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Abstract 

Globally, ecosystems are being affected by multiple simultaneous stressors (also termed drivers, 

factors, or perturbations). While the effects of single stressors are becoming increasingly well 

understood, there remains substantial uncertainty regarding how multiple stressors may interact to 

affect ecosystems. Accordingly, there is substantial interest in documenting how stressors combine to 

impact individuals through to entire communities. Indeed, understanding how stressors interact 

represents one of the grand challenges currently facing ecologists and conservationists. 

Popular methods used to classify stressor interactions comprise multiple steps, including complex 

mathematical equations. Accordingly, there is the potential for errors to occur at multiple points, any 

of which can result in erroneous conclusions being drawn. Furthermore, there are frequently minor 

methodological differences between studies which may limit, or even prevent, direct comparisons of 

their results from being made. 

Here, we introduce the multiplestressR R package, a statistical tool which addresses the above issues. 

The package allows researchers to easily conduct a rigorous analysis of their multiple stressor data 

and provides results which are simple to interpret. The multiplestressR package can implement either 

the additive or multiplicative null model using iterations of these tools which are commonplace within 

multiple stressor ecology. The multiplestressR package can classify interactions as being synergistic, 

antagonistic, reversal, or null and requires minimal experience in either R or statistics to implement. 

Additionally, we provide example R code which can be easily modified to analysis any given factorial 

multiple stressor dataset. Indeed, widespread use of this software will allow for an easier and more 

robust comparison of results. Ultimately, we hope that the multiplestressR package will provide a 

stronger understanding of how stressors combine to affect individuals, populations, communities, and 

ecosystems. 
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1  Introduction 

Ecosystems are being subjected to a diverse array of stressors (O’Hara et al. 2021; Reid et al. 2019), 

sensu threats, perturbations, or factors (see Orr et al. 2020). Such stressors are capable of directly, or 

indirectly, acting across all levels of ecological organisation (Simmons et al. 2021). However, 

ecosystems are primarily affected by multiple co-occurring stressors, rather than single stressors in 

isolation (Halpern et al. 2015). Accordingly, these simultaneous stressors are capable of interacting 

and as such there is considerable interest in cataloguing how such stressors may interact (Côté et al. 

2016). Indeed, understanding how stressors interact to affect individuals through to ecosystems is one 

of the grand challenges currently facing ecologists (Fleishman et al. 2011). Recent examples of such 

studies have investigated the combined effect of pesticides on bee mortality (Siviter et al. 2021), the 

joint effect of chemical stressors and nutrient enrichment of litter decomposition (Beaumelle et al. 

2021), and the combined effect of CO2 and temperature on phytoplankton growth rates (Seifert et al. 

2020). Such studies are capable of analysing a wide range of response metrics, and frequently employ 

fully factorial experiments.  

Previously, it has been assumed that the effects of stressors combine in an additive manner, with any 

interactions which deviate from this expectation being termed an ‘ecological surprise’ (Christensen et 

al. 2006; Paine et al. 1998; Thompson et al. 2018). However, there is now considerable evidence that 

this assumption of additivity does not necessarily hold, and that multiple stressors are capable of 

combining to produce antagonistic (Burgess et al. 2021), synergistic (Przeslawski et al. 2015), or even 

reversal (Jackson et al. 2016) interactions (see Orr et al., 2020). Furthermore, there is considerable 

debate as to whether alternatives to the additive null model are more appropriate for ecological 

datasets (Kerkhoff & Enquist, 2009; Schäfer & Piggott, 2018). Of the alternatives, the multiplicative 

null model is the most widely implemented within ecological research (e.g., Harvey et al. 2013; Gomez 

Isaza et al. 2020). However, by considering the multiple stressor literature, it is evident that there is 

little consistency in the methodologies implemented across studies. While the additive and 

multiplicative null models may be employed in various studies, multiple versions of these null models 

are implemented (e.g., Darling & Côté 2008; Lange et al. 2018; Yue et al. 2017). As such, it is unclear 

how these different methods compare to one another, or even if the results of two studies which 

utilise different statistical analyses are comparable. Here, we detail the multiplestressR R package, 

which provides a simple framework for researchers to easily analyse factorial stressor pair datasets 

using only a few lines of R code. At present, numerous steps are required in order to classify stressor 

interactions, including several complex statistical equations. Accordingly, this means that there are 

multiple points at which errors can occur and hence affect both the results and the subsequent 

ecological interpretation. However, there is currently no software to automate the classification of 
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multiple stressor interactions that we are aware of. The multiplestressR package fills this gap and 

allows researchers to easily, and rigorously, analyse their multiple stressor data, while bypassing 

potential errors. 

The multiplestressR R package allows researchers to implement either the additive (Gurevitch et al. 

2000) or multiplicative (Lajeunesse 2011) null models. Importantly, these forms of the null models 

have been implemented within previous multiple stressor research (e.g., Burgess et al. 2021; Harvey 

et al. 2013; Hillebrand 2002) and have been shown to be statistically rigorous (Burgess et al. 2022). 

Alongside a robust statistical analysis, the multiplestressR also provides several tools for researchers 

to interpret their results, enabling the analysis of individual experiments through to meta-analytical 

datasets. Each of the functions within the multiplestressR package is described in detail below, with 

example code also provided.  

The multiplestressR package is openly available via the CRAN repository (https://CRAN.R-

project.org/package=multiplestressR) and can be easily installed using the code shown in Figure 1. To 

install the multiplestressR package, R v2.1.0 or greater is required. The multiplestressR package also 

requires the ggplot2 (Wickham 2016), patchwork (Pederson 2020), and viridis (Garnier et al. 2021) R 

packages. 

Figure 1: Code for installing and loading the multiplestressR package. 

 

2  Input data 

In order to implement the multiplestressR package, 12 variables are required (Table 1). This 

corresponds to the same three variables across four different experimental treatments. The required 

experimental treatments are as follows: i) baseline experimental conditions (Control); ii) only the first 

stressor present (StressorA); iii) only the second stressor present (StressorB); iv) both the first and 

second stressors present together (StressorsAB). Accordingly, this R package should only be used to 

analyse data from fully factorial experiments which consider pairs of stressors. 

For each experimental treatment, the three required variables are as follows: i) the mean value of a 

given response metric (Mean); ii) the standard deviation associated with the mean response metric 

(SD); iii) the sample size of the experiment treatment (N). Ultimately, a failure to include any of these 

variables for any of the experimental treatments will severely limit the functionality of the 
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multiplestressR package. Importantly, in order to utilise this package, each experimental treatment 

must comprise at least two replicates per treatment. Likewise, it is imperative for correct 

computation, and therefore interpretation of interactions, that any users of this package ensure that 

all uncertainty data corresponds to standard deviation and not alternative metrics (e.g., variance, 

standard error, or confidence intervals). Similarly, all response metric data should correspond to 

means, not other averaged metrics (e.g., medians). Additionally, values for response metrics should 

remain untransformed as this will disrupt the true interpretation of the interactions. For example, log-

transforming data and then implementing the additive model will actually implement a version of the 

multiplicative null model (Griffen et al. 2016). This is a particularly pertinent consideration when 

analysing response metrics such as specific growth rates. Finally, there are some limitations on the 

values that mean treatment values can take, and below we detail the affected functions. 

 

Table 1: Variables required in order to implement the multiplestressR package.  

Argument Description 

Control_Mean Mean value of the response metric for the control treatment. 

Control_SD Standard deviation for Control_Mean. 

Control_N Sample size for the control treatment. 

StressorA_Mean Mean value of the response metric for the treatment of stressor A only. 

StressorA_SD Standard deviation for StressorA_Mean. 

StressorA_N Sample size for the treatment of stressor A only. 

StressorB_Mean Mean value of the response metric for the treatment of stressor B only. 

StressorB_SD Standard deviation for StressorB_Mean. 

StressorB_N Sample size for the treatment of stressor B only. 

StressorsAB_Mean Mean value of the response metric for the treatment of both stressors A and B 
together. 

StressorsAB_SD Standard deviation for StressorsAB_Mean. 

StressorsAB_N Sample size for the treatment of both stressors A and B together. 
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3  multiplestressR functions 

The multiplestressR package comprises five functions and one example dataset. Example code is 

provided for each function and the code is easily adaptable so that researchers can modify the 

example to be used for their own analyses. A brief summary of each function and dataset is provided 

in Table 2, with required arguments for each function also described.
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Table 2: Overview of the functions and datasets included within the multiplestressR package. 

Function and arguments Description 

effect_size_additive 

  Data arguments (Table 1); 

  Significance_Level; 

  Small_Sample_Correction 

Implementation of the additive null model for factorial datasets (Equation S1; Gurevitch et al. 2000). 

The Significance_Level argument is used to specify the level of alpha for this analysis (default = 0.05). 

The Small_Sample_Correction argument is used to specify whether the bias correction factor should be incorporated within calculations 
(see Equation 1) of the additive effect size (TRUE or FALSE; default = TRUE). 

effect_size_multiplicative 

  Data arguments (Table 1); 

  Significance_Level 

Implementation of the multiplicative null model for factorial datasets (Equation S2; Lajeunesse 2011). 

The Significance_Level argument is used to specify the level of alpha for this analysis (default = 0.05). 

classify_interactions 

  effect_size_dataframe; 

  assign_reversals; 

  remove_directionality 

Assign interaction classifications (Jackson et al. 2016) to the output of either effect_size_additive or effect_size_multiplicative (Figure 2). 

The effect_size_dataframe argument corresponds to the output of either the effect_size_additive or effect_size_multiplicative functions. 

The assign_reversals argument is used to specify whether, following the method of Jackson et al. (2016), reversal interactions should be 
distinguished from antagonisms (TRUE or FALSE; default = TRUE). 

The remove_directionality argument is used to specify whether, following the method of Jackson et al. (2016), directionality should be 
removed from the effect sizes (TRUE or FALSE; default = FALSE). 

summary_plots 

  effect_size_dataframe; 

  Significance_Level; 

  Small_Sample_Correction 

Generate summary figures using the output of classify_interactions (Figure 2). 

The effect_size_dataframe argument corresponds to the output of the classify_interactions function. 

The arguments Significance_Level and Small_Sample_Correction should match the values specified for the effect_size_additive or 
effect_size_multiplicative functions (default values are same as above). Note that if the effect_size_multiplicative function was used, the 
Small_Sample_Correction argument can be ignored. 

critical_effect_size_additive 

  Control_N; 

  StressorA_N; 

  StressorB_N; 

  StressorsAB_N; 

  Significance_Level; 

  Small_Sample_Correction 

Determine the critical (additive) effect size for a given experiment design (Equation S3; Burgess et al. 2022). 

The Control_N, StressorA_N, StressorB_N, and StressorsAB_N are used to specify the sample sizes for each treatment of the factorially 
designed experiments (see Table 1). 

The Significance_Level argument is used to specify the level of alpha for this analysis (default = 0.05). 

The Small_Sample_Correction argument is used to specify whether the bias correction factor should be incorporated within calculations 
(see Equation 1) of the additive effect size (TRUE or FALSE; default = TRUE). 

survival A randomly computer-generated dataset comprising survival data for 250 interactions. 
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The functions within the multiplestressR package have been written in a modular manner, and users 

of the package need only run the functions appropriate for their analyses (i.e., there is no requirement 

to run the classify_interactions or summary_plots functions). Examples of potential workflows are 

illustrated in Figure 2. However, it is important to note that the classify_interactions function can only 

be applied to the output of either the effect_size_additive or effect_size_multiplicative functions. 

Likewise, the summary_plots function can only be applied to the output of the classify_interactions 

function. However, both the effect_size_additive and effect_size_multiplicative functions can be used 

independently of the classify_interactions and summary_plots functions. Likewise, the 

critical_effect_size_additive function is a stand-alone function. 

 

 

Figure 2: Example workflows for the functions within the multiplestressR package 

 

3.1  survival 

The multiplestressR package contains an example dataset named survival. This computer-generated 

dataset comprises simulated data for the survival rates of 250 populations (each composed of 100 

individuals) exposed to the notional stressors of increased temperature and decreased pH. The 

dataset uses a factorial design comprising four treatments: i) Control conditions; ii) Exposed to 

increased temperature; iii) Exposed to decreased pH; iv) Exposed to both increased temperature and 

decreased pH. The data for each treatment (means, standard deviations, and sample sizes) 
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corresponds to the data described within Table 1. The main use of this dataset is to illustrate the 

functionality of the multiplestressR package, and all subsequent examples of code use this dataset. 

The survival dataset can be obtained in R using the code shown in Figure 3. The survival dataset also 

acts as a useful guide for the structure for any datasets which researchers may wish to analyse. 

 

Figure 3: Code demonstrating the easy extraction of the survival dataset from the multiplestressR 

package. 

 

3.2  effect_size_additive 

Both the effect_size_additive and effect_size_multiplicative functions calculate effect sizes which are 

in turn used to classify stressor interactions. In brief, effect sizes are a widely used statistical tool and 

are central to null hypothesis significance testing (Nakagawa & Cuthill 2007). Effect sizes provide a 

standardised approach to comparing groups, often focussing on group means. Indeed, effect sizes are 

calculated in many commonplace statistical tools (e.g., t-tests or analysis of variance) which compare 

group means.  

When applying a null model in multiple stressor ecology, the primary research question of interest is 

whether the observed effect of two stressors differ from a prediction based upon the effects of these 

stressors acting independently. In other words, we are comparing two groups, an observed effect and 

a predicted effect based upon either the additive or multiplicative null model. Accordingly, these null 

models can be easily, and rigorously, implemented through the factorial forms of two established 

effect sizes Hedges’d (Gurevitch et al. 2000) and the response ratio (Lajeunesse 2011). For a detailed 

explanation of effect sizes in biological sciences see Nakagawa & Cuthill (2007), while both Burgess et 

al. (2022) and Schäfer & Piggott (2018) discuss effect sizes and null models in the context of multiple 

stressor ecology. 

The additive null model is the most commonly applied null model (e.g., Crain et al. 2008; Burgess et 

al. 2021), although there is variation between studies in how it is applied. Here, the 

effect_size_additive function implements the additive null model through the factorial form of 

Hedges’ d (Equation S1; Gurevitch et al. 2000), perhaps the most widely-used form of the additive null 

model. Previous research (Burgess et al. 2022) has shown this particular form of the additive null 

model to be statistically rigorous and robust. An example of R code for the effect_size_additive 

function is shown in Figure 4.  
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Figure 4: Code demonstrating the use of the effect_size_additive function. 

 

The effect_size_additive function returns a data frame which contains seventeen columns. The first 

twelve columns correspond to the input data for the function (see Table 1), while the final five columns 

are as follows: 

i) Interaction_Effect_Size; 

ii) Interaction_Variance; 

iii) Interaction_CI_Upper; 

iv) Interaction_CI_Lower; 

v) Null_Model. 

Interaction_Effect_Size corresponds to the effect size calculated by the additive null model. The 

interpretation of this metric is relatively simple in that larger effect sizes indicate a greater statistical 

ability to distinguish between observed and predicted responses. Additionally, each value of 

Interaction_Effect_Size also has an associated variance, shown by Interaction_Variance. The 

Interaction_Variance variable is in turn used to calculate the corresponding confidence intervals for 

each value of Interaction_Effect_Size, shown by the variables Interaction_CI_Upper and 

Interaction_CI_Lower. By default, 95% confidence intervals are calculated, however this can be altered 

by using the Significance_Level argument (see Table 2 and Figure 4). Finally, the variable Null_Model 

details which null model was used to calculate the effect sizes, variances, and associated confidence 

intervals.  
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3.3  effect_size_multiplicative 

The multiplicative null model is becoming increasingly popular within multiple stressor research (e.g., 

Harvey et al. 2013; Gomez Isaza et al. 2020), and is recognised as potentially being more ecologically 

realistic than the additive null model (Schäfer & Piggott, 2018). Here, the effect_size_multiplicative 

function implements the multiplicative null model through the factorial form of the response ratio 

(Equation S2; Lajeunesse 2011), which has been shown to be statistically robust (Burgess et al. 2022). 

From a much simplified perspective, the multiplicative null model can be viewed as the logarithmic 

form of the additive null model, with this transformation resulting in fundamental differences in the 

assumptions of these approaches. However, it is important to note that due to the logarithmic nature 

of the effect_size_multiplicative function, mean values for a given response metric must be greater 

than zero. 

The effect_size_multiplicative function requires exactly the same input parameters as the 

effect_size_additive function (Table 2), with the exception that the Small_Sample_Correction 

argument is not utilised. An example of R code for the effect_size_multiplicative function is shown in 

Figure 5.  

 

 

Figure 5: Code demonstrating the use of the effect_size_multiplicative function. 
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The structure of the output of the effect_size_multiplicative function is identical to that of the 

effect_size_additive function. As such, refer to the description of the output for the 

effect_size_additive function above.  

 

 

3.4  classify_interactions 

There is considerable interest in documenting how stressors can interact to affect a given system, and 

numerous studies have described synergisms or antagonisms between various combinations of 

stressors (e.g., Jackson et al. 2016). Accordingly, the classify_interactions function can be applied to 

the output of either the effect_size_additive or effect_size_multiplicative functions and be used to 

classify each stressor interaction into one of four categories. Namely, such categories are i) synergistic, 

ii) antagonistic, iii) null, and iv) reversal interactions. Interaction classifications are assigned according 

to interaction effect sizes (Interaction_Effect_Size) and associated confidence intervals 

(Interaction_CI_Upper and Interaction_CI_Lower). For instance, if the confidence intervals for an 

effect size overlap zero, then this interaction will be assigned a null classification as there is insufficient 

evidence to overturn the null expectation. In contrast, if confidence intervals for an effect size do not 

overlap zero, then this interaction will be assigned a classification of either antagonistic, synergistic, 

or reversal. The method for classifying interactions within the classify_interactions function is adopted 

from the methodology outlined by Burgess et al. (2022). An example of R code for the 

classify_interactions function is shown in Figure 6.  

 

 

Figure 6: Code demonstrating the use of the classify_interactions function. 

 

To date, most studies have only considered the interaction classifications of antagonistic, synergistic, 

and null interactions. However, there is increasing discussion of the additional category of reversal 

interactions. While the exact nomenclature may vary (e.g., Travers-Trolet et al. 2014; Jackson et al. 

2016) reversal interactions can be regarded as a specific subset of antagonisms. As such, antagonisms 
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and reversals interactions have frequently been combined into a single classification. A detailed 

description of all four interaction classifications is available elsewhere (see Burgess et al. 2022; Jackson 

et al. 2016; Orr et al. 2020); however, the classify_interactions function provides users with the option 

to specify whether reversal and antagonistic interactions should be differentiated through the 

assign_reversals argument (see Table 2, Figure 6). 

The classify_interactions function contains an argument (remove_directionality) for removing 

directionality from a dataset (see Table 2). This argument corresponds to a phenomenon described by 

Jackson et al. (2016) and Piggott et al. (2015) where the comparability of effect sizes may be 

compromised. Jackson et al. (2016) first implemented a method for accounting for this limitation 

which has subsequently been adopted by other studies (e.g., Siviter et al. 2021). Accordingly, this 

approach can be easily implemented through the remove_directionality argument. The 

remove_directionality argument is only likely to be required under particular conditions; however, for 

a full discussion of this approach, see Jackson et al. (2016). 

The output of this function is straightforward. The input data frame (i.e., the effect_size_dataframe 

argument) is returned with an additional column titled Interaction_Classification. For each effect size, 

the Interaction_Classification is assigned a value of either Null, Antagonisic, Synergistic, or Reversal.  

 

3.5  summary_plots 

Within the multiplestressR package, statistical analyses are conducted using the effect_size_additive, 

effect_size_multiplicative, and classify_interactions functions. However, the results of these analyses 

can be easily visualised (and hence interpreted) using the summary_plots function. The 

summary_plots function can only be applied to the output of the classify_interactions function and 

can be used to generate a series of figures which can aid with the interpretation of these analyses; 

however, it is primarily of use where multiple interactions have been analysed. An example of R code 

for the summary_plots function is shown in Figure 7, while an example output of the summary_plots 

function is illustrated by Figure 8.  

 

Figure 7: Code demonstrating the use of the summary_plots function. 
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Figure 8: Example output of the summary_plots function using the example survival dataset. The code 

in Figures 3, 4, 6, and 7 can be used to generate these figures. Note that labels have been included for 

clarity but are not normally incorporated by the summary_plots function. 

As shown by Figure 8, the output of the summary_plots function produces a figure comprising five 

panels. Figure 8a shows the proportions of each of the interaction classifications across the entire 

dataset; here it is clear to see that the majority of interactions are assigned a null classification. Figure 

8b plots mean treatment sample sizes against interaction effect size. Where the additive null model 

has been implemented, lines are plotted which denote the smallest effect size (hereafter referred to 

as the critical effect size) that can lead to the rejection of the null expectation for a given mean 

treatment sample size (see critical_effect_size_additive function below). Figure 8b can therefore 

provide insights into whether a predominance of null interactions is likely to be due to ecological 

variables or simply underpowered experiments. Figure 8c supports Figure 8b by providing a density 

plot for mean treatment sample sizes. Figures 8d and 8e illustrate funnel plots plotting interaction 

effect size against inverse effect size variance and effect size standard error respectively. A detailed 

explanation of funnel plots is provided by Sterne et al. (2011); however, these funnel plots may be of 

primary use for researchers seeking to conduct a meta-analysis. Additionally, for the additive null 

model, it is important to note that sample sizes play a prominent role in the calculation of the effect 

size variance (Figure 8d) and hence effect size standard error (Figure 8e). Accordingly, under 
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commonplace sample sizes for multiple stressor experiments (see Burgess et al. 2022), calculations of 

effect size variance may be driven by sample size. This is evidenced by the various ‘bands’ in Figures 

8d and 8e which correspond to mean treatment sample sizes of three, four, five, six, seven, and eight. 

Finally, these figures are generated using ggplot2 (Wickham 2016) meaning that they are easily 

modified (e.g., colour scheme).  

 

3.6  critical_effect_size_additive 

The critical_effect_size_additive function is a stand-alone function which can be used to calculate the 

critical effect size for the additive null model (see Burgess et al. 2022) but it is not required to complete 

analysis and assign interaction classifications. 

Broadly, the critical effect size is the minimum effect size that an experiment is capable of detecting 

as being significantly different to the null hypothesis (Lakens 2022; Mudge 2013). In brief, experiments 

with greater sample sizes are able to detect smaller effects which are significantly different to the null 

model. Accordingly, an experiment which has a large critical effect size (i.e., small sample sizes) may 

miss biologically important synergistic or antagonistic interactions (Burgess et al., 2022). Ultimately, it 

is up to any researcher to determine what constitutes the minimum effect size of interest for their 

system (Burgess et al., 2022; Lakens et al. 2022). However, it is possible to calculate the critical effect 

size, for the additive null model, for a given experimental design (see Equation S3). As such, the 

critical_effect_size_additive function may aid researchers in the design of their experiments. An 

example of R code for the critical_effect_size_additive function is shown in Figure 9.  

 

 

Figure 9: Code demonstrating the use of the critical_effect_size_additive function. 

The output of the critical_effect_size_additive function is straightforward to understand. For each 

combination of sample sizes analysed a single value is provided. For example, using the code in Figure 

9 the critical_effect_size_additive function would return a value of 1.94 (to three decimal places) and 
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the null model expectation could only be rejected for those stressor combinations that yield an effect 

size with an absolute value greater than this number.  

 

4  Conclusion 

As demonstrated, the multiplestressR package allows researchers to easily implement either the 

additive or multiplicative null models in order to infer how pairs of stressors combine in their factorial 

datasets. The multiplestressR package allows relatively complex analyses to be easily conducted using 

only a few lines of code. More importantly, the multiplestressR package will allow analyses to be 

standardised across multiple independent studies, and also prevent any small calculation errors from 

affecting into the results. The computations carried out within multiplestressR are also useful for the 

generation of effect sizes that are then used in meta-analytical studies (e.g., Burgess et al. 2021; 

Jackson et al. 2016). Accordingly, standardising effect sizes will also allow for better comparison of 

future meta-analyses and hopefully lead to more general patterns emerging within the general field 

of biological responses to multiple stressors.  
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Appendix 

Required Variables 

Table S1: Variables required in order to implement the multiplestressR package. The notation used 

within Equations S1-S3 is also shown. 

Argument Description Notation 

Control_Mean Mean value of the response metric for the control treatment. XC 

Control_SD Standard deviation for Control_Mean. SDC 

Control_N Sample size for the control treatment. NC 

StressorA_Mean Mean value of the response metric for the treatment of stressor A only. XA 

StressorA_SD Standard deviation for StressorA_Mean. SDA 

StressorA_N Sample size for the treatment of stressor A only. NA 

StressorB_Mean Mean value of the response metric for the treatment of stressor B only. XB 

StressorB_SD Standard deviation for StressorB_Mean. SDB 

StressorB_N Sample size for the treatment of stressor B only. NB 

StressorsAB_Mean Mean value of the response metric for the treatment of both stressors A 

and B together. 

XI 

StressorsAB_SD Standard deviation for StressorsAB_Mean. SDI 

StressorsAB_N Sample size for the treatment of both stressors A and B together. NI 
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Additive Null Model Equations 

The multiplestressR package implements the widely used version of the additive null model defined 

by Gurevitch et al. (2000). The notation for variables used throughout Equation S1 is detailed in Table 

S1. The calculation of the additive null model (i.e., Hedges’ d, ESAdd) is shown by Equation S1.1, where 

the pooled standard deviation (s) is shown by Equation S1.2.  

𝑆1.1)                                                                                                          𝐸𝑆𝐴𝑑𝑑  =  
𝑋𝐼 − 𝑋𝐴 − 𝑋𝐵 + 𝑋𝐶

𝑠
∙ 𝐽(𝑚) 

𝑆1.2)      𝑠 =   √
(𝑁𝐼 − 1) ∙ (𝑆𝐷𝐼)2  + (𝑁𝐴 − 1) ∙ (𝑆𝐷𝐴)2  +  (𝑁𝐵 − 1) ∙ (𝑆𝐷𝐵)2  + (𝑁𝐶 − 1) ∙ (𝑆𝐷𝐶)2

𝑁𝐼 +  𝑁𝐴 +  𝑁𝐵 + 𝑁𝐶 − 4
 

For each value of ESAdd, there is an associated effect size variance (VAdd) shown by Equation S1.3. VAdd 

is in turn used to calculate the standard error (Equation S1.4) and confidence intervals (Equation S1.5) 

for each value of ESAdd. For Equation S1.5, the default value of α is 0.05 (i.e., 𝑍𝛼/2 ≈ 1.96), resulting in 

95% confidence intervals being calculated. However, this can be altered using the Significance_Level 

argument.  

𝑆1.3)                                             𝑉𝐴𝑑𝑑  =   (𝐽(𝑚))2 ∙ (
1

𝑁𝐼
+

1

𝑁𝐴
+

1

𝑁𝐵
+

1

𝑁𝐶
+

(𝐸𝑆𝐴𝑑𝑑)2

2 ∙ (𝑁𝐼 + 𝑁𝐴 + 𝑁𝐵 + 𝑁𝐶)
) 

𝑆1.4)                                                                                                                                               𝑆𝐸𝐴𝑑𝑑  =   √𝑉𝐴𝑑𝑑 

𝑆1.5)                                                                                                                                     𝐶𝐼𝐴𝑑𝑑  =   𝑍𝛼/2 ∙ 𝑆𝐸𝐴𝑑𝑑 

Hedges’ d has a known bias, where sample treatment sample sizes lead to the effect size being 

overestimated. Accordingly, within the effect_size_additive function, there is the option of specifying 

the Small_Sample_Correction argument with determines whether a bias correction factor (𝐽(𝑚)) is 

implemented. If the Small_Sample_Correction is specified as TRUE (the default value), then 𝐽(𝑚) 

calculated as (Equation S1.6): 

𝑆1.6)                                                                                    𝐽(𝑚)  =   1 −  
3

4 ∙ (𝑁𝐼 +  𝑁𝐴 +  𝑁𝐵 + 𝑁𝐶 − 4) − 1
 

If the Small_Sample_Correction is specified as FALSE, then 𝐽(𝑚) calculated as (Equation S1.7): 

S1.7)                                                                                                                                                           𝐽(𝑚)  =   1 
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Multiplicative Null Model Equations 

The multiplestressR package uses the factorial extension to the multiplicative null model derived by 

Lajeunesse (2011). The notation for variables used throughout Equation S2 is detailed in Table S1. The 

calculation of the multiplicative null model (i.e., Response Ratio, ESMul) is shown by Equation S2.1. 

𝑆2.1)                                                                                      𝐸𝑆𝑀𝑢𝑙  =   ln(𝑋𝐼) −  ln(𝑋𝐴) − ln(𝑋𝐵) +  ln(𝑋𝐶) 

For each value of ESMul, there is an associated effect size variance (VMul) shown by Equation S2.2. VMul 

is in turn used to calculate the standard error (Equation S2.3) and confidence intervals (Equation 2.4) 

for each value of ESMul. For Equation S2.4, the default value of α is 0.05 (i.e., 𝑍𝛼/2 ≈ 1.96), resulting in 

95% confidence intervals being calculated. However, this can be altered using the Significance_Level 

argument.  

𝑆2.2)                                                                  𝑉𝑀𝑢𝑙  =   
(𝑆𝐷𝐼)2

(𝑋𝐼)2 ∙ 𝑁𝐼
+

(𝑆𝐷𝐴)2

(𝑋𝐴)2 ∙ 𝑁𝐴
+

(𝑆𝐷𝐵)2

(𝑋𝐵)2 ∙ 𝑁𝐵
+

(𝑆𝐷𝐶)2

(𝑋𝐶)2 ∙ 𝑁𝐶
 

𝑆2.3)                                                                                                                                               𝑆𝐸𝑀𝑢𝑙  =   √𝑉𝑀𝑢𝑙 

𝑆2.4)                                                                                                                                     𝐶𝐼𝑀𝑢𝑙  =   𝑍𝛼/2 ∙ 𝑆𝐸𝑀𝑢𝑙 
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Critical Effect Size (Additive) Equations 

Within the multiplestressR package, we use the critical effect size equation derived by Burgess et al. 

(2022) from the additive null model defined by Gurevitch et al. (2000) and defined in equations S1. 

This means the critical effect size computed is only applicable to this null model. The notation for 

variables used throughout Equation S3 is detailed in Table S1. The calculation of the critical effect size 

for the additive null model is shown by Equation S3. 

𝑆3)         𝐶𝑟𝑖𝑡𝐴𝑑𝑑  =  √(
1

𝑁𝐶
+  

1

𝑁𝐴
+  

1

𝑁𝐵
+ 

1

𝑁𝐼
) ∙ (

2 ∙ (𝑍𝛼/2)2 ∙ (𝑁𝐶 +  𝑁𝐴 +  𝑁𝐵 +  𝑁𝐼 ) ∙ (𝐽(𝑚))
2

2 ∙ (𝑁𝐶 +  𝑁𝐴 +  𝑁𝐵 + 𝑁𝐼 ) −  (𝑍𝛼/2)2  ∙  (𝐽(𝑚))
2) 

The default value of α (Equation S3) is 0.05 (i.e., 𝑍𝛼/2 ≈ 1.96), resulting in 95% confidence intervals 

being calculated. Although, as with the effect_size_additive and effect_size_multiplicative functions, 

this can be altered using the Significance_Level argument.  

As with the effect_size_additive function, the Small_Sample_Correction argument can be used to 

specify whether the bias correction factor (𝐽(𝑚)) for small sample sizes is included (see Equations 

S1.6-S1.7). 
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