
Incorporating software security: using developer
workshops to engage product managers

Charles Weir1 & Ingolf Becker2 & Lynne Blair1

The Author(s) 2022

Abstract
Evidence from data breach reports shows that many competent software development
teams still do not implement secure, privacy-preserving software, even though techniques
to do so are now well-known. A major factor causing this is simply a lack of priority and
resources for security, as decided by product managers. So, how can we help developers
and product managers to work together to achieve appropriate decisions on security and
privacy issues? This paper explores using structured workshops to support teams of
developers in engaging product managers with software security and privacy, even in
the absence of security professionals. The research used the Design Based Research
methodology. This paper describes and justifies our workshop design and implementa-
tion, and describes our thematic coding of both participant interviews and workshop
discussions to quantify and explore the workshops’ effectiveness. Based on trials in eight
organizations, involving 88 developers, we found the workshops effective in helping
development teams to identify, promote, and prioritize security issues with product
managers. Comparisons between organizations suggested that such workshops are most
effective with groups with limited security expertise, and when led by the development
team leaders. We also found workshop participants needed minimal guidance to identify
security threats, and a wide range of ways to promote possible security improvements.

https://doi.org/10.1007/s10664-022-10252-0

Communicated by: Sigrid Eldh, Davide Falessi, Burak Turhan

This article belongs to the Topical Collection: Special Issue on Software Engineering in Practice

* Charles Weir
c.weir1@lancaster.ac.uk

Ingolf Becker
i.becker@ucl.ac.uk

Lynne Blair
l.blair@lancaster.ac.uk

1 Computing and Communications, Lancaster University, Lancaster, UK
2 Security and Crime Science, University College London, London, UK

Empirical Software Engineering (2023) 28:21

Accepted: 20 October 2022 / Published online: 24 December 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10252-0&domain=pdf
http://orcid.org/0000-0003-3051-4195
https://orcid.org/0000-0002-3963-4743
https://orcid.org/0000-0002-7515-8908
mailto:c.weir1@lancaster.ac.uk

Empowering developers and product managers in this way offers a powerful grassroots
approach to improve software security worldwide.

Keywords Developer centered security . Software security . Softwaredeveloper . Cybersecurity .

Software development . SDLC . Productmanagement . Productmanager . Designbased research

1 Introduction

Software security and privacy are now major issues: almost every day we hear that several
more organizations’ software systems have been compromised (RiskBased Security 2020).

While there are many aspects to an organization’s security and privacy, the specification,
design, and implementation of the software used has a significant impact on whether such
breaches happen. Two industry trends contribute to this impact: the increasing use of
microservices and Software as a Service (SaaS) components, and the DevOps movement.
Both require security to be ‘in the code’ rather than being the responsibility of separate
operations or security teams. So, development teams must be effective at creating secure
software.

Unfortunately, there is evidence that developers are not delivering sufficient security. A
report from Veracode concluded that “more than 85 percent of all applications have at least
one vulnerability in them; more than 13 percent of applications have at least one very high
severity flaw” (Veracode 2018). A report from Microsoft found that 28% of Software as a
Service applications were not supporting data encryption (Microsoft 2018). Industry practices
are not yet sufficient to support developers in providing the software security1 we need.

In particular, it may not matter how enthusiastic a software development team may be about
security. Unless they have appropriate knowledge, time and resources—both financial and
otherwise—to make their software secure, they are unlikely to be effective at achieving it
(Weir et al. 2019; Rauf false 2022). Yet development teams are rarely free to decide how to
allocate their own time and resources. Instead, such decisions are taken by a product owner,
customer, senior manager, or product management committee. This role, which we shall call
‘product manager’, is to ensure that the developers create the software most needed by the
organization. So, how are developers to engage with product managers to achieve appropriate
time and resource expenditure for the security issues in their development?

To work effectively with product managers on security makes a range of demands on the
developers involved, including:

1. Understanding the relevance of security as a business driver;
2. Identifying types of security issues relevant to current projects;
3. Characterizing those issues in terms of impact and likelihood to identify the most

important;
4. Identifying and costing solutions, such as security-improving activities (‘assurance tech-

niques’), to address those important issues; and
5. Discussing those issues and solutions in terms meaningful to product managers.

1 This paper uses the words ‘secure’ and ‘security’ to include privacy aspects of the software developed, except
where privacy is explicitly differentiated. ‘Developers’ refers to all those involved with creating software:
programmers, analysts, designers, testers, and managers.

21 Page 2 of 33 Empirical Software Engineering (2023) 28:21

Items 2, 3 and 4 are now relatively well-understood among cybersecurity experts and some
developers (Bell et al. 2017). Items 1 and 5, engaging with product managers with security as a
business driver, appear less explored and understood in literature and practice.

Specifically, this paper explores outcomes from a project to create an intervention to help
organizations improve the security of the code they develop, and specifically to address the
five demands above. Given the vast range of types of software development, and the
differences between teams in set-up, organization structure, team culture and personalities
involved, it seemed unlikely we would find a ‘one size fits all’ method to teach to the
development teams involved. Instead, we took a different approach, using ‘Flipped Teaching’
(Franqueira and Tunnicliffe 2015): structured activities to help participants learn from their
own experience and knowledge. This took the form of a sequence of three short structured
workshops to help the developers learn and identify for themselves ways to improve.

The primary research question explored by this paper, therefore, is:

RQ1 How can an intervention based on short workshops assist developers in identifying
security issues, assessing them, and engaging product managers with those issues?

1.1 Contribution

This paper describes the design of the three workshops and the intervention process, their use
in eight different organizations, the analysis of this use, and the practical and theoretical
conclusions related to engaging product managers. The research makes the following
contributions:

1. It demonstrates the ability of developers to represent security enhancements in terms of
their business benefits;

2. It categorizes a range of such business benefits, as identified by participating development
teams;

3. It identifies factors that encourage or discourage the engagement of product managers
with security (‘product management engagement’); and

4. It provides an existence proof that an ‘intervention package’, structured as a facilitated
series of workshops for a software development team, can help product management
engagement.

The paper builds on an earlier paper (Weir et al. 2021a), and describes the same intervention
and trials. The major additional material is as follows:

& This paper focuses on product management engagement, rather than improvements in
assurance technique use, and provides new analysis to support that focus (Sections 1, 2.4,
3.5, 4.2, and 5.6);

& To address the Empirical Software Engineering readership, the full methodology is
described in detail in Sections 4.3 and 4.4; and

& The paper includes the analysis of 47 hours of discussions and presentations in the
workshops (Sections 4.3, 5.5, 5.6, and 5.8), to generate the following additional material:

Page 3 of 33 21Empirical Software Engineering (2023) 28:21

○ A discussion of security ‘selling points’ identified in the workshops (Sections 4.2, 5.5), and
○ A discussion of factors supporting and opposing product management engagement (Section 5.8).

The rest of this paper is as follows. Section 2 discusses relevant past research; Section 3
describes the requirements for the intervention package and how they were implemented.
Section 4 describes the research method and introduces research sub-questions. Section 5
explores the results from using the intervention to answer the research questions; Section 6
discusses those results; and Section 7 provides a conclusion.

2 Background

Research related to interventions and decisions for secure software has taken a variety of
disparate approaches. In this section, we explore how research has explored security-oriented
interventions and the relationship with product managers. Specifically, we discuss ways to get
developers to adopt business process improvements related to security; consultancy and
training interventions; approaches to motivate developers towards security; blockers and
motivators as a means of analysis; and work studying how product managers engage with
developers on security.

2.1 Adoption of developer security activities

One way to incorporate development security into organizational practice is to build a process
around it using a ‘Secure Development Lifecycle’ (SDL). This is a prescriptive set of
instructions to managers, developers and stakeholders on how to add security activities to
the development process (De Win et al. 2009). However, research suggests resistance from
development teams to adopting a prescriptive methodology. For example, Conradi and Dybå
(2001) deduced in a survey that developers are skeptical about adopting the formal routines
found in traditional quality systems.

van der Linden et al. (2020) found from a task-based study and survey that developers tend
to see only the activity of writing code to be security-relevant. They suggested a need for a
stronger focus on the tasks and activities surrounding coding. And an interview survey by Xie
et al. (2011) suggests that developers make security errors by treating security as “someone
else’s problem,” rather than as a process involving themselves.

Moving on to security-promoting interventions, Türpe et al. (2016) explored the effect of a
single penetration testing session and workshop on 37 members of a large geographically-
dispersed project. The results were not encouraging; the main reason was that the workshop
consultant highlighted problems without offering much in the way of solutions. A study by
Poller et al. (2017) followed an unsuccessful attempt “to challenge and teach [the developers]
about security issues of their product”. The authors found that pressure to add functionality
meant that attention was not given to security issues and that normal work procedures did not
support security goals. They concluded that successful interventions would need “to investi-
gate the potential business value of security, thus making it a more tangible development
goal”.

Other work has also found a need for the business alignment of software security. Caputo
et al. (2016) concluded from three case studies a need for the alignment of security goals with
business goals. Weir et al. (2020b) surveyed security specialists working with developers,

21 Page 4 of 33 Empirical Software Engineering (2023) 28:21

identifying a frequently-used approach for developer teams of ‘product negotiation’: involving
product managers and other stakeholders in security discussions.

Considering solutions to support developers, Yskout et al. (2015) tested if ‘security
patterns’might be an effective intervention to improve secure development in teams of student
software developers. The results suggested a benefit but were statistically inconclusive. Such
et al. (2016) defined a taxonomy of twenty assurance techniques from a survey of security
specialists, finding wide variations in the perceived cost-effectiveness of each. And a recent
book by Bell et al. (2017) provides support for developers and tool recommendations,
containing much valuable practitioner experience, but little objective assessment of the
advice provided.

2.2 Motivating change in development teams

Dybå (2005) concluded from a quantitative survey that organizational factors were at least as
important as technical ones to motivate change in development teams. They found that actions
need to be aligned with business goals, and a need for employees to take responsibility for the
changes. Beecham et al. (2008) conducted a literature review of 92 papers on programmer
motivation in 2008, concluding that professional programmers are motivated most by prob-
lem-solving, by working to benefit others and by technical challenges. Hall et al. (2008)
framed these motivators as ‘intrinsic’, relating them to self-determination theory (Herzberg
2017).

Lopez et al. (2019a) concluded that to encourage developer security there is a need to
“raise developers’ security awareness;” they successfully used ‘playful workshops’ to do so
(Lopez et al. 2019b).

More generally, awareness is just the first step (Beyer et al. 2015), and individuals need to
be supported through training to have the ability to perform the expected behavior (Fogg
2009). Organizations need to integrate security tasks into the primary business activities, rather
than ‘bolting them on’ afterwards through unworkable policies or compliance exercises
(Kirlappos et al. 2013).

2.3 Blockers and motivators

Apart from raising awareness of the importance of security, the workplace environment,
individual rewards and perceived potential negative consequences are important factors
affecting developers’ adoption of secure practices (Assal and Chiasson 2019). Pfleeger et al.
(2014) observed that the key to enabling good security behavior is good ‘motivators’:
feedback, situations or rewards that encourage the behavior. But piling on motivations is not
sufficient. If individuals are faced with obstacles—‘blockers’—these need to be removed
before the desired behavior can be achieved (Tietjen and Myers 1998). Furthermore, individ-
uals may feel that they are ‘unequipped for security’ or, potentially even worse, disillusioned to
the benefit of promoting security. In that case, motivators will be perceived as a nuisance and
may reinforce archetypal behaviors (Becker et al. 2017; Assal and Chiasson 2019).

2.4 Product management engagement

While there is an extensive literature on methods for secure requirements engineering
(Nhlabatsi et al. 2012), there is less work investigating how the need for such requirements

Page 5 of 33 21Empirical Software Engineering (2023) 28:21

is established and motivated: Ambreen et al. (2018) found only 16 papers discussing the
practical effects of requirements engineering out of a total of 270 dedicated to empirical
requirements engineering. Typically these were case studies of the application of specific
approaches (Mead and Stehney 2005; Mellado et al. 2006). Much of the product manager role
is one of prioritization: research has developed several technical approaches to prioritization
(Bukhsh et al. 2020), some of which prioritize non-functional requirements including security
against functional ones (Dabbagh et al. 2016); however, we found no evidence in the literature
that software product managers have used them in practice.

Exploring product management more generally, Springer and Miler (2018) identify 8
personas and an archetype for software product managers; they note that many started in
development roles. Standard texts for product managers tend to explore practical decision-
making within the role, e.g. (Haines 2014). We have found no other empirical research
studying the interaction related to security between developers and product managers.

Much work has been done supporting development teams and product managers with the
wider scope of non-functional requirements, of which security can be regarded as one. SEI’s
Quality Attribute Workshop, for example, brings together developers, product managers and
other stakeholders to identify and quantify such non-functional requirements (Barbacci et al.
2000); it addresses security through ‘quality attribute scenarios’. Though powerful it requires
considerable effort and the participation of a wide range of stakeholders.

2.5 Conclusions

This previous work suggests a need for lightweight interventions to improve the interaction
between developers and product managers to support better engagement in security. In
particular, we observe in Section 2.1 a need to align developers’ security goals with business
goals.

3 Design of the intervention workshops

This section explores the design criteria and creation approach for the intervention. We
expressed the design criteria in terms of ‘Requirements’, using the term in the requirements
engineering sense to mean the explicit and implicit needs and wants of the stakeholders using
the intervention (Nhlabatsi et al. 2012). As discussed in Section 1, we wanted an intervention
to help developers in:

Requirement 1 Understanding security decisions as business decisions;
Requirement 2 Identifying types of security issues relevant to their current projects;
Requirement 3 Characterizing those issues in terms of their importance to the
organization;
Requirement 4 Identifying and costing solutions to address the important issues; and
Requirement 5 Discussing those issues and solutions in terms meaningful to product
managers.

We also identified, based on industry experience and previous literature, several further
implicit requirements for such an intervention, specifically that it should:

21 Page 6 of 33 Empirical Software Engineering (2023) 28:21

Requirement 6 Take less than one working day for a development team to carry out, to
keep costs acceptable;
Requirement 7 Work with development teams, as a majority of developers work in teams
(Stack Overflow 2016);
Requirement 8 Work without security specialists, since many teams do not have access to
them (Weir et al. 2020a);
Requirement 9 Work without product managers present in the workshops, since while it is
obviously a benefit to include them, in many cases they may not be available or persuaded
to attend;
Requirement 10 Support developers currently using few or no assurance techniques, since
many teams do not currently use them (Weir et al. 2020a); and
Requirement 11 Be leadable by non-researchers, to permit the use of the intervention
where the researchers are unavailable (Weir et al. 2019).

The following sections explore the implementation of the each of the above requirements in
turn.

3.1 Requirement 1: Understanding security in terms of business decisions

To help developers understand decision making around security we used a facilitated game,
the ‘Agile App Security Game’ based on the game ‘Decisions Disruptions’ (Frey et al. 2017),
which is now used extensively in the UK in management cybersecurity training (Shreeve et al.
2020). In it, the participants work in groups as product managers, discussing and selecting
security-enhancing product improvements with varying costs and learning whether their
choices deter attacks. The Agile App Security Game uses a different case study project from
Decisions Disruptions, with developer-oriented threats and mitigations that have been updated
over several years. The game has two implied lessons for the participants:

& There is no need to have a security expert present to make decisions about software
security (Requirement 8)

& Winning, by defending against every threat, is virtually impossible. It is a business
decision as to which threats to address, based on which ones are most important to the
organization.

3.2 Requirement 2: Security issues relevant to current projects

The activity of identifying specific kinds of security issues for a given project is an important
assurance technique for security (Such et al. 2016). This activity, which we term ‘threat
assessment’, was challenging to teach and implement in a short workshop. Though valuable,
standard ‘threat modeling’ approaches require considerable knowledge of possible technical
threats, and preferably support from a professional with a detailed understanding of both the
industry sector and current cyber threats to it (Shostack 2014); we could not assume either
would be available.

It seemed possible that developers might require classroom training in threat modeling
techniques. In creating the workshops, though, we instead followed the agile practice of

Page 7 of 33 21Empirical Software Engineering (2023) 28:21

trialing the ‘simplest thing that could possibly work’ (Beck and Fowler 2001). So, as an
experiment, we hypothesized that developers would need no training.

We, therefore, used a lightweight threat assessment approach, specifically a facilitated
ideation session (Fisher et al. 2011). The participants were asked to address the open question:
“Who might do what bad thing to whom?” in the context of their current project. In all but the
last workshop, all the participants faced a flipchart, and a facilitator wrote down unfiltered
suggestions. One group (Group K) were particularly expert at facilitation. In their workshop,
participants discussed the question in groups of about six, creating post-it notes with sugges-
tions, and placing them on a shared whiteboard.2

3.3 Requirement 3: Issues in terms of impact and likelihood

To make decisions about threats, Requirement 3 was to characterize each type of threat in
terms of its importance to the organization. We approached this using the standard risk
management approach of estimating the likelihood and impact for each threat. To do this
rigorously requires considerable knowledge of the business environment, of current trends in
cybersecurity and of risk management theory and practice (Hubbard and Seiersen 2016).

For the workshops, however, we needed only to introduce the concepts in the simplest way
that could add value for the participants. So, as part of the Threat Assessment workshop,
participants used ‘dot voting’ to decide likelihood and impact information. Each of the
participants used a set of 3 red and 3 black colored dots to vote on the most likely and most
impactful types of threat. Based on the votes, the workshop facilitators organized the types of
threat into an ad-hoc 3 × 3 Risk-Impact grid. Figure 1 shows an example.3 This then enabled
participants to select a set of the four or so ‘most important issues’.

3.4 Requirement 4: Identifying and costing solutions

Identifying and estimating costs for solutions to these most important issues was similar to
other development tasks, and therefore a skill the participants had already (Requirement 4). To
keep the workshops short (Requirement 6), the workshop involved only a superficial solution
and costing in each case. We did, however, identify that it was important to remind or teach
developers standard approaches to improving security (Requirement 10). We approached this
by encouraging the facilitator to discuss, wherever relevant, a small set of assurance tech-
niques: configuration review, automated static analysis, source code review, and penetration
testing (Such et al. 2016).

3.5 Requirement 5: Discussing in terms meaningful to product managers

From prior literature and earlier work of our own, we had identified that product managers had
difficulties engaging with messages along the lines of “we must do this security enhancement
or terrible things will happen.” This reflects two problems: (1) where a ‘bad’ decision has a
large cost, it can often lead to ‘analysis paralysis’ (Haines 2014, ch 5); and (2) our observation
that it is difficult for product managers to compare positive improvements, such as new
features, against risks of negative consequences.

2 All three elements of this approach have been adopted in the current version of the workshop package.
3 The post-it colors have no significance; the post-it text is deliberately blurred.

21 Page 8 of 33 Empirical Software Engineering (2023) 28:21

To address these problems (Requirement 5), we hypothesized that it might be better to
explore with product managers the benefits of addressing specific security issues (Ashenden
and Lawrence 2013). Therefore, as an experiment, we added a further ‘Security Promotion’
workshop. In this workshop, developers identified ways to represent the solutions to their
identified threats as positive enhancements: presenting security as a positive good
(McSweeney 1999). While it may be helpful to have product managers present in this
workshop to represent the ‘product manager point of view’, it was by no means necessary
(Requirement 9).

As in the identification of threats (Section 3.2), we had originally thought that developers
might require classroom training in techniques to do this. In creating the Security Promotion
workshop, though, we again followed agile practice by trialing the ‘simplest thing that could
possibly work’ and omitting any training. Participants split into groups, and each group
addressed one of the threats from the most important five or so identified in the threat
assessment. The instruction for the participants was to “work out positive ways in which
addressing that threat will benefit the organization”. Each group discussed the threat they had
chosen and wrote notes on a whiteboard or flipchart page. A representative from each group
then presented their conclusions to the other participants. Following these presentations, the
participants decided on project actions to carry out after the workshops.

Fig 1 Whiteboard with Risk-Impact Grid

Page 9 of 33 21Empirical Software Engineering (2023) 28:21

3.6 Remaining requirements

The remaining, implicit, requirements were addressed as follows. To address Requirement 6
(less than one working day), we limited the work identifying and costing mitigations as
described in Section 3.4. For Requirement 7 (working with teams) we had teams of developers
attend the workshops and discuss their own projects there. For Requirement 8 (avoiding
security specialists) and Requirement 10 (for developers using few assurance techniques) we
kept discussions and outputs away from technical security knowledge and activities. To
address Requirement 9, the workshops did not rely on any product manager involvement.

To address Requirement 11 (leadable by non-researchers), we trained one or two facilitators
from each organization, and they then managed the intervention. The training was a 1–2-hour
interactive face-to-face discussion, (‘Facilitator Training’). Here, we discussed the role of the
facilitator in each workshop in turn, including points for them to emphasize and possible
pitfalls. We provided the facilitators with materials (Weir et al. 2021b) to give the workshops:
cards and instruction sheets for the game; and PowerPoint slides with participant instructions
for the subsequent workshops.

3.7 Intervention approach and schedule

We recruited one ormore development teams (a ‘group’) in each of eight organizations and carried out
the intervention with them. With each group, we first interviewed a selection of the participants to
establish a baseline in terms of their current understanding, practice, and plans (‘before’ interviews).
We then trained the facilitators, who led the intervention workshops. To track the effects of the
intervention,we held twomonthly follow-up sessions, typically hour-long video conferences, between
the researchers and participants. Finally, about three months after the start we carried out ‘after
interviews’ with the same participants as before. Both ‘before’ interviews and ‘after’ interviews were
semi-structured using open questions; Appendix A lists the questions used; these were as used in an
earlier project (Weir et al. 2019).

Researchers attended all the workshop sessions, recording the audio of the participant discussions
for later analysis. Author CharlesWeir acted asmain intervener; author Ingolf Becker supportedwork
with Group K.

Figure 2 shows a typical schedule for delivering the interventions, distinguishing the
different sets of participants in each activity. As shown, where possible the three
workshops—Agile App Security Game, Threat Assessment, and Security Promotion—were
all held on the same day, along with the ‘before’ interviews and the facilitator training, using
approximately the timings shown; for some groups they were held over two consecutive days.
The ‘after’ interviews were with the same subset of the participants as the ‘before’ interviews;
the subset that attended the follow-up sessions varied between companies. The research
engagement with each group spanned 3–4 months, with researchers on-site for only one to
two days at the start and a day at the end. As shown, the combined time for the three
workshops (items labeled A) was about 5 hours, satisfying Requirement 6 of taking less than
a day. The overall involvement time was limited to four months to provide long enough to
achieve change, but not so long that impact could become difficult to distinguish from other
influences.

21 Page 10 of 33 Empirical Software Engineering (2023) 28:21

4 Evaluation methodology

Our approach to the research was pragmatic: we wanted to achieve an effective intervention
that could help a large number of software developers (Easterbrook et al. 2008). We chose
Design-Based Research (DBR) as our methodology for the project for the following main
reasons: DBR focusses on designing an artifact, accepts the involvement of researchers in
trials, develops both academic theory and practical outcomes, has a cyclical approach, and
supports different users for the artifact in each cycle (Kelly et al. 2008). We considered other
methodologies. One, Action Research requires following the same participants through mul-
tiple cycles of intervention, but in this project, participants changed between trials of the
intervention. Another methodology, ethnography, requires the researchers to take a passive
role. Most other approaches require non-intervention by the research team. DBR provided the
best ‘fit’ to the research.

4.1 Introduction to design-based research

DBR has its roots, and is used most, in education research. Its foundation lies in the ‘design
experiments’ of Brown (1992), and Collins (1992) working with teachers as co-experimenters.
It emphasizes the development of design theory in parallel with the creation of teaching
innovations. DBR is now an accepted research paradigm, used to develop improvements
ranging from tools to curricula (Design-Based Research Collective 2003), with a recent guide
book for practitioners (Bakker 2018).

The characteristics of DBR are that it is: ‘pragmatic’, aiming to solve real-world problems
by creating and trialing interventions in parallel with the creation of theory; ‘grounded’ in the
practicalities of real-world trials in the “buzzing, blooming confusion of real-life settings”
(Barab and Squire 2004); ‘interactive’, ‘iterative’ and ‘flexible’ with an iterative process
involving multiple trials and experiments taking place as the theory develops; ‘integrative’
in that DBR practitioners may integrate multiple methods, and vary these over time; and
‘contextual’ in that results depend on the context of the real-world trials (Wang and Hannafin
2005). Figure 3, based on Ejersbo et al. (2008), shows the two parallel cycles of DBR research:
creating theory and creating the artifact. The bold, colored, arrows are additions based on the
authors’ own experience of the DBR process.

The practical aspects of carrying out DBR are defined by the ‘integrative’ nature of DBR:
both design and assessment techniques must come from other research methodologies (Wang

10:00

12:00

14:00

16:00

18:00

Month 1 Month 2 Month 3 Month 4

A:Security
Promotion

A:Threat
Assessment S:Follow-up S:Follow-up

A:Agile App Security Game

F:Facilitator Training S:After
Interviews

S:Before Interviews

S:Subset of team F:Facilitators A:All of team

Fig. 2 Typical Intervention Timeline

Page 11 of 33 21Empirical Software Engineering (2023) 28:21

and Hannafin 2005). In this research, we used the techniques of the Canonical Action Research
method (Davison et al. 2004), though not that method’s overriding paradigm. Specifically, we
participated in an intervention to help the participants change their behavior; we recorded the
discussions involved, transcribed them, and analyzed them in detail; and we are using the
research findings to inform changes to the intervention to incorporate into a further cycle of
development.

4.2 Research questions

DBR requires separate research questions for the Design Practice cycle and the Design Theory
cycle. Design Practice questions assess the qualities and effectiveness of the artifact being
designed (in this case, the workshop package). Design Theory questions address the context of
artifact usage, with results that can apply to other research, such as the creation of different
interventions. Accordingly, we need to break down the primary research question RQ 1 (How
can an intervention based on short workshops assist developers in identifying security issues,
assessing them, and engaging product managers with those issues?) into sub-questions:
specifically, Design Practice questions, and Design Theory ones.

Our first Design Practice question explores the workshops’ overall impact:

RQ 1.1 To what extent did the developer teams achieve better product management
engagement over security issues as a result of the intervention?

The second Design Practice question considers the outcomes of the Security Promotion
workshop, since these outcomes may be of value for other teams in future:

RQ 1.2 What did participants identify as ‘selling points’ for improvements in software
security?

For this purpose, we used a standard definition of a selling point, as a feature of a product for
sale that makes it attractive to customers (Oxford Languages 2011).

And another question explores differences between the results in different organizations, to
indicate how widely applicable the intervention may be:

Hypo-
thesis

Design

Data

Theory

Problem

Trial

Artefact
Design
Practice

Design
Theory

Fig. 3 Activities in Practical Design-Based Research

21 Page 12 of 33 Empirical Software Engineering (2023) 28:21

RQ 1.3 In what ways do the intervention results vary with different participant contexts?

Turning to Design Theory questions, the hypothesis that presenting a positive view of security
would help engagement (Section 3.5) was speculative, and needed testing:

RQ 1.4 Can having developers consider the positive benefits of security and privacy
mitigations lead to improvements in product management engagement?

In creating the workshops, we had hypothesized that developers would require no training to
carry out the activities in the Threat Assessment and Security Promotion workshops (Sections
3.2, 3.5). We, therefore, posed this further research question to test this hypothesis:

RQ 1.5 Can teams of developers produce threat assessments, risk-impact assessments,
and benefit analyses with minimal guidance?

Finally, to help explore the ‘how’ of RQ 1 (How can an intervention … assist developers…)
we wanted to identify any other aspects related to product management engagement that might
help to explain the working of interventions aiming to help improve developer security
practice:

RQ 1.6 What are the ‘blockers’ and ‘motivators’ affecting product management engage-
ment and other stakeholders as revealed in the workshops?

For this question, we define blockers to be factors that prevented engagement or made it more
difficult; motivators are correspondingly those factors that encourage such engagement.

4.3 Method implementation

We recorded the audio of all the interviews and all the workshops for each group, then
transcribed the interview audio manually, and the workshop audio using an automated
transcription service.4

To evaluate the Design Practice question RQ 1.1, To what extent did the developer teams
achieve better product management engagement over security issues as a result of the
intervention?, our approach was as follows. Two authors coded the interview transcripts in
an iterative process, using NVivo. We used the techniques of Thematic Analysis (Clarke et al.
2015), coding statements in the ‘before’ and ‘after’ interviews that referred to one of the two
‘activities’ related to the question shown in Table 1.

We also coded, for the same statements, corresponding Adoption Levels that the partici-
pants in each group might achieve for each activity, as shown in Table 2.

During the coding, we were particularly careful to distinguish changes due to the interven-
tions from those due to other external factors; we did not code the latter.

To assess the impact (security improvement resulting from the intervention) we extracted,
for each group and each coder, the highest recorded Adoption Level for each activity, both
before and after the intervention. Initially, both coders coded one group’s interviews indepen-
dently, then met to discuss differences and agree on interpretations going forward. We both

4 https://sonix.ai/

Page 13 of 33 21Empirical Software Engineering (2023) 28:21

https://sonix.ai/

then coded all the interviews and calculated an initial Inter-Rater Reliability based on that
coding. We met to discuss the differences, then independently recoded all the interviews and
calculated a final Inter-Rater Reliability figure. Our Inter-Rater Reliability calculations used
Krippendorff’s Alpha (Gwet 2014) to compare the Adoption Levels calculated from the
coding of each coder. See Section 4.4 for an illustrative example.

To combine the ratings of the two coders, we took the highest Adoption Level recorded by either
coder. Given we were studying changes in Adoption Levels, to avoid bias we needed only that the
combination method be consistent across ‘before’ and ‘after’ interviews. See Section 5.2 for the
practical justification for using the highest values. Using the numerical rating of each Adoption
Level as shown in Table 2, we calculated the ‘impact’ of the intervention on the participants’
adoption of each activity, as the difference between the Adoption Level in the ‘before’ interviews
and the Adoption Level in the ‘after’ ones. Of course, this impact calculation is merely an indication.
For example, a two-unit change in Adoption Level might be from ‘0NoMention’ to ‘2 Planned’, or
from ‘2 Planned’ to ‘4 Established’; these changes are not semantically equivalent.

To explore question RQ 1.1 further, we later looked in detail at the nature of each
improvement and identified and extracted exemplar quotations from the interviews.

For RQ 1.2 (selling points), a single researcher coded all the workshop and training session
audio using closed Thematic Analysis (Clarke et al. 2015). The automated transcription quality
was poor, as expected, so the researcher coded from the audio, using the transcripts only for
easier navigation and as placeholders for the codes. Aspects coded included ‘blockers’,
‘motivators’, and ‘selling points identified’. To further address RQ 1.2, a single researcher
extracted the text coded as ‘selling points’ and used open Thematic Analysis (Clarke et al.
2015) to further categorize kinds of selling points.

To explore RQ 1.3 (variation with context), we calculated how the impact varied with
different attributes of the participants from each group: the organization size, facilitation style,
team security maturity, whether a product manager was present, and the job description of the
lead facilitator. To do this, we calculated the mean impact for each activity for different values
of each attribute. Again, since impact values are not semantically consistent, this mean cannot
be used for comparing results for different activities against each other, but it does allow us to
identify where changes in Adoption Level tended to occur most.

Table 1 Activities Analyzed

Activity Description

Threat assessment Design-level analysis of possible attackers, motives, and vulnerability
locations.

Product management
engagement

Working with product managers to make security decisions.

Table 2 Adoption Levels for each Activity

Level Description

0 No mention No reference to it in the interview
1 Aware The team showed knowledge of it.
2 Planned Existing plans to incorporate it.
3 Using The team have used it.
4 Established The team use it in each new project.

21 Page 14 of 33 Empirical Software Engineering (2023) 28:21

For RQ 1.4 (positive benefits improving product management engagement), we considered
the answers to RQ 1.2, along with the impact assessment of the product management
engagement.

We addressed RQ 1.5 (unsupported threat assessments) with the analysis described for RQ
1.2 above. Additionally, we reviewed the discussions that took place in the three workshops as
well as the outputs produced.

For RQ 1.6 (blockers and motivators), we used the same analysis as RQ 1.2 and RQ 1.5
above. We then categorized the blockers and motivators identified, using open Thematic
Analysis to provide a basis for their description.

The calculations and graphics creation used the qualitative data analysis tool NVivo,5

Microsoft Excel, and Python in Jupyter Notebooks (Kluyver et al. 2016). The research was
approved by the Lancaster University Faculty of Science and Technology Research Ethics
committee.

All the quotations from the recordings in this paper were manually transcribed and checked
for correctness.

4.4 Example of the impact coding

Figure 4 illustrates the impact calculation used for RQ 1.1 and RQ 1.3, showing the final
coding for an ‘after’ interview from Group D. In it both coders identify a statement indicating
the adoption of threat assessment, but the coders disagreed on the level of adoption implied.
So, two different Adoption Levels would be extracted: “D – After – threat assessment: 3
Action” for coder Rater1 and “D – After – threat assessment: 4 Incorporation” for coder
Rater2.

Table 3 shows an illustrative set of extracted values based on Fig. 4. The Krippendorf’s
Alpha Inter-Rater Reliability calculation would be based on both sets of columns Rater1 and
Rater2 in that table.

The ‘Combined’ columns in Table 3 shows the highest Adoption Level recorded by either
coder. From them, the table calculates the product management engagement impact for D as 4
− 0 = 4, and the threat assessment impact as 4 − 1 = 3.

Table 3 Illustration of Adoption Level values for Group D’s Interviews

Code Before: After: Impact

Rater1 Rater2 Combined Rater1 Rater2 Combined

Product management engagement 0 0 0 4 4 4 4
Threat assessment 1 1 1 3 4 4 3

5 https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

Page 15 of 33 21Empirical Software Engineering (2023) 28:21

https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

5 Results

This section explores the results from the project, and addresses each of the Design-Based
Research questions RQ 1.1 through RQ 1.6.

The intervention was carried out with a total of 88 developers in eight different organiza-
tions, generating 21 hours of interview audio, and 47 hours of audio from training, workshop,
and follow-up sessions. The final code book contained 2859 references to 51 codes. Practical
considerations and technical issues meant that not every workshop and team discussion was
recorded. However, all the important points discussed in the non-recorded events were covered
in interviews or other workshops in sufficient detail not to impact the quality of our data.

5.1 Summary of participants from each organization

The participant organizations were recruited opportunistically through industry contacts,
university outreach and software developer conferences. Table 4 describes the organizations
and groups involved. Organizations are identified with a letter, starting with D (since three
organizations had been involved in earlier trials. All the developers interviewed were male, as
were all the team line managers and quality assurance specialists; three product managers were
female. These numbers are consistent with industry norms (Stack Overflow 2016).

Figure 5 visualizes the participants. It plots the organization sizes (ranging from F’s 20 staff
to E’s 6000 staff), against an estimate of their ‘secure software capability maturity’ (ISO/IEC
2008) based on the participants’ discussions during the workshops. Ring sizes show the
number of participants (3 in F to 16 in K); ring centers show the facilitators; colors and
hatching distinguish the job roles.

5.2 Inter-rater reliability

TheKrippendorff’s Alpha Inter-Rater Reliability calculation on the adoption levels of activities after
the first round of coding6 (Sections 4.3, 4.4) was 0.18, indicating only slight agreement (Viera and
Garrett 2005). The main cause of disagreement was that the interviewees had not been asked

D1 : The bit that we took away and adopted into our processes is the risk analysis bit. Essen�ally, going
through a product and looking, at a high level; what is the informa�on flow, and where are the risks to
security? What are the poten�al ways security could be breached.

Interviewer: So, that kind of risk/threat...? It is actually 'risk', because privacy isn't always a 'threat'...
it could be an embarrassment or a risk to the company.

D1 : I wouldn't say it is a very formal process that we are doing. Maybe we could formalise it a bit
more, but again, it boils down to the nature of the work. They are not always that structured, the
projects.

Interviewer: And if every project is different, you actually want to have something designed for the
worst ...

Fig. 4 Example Coding from A D ‘After’ Interview

6 This initial IRR calculation applied to 12 different activities (Weir et al. 2021a); this paper describes only two of
them.

21 Page 16 of 33 Empirical Software Engineering (2023) 28:21

Table 4 Description of Participants

Organization Group

D A development team within a university, funded
by a government grant to promote
business innovation by developing proof of
concept (PoC) applications.

Aware of the importance of software security but
had little practical knowledge; worked on
several different projects at a time.

E A government department delivering software for
sensitive government applications. The group
worked on a high-confidentiality product.

Less experienced than average for the industry,
though the session leader is an experienced
security specialist.

F A small surveying company delivering a
Geographical Information System product and
related services.

A previous developer had implemented some
security aspects; the current team had little
knowledge.

G A web applications development company
delivering a wide variety of applications
for clients.

The two leads were expert in software security, but
were finding that the effort costs of security
were not being included in client pricing.

H A small company selling a range of Internet of
Things devices and their associated infrastructure.

The group justifiably consider themselves good at
software security.

I A well-established company providing the
infrastructure for a commodity trading. Planning
move from
perimeter security to cloud-based services.

The company has considerable internal expertise in
security. However, the developers were less
experienced.

J A well-established large company providing web
interfaces for retailers. The group involved had
the responsibility of creating tools and services to
support deployment.

The group was a team of about a dozen developers
creating deployment tools, and included two
security specialists who led the workshops.

K A well-established company with a few hundred
employees creating tools for developers.

The group has a strong emphasis on agile
development processes, and team interaction.
All the participants were developers.

Line Manager Developer
Product Manager Quality Assurance
Security Expert

D

E

F

G
J

H I K

LargeSmall Company size

Hi
gh

Lo
w

Se
cu
rit
y
m
at
ur
ity

Fig. 5 Composition of the Participating Groups Circles Show Participants; Centre Rectangles Show Facilitators

Page 17 of 33 21Empirical Software Engineering (2023) 28:21

explicitly about their use of the activities, in order to avoid bias in the responses. This caused several
kinds of discrepancy between the interpretations of the two coders.

Once the coders had discussed the discrepancies and independently recoded the interviews, the
resulting Krippendorff’s Alpha metric was 0.46, indicating moderate agreement. The metric calculated
for the two activities described in this paperwas 0.80, indicating substantial agreement.Weanalyzed the
remaining discrepancies and found them to be mainly omissions by one or another coder, which were
mitigated by the policy of using the highest Adoption Level from each coder for subsequent analysis.

5.3 Impact of the intervention

Figure 6 summarizes the impact outcomes related to product manager Engagement, calculated as
described in Section 4.3. The size of each bubble indicates the finalAdoptionLevel for the two aspects
after the intervention. The bubble’s color and texture show the impact attributed to the intervention:
hatched amber for a change of 1 to 2AdoptionLevels; dotted red for 3 to 4AdoptionLevels.Note that
other aspects of some groups’ security practice, such as the use of automated static analysis tools, also
improved as a result of the intervention (Weir et al. 2021a), but those improvements are out of scope
for this paper.

Figure 6 thus provides an answer to the Design Practice question RQ 1.1 (To what extent
did the developer teams achieve better product management engagement over security issues
as a result of the intervention?) Specifically, the intervention led to notably improved product
management engagement in four of the eight groups involved (D, E, F and I), and led to some
improvement in two further groups (G and K).

As shown, the intervention also improved understanding and use of threat assessment (Design-level
analysis of possible attackers,motives, and vulnerability locations). This is vital to ensure that the team is
as effective as possible by prioritizing the most important security issues. Six of the eight groups (D, F,
G,H, I andK)were not doing this prior to theworkshops; six of the eight groups (D, E, F,G, I, J) ended
up using this in their current projects; one (D) adopted it as part of their process for all projects. So, for
four groups (D, F, G, I) this represented a major improvement on their practice before the intervention.

Table 5 explores the detailed outcomes the outcomes in improved product management
engagement as a result of the intervention. The Δ column shows the impact, using the same
highlighting as Fig. 6, with quotations from the exit interviews or (in the case of Group K)
workshops.

D E F G H I J K
Threat Assessment

PM Engagement

Established

Using

Planned

Aware

No change

Moderate

Major

Final engagement: Impact:

Fig. 6 Impact Related to Product Management Engagement

21 Page 18 of 33 Empirical Software Engineering (2023) 28:21

All of the groups remained relatively consistent in staff and projects during the threemonths of our
research involvement. The monthly follow-up session (Section 3.7) meant that we could track any
important changes in their customer requirements and their other security initiatives.We used these to
filter out effects not due to the workshops in the analysis, as indicated in Section 4.3.We can therefore
be reasonably sure that the outcomes in Table 5 are the effects of the workshops.

5.4 Activity impact by group attributes

Table 6 addresses RQ 1.3 showing how the Impact varied with different attributes of
participants by calculating the mean impact for each activity resulting from interventions on
participant teams with that attribute. The deeper shadings show the higher values in each
categorization. The table shows the two activities, while the figures on the ‘Overall’ line show
the average increment over both activities for each category. We observe that:

Less security-expert groups benefitted most from the workshops Specifically, those with
a low security maturity showed the highest impact.

Table 5 Product management engagement Outcomes

Δ Product management engagement outcome Quotes
D Identified that the threat and risk assessment

itself was a valuable asset to their clients, and a
need for security support when the clients came
to implement applications based on the PoCs.

After the workshop…, we redesigned our handover
template, which is where we now have a specific
section for security

E Realized that while every security enhancement
was essential, the ordering of their
implementation could be altered to suit the client.

So, once we were given our requirements we went away
and looked at the security things, and talked to our
customers about, given the time… and the
requirements..., we recommend putting in this, this and
this, and we didn't get them all straight away

F ‘Lined up’ security improvements to be
incorporated in the enhancements when new
clients wanted them, and subsequently did
incorporate the improvements.

Yes, we are in a promising looking situation at the
moment… we have picked up some new contracts…, so
they will require us to implement pretty much
everything that we had listed

G Agreed and adopted an impressively simple way
to discuss security cost-benefit with a client: gold
level hosting, silver, and bronze security.

[A team member] did a lot of the leg work and set up
gold, silver and bronze packages to say 'right, answer
these 10 questions', and then you would get a points
score, and “you fit in within this bracket, and this is the
package that you need”

H Identified that their security story was a major
Unique Selling Point against competitors.

It is used as a sales thing; in that they can say “it is
secure”

I Subsequently included security requirements in
discussions with new clients. Rolled out the
workshops independently of the researchers to
other teams.

When a customer asks me, “why aren't you doing this
thing', I think I am in a much better position to feel that
I can honestly say: yeah, … we will do something about
it ... or no, we don't need to do anything about that
because it is not actually that big a risk” (Product
Owner).

J Devised several functionality and process
improvements for their ‘customers’:
development teams in other parts of the
organization.

In terms of risk assessment, now we have a new
Product Owner on our team, he is quite keen to
incorporate it, and also the team is quite keen. We are
[also] trying to assess the impact....

K Each of four subgroups delivered a convincing
sales pitch for a client-visible security
improvement.

The good thing of this is we [will be] the Gold Standard
Security as well as everything else. For sales people
this will build [customer] confidence.

Page 19 of 33 21Empirical Software Engineering (2023) 28:21

Sessions facilitated by line managers were more effective than those facilitated by
developers or security specialists We speculate from our observations in the workshops that
this may reflect better training in facilitation-related skills for managers; it may also reflect
greater power among managers to introduce new techniques.

The presence or absence of a product manager in the group had negligible effect on
product management engagement This was a surprise. We had expected a product manager
would encourage emphasis and therefore improvements, but the results do not show that effect.

5.5 Selling points for security

To address Design Practice question RQ 1.2, we coded all the recorded audio from interviews,
workshops and training sessions for selling points for software security. We then used open
coding to categorize each item (see Section 4.3). 50 items were found, from 20 different
sessions, making a total of 4292 words.

Table 7 summarizes the findings. Each line names a category, shows the groups that
identified selling points in that category and the number identified; and describes each one
with quotations from the discussions7. Four selling points amounted to a naïve ‘security is
good for customers’ and are omitted from the categorization.

Thus, the answer to RQ 1.2 is that professional developers can identify a large range of
selling points for software security, in a variety of categories.

5.6 Use of selling points to engage product managers

To address the Design Theory research question RQ 1.4 (Can having developers consider the
positive benefits of security and privacy mitigations lead to improvements in product

Table 6 Impact Averaged by Group Attributes

Categorization Category Count in category Threat Assessment Impact PM Engagement Impact

Overall 8 1.6 2.1
Organization Size Large 3 1. 2.7

Medium 3 2.3 2.
Small 2 1.5 1.5

Facilitation Style Dominating 2 2.
Listening 4 2.3 2.3
Peer 2 2. 2.

Security Maturity High 2 2.
Medium 4 1.8 1.5
Low 2 3. 3.5

Product manager Yes 4 2.3 2.
No 4 1. 2.3

Lead facilitator Line manager 4 3. 3.
Security 2 2.
Developer 2 0.5 0.5

7 Note that for Group D the Security Promotion workshop was not recorded; the single selling point was in an
exit interview.

21 Page 20 of 33 Empirical Software Engineering (2023) 28:21

Ta
bl
e
7

Se
lli
ng

Po
in
ts
Id
en
tif
ie
d

N
am

e
O
rg
.

N
.

D
es
cr
ip
tio

n
E
xa
m
pl
e
Q
uo
te
s

Se
cu
ri
ty

C
on
su
lta
nc
y

D
E
F
G

I
10

B
ei
ng

th
e
ex
pe
rt
s
in

se
cu
ri
ty
;
ad
vi
si
ng

th
e

cu
st
om

er
;
sa
yi
ng

‘N
o’

to
fe
at
ur
e
re
qu
es
ts

th
at
co
m
pr
om

is
e
se
cu
ri
ty
.

Th
e
m
or
e
pr
oj
ec
ts
w
e
do

th
e
be
tte
r
w
e’
ll
ge
ta

tt
he
se

th
in
gs

to
th
e
po
in
tt
ha
tt
he

se
cu
ri
ty
co
ns
ul
ta
nc
y

en
ds

up
be
in
g
pa
rt
of

th
e
pa
ck
ag
e
(D

)
A
ct
ua
lly
,

[s
ec
ur
ity
]
is
no
ta

bo
ut

[u
s]

m
ak
in
g
th
e
m
on
ey
;
it

is
ab
ou
tm

ak
in
g
th
e
ri
gh
tm

on
ey

fo
r
th
e
cl
ie
nt

(G
)

Se
cu
ri
ty

M
an
ag
em

en
t

G
H

I
J
K

8
M
an
ag
in
g
se
cu
ri
ty

as
a
co
nt
in
uo
us

se
rv
ic
e
fo
r

cu
st
om

er
s

W
ha
ty
ou

w
an
ti
n
a
su
pp
lie
r
is
…

th
ey
’r
e
pr
oa
ct
iv
e

in
co
ns
id
er
in
g
th
e
[s
ec
ur
ity
]
ch
al
le
ng
es

an
d
th
ey
’r
e

do
in
g
th
in
gs

ab
ou
ti
t(
H
)

C
us
to
m
er

T
ic
k-
bo
x
R
eq
ui
re
m
en
t

F
H

I
7

Im
pr
ov
em

en
ts
to

sa
tis
fy

st
an
da
rd

cu
st
om

er
re
qu
ir
em

en
ts
.

P
eo
pl
e
as
k
if
w
e
ar
e
IS
O

27
00
1
ce
rt
ifi
ed

(I
)
G
ot

to
ha
ve

tw
o
fa
ct
or

au
th
en
tic
at
io
n,

be
ca
us
e
th
at
’s
w
ha
t

[t
he

cu
st
om

er
]
do
es

w
ith

ot
he
r
sy
st
em

s
(F
)

C
us
to
m
er

C
ho
ic
e

E
F
G

6
C
us
to
m
er

ge
ts
va
lu
e
by

sp
ec
if
yi
ng

le
ve
l

of
se
cu
ri
ty

or
or
de
r
of

de
liv

er
y.

W
e
ca
n
se
ll
tie
rs
...

th
is
is
a
ba
si
c
[s
ec
ur
ity
]
pa
ck
ag
e;

th
is
is
ou
r
pr
em

iu
m

pa
ck
ag
e.
(G

)
[S
om

et
im
es
]
th
ey

ha
ve

sa
id

‘w
e
ar
e
ha
pp
y
to

ac
ce
pt

th
at

le
ve
lo

fr
is
k’
,b

ut
th
er
e
is
al
so

qu
ite

a
w
ill
in
gn
es
s
to

fix
a
lo
to

ft
he

ot
he
r
is
su
es
.(
E
)

R
ob
us
t
Sy

st
em

E
H

J
K

6
T
he

sy
st
em

w
ill

ha
ve

hi
gh

av
ai
la
bi
lit
y.

B
ei
ng

pr
ou
d
of

…
yo
ur

av
ai
la
bi
lit
y:

X
ni
ne
s.
W
e

ha
ve

a
tr
ac
k
re
co
rd
:
12

m
on
th
s…

so
m
et
hi
ng

to
ta
lk
ab
ou
t(
J)
.

B
et
te
r
Se
cu
ri
ty

th
an

C
om

pe
tit
io
n

H
I

4
C
us
to
m
er
s
w
ill

ch
oo
se

th
is
pr
od
uc
t
be
ca
us
e

it
ha
s
be
tte
r
se
cu
ri
ty
.

U
si
ng

[s
ec
ur
ity
]
as

a
di
ffe
re
nt
ia
to
r
fr
om

C
hi
ne
se

m
an
uf
ac
tu
re
rs

th
at

ca
n
bu
ild

st
uf
ff
or

a
fr
ac
tio

n
of

th
e
co
st
,b

ut
w
ou
ld
n’
tn

ec
es
sa
ri
ly
ha
ve

co
ns
id
er
ed

th
e
bi
gg
er

pi
ct
ur
e
(H

)
Im

pl
ie
d
R
eq
ui
re
m
en
t

E
F
K

3
Se
cu
ri
ty

en
ab
le
s
a
ne
w

ite
m

of
fu
nc
tio

na
lit
y.

Th
ey
’v
e
sa
id
,“

co
ul
d
yo
u
pu
ti
n
pa
ym

en
ts
?”

(F
)

A
vo
id
in
g
D
is
as
te
r

E
K

2
Se
cu
ri
ty

w
ill

pr
ev
en
t
a
di
sa
st
er
.

Ye
s,
if
[a

di
sg
ru
nt
le
d
em

pl
oy
ee

br
ee
ch
]
ha
pp
en
s
on
ce

in
fiv
e
ye
ar
s,
bu
ti
ts
et
s
yo
u
ba
ck

10
ye
ar
s
ea
ch

tim
e

so
[c
us
to
m
er
s
pa
y
to

pr
ev
en
t]
it.

(E
)

Page 21 of 33 21Empirical Software Engineering (2023) 28:21

management engagement?), the outcomes discussed in Table 5 in Section 5.3 suggest that this
consideration was indeed effective.

Figure 7 plots this product management engagement impact against the number of selling
points identified in each set of workshops8. As shown, those identifying more selling points
tended to involve more product management engagement.

This does not provide evidence that the product management engagement impact was
caused by the Security Promotion workshop. It is, however, reasonable to conclude that the
Security Promotion workshop assisted in doing so. We conclude, therefore, that the answer to
RQ 1.4 is yes, having developers consider the positive benefits of security and privacy
mitigations can indeed lead to improvements in the security decision making process.

5.7 Threat assessment with developers

Considering the second Design Theory research question RQ 1.5 (Can teams of developers
produce threat assessments, risk-impact assessments, and benefit analyses with minimal
guidance?), we found that, surprisingly, all the sets of participants found effective ways to
produce threat and risk-impact assessments. Even D, who are producing proofs of concept and
are not domain experts for their products, had little difficulty:

We’ve identified huge risks that they need to consider before they ever get anywhere
near an actual working product. (D)

Team E learned and took away the prioritization process:

We had a follow-on session afterwards where we took everything away,… and sat down
and thought “what do we need to do next”. (E)

In Group F, the facilitator produced a table of risks and impacts based on their discussion.
Group G had no problem with risk assessments since two group members were familiar with
the likelihood of attacks on the websites they managed. Group H and Group I simply had their
most expert two members identify the most likely threats by placing asterisks on the flipchart.
Group J had the cybersecurity specialists do the assessment. Group K successfully used post-it
notes for the risk assessment, with separate dot-voting to identify the most likely and the most
impactful threats.

It seems reasonable to conclude that the developers in the groups had the necessary skills
and insights required. Thus, the answer to RQ 1.5 is affirmative: teams of developers can
indeed produce adequate threat assessments, risk-impact assessment, and benefit analyses with
minimal guidance.

8 Excluding Group D for which data was not available.

0

1

2

3

0 5 10 15

En
ga

ge
m

en
tI

m
pa

ct
Selling Points identified

Fig. 7 Indicative Plot of Engagement Impact and Selling Points

21 Page 22 of 33 Empirical Software Engineering (2023) 28:21

5.8 Blockers and motivators related to security promotion

From our coding of the transcriptions of all the recorded workshops and interviews to address
RQ 1.6 (What are the ‘blockers’ and ‘motivators’ affecting product management engagement
and other stakeholders as revealed in the workshops?), we identified 30 blocker and 26
motivator statements, involving a total of 3166 words. Though blockers and motivators are in a
sense opposites, they do not ‘pair up’ with each motivator addressing a specific blocker (Weir
et al. 2019).

So, in answer to RQ 1.6, Table 8 lists the categories of blocker, ordered by how many were
identified in each category, with a description of each category and example quotations from
workshops. Table 9 does the same for motivators. Ten of the 30 blockers relate to poor
communication. For motivators there is more variation, with 19 of the 26 split almost equally
between friendly customers, policies, principled insistence, and value.

6 Answer to the primary research question

Returning to research question RQ 1 (How can an intervention based on short workshops
assist developers in identifying security issues, assessing them, and engaging product man-
agers with those issues?), we can now summarize the answer as follows.

Table 8 Blockers

Name N Description Example Quotes

Communication 10 Difficulties in conveying security concepts
or getting the right communication to
achieve effective decisions

[It] is difficult [to identify security
requirements] as it requires a lot of
conversation (I)

The security thing is a bit of a taboo subject.
(H)

Multiple
stakeholders

6 Different stakeholders may have different
security appetites or needs; coordinating
them is hard

For some clients it’s a really easy sell… But
there’s other clients: “Do I want to spend
marketing budget on this?” (G)

Freeloaders 4 Stakeholders expecting ‘security for free’ Some of our clients are now saying “You
need to provide all this … for nothing
because it’s part of the security standard
…” (G)

Unknown
cost/impact

4 Development teams may not have the
ability to estimate costs; or may have
inaccurate information about the
likelihood of threats

The mistake that customers have made with
this app was to assume a small pilot
study; then issue it to a big bunch of
people… (E) We don’t … give stake-
holders an estimation of delivery time.
We just chew through [work]. (J)

PM time 3 product managers may not be available or
have insufficient time to devote to the
topic

Some of us don’t have access to a product
owner. € [Customers] keep saying “We
haven’t had a chance to review what you
sent us…” (D)

Denial 2 Stakeholders refusing to accept a clear need
for security

No-one really cares about security until
someone leaves their data on a train,
anyway. (H)

Practical 1 Practical issues, such as technology export
restrictions

If we want to put encryption into the
firmware things, we need an export
license. (H)

Page 23 of 33 21Empirical Software Engineering (2023) 28:21

Such an intervention is likely to need to address the design requirements from Section 3,
including working with inexpert teams, being brief, and not requiring security experts or
product managers. It should help teams to: understand security as a business driver, identify
and prioritize types of security issues, cost solutions, and discuss those solutions effectively
with product managers.

One possible implementation, as described in this paper, uses a game to promote understanding,
and then short Threat Assessment and Security Promotion workshops. These workshops guide
developers through identifying and prioritizing security issues for their own projects, costing
solutions, and finding ways to promote security with product managers (Section 3).

Practical trials with teams in eight organizations have proved this implementation effective
in improving product management engagement (Section 5.3). Participants required little
explicit teaching to carry out the workshops (Section 5.7). They identified 8 categories of
selling points for security (Section 5.5). Moreover, despite there being many blockers discour-
aging security improvement they also identified a similar number of motivators to encourage
security improvement in future (Section 5.8).

Comparisons between different groups (Section 5.4) show that the workshops have greatest
impact with groups with limited security expertise. Also, having the development team

Table 9 Motivators

Name N Description Example Quotes

Friendly
Customers

5 Focusing on customers who value security
when it is explained to them

Some clients are really good, and they will
listen to best practice, and as soon as you
start saying this … “Okay, right that’s
fine, tick, happy”. (G)

Policies 5 Externally enforced requirements for
security

If they’ve been in an organization with a
PCI audit… they’ll go to long, long
lengths to avoid that. (G)

Principled
Insistence

5 Politely insisting on the need for the
implementation of specific security
features, on principle

I think [customers and product managers]
appreciate me saying “I don’t think this
is the best practice… You need to spend
more money and do it this way”. If I can
back that up with the reasoning behind it,
that is fine. (G)

Value 4 Collaboratively identifying value for the
stakeholders

Things like single sign-on come to mind…
We’re improving the security. [It] actu-
ally makes life easier. (I)

Communication 3 Improving communication: using handover
documents, identifying security scope,
and discussing consequences of poor
security

[For example] the handover document says,
“The first thing you need to do is find a
different way to send this”, because …
whoever develops this further needs to
find a more secure way. (D)

Logging
Decisions

2 Keeping a log of security-related decisions,
to support discussions and evaluation in
future

As long as you have made the decision
based on the information … you have a
reasoning behind why this is in, or why
this isn’t in. (E)

Structured
Workshops

2 Using facilitated workshops with
stakeholders to inspire thinking on
security issues

I’m going to say to [my customer] “We’re
gonna have a security workshop. Come
on have some lunch, bring [your
developers] and we’ll have a
[workshop]”. We won’t charge … but at
the end of it I’ll bet [they’ll] spend 20
grand because of the kind of client [they
are] (G)

21 Page 24 of 33 Empirical Software Engineering (2023) 28:21

managers as facilitators can be particularly effective in improving both product management
engagement and threat assessment.

7 Discussion

7.1 Research method

AsSection 4 explains, Design-BasedResearch (DBR) has been usedmostly in the field of education
research. While an intervention to change the behavior of software development teams is certainly a
form of education, we are not aware of other researchers using DBR in this field.

In this research, as Section 5 shows, DBR has provided an effective basis for trialing,
evaluating, and deducing theory from the use of an intervention. The discussion in that section
showed that both Design Practice questions (RQ 1.1 through RQ 1.3) and Design Theory
questions (RQ 1.4 through RQ 1.6) are of value, and contribute to our overall understanding.

7.2 Trustworthiness criteria and limitations

Table 10 explores five quality criteria for qualitative research of this kind (Denzin and Lincoln
2011; Stenfors et al. 2020) and highlights ways in which this paper satisfies those criteria. We
can, however, identify three limitations in our deductions from the analysis:

& We have no way of evaluating either the completeness or accuracy of the threat assessment
results. We believe that the developers’ assessments were sufficient for the purpose of
informing security improvements; that the consequences of getting a risk assessment
wrong are much less than the consequence of not doing it at all; and that since product
managers did engage well with the results (Section 5.6) the assessments were successful.
However, this remains an outstanding question for future research.

Table 10 Quality Criteria

Criteria What it means Addressed in the Paper

Credibility The research findings are plausible and
trustworthy

Basis in extensive previous work (Weir et al.
2021a); explicit focus and answers to mul-
tiple research questions (Sections 4.2,
5.3–5.8); detailed and documented analysis
(Sections 4.3, 4.4)

Dependability The extent to which the research could be
replicated in similar conditions

Workshop materials publicly available with
full instructions (Section 6.4); analysis
explained in detail with examples (Sections
4.3, 4.4)

Confirmability There is a clear link or relationship between the
data and the findings

Clear outcome summary (Fig. 6 and Table 5);
use of quotes to substantiate results
(Tables 5, 7, 8, and 9, Section 5.7)

Transferability Findings may be transferred to another setting,
context or group

Effectiveness in a wide range of situations
(Section 5.1); analysis of where this is likely
to be effective (Section 5.4)

Reflexivity A continual process of engaging with and
articulating the place of the researcher and
the context of the research

Explicit descriptions of the researcher roles in
the research (Sections 3.7, 4)

Page 25 of 33 21Empirical Software Engineering (2023) 28:21

& Whilst in most cases product managers did engage with security in the development
process (Section 5.6), we have no indication whether the resulting engagement led to
more appropriate security in the resulting products. It is logical to assume that it would; but
this research provides no evidence to support that assumption.

& We note also while we took care to distinguish security improvements caused by the
interventions from other improvements (Section 4.3), in practice this distinction could not
be exact. We also note the self-reported nature of the enhancements (Section 4.3).

The findings of this paper, therefore, form an existence proof: yes, the intervention can
improve product management engagement. In addition, the range of different types of
development involved in the trials prove there is a wide range of situations in which this
intervention can work. We believe that the results we have found here justify further improve-
ments of the intervention and its use in further development teams.

7.3 Practical value

Since our approach to the research is pragmatic, it is important to assess the practical value of these
findings. We can identify three aspects that can be useful to professional developers, as follows:

1. The validation of the workshop package justifies its use in further software development teams;
2. The categorization of selling points (Table 7) potentially provides a basis for a structured

approach for developers to assess selling points for security enhancements; and
3. The discussion of blockers and motivators (Tables 8 and 9) offers a practical simplifica-

tion of a complex subject; the motivators table in particular offers practical ideas to allow a
team to address security issues.

7.4 Further work

The package used in these trials has a practical limitation: it requires time input to train the
facilitators, which potentially restricts its scalability to a wider audience of development teams.
However, the workshops are peer-to-peer exercises where the facilitator only provides instruc-
tions rather than knowledge (Section 3.2). This offers the possibility of a version of the
intervention that needs no direct training and therefore can scale without limit.

The authors have now created such a version with funding from theUKCyberASAP scheme; it is
available online as the Developer Security Essentials package.9 The full workshop package received
an average of 15 downloads per month in 2021. In addition, the authors provide regular online
facilitator training. As of the end of 2021, they had trained a total of 12 further facilitators; and two
largemultinational software development companies are deploying the packagewith their own teams.

The need to have researchers interview team members both before and after the interven-
tions similarly limits the possible measurement of the success of such a new scaled-up
intervention. An online, questionnaire-based version of the interviews can trade the flexibility

9 https://www.securedevelopment.org/workshops/

21 Page 26 of 33 Empirical Software Engineering (2023) 28:21

https://www.securedevelopment.org/workshops/

of face-to-face interviews for the benefit of a large sample of results. Such a questionnaire has
been implemented10 and is free to use.

As discussed in Section 3.4, the Threat Assessment workshop uses only existing knowledge
from the participants. This means that participants may fail to identify possible security issues,
or wrongly assess the probability or impact of issues they do identify. This is particularly a
problem with small companies, where there may be no security expertise available. To address
this, participants would want evidence-based domain-specific knowledge of security issues
and risk information. This would also require domain-specific nomenclature and definitions of
security and privacy as used by developers and product managers. Current research by the lead
author approaches these problems for a specific domain, Health IoT.11

8 Conclusions

This paper describes the outcomes from a project in which we, the authors, specified
requirements, and designed a series of three workshops: a game to establish the importance
and nature of security decisions; a Threat Assessment workshop to ideate and evaluate security
risks in a specific project; and a Security Promotion workshop to find ways to discuss solutions
with product managers (Section 3). Using the Design-Based Research method (Section 4), we
trialed the workshops in eight organizations, involving 88 developers.

The direct, Design Practice, outcomes of the trials were as follows:

& Five of the eight groups notably improved their threat assessment activities as a result of
the interventions; six improved product management engagement (Section 5.3);

& Participants identified 50 different selling points, in 8 categories, of which the most prolific
was ‘Security Consultancy’, improving customer relationships by impressing them with
security expertise (Section 5.5); and

& Less security-expert groups appeared to benefit most from the workshops, and sessions
appeared most effective when facilitated by team managers (Section 5.4).

The Design Theory findings from the research—to support further research and intervention
development—included:

& Having developers identify selling points can indeed lead to improvements in product
management engagement (Section 5.6);

& Teams of developers can produce threat assessments, risk-impact assessment, and benefit
analyses with minimal guidance (Section 5.7); and

& A range of blockers, particularly problems with communication, challenge the introduction
of security; however, there is a wide range, and similar numbers, of motivators to
encourage it (Section 5.8).

We conclude that the intervention can be effective both in improving the security practice of
development teams and in improving communication with product managers (Section 5.9).

10 https://www.securedevelopment.org/security-assessment/
11 https://lancaster.ac.uk/hipster

Page 27 of 33 21Empirical Software Engineering (2023) 28:21

https://www.securedevelopment.org/security-assessment/
https://lancaster.ac.uk/hipster

The findings from the project promise the possibility of a lightweight activity, that can
easily be carried out by any development team, to help that team align their development
security goals with their organization’s business goals. One such implementation is now
supported and freely available (Section 6.4), and this and similar interventions can help
improve the security of the software on which we all rely.

Appendix 1: Interview Questions

Entry Interview

Introduction – establish context

& What is your current role, and what do you find yourself doing day-to-day? What’s your
involvement with this project?

Exploration

& Have you considered security for this project yourself? What’s been done so far?
& In what ways do you consider security important for this product?

Experience

& What’s the last time you came across a security issue in a project? Can you describe the issue?
& How did you deal with that issue?
& How confident are you about that solution?

Vision

& Let’s imagine the project’s finished, and it’s been an excellent piece of work. What do you
feel you’ll have done related to security and privacy to get it that way?

Clarification (as appropriate)

& Oh, I see. Could you give an example?

Exit Interview

Introduction – establish context

& Now that we’ve been working together for a while, this is a discussion to see how things
have progressed in the project.

Exploration

& What do you think has changed?

21 Page 28 of 33 Empirical Software Engineering (2023) 28:21

& What are your feelings about the change in the project?
& What did you make of the three activities we did: game, workshop, follow-ups?
& In what way might you have a better story on security now?

Experience

& What changes did you make as a result of the workshops and discussion?
& What exactly did you do?
& How did you go about implementing the changes?
& Why you chose to do those things?
& What is it that’s better now as a result?
& Would you do something similar again?
& What would you do differently?
& How does this relate to these specific threats you’ve identified (from the threat modeling

workshop)?

Vision
Let’s imagine there’s a team starting a similar project now, and you’re advising the team

coming in to help them improve their security. What would you recommend that’s the same as
we did, and how would you recommend improving it?

Acknowledgements We thank all the teams of developers and companies who contributed to this
research. We also thank the editors and reviewers who helped us present the work effectively in this
paper.

This work has been supported by the PETRAS National Centre of Excellence for IoT Systems Cybersecurity,
which has been funded by the UK EPSRC under grant number EP/S035362/1.

Authors’ contributions N/A

Funding (information that explains whether and by whom the research was supported)
This work has been supported by the PETRAS National Centre of Excellence for IoT Systems Cybersecurity,

which has been funded by the UK EPSRC under grant number EP/S035362/1.

Data Availability All transcriptions and analysis were commercially confidential, several subject to Non-
Disclosure Agreements.

Code availability Workshop materials are available at https://securedevelopment.org/workshops

Declarations

Conflicts of interest/competing interests None.

Ethics approval The project was approved by the Lancaster University Faculty of Science and Technology
Research Ethics committee.

Consent to participate N/A

Consent for publication N/A

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and

Page 29 of 33 21Empirical Software Engineering (2023) 28:21

https://securedevelopment.org/workshops

indicate if changes were made. The images or other third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Bibliography

Ambreen T, Ikram N, Usman M, Niazi M (2018) Empirical research in requirements engineering: trends and
opportunities. Requir Eng 23:63–95. https://doi.org/10.1007/s00766-016-0258-2

Ashenden D, Lawrence D (2013) Can we sell security like soap? A new approach to behaviour change. New
Secur Paradigms Work 2013:87–94. https://doi.org/10.1145/2535813.2535823

Assal H, Chiasson S (2019) Think secure from the beginning: a survey with software developers. In: conference
on human factors in computing systems (CHI). ACM. https://doi.org/10.1145/3290605.3300519

Bakker A (2018) Design research in education: a practical guide for early career researchers. Routledge, Abingdon
Barab S, Squire K (2004) Design-based research: putting a stake in the ground. J learn Sci 13(1):1–14. https://doi.

org/10.1207/s15327809jls1301_1
Barbacci MR, Ellison R, Weinstock CB, Wood WG (2000) Quality attribute workshop participants handbook
Beck K, Fowler M (2001) Planning extreme programming. Addison-Wesley Professional
Becker I, Parkin S, Sasse MA (2017) Finding security champions in blends of Organisational culture. In:

European workshop on usable security – EuroUSEC. https://doi.org/10.14722/eurousec.2017.23007
Beecham S, Baddoo N, Hall T (2008) Motivation in software engineering: a systematic literature review. Inf

Softw Technol 50:860–878. https://doi.org/10.1016/j.infsof.2007.09.004
Bell L, Brunton-Spall M, Smith R, Bird J (2017) Agile application security: enabling security in a continuous

delivery pipeline. O’Reilly, Sebastopol, CA
BeyerM,AhmedS,DoerlemannK,Arnell S, Parkin S, SasseA, PassinghamN (2015)Awareness is only the first step: a

framework for progressive engagement of staff in cyber security. Business white paper: Hewlett Packard
Brown AL (1992) Design experiments: theoretical and methodological challenges in creating complex interven-

tions in classroom settings. J Learn Sci 2:141–178. https://doi.org/10.1207/s15327809jls0202_2
Bukhsh FA, Bukhsh ZA, Daneva M (2020) A systematic literature review on requirement prioritization techniques and

their empirical evaluation. Comput Stand Interfaces 69:103389. https://doi.org/10.1016/j.csi.2019.103389
Caputo DD, Pfleeger SL, Sasse MA, Ammann P, Offutt J, Deng L (2016) Barriers to usable security? Three

organizational case studies. IEEE Secur Priv 14:22–32. https://doi.org/10.1109/MSP.2016.95
Clarke V, Braun V, Hayfield N (2015) Thematic analysis. In: Smith JA (ed) qualitative psychology: a practical

guide to research methods. SAGE publications, pp 222–248
Collins A (1992) Toward a design science of education. In: New Directions in Educational Technology.

Springer, pp 15–22. https://files.eric.ed.gov/fulltext/ED326179.pdf
Conradi R, Dybå T (2001) An empirical study on the utility of formal routines to transfer knowledge and

experience. ACM SIGSOFT Softw Eng Notes 26:268–276. https://doi.org/10.1145/503271.503246
Dabbagh M, Lee SP, Parizi RM (2016) Functional and non-functional requirements prioritization: empirical

evaluation of IPA, AHP-based, and HAM-based approaches. Soft Comput 20:4497–4520. https://doi.org/10.
1007/s00500-015-1760-z

Davison RM, Martinsons MG, Kock N (2004) Principles of canonical action research. Inf Syst J 14:65–86.
https://doi.org/10.1111/j.1365-2575.2004.00162.x

DeWin B, Scandariato R, Buyens K, Grégoire J, JoosenW (2009) On the secure software development process: CLASP,
SDL and touchpoints compared. Inf Softw Technol 51:1152–1171. https://doi.org/10.1016/j.infsof.2008.01.010

Denzin N, Lincoln Y (2011) The Sage handbook of qualitative research
Design-Based Research Collective (2003) Design-based research: an emerging paradigm for educational inquiry.

Educ Res 32(1):5–8. https://doi.org/10.3102/0013189X032001005
Dybå T (2005) An empirical investigation of the key factors for success in software process improvement. IEEE

Trans Softw Eng 31:410–424. https://doi.org/10.1109/TSE.2005.53
Easterbrook S, Singer J, Storey M-A, Damian D (2008) Selecting empirical methods for software engineering

research. In: Guide to advanced empirical software engineering. Springer, London, pp 285–311. https://doi.
org/10.1007/978-1-84800-044-5_11

Ejersbo LR, Engelhardt R, Frølunde L, Hanghøj T, Magnussen R, Misfeldt M (2008) Balancing product design and
theoretical insights. In: The Handbook of Design Research Methods in Education. Routledge, pp. 149–164

Fisher R, Ury WL, Patton B (2011) Getting to yes: negotiating agreement without giving in. Penguin

21 Page 30 of 33 Empirical Software Engineering (2023) 28:21

https://doi.org/10.1007/s00766-016-0258-2
https://doi.org/10.1145/2535813.2535823
https://doi.org/10.1145/3290605.3300519
https://doi.org/10.1207/s15327809jls1301_1
https://doi.org/10.1207/s15327809jls1301_1
https://doi.org/10.14722/eurousec.2017.23007
https://doi.org/10.1016/j.infsof.2007.09.004
https://doi.org/10.1207/s15327809jls0202_2
https://doi.org/10.1016/j.csi.2019.103389
https://doi.org/10.1109/MSP.2016.95
https://files.eric.ed.gov/fulltext/ED326179.pdf
https://doi.org/10.1145/503271.503246
https://doi.org/10.1007/s00500-015-1760-z
https://doi.org/10.1007/s00500-015-1760-z
https://doi.org/10.1111/j.1365-2575.2004.00162.x
https://doi.org/10.1016/j.infsof.2008.01.010
https://doi.org/10.3102/0013189X032001005
https://doi.org/10.1109/TSE.2005.53
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_11

Fogg BJ (2009) A behavior model for Persuasive design. In: international conference on Persuasive technology -
Persuasive. ACM, pp 40:1–7. https://doi.org/10.1145/1541948.1541999

Franqueira VNL, Tunnicliffe P (2015) To Flip or not to Flip: a critical interpretive synthesis of flipped teaching. In: Smart
Education and Smart e-Learning. Springer, pp. 57–67. https://doi.org/10.1007/978-3-319-19875-0_6

Frey S, Rashid A, Anthonysamy P, Pinto-Albuquerque M, Naqvi SA (2017) The good, the bad and the ugly: a
study of security decisions in a cyber-physical systems game. IEEE Trans Softw Eng 45(5):521–536. https://
doi.org/10.1109/TSE.2017.2782813

Gwet KL (2014) Handbook of inter-rater reliability: the definitive guide to measuring the extent of agreement
among raters. Advanced Analytics LLC

Haines S (2014) The product Manager’s desk reference, Second ed. McGraw-Hill, New York
Hall T, Sharp H, Beecham S, Baddoo N, Robinson H (2008) What do we know about developer motivation?

IEEE Softw 25:92–94. https://doi.org/10.1109/MS.2008.105
Herzberg F (2017) Motivation to work. Routledge
Hubbard DW, Seiersen R (2016) How to measure anything in cybersecurity risk. John Wiley & Sons
ISO/IEC (2008) 21827:2008 - Systems Security Engineering - Capability Maturity Model
Kelly AE, Lesh RA, Baek JY (2008) Handbook of design research methods in education: innovations in science,

technology, engineering, and mathematics learning and teaching. Routledge
Kirlappos I, Beautement A, Sasse MA (2013) “Comply or die” is dead: long live security-aware principal agents.

In: Financial cryptography and data security. Springer, Berlin, Heidelberg, pp 70–82. https://doi.org/10.
1007/978-3-642-41320-9_5

Kluyver T, Ragan-kelley B, Pérez F et al (2016) Jupyter notebooks: a publishing format for reproducible computational
workflows. In: Positioning and power in academic publishing: players. IOS Press, Agents and Agendas, pp 87–90

Lopez T, Sharp H, Tun T, Bandara A, Levine M, Nuseibeh B (2019a) Hopefully we are mostly secure: views on
secure code in professional practice. In: Workshop on Cooperative and Human Aspects of Software
Engineering - CHASE. IEEE, pp. 61–68 https://doi.org/10.1109/CHASE.2019.00023

Lopez T, Sharp H, Tun T et al (2019b) Talking about security with professional developers. In: Workshop on
Conducting Empirical Studies in Industry - CESSER-IP. IEEE Computer Society, Montreal, QC, Canada

McSweeney B (1999) Security, identity, and interests: a sociology of international relations. Cambridge
University Press https://doi.org/10.1109/CESSER-IP.2019.00014

Mead NR, Stehney T (2005) Security quality requirements engineering (SQUARE) methodology. In: SESS 2005
- proceedings of the 2005 workshop on software engineering for secure systems - building trustworthy
applications. Pp 1–7. https://doi.org/10.1145/1082983.1083214

Mellado D, Fernández-Medina E, Piattini M (2006) Applying a security requirements engineering process. In:
lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes
in bioinformatics). Pp 192–206 https://doi.org/10.1007/11863908_13

Microsoft (2018) Microsoft security intelligence report, Volume 23. https://info.microsoft.com/rs/157-gqe-382/
images/en-us_cntnt-ebook-sir-volume-23_march2018.pdf. Accessed 6 Mar 2019

Nhlabatsi A, Nuseibeh B, Yu Y (2012) Security requirements engineering for evolving software systems: a
survey. In: Security-Aware Systems Applications and Software Development Methods. IGI Global, pp.
108–128. https://doi.org/10.4018/978-1-4666-1580-9.ch007

Oxford Languages (2011) Concise Oxford English Dictionary
Pfleeger SL, Sasse MA, Furnham A (2014) From weakest link to security Hero: transforming staff security

behavior. J Homel Secur Emerg Manag 11:489–510. https://doi.org/10.1515/jhsem-2014-0035
Poller A, Kocksch L, Türpe S, Epp FA, Kinder-Kurlanda K (2017) Can security become a routine? A study of

organizational change in an agile software development group. In: Conference on computer supported cooperative
work - CSCW. ACM, Portland Oregon USA, pp 2489–2503. https://doi.org/10.1145/2998181.2998191

Rauf I, Petre M, Tun T et al (2022) The case for adaptive security interventions. ACM Trans Softw Eng
Methodol 31:1–52. https://doi.org/10.1145/3471930

RiskBased Security (2020) 2020 Mid Year Data Breach Report
Shostack A (2014) Threat modeling: designing for security. John Wiley & Sons
Shreeve B, Hallett J, Edwards M, et al (2020) The best laid plans or lack Thereof: Security Decision-Making of

Different Stakeholder Groups. IEEE Trans Softw Eng. https://doi.org/10.1109/TSE.2020.3023735
Springer O, Miler J (2018) The role of a software product manager in various business environments. In:

proceedings of the 2018 federated conference on computer science and information systems, FedCSIS 2018.
Polish information processing society, pp 985–994

Stack Overflow (2016) Annual Developer Survey. https://insights.stackoverflow.com/survey/2016. Accessed 17 Jun 2020
Stenfors T, Kajamaa A, Bennett D (2020) How to … assess the quality of qualitative research. Clin Teach 17:

596–599. https://doi.org/10.1111/TCT.13242
Such JM, Gouglidis A, Knowles W et al (2016) Information assurance techniques: perceived cost effectiveness.

Comput Secur 60:117–133. https://doi.org/10.1016/j.cose.2016.03.009

Page 31 of 33 21Empirical Software Engineering (2023) 28:21

https://doi.org/10.1145/1541948.1541999
https://doi.org/10.1007/978-3-319-19875-0_6
https://doi.org/10.1109/TSE.2017.2782813
https://doi.org/10.1109/TSE.2017.2782813
https://doi.org/10.1109/MS.2008.105
https://doi.org/10.1007/978-3-642-41320-9_5
https://doi.org/10.1007/978-3-642-41320-9_5
https://doi.org/10.1109/CHASE.2019.00023
https://doi.org/10.1109/CESSER-IP.2019.00014
https://doi.org/10.1145/1082983.1083214
https://doi.org/10.1007/11863908_13
https://info.microsoft.com/rs/157-gqe-382/images/en-us_cntnt-ebook-sir-volume-23_march2018.pdf
https://info.microsoft.com/rs/157-gqe-382/images/en-us_cntnt-ebook-sir-volume-23_march2018.pdf
https://doi.org/10.4018/978-1-4666-1580-9.ch007
https://doi.org/10.1515/jhsem-2014-0035
https://doi.org/10.1145/2998181.2998191
https://doi.org/10.1145/3471930
https://doi.org/10.1109/TSE.2020.3023735
https://insights.stackoverflow.com/survey/2016
https://doi.org/10.1111/TCT.13242
https://doi.org/10.1016/j.cose.2016.03.009

Tietjen MA, Myers RM (1998) Motivation and job satisfaction. Manag Decis 36:226–231. https://doi.org/10.
1108/00251749810211027

Türpe S, Kocksch L, Poller A (2016) Penetration tests a turning point in security practices? Organizational
challenges and implications in a software development team. In: Workshop on Security Information
Workers - SIW. USENIX Association

van der Linden D, Anthonysamy P, Nuseibeh B, et al (2020) Schrödinger’s security: opening the box on app
developers’ security rationale. In: International Conference on Software Engineering - ICSE. IEEE

Veracode (2018) State of Software Security Report Volume 9. https://info.veracode.com/report-state-of-software-
security-volume-9.html. Accessed 6 Feb 2019

Viera AJ, Garrett JM (2005) Understanding Interobserver agreement: the kappa statistic. Fam Med 37(5):360–363
Wang F, Hannafin MJ (2005) Design-based research and technology-enhanced learning environments. Educ

Technol Res Dev 53:5–23. https://doi.org/10.1007/BF02504682
Weir C, Becker I, Blair L (2021a) A passion for security: intervening to help software developers. In: 2021 IEEE/

ACM 43rd international conference on software engineering: software engineering in practice (ICSE-SEIP).
IEEE, pp 21–30. : https://doi.org/10.1109/ICSE-SEIP52600.2021.00011

Weir C, Becker I, Noble J, et al (2019) Interventions for long-term software security: creating a lightweight program of
assurance techniques for developers. Softw - Pract Exp 275–298. : https://doi.org/10.1002/spe.2774

Weir C, Hermann B, Fahl S (2020a) From needs to actions to secure apps? The effect of requirements and
developer practices on app security. In: 29th USENIX security symposium (USENIX security 20)

Weir C, Knight J, Ford N (2021b) Developer Security Essentials. https://www.securedevelopment.org/
workshops/. Accessed 9 Jun 2021

Weir C, Noble J, Rashid A (2020b) Challenging software developers: dialectic as a Foundation for Security
Assurance Techniques. J Cybersecurity 30. https://doi.org/10.1093/cybsec/tyaa007

Xie J, Lipford HR, ChuB (2011)Why do programmersmake security errors? In: IEEE symposium on visual languages
and human centric computing. Pittsburg, PA, USA, pp. 161–164. : https://doi.org/10.1109/VLHCC.2011.6070393

Yskout K, Scandariato R, Joosen W (2015) Do security patterns really help designers? In: International conference on
software engineering - ICSE. IEEE, Firenze, Italy, pp 292–302. https://doi.org/10.1109/ICSE.2015.49

Charles Weir has researchedDeveloper Centered Security at Lancaster University, UK, since 2015. Prior to that he had
30 years in industry as a researcher, software architect, design consultant and company CEO, specializing in software
development, especially for terminals and mobile devices. He was technical lead for the first smartphone, led the
development of the first mobile money app for Android, and ran a successful software development company averaging
20 employees for 17 years.

21 Page 32 of 33 Empirical Software Engineering (2023) 28:21

https://doi.org/10.1108/00251749810211027
https://doi.org/10.1108/00251749810211027
https://info.veracode.com/report-state-of-software-security-volume-9.html
https://info.veracode.com/report-state-of-software-security-volume-9.html
https://doi.org/10.1007/BF02504682
https://doi.org/10.1109/ICSE-SEIP52600.2021.00011
https://doi.org/10.1002/spe.2774
https://www.securedevelopment.org/workshops/
https://www.securedevelopment.org/workshops/
https://doi.org/10.1093/cybsec/tyaa007
https://doi.org/10.1109/VLHCC.2011.6070393
https://doi.org/10.1109/ICSE.2015.49

Ingolf Becker is a Lecturer in Security and Crime Science at University College London, UK. He has been studying the
interactions between security and business processes in organizations since 2013. This work has led him to collaborate with
critical national infrastructure companies to technologymultinationals and SMEs. Throughout his work qualitative research
methodologies feature heavily, allowing him to understand the motivations, capabilities and limitations of individuals that
are key to effective security decision making.

Lynne Blair is a Senior Lecturer at Lancaster University, UK. She specializes in software education, and co-leads
Lancaster’s involvement in the Institute of Coding, with a focus on widening participation.Much of her work is on human
aspects of computing such as personal and social implications of our digital economy on community values and integrity,
wellbeing, and environmental implications regarding sustainability in digital innovations.

Page 33 of 33 21Empirical Software Engineering (2023) 28:21

	Incorporating software security: using developer workshops to engage product managers
	Abstract
	Introduction
	Contribution

	Background
	Adoption of developer security activities
	Motivating change in development teams
	Blockers and motivators
	Product management engagement
	Conclusions

	Design of the intervention workshops
	Requirement 1: Understanding security in terms of business decisions
	Requirement 2: Security issues relevant to current projects
	Requirement 3: Issues in terms of impact and likelihood
	Requirement 4: Identifying and costing solutions
	Requirement 5: Discussing in terms meaningful to product managers
	Remaining requirements
	Intervention approach and schedule

	Evaluation methodology
	Introduction to design-based research
	Research questions
	Method implementation
	Example of the impact coding

	Results
	Summary of participants from each organization
	Inter-rater reliability
	Impact of the intervention
	Activity impact by group attributes
	Selling points for security
	Use of selling points to engage product managers
	Threat assessment with developers
	Blockers and motivators related to security promotion

	Answer to the primary research question
	Discussion
	Research method
	Trustworthiness criteria and limitations
	Practical value
	Further work

	Conclusions
	Appendix&newnbsp;1: Interview Questions
	Entry Interview
	Exit Interview

	Bibliography

