features (SURF), features from accelerated segment test (FAST),
Hough transforms and geometric hashing, sometimes in combination
with machine learning classifiers. While these tools still have a place
in computer vision, the adoption of deep learning methods has trans-
formed this field (Mahony et al., 2020). In recent works, deep learning
often underpins the design of the processing unit in computer vision
systems.

The most dominant tool used in the processing stage of computer
vision systems is the CNN. CNNs are biologically inspired networks
which are widely used for image recognition, classification, object
detection, and localisation (Aggarwal, 2018b). Although developed in
the 1980s, it was the development of graphics processing units, which
vastly reduced run times, in the 2000s that saw CNNs take off in
popularity. CNN architecture is designed for grid-structured inputs with
strong localised spatial dependencies. The convolutional layer utilises
kernel elements, which are 3-dimensional structural units, to abstract
an image to a feature map in order to extract high-level features such
as edges. Each layer of a CNN is 3-dimensional, with a spatial extent
and a depth corresponding to the number of feature maps in that layer
(Aggarwal, 2018a).

4. Sectoral analysis

The use of AI varies between each of the economic infrastructure

sectors: energy, water and wastewater, transport and telecommunica-
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tions. This section reports on the use of AI methods in each sector and
each pair of sectors, the latter recognising the increasing blurring of
sectoral boundaries.

4.1. Energy

In the energy sector, AI tools have been extensively applied to
demand forecasting (Almalaq and Edwards, 2017; Bedi and Toshniwal,
2019; Robinson et al., 2017; Kalogirou, 1999; Ghanbari et al., 2013),
especially at residential and building level (Mocanu et al., 2016; Ahmad
et al., 2014; Wang and Srinivasan, 2017; Mat Daut et al., 2017). Further
applications include price forecasting (Ghoddusi et al., 2019) and de-
mand side management (Macedo et al., 2015). Facilitating energy use
reduction is of increasing concern in this sector, and methods ranging
from efficiency-centred ontologies (Tomic et al., 2010) to natural lan-
guage generation of consumer advice reports (Conde-Clemente et al.,
2018) have been utilised for this purpose.

Much of the rest of the work in the energy sector focuses on
generation systems, where many of the most developed applications
pertain to renewable energy infrastructure (Kalogirou, 2001). Robotics
shows significant potential as an aid in the oil, gas and nuclear sectors,
but the machines used to date remain limited in their autonomy (Shukla
and Karki, 2016a,b). In renewable energy systems, there has been
increasing use of AI in supply forecasting. Key elements of this include
meteorological forecasting, where ANN and fuzzy logic techniques are
popular (Suganthi et al., 2015; Li et al., 2017; Mellit and Kalogirou,
2008), and solar tracking, which often utilises computer vision tools
(Carballo et al., 2019). Artificially intelligent methods of inspection and
structural health monitoring for renewable energy assets have also been
investigated (Bose, 2017).

4.2. Water and wastewater

AI methods have been utilised throughout water networks, from
initial water treatment through to distribution and consumer-related
challenges. At the supply end, much of the research has been concerned
with water quality (Chau, 2006) and pollutant removal (Fan et al.,
2018), in both standard and wastewater treatment (Granata et al.,
2017; Ye et al., 2020; Zhao et al., 2020; Li et al., 2021). Machine
learning methods have also been utilised in desalination, where they
can have implications for plant design (Al Aani et al., 2019).

From an end-usage perspective, a range of machine learning tech-
niques, including ANNs, RFs, SVMs, k nearest neighbour, regression
trees and DBNs, have been applied to water demand forecasting (An-
tunes et al., 2018; Xu et al., 2019b; Franklin, 2008; Adamowski et al.,
2012) and price forecasting (Nguyen-ky et al., 2018; Xu et al., 2019a)
across a range of geographic scales.

4.3. Transportation

The transportation sector has seen perhaps the most variation in
tasks to which AI has been applied (Abduljabbar et al., 2019; Veres
and Moussa, 2019). Looking at transportation networks as a whole,
a number of knowledge representation systems, many ontology-based,
have been proposed (Bouhana et al., 2015), while recent research into
how the public interact with transport systems from a behavioural
perspective, including transport mode selection, has benefited from a
range of machine learning techniques (Koushik et al., 2020). Although
it has been recognised that traffic flow and accident prediction can
be utilised for a variety of urban transportation systems (Zhang et al.,
2017; Doğan and Akgüngör, 2013), much of the remaining work in this
sector has focused on individual modes of transportation.

Regarding road vehicle usage, a range of machine learning meth-
ods have been applied to traffic (Jiang and Zhang, 2019; Veres and
Moussa, 2019; Xie et al., 2020) and accident forecasting (Doğan and

Akgüngör, 2013; Ren et al., 2018; Abduljabbar et al., 2019; Veres and
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Moussa, 2019), as well as for navigational tools (Veres and Moussa,
2019). Similar tools have also been utilised in demand forecasting
(Yao et al., 2018; Rodrigues et al., 2019) and destination prediction
for taxi services (Veres and Moussa, 2019). Researchers have sought
to apply AI to identifying and mapping road networks (Ekpenyong
et al., 2009), whilst computer vision-based approaches to monitoring
traffic infrastructure have been proposed (Šegvić et al., 2010). In-
vehicle and roadside sensors have the potential to provide more data
on road networks than ever before, and deep learning methods are
likely to play a significant role in the development of an intelligent
transport network, with CNNs used in object detection, localisation, and
classification for a variety of applications (Sirohi et al., 2020). Work on
the development of self-driving cars has seen massive interest in recent
years, and automated reasoning (Rehder et al., 2019), machine and
deep learning (Kuutti et al., 2021), and computer vision have all been
utilised in what is primarily a robotics-based challenge (Abduljabbar
et al., 2019; Ma et al., 2020b).

The application of AI in transport has not been limited to the roads.
Though robotics, and specifically unmanned aerial vehicles (UAVs),
demonstrate much potential in the monitoring of railway assets, many
are still reliant on a significant level of human interaction (Flammini
et al., 2016). Deep learning tools, however, have proven themselves
effective at fault diagnosis in high-speed rail (Yin and Zhao, 2016),
which is expected to grow in popularity as a mode of travel. While
most other work in public transport has primarily focused on traffic
flows or choice of transportation method (Veres and Moussa, 2019;
Koushik et al., 2020), bus networks have been the subject of individual
research, which focuses largely on scheduling issues (Mendes-Moreira
et al., 2015).

4.4. Telecommunications

Machine learning methods are seen as highly significant for the
success of the next generation of wireless networks (Li et al., 2017;
Jiang et al., 2017; Kibria et al., 2018; Wang et al., 2020; Shafin
et al., 2020). Research has covered a variety of network types, with
some works covering the more general ‘cellular’ or ‘wireless’ networks,
and others focusing specifically on software-defined networks (SDNs)
(Amaral et al., 2016; He et al., 2017), optical networks (Mata et al.,
2018; Musumeci et al., 2019), 5G (Li et al., 2017; Alawe et al., 2018;
Le et al., 2018), and the cloud (Gulenko et al., 2016).

As in other infrastructure sectors, telecommunications has seen
machine learning utilised in traffic and demand forecasting (Mastoro-
costas and Hilas, 2012; Mastorocostas et al., 2016; Balaguer et al.,
2008; Zhang and Patras, 2018; Le et al., 2018), with recent work
focused on deep learning approaches (Huang et al., 2017; Alawe et al.,
2018). Another common application of machine learning, where all
learning types have been employed, is in routing (Barbancho et al.,
2007; Sharma et al., 2018; Mao et al., 2017, 2018; Sendra et al.,
2017; Vashishth et al., 2019; Kato et al., 2017; Tang et al., 2018; Yu
et al., 2018; Pei et al., 2018), where effective solutions can help reduce
latency.

From a consumer perspective, quality of both transmission and
overall experience are very important in telecommunication networks.
Assessing customer experience and network quality, which can be de-
pendent on factors including latency, jitter, loss rate and image or video
definition, are active areas of research, utilising a range of machine
learning classifiers (Casas et al., 2017; Samadi et al., 2017; Mata et al.,
2018). The design of traffic clustering techniques that factor in quality
of service (QoS) has also been suggested (Wang et al., 2016). The loss
of customers to rival providers is termed ‘churn’, and the accuracy of
several machine learning methods in predicting this occurrence has
been compared (Vafeiadis et al., 2015).

Security is a critical concern in telecommunications, especially in
wireless and SDNs (Lv et al., 2021). A spectrum of machine learning

approaches have been used in anomaly detection (Mata et al., 2018;
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Musumeci et al., 2019; Gulenko et al., 2016; Fernández Maimó et al.,
2018), identifying denial-of-service (Meti et al., 2017; Polat et al., 2020;
Hussain et al., 2021; Ahuja et al., 2021) and intrusion attacks (Song
et al., 2017; Abubakar and Pranggono, 2017; Tang et al., 2016), and
selecting an appropriate response (Ashraf and Latif, 2014).

Due to the increasingly wireless nature of telecommunications, it is
possible to provide dynamic networks that utilise UAVs as mobile base
stations. Although not yet widespread, it is anticipated that interest in
this area will continue to grow, and research to date has looked at how
to deploy UAVs effectively (Zhang et al., 2018).

4.5. Energy and water

A range of AI techniques have been applied at the water–energy
nexus, which describes the intersection of water and energy systems
(Zaidi et al., 2018). Hydropower, the generation of electricity by di-
recting water through a turbine, sits at this nexus as an example of
water use for energy applications. Unsupervised k-means clustering
has been utilised in modelling the distribution of hydropower facilities
and nearby land cover to estimate system evaporation (Grubert, 2016),
while the supervised technique of SVM has been used to analyse the
division between hydropower and irrigation in worldwide reservoir
usage trends (Zeng et al., 2017).

On a consumer level, there are many systems that both utilise
water and require energy, such as dishwashers, washing machines, and
showers. Research has used SVMs to classify such water end-use events
on a residential scale (Vitter and Webber, 2018).

4.6. Energy and transport

Energy demand forecasting for transportation has received less at-
tention than equivalent forecasting for buildings, although researchers
have recognised its importance in the decarbonisation of cities. Ma-
chine learning techniques such as ANNs and ANFIS allow both transport
and socio-economic indicators to be considered when predicting future
demand (Geem, 2011; Al-Ghandoor et al., 2012; Murat and Ceylan,
2006; Pamuła and Pamuła, 2020).

AI tools have been applied to electric and hybrid vehicles, the
numbers of which are rapidly growing worldwide. Deep reinforcement
learning has been shown to improve energy efficiency in individual
units (Qi et al., 2017), while research at network level has focused on
routing, charging point selection, and integration of electric vehicles
into the smart grid (Rigas et al., 2015), all of which can benefit from
some level of local demand forecasting (Saputra et al., 2019; Lan et al.,
2021). At the vehicle-grid intersection, minimising energy peaks can
be done through load balancing, congestion pricing, and market selling
and purchasing strategies.

4.7. Water and transport

Though an area of minimal research, it has been recognised that
water and transportation systems are not unconnected. In particular,
abnormally intense periods of rainfall have the potential to cause sig-
nificant disruption to rail and road transportation networks. This is an
argument in favour of monitoring water levels in lakes and reservoirs,
to which ANN methods have been applied (Buyukyildiz et al., 2014).

4.8. Energy and telecommunications

Recent work in telecommunications has begun to recognise the
significance of efficient energy usage in communication systems. Ma-
chine learning tools have been applied to energy-efficient resource
allocation in cloud networks (AlQerm and Shihada, 2017), and research
on utilising UAVs to provide dynamic networks has prioritised low

energy usage (Zhang et al., 2018).
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4.9. Transport and telecommunications

VANETs, which facilitate dynamic wireless connections between
vehicles, sit at the intersection of transport and telecommunications.
As in other telecommunication networks, machine learning has been
utilised in VANETs for routing (Lai et al., 2015; Zhao et al., 2016;
Tang et al., 2019; Saravanan and Ganeshkumar, 2020) and security
(Zhang and Zhu, 2018; So et al., 2018). AI tools have also been used
to improve VANET efficiency in the context of enhanced road safety,
with k-means clustering utilised to improve safety at congestion points
such as intersections (Taherkhani and Pierre, 2016).

4.10. Water and telecommunications

The research in this area is largely limited to flood prediction
and mitigation, where the ‘Internet of Things’ wireless sensor network
(WSN) has been combined with ANNs to predict flooding events (Mitra
et al., 2016) and communicate warnings for those at risk (Bande and
Shete, 2017). There remains an absence of work utilising AI to pre-
dict, assess, or mitigate the effects of flooding on telecommunications
infrastructure.

5. Purposes

The reasons for investigation and adoption of AI methods include
system provision (of network capacity), forecasting, routing, monitor-
ing and security, and improving the quality of resources or services.
This section reviews the main purposes across infrastructure sectors to
which AI methods have been applied.

5.1. System provision

AI tools have been used to assist in the delivery of infrastructure
systems, both in the sense of adding to generation capacity through
the creation of additional supply sites, and in facilitating the provision
of new independent networks.

5.1.1. Site selection
In the oil and gas sector, comprehensive review papers have dis-

cussed the potential of robotics in exploration and site selection (Shukla
and Karki, 2016a,b). Research regarding applications has, to date, been
limited to establishing the capabilities of UAVs (Tisdale et al., 2009)
and autonomous underwater vehicle (AUVs) (Hiller et al., 2012), and
although these machines are becoming increasingly autonomous, there
remains work to be done on developing truly intelligent robotics in the
field of site exploration.

However, robotics is not the only category of AI to be used by the
energy industry in the site selection process. The use of fuzzy logic in
renewable energy systems has been reviewed (Suganthi et al., 2015),
with the authors finding that this form of automated reasoning has
been widely used to assess the suitability of potential solar (Charabi
and Gastli, 2011, 2013; Gunderson et al., 2015; Wu et al., 2014), wind
(Machias and Skikos, 1991; Aydin et al., 2010; Yeh and Huang, 2014;
Azadeh et al., 2014), biomass (Ayoub et al., 2007; Yılmaz Balaman and
Selim, 2014), and hybrid renewable energy (Aydin et al., 2013) plant
locations. Fuzzy logic is particularly appropriate to this application due
to its ability to capture heuristic reasoning among individuals. This
allows fuzzy models to combine energy generation forecasting with
environmental, economic, and socio-political variables to account for
factors such as job creation and social acceptability in the selection
process (Yılmaz Balaman and Selim, 2014).

Fuzzy logic has also been employed for site selection of transporta-
tion infrastructure, albeit to a much lesser extent. For example, an
integrated fuzzy logic and multicriteria decision model approach has
been employed to identify potential sites for car parking infrastructure
(Farzanmanesh et al., 2010; Sasan et al., 2018) and for electric vehicle
charging stations (Guo and Zhao, 2015). This limited body of work
demonstrates how other infrastructure systems could benefit from the
flexibility of fuzzy logic as a decision-making tool for site selection.
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5.1.2. Dynamic network creation
In the field of telecommunications, recent work has proposed the

use of UAVs as mobile aerial base stations, providing a wireless network
for cellular users. As communication networks transition to 5G, UAVs
can offer a dynamic approach, intelligently positioning themselves to
offer an efficient and cost-effective service.

Machine learning approaches have been explored to facilitate ef-
fective network provision through UAVs. In one example, a machine
learning framework based on a Gaussian mixture model (GMM) has
been utilised to predict network congestion for the purpose of de-
ploying UAVs in a way that minimises power usage for mobility and
transmission (Zhang et al., 2018).

5.2. Forecasting

5.2.1. Supply
Supply forecasting covers the use of AI to predict the capacity of

infrastructure systems, and by extension their ability to meet expected
demand. Both automated reasoning and machine learning tools have
been applied to supply forecasting in the energy sector. Fuzzy logic,
ANNs, SVMs, regression, time series, RFs, deep learning, and hybrid
models have all been used to predict meteorological variables and asso-
ciated power outputs in renewable systems (Suganthi et al., 2015; Zaidi
et al., 2018; Zahraee et al., 2016; Lin et al., 2020; Alizamir et al., 2020).
Solar radiation, wind speed, and rainfall forecasting allow researchers
to assess the energy generation potential of current and prospective
solar, wind, and hydropower energy sites (Zaidi et al., 2018; Zhen
et al., 2020; Ahmad and Chen, 2020). A fuzzy logic model has also
been used to estimate the potential electricity output of biomass plants
based on their inputs at a regional level (Tan et al., 2012). Outside of
renewables, an ANN-based approach outperformed traditional methods
in forecasting oil, gas, and water production rates for a hydrocarbon
reservoir (Negash and Yaw, 2020).

5.2.2. Demand
AI methods, dominated by machine learning, have been incredi-

bly widely used in demand forecasting for infrastructure systems. Ta-
ble 4 summarises the machine learning techniques applied to demand
forecasting in each paper reviewed.

Numerous papers and several review papers have examined the use
of machine learning in energy demand forecasting. The majority of
work to date has taken a supervised learning approach, likely due to the
large amounts of available historic data, with ANNs and SVMs the most
common methods (Kalogirou, 1999; Raza and Khosravi, 2015; Wang
and Srinivasan, 2017; Ahmad et al., 2014; Mat Daut et al., 2017; Ghod-
dusi et al., 2019; Geem, 2011; Khwaja et al., 2020; Ahmad and Chen,
2020). Recent work has explored deep learning for energy forecasting
(Bedi and Toshniwal, 2019; Almalaq and Edwards, 2017; Hafeez et al.,
2020; Yang et al., 2020), with evidence suggesting it outperforms
standard machine learning methods (Mocanu et al., 2016). Forecasting
has been attempted across a range of temporal and geographical scales,
from 30 min ahead to annual projections (Azadeh et al., 2008) and from
household to regional levels (Bui et al., 2020; Johannesen et al., 2019;
Robinson et al., 2017; Pham et al., 2020). Limited work has also looked
at forecasting transportation energy demand (Geem, 2011; Murat and
Ceylan, 2006; Al-Ghandoor et al., 2012; Pamuła and Pamuła, 2020).

Many of these machine learning techniques have also been applied
to water demand forecasting, with ANNs again dominating among
chosen methods (Franklin, 2008; Zaidi et al., 2018). Comparative stud-
ies have shown ANN-based approaches capable of achieving greater
accuracy in water demand prediction than other machine learning
systems (Adamowski et al., 2012; Antunes et al., 2018). A recent paper
has sought to apply deep learning to this task, which yielded promising
results in hourly urban water demand forecasting (Xu et al., 2019b).

Demand forecasting in telecommunications can be split into two
categories: traffic and churn forecasting. Regarding the former, ma-
chine learning and automated reasoning have been used to forecast call
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volume in a university network through a recurrent fuzzy-neural model
(Mastorocostas and Hilas, 2012; Mastorocostas et al., 2016), while
ANNs have been utilised to predict incoming requests in call centres
(Balaguer et al., 2008) and to forecast traffic in telecommunications
networks (Zhang and Patras, 2018). Gaussian process regression and
online Bayesian moment matching are other approaches which have
been applied to online flow prediction, for the purpose of efficiently
routing large traffic flows (Poupart et al., 2016). Much of the recent
work in the field of telecommunications has focused on the application
of machine learning to forecasting in 5G networks (Le et al., 2018),
with deep learning increasingly common in this field (Huang et al.,
2017; Alawe et al., 2018). Customer churn describes the movement of
consumers away from a given supplier, and there has been significant
utilisation of machine learning for churn forecasting in the telecom-
munications industry. An SVM-based approach has shown the highest
accuracy of common machine learning methods (Vafeiadis et al., 2015).

The transportation sector has seen machine learning applied to
traffic, destination, and mode choice forecasting (Veres and Moussa,
2019), each a factor in anticipating network demand. ANNs have been
used to predict traffic flows in road networks (Ma et al., 2020a) and
combined with deep learning to predict citywide car, taxi, and public
bike share traffic flows (Abduljabbar et al., 2019; Yao et al., 2018; Jiang
and Zhang, 2019; Zhang et al., 2017; Gu et al., 2020; Xu et al., 2020;
Cui et al., 2020; Chen et al., 2021; Du et al., 2020; Xie et al., 2020).
In addition, a deep learning approach that uses ANNs to combine
textual and time-series data has attempted to forecast taxi demand
in areas with large-capacity public events by incorporating contextual
explanations for taxi use (Rodrigues et al., 2019). Taxi systems have
also been the subject of work on destination prediction, where ANNs,
in the form of MLPs and CNNs, have proven effective for multi-scale
trajectory and destination forecasting (Lv et al., 2018). In aviation, an
LSTM-based model was able to predict air traffic well despite anomalies
in traffic control (Gui et al., 2020). It is worth noting that the applica-
tion of forecasting can be very time-sensitive, and so the run time of
machine learning techniques is a significant factor to consider in the
feasibility of these solutions. Finally, mode choice prediction has been
used to gain an understanding of the factors influencing individuals’
transport choices. A range of machine learning tools have been applied
to this problem, but comparative studies find an RF classifier gives the
greatest accuracy (Koushik et al., 2020; Jahangiri and Rakha, 2015).
Results have found journey length to be the most important variable in
transport mode selection, although climate was also found to contribute
significantly (Hagenauer and Helbich, 2017).

5.2.3. Price
Although an extensive range of machine learning methods have

been used in energy price prediction (Lu et al., 2019; Jahangir et al.,
2020), a thorough review has found ANNs, SVMs and genetic algo-
rithms (GAs) to be the most popular (Ghoddusi et al., 2019). While
the forecasting of crude oil and electricity prices dominates the work
in this field, it was found that a handful of papers predict the prices of
other energy commodities such as fuelwood, natural gas, and carbon
prices using machine learning (Lu et al., 2020). Deep learning has only
seen widespread use in the projection of electricity prices, remaining
relatively unexplored in the crude oil equivalent.

ANNs (Nguyen-ky et al., 2018) and RF regressor models (Xu et al.,
2019a) have been utilised to predict water trade prices for Australia’s
Murray river basin and the western United States respectively, enabling
participants to make more efficient decisions in the face of uncertain
asking and offering prices.

5.2.4. Safety
In the transportation sector, machine learning methods have also

been applied to the forecasting of road accidents and casualties (Ab-
duljabbar et al., 2019), as well as the severity of incidents (Veres and
Moussa, 2019). ANNs have proven the most effective of the methods
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trialled, with one example exploring how railway development policy
would impact highway casualties (Doğan and Akgüngör, 2013). Further
work has used an LSTM-based deep learning model for predicting traffic
accident risk based on data from Beijing, China (Ren et al., 2018).

5.3. Routing

The machine learning methods used for routing in the reviewed
papers have been summarised in Table 5.

A range of machine learning methods have been applied to telecom-
munications routing, the process of selecting paths to send data packets
within or across networks (Wang et al., 2018; Mao et al., 2017; Zorzi
et al., 2015). Optimal routing processes minimise delays and improve
QoS. In WSNs, a routing protocol using an unsupervised ANN in the
form of a self-organising map (SOM) has performed favourably when
compared to existing routing methods, especially in scenarios with high
levels of node failure (Barbancho et al., 2007). In opportunistic net-
works, where link performance is subject to high variability, ANNs and
DTs have been successfully applied to routing (Sharma et al., 2018),
although more recent work has claimed a GMM approach outperforms
existing machine learning tools (Vashishth et al., 2019). Deep learning
has also been applied to routing in both wired and wireless networks,
where several supervised and reinforcement learning methods have
been shown to reduce delays and improve throughput (Kato et al.,
2017; Tang et al., 2018).

Recent developments in the field of telecommunications have seen
a move away from hardware-based networking, with a new software-
based approach offering greater automation by de-coupling the control
and data planes. Reinforcement learning has been the favoured tool
in recent work on routing in SDNs (Sendra et al., 2017), often in
combination with deep learning architecture (Mao et al., 2018; Yu
et al., 2018). An alternative supervised deep learning approach has
been applied to SDN routing in order to minimise end-to-end delay in
virtual network function selection (Pei et al., 2018).

VANETs are an instance of telecommunications being used in the
development an intelligent transport system. These wireless networks
connect moving and stationary vehicles, allowing exchange of informa-
tion between vehicles and infrastructure in order to facilitate the safe,
efficient and environmentally conscious flow of traffic. A variety of
machine learning approaches have been applied to routing in VANETs,
including supervised ANN and SVM methods (Tang et al., 2019; Zhao
et al., 2016), an unsupervised K-means approach (Lai et al., 2015), and
deep reinforcement learning (Saravanan and Ganeshkumar, 2020).

Machine learning has also been applied to the routing of vehicles
in transportation networks. For urban road traffic routing, GPS data
has been used in combination with an end-to-end deep learning ap-
proach to attempt to apply the knowledge of experienced drivers when
determining route selection (Veres and Moussa, 2019; Li et al., 2019).

Routing in transport can be extended to include technologies that
facilitate the independent navigation of autonomous vehicles. This is an
emerging area of research which often combines machine learning and
robotics to enable safe movement of vehicles. To date, most of the work
in this field is at agent, rather than system, level (Yang et al., 2019;
Ma et al., 2020b). Deep learning, and deep reinforcement learning in
particular, has been effectively applied to lateral and longitudinal con-
trol systems in autonomous vehicles, where the self-optimising nature
of such techniques makes them well suited to dynamic road environ-
ments (Kuutti et al., 2021). In the shipping sector, fuzzy logic can
support dynamic decision making for autonomous navigation through
international shipping routes (Wu et al., 2020).

5.4. Monitoring and security

This topic covers the use of AI for the purpose of maintaining a
safe and effective infrastructure network. This includes inspection and
preventative maintenance and extends to fault and hazard detection
and response.
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Table 4
Machine learning methods used in papers on demand forecasting. Only papers which proposed their own techniques are included. # indicates that a given method was utilised
by the paper, while  indicates the best performing method (where multiple techniques were applied to the same problem). E, W, T and C correspond to energy, water, transport
and telecommunications respectively.

Reference Sector Machine learning method

ANN SVM DT RF K nearest
neighbour

K-means DL Hybrid Other

Geem (2011) E/T #
Khwaja et al. (2020) E  #
Ghanbari et al. (2013) E # # ANN + FL  Genetic algorithm
Bedi and Toshniwal
(2019)

E # #  

Hafeez et al. (2020) E #  
Yang et al. (2020) E # # #  
Mocanu et al. (2016) E # #  
Azadeh et al. (2008) E #
Bui et al. (2020) E # # #  ANN + firefly algorithm
Johannesen et al.
(2019)

E  #

Robinson et al. (2017) E # #  # #
Pham et al. (2020) E #  
Murat and Ceylan
(2006)

E/T #

Al-Ghandoor et al.
(2012)

E/T # ANN + FL

Pamuła and Pamuła
(2020)

E/T  

Franklin (2008) W #
Adamowski et al.
(2012)

W #

Antunes et al. (2018) W # # #  
Xu et al. (2019b) W # #  
Mastorocostas and Hilas
(2012)

C # ANN + FL

Mastorocostas et al.
(2016)

C # ANN + FL

Balaguer et al. (2008) C #
Zhao et al. (2004) C #
Zhang and Patras
(2018)

C # #  

Poupart et al. (2016) C #  Gaussian Process
Le et al. (2018) C # # # Gaussian process
Huang et al. (2017) C  
Alawe et al. (2018) C  
Vafeiadis et al. (2015) C #  # # Naïve Bayes
Ma et al. (2020a) T # #  ANN + ARIMA
Yao et al. (2018) T # #  
Jiang and Zhang (2019) T #
Zhang et al. (2017) T #  
Gu et al. (2020) T # #  DL + Bayesian
Xu et al. (2020) T # #  # Bayesian Gaussian tensor decomposition
Cui et al. (2020) T # #  
Chen et al. (2021) T #
Du et al. (2020) T # #  CNN + gated recurrent units
Rodrigues et al. (2019) T #  # Gaussian Process
Lv et al. (2018) T #  
Gui et al. (2020) T #  
Jahangiri and Rakha
(2015)

T  #  #

Hagenauer and Helbich
(2017)

T # # #  # Naïve Bayes
5.4.1. Inspection and monitoring
In various infrastructure sectors, robotics has been utilised for in-

spection purposes. This has proven especially beneficial in the energy
sector, where inspections can be necessary in hostile environments,
but many systems are still heavily reliant on human operators. In
the oil and gas industry, robots have been used for years for the
inspection of assets (Shukla and Karki, 2016a,b), but utilising their
full potential requires a greater level of autonomy. Other AI methods
can aid robots undertaking inspections. For example, machine-learning-
based computer vision can be integrated into UAVs to identify, map out
and monitor electrical infrastructure. However, while computer vision
has been applied to vegetation detection in electrical infrastructure, it is
potential to detect defects in cables or insulation remains undeveloped
(Mirallès et al., 2014).
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Independent of robotics, machine learning has been applied to struc-
tural health monitoring of infrastructure. Examples of methods that can
be applied in a range of infrastructure systems include computer vision-
based crack detection in steel structures and a deep learning approach
to dealing with anomalies in sensor data (Bao et al., 2019). RFs and DT
algorithms have shown high effectiveness in predicting anomalies in
wind turbine function, informing preventative maintenance strategies
(Hsu et al., 2020). Utilising both machine learning and automated
reasoning, an ANFIS has been applied to health monitoring of a full
wind energy generation system, with the author suggesting a similar
approach may be effective for photovoltaic or other generation systems
(Bose, 2017).

An interesting use of computer-based monitoring has been em-
ployed to identify abnormalities in a water distribution network. An
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Table 5
Machine learning methods used in papers on routing. Only papers which proposed their own techniques were included. # Indicates that a given method was utilised by the
paper, while  indicates the best performing method where multiple techniques were applied to the same problem. T and C correspond to transport and telecommunications
respectively.

Reference Sector Machine learning method

ANN SVM DT RF K nearest
neighbour

K-means DL Other

Mao et al. (2017) C #
Zorzi et al. (2015) C #
Barbancho et al. (2007) C #
Sharma et al. (2018) C  #
Vashishth et al. (2019) C # # #  GMM
Kato et al. (2017) C #
Tang et al. (2018) C #
Sendra et al. (2017) C #
Mao et al. (2018) C #
Yu et al. (2018) C #
Pei et al. (2018) C #
Tang et al. (2019) C/T #
Zhao et al. (2016) C/T #
Lai et al. (2015) C/T #
Saravanan and Ganeshkumar
(2020)

C/T #  # Q-learning

Li et al. (2019) T #
Rehder et al. (2019) T #  Bayesian network
Yu et al. (2021) T #  
Wu et al. (2020) T # Fuzzy logic
ANN has been trained using a continually updated historic database to
build a probability density model for future flow profile, while a fuzzy
inference system compares latest observed flow values with predicted
flows. Major discrepancies generate an alert, which was found to
correspond with confirmed pipe bursts in 44% of trial cases (Mounce
et al., 2010). In water systems dependent on a network of sensors,
such as those used to determine water quality indicators in wastewater
systems, faulty sensors are not uncommon, and can cause significant
data quality issues. An LSTM deep learning technique has used for
automatic fault detection in wastewater sensors, correctly identifying
faults in over 92% of cases (Mamandipoor et al., 2020).

AI has been utilised for safety monitoring in transport networks,
where a computer vision-based approach has been explored for traf-
fic infrastructure inventory creation and assessment (Zhang and Zhu,
2018). Results indicate that it is possible to achieve at least semi-
automated inspection of road signage. The stability of tunnelled road-
ways has been assessed using machine learning tools, with a hybrid
ANN and particle swarm method proving most effective (Zhang et al.,
2020). Deep learning has been applied to fault detection for high speed
rail, where a DBN consisting of stacked restricted Boltzmann machines
outperforms ANN and k nearest neighbour methods in automated fault
diagnosis (Yin and Zhao, 2016). As the use of high-speed rail spreads
around the world, deep learning shows great potential as it has the
capacity to deal with massive amounts of unsupervised data.

5.4.2. Security and hazard detection
While inspection and monitoring covers damage to networks from

general wear and tear, the use of AI for security and hazard detection
purposes deals with the protection of infrastructure systems from poten-
tially destructive hazards or deliberate attacks. The machine learning
methods applied to this purpose in the reviewed papers have been
summarised in Table 6.

In telecommunications, network security is a major consideration
and has been the subject of a large volume of research in recent years
(Lv et al., 2021). In SDNs, a spectrum of machine learning techniques
including ANNs, SVMs, DTs, RFs, k nearest neighbour and Naïve-
Bayes classifiers have been applied to the detection of denial-of-service
and intrusion attacks, as well as to identify vulnerable nodes and
select an appropriate responses to threats (Song et al., 2017; Abubakar
and Pranggono, 2017; Meti et al., 2017; Nanda et al., 2016; Polat
et al., 2020). Deep learning tools have also been employed for security
purposes in SDNs. For example, a supervised deep neural network
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approach has been used in intrusion detection (Tang et al., 2016),
and various deep learning techniques have been shown to be highly
accurate for multi-vector denial-of-service attack detection (Hussain
et al., 2021; Ahuja et al., 2021).

The use of machine learning in optical networks has been reviewed,
with Bayesian and cognition-based methods among those applied to
anomaly detection, and supervised SVM, ANN, RF, and DT techniques
used in failure management (Mata et al., 2018; Musumeci et al., 2019).

Cloud computing allows on-demand access to computer system
resources without direct active management by the user, often available
to a large network of consumers. A selection of machine learning
algorithms have been reviewed for anomaly detection in cloud in-
frastructures including primarily DT-based algorithms, as well as an
RF classifier, Bayesian methods and an SVM-based approach (Gulenko
et al., 2016). Ten-fold cross-validation was undertaken, which found
that all algorithms were able to predict anomalies with relatively
high precision and recall measures, although this can be diminished
when aging effects are considered. For 5G mobile network architecture,
where unpredictable traffic fluctuation is to be expected, a deep learn-
ing approach consisting of a DBN layer and separate LSTM recurrent
network layer has been designed to detect anomalies and recognise
patterns of cyberattacks (Fernández Maimó et al., 2018). This two-layer
approach has demonstrated an ability to self-adapt in real-time, based
on the volume of network flows.

5.5. Quality

5.5.1. Water quality
AI has been used to assess and improve water quality at various

stages of the water treatment cycle (Chau, 2006). The bulk of work to
date is concerned with water treatment facilities, which includes plants
dealing with surface water, ground water, and wastewater.

Accurate assessment of incoming water quality is critical to de-
signing effective water treatment facilities. As accurate and thorough
sampling is not always possible, machine learning tools have been
applied to the forecasting of water quality indicators. ANN-based tech-
niques have been applied to the prediction of numerous water quality
indicators, with dissolved oxygen, temperature, and biological and
chemical oxygen demand among the most common variables assessed
(Chen et al., 2020a). Looking at other machine learning methods,
support vector regression has proven more effective than a regression
tree approach to predicting key wastewater quality indicators across
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Table 6
Machine learning methods used in papers on security and hazard detection. Only papers which proposed their own techniques were included. # Indicates that a given method

as utilised by the paper, while  indicates the best performing method where multiple techniques were applied to the same problem. T and C correspond to transport and
elecommunications respectively.
Reference Sector Machine learning method

ANN SVM DT RF K-means Naïve Bayes DL Hybrid Other

Lv et al. (2021) C #
Song et al. (2017) C # #
Abubakar and Pranggono
(2017)

C #

Meti et al. (2017) C #  #
Nanda et al. (2016) C # #  Bayesian network
Polat et al. (2020) C # # #  K nearest neighbour
Tang et al. (2016) C # # # # #  
Hussain et al. (2021) C #
Ahuja et al. (2021) C #  
Gulenko et al. (2016) C # # # #
Fernández Maimó et al.
(2018)

C #
a range of drainage basins, though both were found to give robust
predictions (Granata et al., 2017). The value of fuzzy logic in quality
assessment has also been established, primarily in fresh water systems
(Chau, 2006). Finally, a hybrid approach combining DTs and a shallow
CNN has been effective in analysing the pollutant levels of industrial
wastewater (Chen et al., 2020b).

Once water has entered a treatment facility, it is critical that opera-
tors know decontamination methods are effective. A range of machine
learning approaches have been widely utilised in water and wastewa-
ter treatment for the purpose of modelling pollutant removal, where
nutrients, heavy metals, and persistent organic pollutants are some
of the most common contaminants (Zhao et al., 2020; Al Aani et al.,
2019). While ANN-based methods dominate, techniques such as SVMs,
RF, ANFIS, and deep learning have also been successfully utilised,
and hybrid methods that combine ANNs with other machine learning
approaches have shown high accuracy and robustness (Fan et al., 2018;
Bhagat et al., 2020).

Another application of ANNs in water treatment is the modelling
of membrane performance, where membranes are barriers that block
certain substances from passing through, as part of the water clean-
ing process. This can assist with treatment plant design. ANNs have
shown high levels of accuracy when predicting membrane efficiency
under a range of operating conditions, showing the greatest superiority
over classical methods at high concentration levels. ANNs have also
been utilised to identify factors affecting fouling, which is the process
of particle deposition on or in a membrane, leading to performance
degradation (Al Aani et al., 2019; Li et al., 2021).

In wastewater treatment, the activated sludge process uses aeration
and a biological floc composed of bacteria and protozoa to treat con-
taminated water. Machine learning approaches have been employed to
assist in the understanding of this ecosystem, identifying some func-
tional features that are crucial to the effective adaptation of activated
sludge bacteria to the wastewater treatment bioreactor environment
(Ye et al., 2020).

ANN-based models have proven reliable in predicting the efficiency
of desalination technologies, which are concerned with the removal
of salt from surface water, groundwater, or wastewater. Most work to
date has focused on utilising such models to assist in the control of
desalination plants (Al Aani et al., 2019).

5.5.2. Quality of service
For telecommunication companies, providing a high QoS is critical

for preventing customer churn. AI has been applied in the assessment
of consumer QoE, as well as to improve network quality in a variety of
ways.

Supervised machine learning has been applied to QoE assessment
for smartphone users in cellular networks. Key performance indicators

incorporated user-reported data on experience and accessibility with
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QoS traffic measurements, to quickly and accurately predict end-user
satisfaction. A range of classifiers were considered, with RF and DT-
based models outperforming SVM, ANN, and Naïve Bayes approaches
(Casas et al., 2017). A QoS-centred approach to classification of traffic
flows in SDNs has been proposed, with an SVM-based classifier as-
signing QoS classes to traffic flows through a semi-supervised machine
learning approach. Key factors such as delay, jitter, and loss rate were
used to assign a QoS class, which the authors suggest using to efficiently
re-route elephant flows (Wang et al., 2016). To predict quality of
transmission (QoT) in optical networks, case-based reasoning, SVM,
and RF methods are among the machine learning methods that have
been utilised (Mata et al., 2018). An ANN approach has achieved high
levels of accuracy with microsecond response time, facilitating dynamic
network operation (Samadi et al., 2017)

Fog computing seeks to position resources at the network edge,
between the data source and cloud, to bring them closer to the end user
and improve network efficiency. A fuzzy clustering algorithm has been
proposed for an unsupervised machine learning approach to selecting
fog nodes in a 5G network, with the aim of reducing system latency
(Balevi and Gitlin, 2017).

6. Discussion

This section reflects on the review findings and evaluates these using
an existing analysis framework developed from a review of smart city
assessment papers and their indicators.

6.1. Review papers

Of the 186 papers in this review, 40 were considered to be review
papers as they survey or give an overview of existing research on AI in
an area of infrastructure. While most are concerned with the present
state of the art, some look ahead to predict future challenges and
opportunities in their field (Jiang et al., 2017) . Many of the review
papers deal with a particular subsector rather than a full sector of
infrastructure. For example, reviews have been undertaken pertaining
specifically to solar energy within the energy sector (Mellit and Kalo-
girou, 2008) and optical networks within telecommunications (Mata
et al., 2018; Musumeci et al., 2019). It is also noted that some review
the use of AI only for a specific purpose, such as forecasting (Raza
and Khosravi, 2015; Almalaq and Edwards, 2017). Nonetheless, the
existence of a body of work that seeks to surmise the progress of AI
in the field of infrastructure indicates the extent of development in
this area. The distribution of review papers also highlights the sectors,
purposes, and subcategories of AI that have been the subject of the
greatest degree of research, and those areas that lack significant study.
Fig. 3 shows the review papers that focus on the field of machine
learning, as well as various subcategories of machine learning. This
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Fig. 3. References of review papers covering fields of machine learning.
represents a significant majority of review papers, with those absent
from this selection focusing instead on robotics (Shukla and Karki,
2016a,b; Yang et al., 2019), or computer vision (outside of CNNs)
(Mirallès et al., 2014). The infrastructure sector with the most existing
review papers is energy, followed by telecommunications. Only two
papers were identified as sitting at the overlap between sectors, which
were concerned with energy and water, and energy and transport.

6.2. Characteristics of machine learning methods

With numerous machine learning tools available, and further sub-
types of each, the justification for selecting one method over another
is not always immediately evident. Table 7 presents the most common
machine learning methods utilised in infrastructure systems and dis-
cusses the characteristics of each. Examples are drawn from various
sectors to demonstrate how the traits of a given method contribute to
its suitability for the desired application.

6.3. Analysis

The structure of this analysis is based on a framework proposed
by Sharifi, which consists of 11 qualities with associated evaluation
criteria (Sharifi, 2019). This framework is concerned not only with
innovative solutions, but effective implementation, which is often de-
pendent on recognising the interconnections between systems and the
interdisciplinary nature of work in cities and infrastructure (Szpilko,
2020). Two additional criteria, comparison and vulnerability, have
been added to the original framework in order to align the analysis
with AI in infrastructure. Table 8 outlines how each criterion relates to
infrastructure systems, as well as the extent to which each is satisfied by
the overall body of research covered by this paper. Criteria with limited
coverage would benefit from greater consideration in future research
in this field; this is explored more in a later section on further work.
Where possible, examples of a paper that meets the description of the
criterion to a high degree are provided, as are examples which show a
low level of sophistication in regard to a criterion, but do not neglect
it entirely.
12
6.3.1. Comprehensiveness
There are examples of work in the field of infrastructure that

consider a spectrum of influencing variables, with site selection re-
search yielding some of the best. One example, investigating wind
farm location, applied a total of 28 evaluation criteria across six di-
mensions: safety and quality, economy and benefit, social impression,
environment and ecology, regulation, and policy (Yeh and Huang,
2014). Another example is the site selection of electric vehicle charging
stations, which also made use of fuzzy logic and considered 11 sub-
criteria within economic, social, and environmental sectors (Guo and
Zhao, 2015).

In contrast, much of the work on forecasting considers only his-
torical data of the same kind. While this will reflect a number of
indicators, the research does not seek to identify them or quantify
their contribution or significance. This means that should economic,
social, environmental or other factors fluctuate outside of the range of
what was experienced in training data, forecasts maybe be inaccurate.
While systems with large volumes of training data will be less suscep-
tible to fluctuations outside of the training range, this method, seen
often in demand forecasting, remains limited in comprehensiveness. An
exception is transport energy demand forecasting, where a variety of
socio-demographic indicators have been considered, including vehicle
ownership levels and fuel prices (Geem, 2011; Al-Ghandoor et al., 2012;
Murat and Ceylan, 2006).

One area that shows significant range in variable comprehensive-
ness is network routing. While some approaches seek to optimise a
single variable, typically network congestion or delay (Tang et al.,
2019), other work has incorporated 12 inputs, including buffer occu-
pancy and success ratio (Sharma et al., 2018), and sought to account
for multiple noise parameters (Barbancho et al., 2007).

6.3.2. Stakeholder engagement
Engagement through participatory approaches in infrastructure AI

research has been scarce, with only a handful of instances discovered.
Participatory approaches have been extended to include consultation
with stakeholders in this context. A paper trying to assess QoE in
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Table 7
Characteristics of machine learning techniques.

Method Strengths Weaknesses Example of effective use

ANN ANNs are a versatile approach to solving
complex, non-linear problems (Aggarwal,
2018c). ANNs can be fault tolerant, and so are
able to solve problems despite some failure
elements on the network. After training, an
ANN is able to produce an output even if
presented with incomplete data (Mat Daut
et al., 2017).

ANNs are a black box approach, and thus the
structure of an ANN cannot provide insight
into the function being approximated. ANNs
require training, which can be time-consuming,
and their effectiveness can depend on access to
sufficient quantities of training data. ANNs can
require re-training over time (Mat Daut et al.,
2017). ANNs can suffer from overfitting and
local minima issues (Ghoddusi et al., 2019).

ANNs have been applied to short-term energy load
forecasting, where they have outperformed traditional
methods due to the highly nonlinear characteristics of
short-term prediction. Able to approximate functions
regardless of non-linearity and without prior
knowledge of functional form, ANNs also perform
consistently across variation in time intervals (Raza
and Khosravi, 2015).

Deep
learning

The problems where deep learning outperform
traditional machine learning techniques are
those involving very large quantities of data.
Deep learning has proven to be very successful
for high-dimensional datasets with very noisy
data problems, such as image classification,
natural language processing, and speech
recognition (LeCun et al., 2015).

As a large quantity of data is typically required
to train deep networks, problems where limited
data is available may be unsuitable for this
approach. Working with large datasets, in
addition to the increased computational
complexity of deep ANNs, often results in
longer training and processing times, which are
of particular concern for real-time applications
(Aggarwal, 2018d). Deep learning requires a
higher standard of hardware than many other
methods. As with most machine learning
techniques, deep learning is a black box
approach.

Deep learning has been shown to improve upon
conventional open shortest path first (OSPF) protocol
for packet routing in telecommunications. With
network traffic becoming increasingly complex, deep
learning offers a smart strategy that is capable of
considering multiple network parameters,
outperforming traditional routing methods that
consider only a single network parameter. Deep
learning techniques can reduce overall packet loss rate
and average delay per hop (Mao et al., 2017).

SVM While both ANN and SVM can solve the
nonlinear problems, SVM only requires a small
quantity of data to do so Mat Daut et al.
(2017). SVM methods are able to effectively
handle data with both high degrees of
uncertainty and heterogeneity. SVM classifiers
typically run at good speeds (Ghoddusi et al.,
2019).

SVM is a black box approach, so the intrinsic
relations between inputs and outputs cannot be
completely known. SVM has limited tolerance
for noisy data or data with missing values, and
can be susceptible to overfitting (Ghoddusi
et al., 2019).

SVM methods have performed consistently well in
load and demand forecasting for the energy sector. In
many energy forecasting scenarios, SVM techniques
have consistently yielded lower mean absolute
percentage error (MAPE) values than other machine
learning methods, including ANNs (Mat Daut et al.,
2017). The focus on empirical risk minimisation,
rather than the ‘‘expert rules’’ learning technique of
ANNs, enables SVM models to achieve accurate load
forecasting in a relatively short time (Hong, 2009).

RF RFs are a versatile method, able to handle
binary features, categorical features, and
numerical features. There is very little
pre-processing that needs to be done for RFs.
The data does not need to be rescaled or
transformed. RFs are able to handle noisy
datasets, as well as those with missing values
(Ye et al., 2020). RFs do not suffer from
overfitting, and are the fastest tree-based
technique (Ghoddusi et al., 2019).

RF is another black box approach. RF’s
execution time, though typically low, can
significantly increase with large volumes of
data (Song et al., 2017). RFs for large datasets
can also take up large amounts of memory.

RFs outperformed numerous other machine learning
classifiers in the modelling of travel mode choice. The
high accuracy of tree-based ensemble classifiers
indicates that the flexibility which is obtained by
combining multiple trees is particularly useful for
modelling transport choice. The dominance of RF over
other tree-based classifiers can be attributed to the
larger diversity among the learned trees of RF, which
is a result of the RF’s procedure for randomised
splitting at nodes (Hagenauer and Helbich, 2017).

K-means K-means is a scalable, rapid, and simple
learning algorithm, able to handle large
quantities of data (Taherkhani and Pierre,
2016).

The simplicity of K-means comes at the cost of
high sensitivity to initialisation — the user
must provide a number of clusters without
necessarily knowing what an effective number
of clusters will be. K-means can also struggle
with clusters of a ‘non-convex’ nature (Kubat,
2017c).

K-means clustering has been effectively applied to
data congestion control in VANETs. A closed-loop
congestion control strategy utilised K-means to cluster
the messages, with a control unit then determining
parameters for each cluster, which are sent to vehicles
stopped at intersections. This approach outperforms
numerous existing methods, reducing packet loss ratio,
average delay, and collision probability. This strategy
also increased average throughput and packet delivery
ratio considerably (Taherkhani and Pierre, 2016).
telecommunication end-users combined a passive monitoring tool with
a feedback application in participants’ smartphones. In total, around
700 instances of feedback were recorded, which helped to establish
relationships between QoE and several other performance indicators,
such as length of session (Casas et al., 2017). This approach shows
significant potential and could be incorporated in customer churn
prediction, which is heavily linked to user experience. Other exam-
ples of stakeholder engagement have been limited to consultation for
the purpose of evaluating social indicators, such as consulting local
residents during wind farm site selection (Yeh and Huang, 2014).

6.3.3. Context-sensitivity
Many techniques explored in this paper have been applied to partic-

ular contexts, as the complex nature of tools such as machine learning
often makes then unsuitable to broad circumstances. Several papers
have chosen to frame their findings in a context-specific way through
the use of case studies (Azadeh et al., 2014; Aydin et al., 2013; Xu et al.,
2019a; Zhang et al., 2017), although it is worth noting that often no
13
adaptation has been done to the method, rather a specific dataset has
been used.

The best examples of context-sensitive research in this field incor-
porate context at the method level. In one case, time-series data was
combined with textual data for taxi demand prediction in event areas.
The authors utilise online information regarding event scheduling at
venues within the study area, recognising that this is likely to influence
local taxi demand (Rodrigues et al., 2019).

6.3.4. Strategic needs
Despite the high relevance of many strategic plans to infrastructure

systems, minimal research to date has taken a strategic viewpoint.
Much of the work covered in this review could be used to inform policy
or strategy, rather than the inverse of research being informed by strat-
egy. A contributing factor may be the discrepancies in geographic scale,
with a substantial quantity of research focused on specific applications
or individual systems at a local level, while strategic plans often take
a broader approach and deal with significant geographic areas and/or
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Table 8
Analysis framework (Zhang and Zhu, 2018; Yeh and Huang, 2014; Casas et al., 2017; Lv et al., 2021;
Rodrigues et al., 2019; Alawe et al., 2018; Doğan and Akgüngör, 2013; Ekpenyong et al., 2009; Lu et al.,
2019; Guo and Zhao, 2015; Zaidi et al., 2018; Antunes et al., 2018; Mocanu et al., 2016; Wu et al., 2020;
Samadi et al., 2017; Aydin et al., 2013; Balevi and Gitlin, 2017; Gu et al., 2020; Ye et al., 2020; Vashishth
et al., 2019; Meti et al., 2017; Yin and Zhao, 2016).
multiple systems. That is not to say that opportunities do not exist to
incorporate strategy in this type of work. In one example, an effort
was make to predict the impact of railway development policy on road
casualties in Turkey (Doğan and Akgüngör, 2013). Though not aligned
with any stated strategic goal, a substantial body of recent work in
telecommunications pertains to the widespread transition towards 5G
(Li et al., 2017; Fernández Maimó et al., 2018; Alawe et al., 2018; Le
et al., 2018; AlQerm and Shihada, 2017; Balevi and Gitlin, 2017).

6.3.5. Uncertainty management
While supervised machine learning has proven its effectiveness in

a wide range of applications, other approaches may be needed to deal
with the increasing uncertainty that comes with larger and more in-
terconnected systems (Qi et al., 2017). Treating uncertain indicators as
fuzzy parameters allows them to be considered alongside more concrete
variables, with the probabilistic nature of this approach allowing levels
of uncertainty to be considered. This has been effectively applied to
variables in the selection of sites for assets such as wind turbines
(Azadeh et al., 2014) and car parks (Sasan et al., 2018).

Where uncertainties are in outputs, unsupervised learning can assist
in identifying relationships and clusters in a given dataset without
prior knowledge of any links between data. This has been exploited
for numerous infrastructure applications. Reinforcement learning is an
inherently iterative approach, thus lends itself well to dealing with
uncertainty, and has seen increased uptake in recent years. Applications
have included improving energy efficiency in vehicles (Qi et al., 2017)
and routing in telecommunication networks (Yu et al., 2018).

6.3.6. Interlinkages and interoperability
As infrastructure networks can be considered a ‘system of systems’,

interlinkages are an important part of infrastructure research. However,
possibly due to the high level of subject-specific research and the
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limited extent of research that is broad in nature, the body of work
in this review is very restricted in its consideration of interlinkages and
interoperability. The limited recognition of relationships and dependen-
cies between systems is evident in a review of the water–energy nexus
(Zaidi et al., 2018). Despite this nexus representing a significant overlap
in systems, few papers sit in this region, and those that do are often
very subject-specific, and thus typically deal with a narrow range of
indicators. Perhaps the only other significant area of interconnectivity
research is the junction of energy and transport, where several papers
have looked at the energy demands of transport (Geem, 2011; Al-
Ghandoor et al., 2012; Murat and Ceylan, 2006), and other have
considered the integration of electric vehicles into the smart grid (Rigas
et al., 2015).

6.3.7. Temporal changes
As one of the most extensively researched purposes, forecasting of

various variables has been studied across a wide range of temporal
scales and resolutions. Illustrating the temporal scalability achieved by
research to date, one paper predicting energy consumption at building
level was able to produce forecasts for 15 min, hourly, daily, weekly,
or yearly intervals, at resolutions ranging from one minute to weekly,
using 47 months of sampled data (Mocanu et al., 2016). In different
sectors, forecasting across a span of several years is not uncommon.

Additional temporal elements to consider are training and operat-
ing speeds, which are particularly pertinent to real-time applications.
Papers addressing time-sensitive tasks should explicitly consider their
method’s run time, in addition to accuracy, as an indicator of per-
formance. While the trade-off between complexity and running speed
warrants consideration, it is worth noting that improvements in hard-
ware, bandwidth, data transmission speeds, and cloud computing make
the adoption of AI more feasible than ever (Stojanovic et al., 2019).
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6.3.8. Flexibility
The vast majority of models can be adapted to a range of conditions,

provided adequate training data is available. A change in conditions
may include a new geographic location, increased or decreased sig-
nificance of input variables, or changing relationships between input
variables. Flexibility goes hand in hand with feasibility for machine
learning, as computational expense increases with the complexity of
the model. In terms of scalability, the forecasting undertaken by ma-
chine learning tools for infrastructure purposes has spanned a range
of geographic areas. For example, energy demand has been estimated
both at building level (Robinson et al., 2017; Mocanu et al., 2016)
and for the whole urban area of Sydney (Johannesen et al., 2019).
Research in the field of telecommunication networks, which are in-
creasingly moving away from hardware and towards software-defined
architectures, recognises the need to consider scalability in a range of
applications (Zorzi et al., 2015), including intrusion detection (Zhang
and Zhu, 2018; Abubakar and Pranggono, 2017), QoT (Samadi et al.,
2017) and traffic forecasting (Alawe et al., 2018). It is worth noting that
other areas of AI face different issues with flexibility and scalability.
In knowledge representation, for example, structuring large quanti-
ties of concepts, relationships, and interdependencies is a significant
challenge.

6.3.9. Feasibility
Machine learning techniques, particularly deep learning methods

requiring large datasets, have the potential to be very computationally
expensive. While model accuracy is important, run-speed, especially
as compared to alternative techniques, is often also a very significant
factor (Bui et al., 2020). While a few papers allude to such reasons as
justification for selecting one method over another, feasibility is rarely
considered beyond this, with no research reviewing the feasibility of a
proposed method in a systematic or quantitative sense. While feasibil-
ity can include financial viability, applications dealing with physical
infrastructure can often experience other concerns. In the selection
of renewable energy sites, for example, exposure to energy source
and appropriate ground conditions are crucial for providing adequate
energy generation, while public support can be key to getting projects
approved. These variables can be quantified, and included as inputs
in the site selection process (Aydin et al., 2013). As regards technical
feasibility, one of the core requirements of machine learning systems is
access to sufficient training datasets.

6.3.10. Presentation and communication
As journal or conference papers were selected for this review,

the quality of written communication was high across the board. A
range of figures and graphs were used to aid understanding, with
comparative studies often using graphical methods to highlight the
differences between different models or techniques (Casas et al., 2017).
As mentioned earlier, a substantial number of papers also used case
studies to demonstrate their findings.

6.3.11. Comparison
The papers reviewed, particularly those that fall into the category

of machine learning, encompass a large range of models, many of
which seek to outperform traditional methods. In order to demonstrate
a solution is effective, many papers have either compared their work
against existing models or set out to find the best method out of several
contenders, using variables such as accuracy, speed, and sensitivity to
judge performance (Casas et al., 2017; Hagenauer and Helbich, 2017).
An important caveat to this is that comparative indicators have been
overwhelmingly technical in nature. While this is a valuable gauge of
ability, there are also economic indicators, such as set-up and operating
costs, and planning or governance concerns, such as compliance with
regulations and the ease of training others to use a model, that, while
beyond the scope of many engineering papers, must be considered if

there is to be widespread uptake of these methods in government and
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industry. It is worth recognising that, in order for comparison to be
accurate, the dataset being used should be as similar as possible for
each model and of a substantial enough size to be representation. The
vast majority of papers attempting comparison give each method an
identical dataset, which can span significant geographic and temporal
ranges. Examples include forecasting for entire cities or regions (Ren
et al., 2018; Zhang et al., 2017), and accident prediction based on years,
or even decades, of data (Murat and Ceylan, 2006).

6.3.12. Vulnerability
The vulnerability of infrastructure systems concerns their suscep-

tibility to both deliberate attacks and a variety of accidental causes of
failure. As detailed earlier in this review, numerous papers have applied
AI to the purpose of security. The field of telecommunications has been
at the forefront of this research, utilising a range of machine learning
tools in the detection of intrusion attacks, network anomalies, and
denial-of-service attacks (Meti et al., 2017; Abubakar and Pranggono,
2017; Tang et al., 2016). While papers concerned with non-deliberate
system failure are often less explicit in their discussion of vulnerability,
it could be reasoned that there are far more variables contributing to
accidental failure, making the breadth of this research much greater.
There are specific instances of research focusing on non-deliberate
failures, including the use of machine learning techniques for fault
diagnosis in high-speed rail (Yin and Zhao, 2016).

The fact that supervised machine learning techniques rely heavily
on access to comprehensive training data is important in the discussion
of vulnerability. The question of how to react to rare events, which
occur so infrequently that their presence in existing data is sparse, is
one that is crucial to the prevention of potential system failure. Several
papers have approached this by teaching a model the normal state of a
network and setting a threshold beyond which behaviour is considered
abnormal and flagged (Ashraf and Latif, 2014). Other techniques have
begun to be developed (Veres and Moussa, 2019), although more work
in this area would be beneficial, particularly outside of the field of
telecommunications.

6.3.13. Action-oriented approach
While a number of papers have presented frameworks (Bedi and

Toshniwal, 2019; Wang et al., 2016), and others have offered case
studies as practical examples (Xu et al., 2019a; Azadeh et al., 2014),
no papers reviewed in this work have included a formal action plan for
system-wide implementation. It is worth noting, however, that much of
the research described in this paper has been conducted in very specific
fields or on small scales. Therefore, while findings may well be relevant
to those creating action plans, they are not typically of a large enough
scale to warrant the proposal of a plan independently.

6.3.14. Summary
Infrastructure systems are inherently complex, and so it is promising

that elements contributing to complexity – uncertainty management,
interlinkages, vulnerability, and flexibility – have all been developed to
some extent in the reviewed work. This provides a strong foundation
upon which researchers can build, to progress the implementation of
AI across increasingly complex networks in towns and cities.

It is evident that some of the beneficial characteristics of AI are
reflected in the areas in which the literature is well developed. Perhaps
the best example is reinforcement learning which, as a technique
designed to learn the optimal strategy from interaction with an envi-
ronment, is inherently very specific to context (Kubat, 2017b). It should
also be noted that the significant majority of literature reviewed sits
within the bracket of engineering or computer science. It can be argued
that this contributes both to the strengths seen in this analysis and the
areas in which there are gaps. Many of the solutions presented value
a strong quantitative performance, demonstrating this over a range
of geographic and temporal scales, at various degrees of granularity.
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There have been very effective attempts to incorporate numerous quan-
titative variables in models which have been outperformed traditional
methods in many measurable ways. While this represents a significant
strength, it is in the areas where it is more difficult to obtain such neat,
measurable results, that the literature is less developed.

The sections of analysis where performance is more qualitative
– stakeholder engagement, strategic planning, feasibility, and action-
orientated approach – are typically of greater concern to those in
planning, business, governance, and policymaking. While engineers
can offer accurate and effective solutions, it requires the co-operation
and insight of those in other sectors to bring AI from research into
large-scale, interconnected projects in the real world. In addition to
limited consideration of non-engineering sectors during the design
stage, the technical knowledge required to create and sustain AI-based
solutions presents a significant barrier to implementation in many areas
of industry. It has been noted that investment in people, skills, and
processes is necessary for the widespread uptake of AI (Stojanovic
et al., 2019). These gaps highlight the importance of collaboration with
other disciplines, such as economics, planning, and politics, in order
to include all of the perspectives necessary to design comprehensive
solutions and achieve effective implementation of AI.

7. Further work

This work was limited in scope to economic infrastructures. Further
work could broaden this definition of infrastructure to explore the
use of AI in, for example, solid waste, finance, agriculture and food
networks, or in social infrastructures such as healthcare, education,
arts and culture. This work also identified limited research at the
intersections of different infrastructure sectors, something which could
be further explored in future work.

The criteria identified as having limited coverage in Table 8 would
benefit from further consideration in future research. For example,
having identified a gap in literature that takes an action-orientated
approach, future work could seek to bring together the findings of re-
search covered in this paper to suggest areas where it can inform action
plans and guide policy. This could look to bridge the gap between
research in this field and the governance of infrastructure systems. Sim-
ilarly, this research recognises that, while technical developments in AI
have led to significant improvements in the accuracy of solutions, there
remains a lack of focus on the feasibility of potential interventions.
Future work may wish to explore the possibilities and limitations of
AI in infrastructure systems through this lens, perhaps by exploring
the financial, technical, and regulatory requirements of implementing
AI-based techniques in different geographies and economies.

8. Conclusion

This paper reviews the applications of AI across the economic
infrastructure sectors of energy, water and wastewater, transport, and
telecommunications. The main purposes to which AI has been applied
are system provision, forecasting, routing, monitoring and security,
and quality assessment and improvement. AI methods are increasing
in popularity and capacity, with deep learning and CNNs examples of
recent developments in this field. The application of AI to infrastructure
is also likely to continue to grow as infrastructure systems becoming
increasingly instrumented and digitalised, providing data for AI tools.

Most of the existing research in infrastructure utilises machine
learning methods, with other branches of AI explored less extensively.
It is worth recognising that many applications of machine learning
employ supervised learning and require access to some degree of his-
torical data. The availability of such data may account for differences
in research across sectors, with machine learning widely applied to
forecasting of energy demand, but less so to water or transport demand.
Although supervised learning methods dominate, unsupervised and re-

inforcement learning approaches have seen greater utilisation in more

16
recent works, and the new field of deep learning has proven effective
in instances concerned with large volumes of data.

Sensor networks are beginning to be recognised as a potential
architecture for intelligent infrastructure systems through the ‘Internet
of Things’. However, if they are to see widespread use, further research
in knowledge representation will be needed. Ontologies and semantic
approaches have been proposed, but rarely incorporated into larger
artificially intelligent systems. Robotics is another branch of AI that is
yet to be fully exploited in infrastructure. While the potential of fully
autonomous robots in several infrastructure environments has been
identified, existing robots in reported infrastructure research are largely
short of autonomous. Some of the most exciting examples of intelligent
robots in infrastructure to date incorporate computer vision or machine
learning techniques, and other sectors could benefit from research into
inspection of water and electrical infrastructure by AUVs and UAVs
respectively.

While research covered in this review ranges in comprehensive-
ness, AI techniques such as fuzzy logic allow input variables with
uncertainties to be incorporated into the various indicators included
in comprehensive papers. The dependence of many machine learning
tools on the training data available means that, provided sufficient data
is available, they can be adapted to suit a range of temporal scales,
geographic areas, and network sizes. The data-driven nature of such
tools also allows for a context-driven approach, with case studies often
used to demonstrate effectiveness. Where research is lacking, however,
is in incorporating broader infrastructure targets. Minimal work has
sought to account for strategic goals in the problem formulation stage,
while no work to date has put together a structured action-plan based
on its findings. Though AI has been effectively applied to a number of
highly specific purposes, there remains work to be done to incorporate
it into an interconnected systems approach.

AI methods will have a valuable role to play in the burgeoning
fields of distributed intelligence and the ‘Internet of Things’. Knowledge
representation will prove significant as sensors from a wide range of
networks will need to be structured within a complex and intercon-
nected knowledge base. As sensor networks provide increasing volumes
of data, edge networking is an attractive solution to scalability con-
cerns, with machine learning methods able to convert vast amounts of
data into small packets of information for transmission (Garofalo et al.,
2020). AI techniques can reason from data provided by sensor networks
in the absence of human operators, which can contribute to the devel-
opment of autonomous anticipatory and self-healing networks. Such
capabilities can massively improve network resilience under growing
uncertainty and are needed if interconnected systems are to effectively
respond to the pressures of increasing populations, digitalisation, and
complexity.
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