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Abstract. Deep generative models have emerged as promising tools for
detecting arbitrary anomalies in data, dispensing with the necessity for
manual labelling. Recently, autoregressive transformers have achieved
state-of-the-art performance for anomaly detection in medical imaging.
Nonetheless, these models still have some intrinsic weaknesses, such as
requiring images to be modelled as 1D sequences, the accumulation of
errors during the sampling process, and the significant inference times as-
sociated with transformers. Denoising diffusion probabilistic models are
a class of non-autoregressive generative models recently shown to pro-
duce excellent samples in computer vision (surpassing Generative Ad-
versarial Networks), and to achieve log-likelihoods that are competitive
with transformers while having fast inference times. Diffusion models can
be applied to the latent representations learnt by autoencoders, making
them easily scalable and great candidates for application to high dimen-
sional data, such as medical images. Here, we propose a method based on
diffusion models to detect and segment anomalies in brain imaging. By
training the models on healthy data and then exploring its diffusion and
reverse steps across its Markov chain, we can identify anomalous areas
in the latent space and hence identify anomalies in the pixel space. Our
diffusion models achieve competitive performance compared with autore-
gressive approaches across a series of experiments with 2D CT and MRI
data involving synthetic and real pathological lesions with much reduced
inference times, making their usage clinically viable.

Keywords: Denoising Diffusion Probabilistic Models · Unsupervised
Anomaly Detection · Out-of-Distribution Detection · Lesion segmenta-
tion · Neuroimaging
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1 Introduction

The segmentation of lesions in neuroimaging is an important problem whose so-
lution is of potential value across many clinical tasks, including diagnosis, prog-
nosis, and treatment selection. Ordinarily, segmentation is performed by hand,
making this process time-consuming and dependent on human expertise. The
development of accurate automatic segmentation methods is therefore crucial
to allow the widespread use of precise measurements in clinical routine [17,31].
Over the last few years, deep generative models have emerged as promising tools
for detecting arbitrary lesions and anomalies in data, dispensing with the ne-
cessity for either expensive labels or images with anomalies in the training set
[2,30,15,16]. These generative models learn the probability density function of
normal data and then highlight pathological features as deviations from normal-
ity.

Autoregressive models have recently achieved state-of-the-art results in gen-
erative modelling [5,18], and are being used to detect anomalies without su-
pervision in real-world industrial image [28] and medical imaging [6,16,14]. By
factorising the joint distribution of pixel/voxel intensities of an image as a prod-
uct of conditional distributions p(x) =

∏n
i=1 p(xi|x<i) (i.e., in an autoregressive

way), the likelihood of images becomes tractable. We can thus directly maximise
the expected log-likelihood of the training data, in contrast with Generative
Adversarial Networks and Variational Autoencoders. In particular, transform-
ers [27], with their attention mechanisms and proven expressivity, have set the
state-of-the-art in autoregressive modelling for computer vision [20,9] and in
unsupervised anomaly detection for medical imaging [16].

Despite their success, transformers still have some weaknesses intrinsic to
their autoregressive nature. Due to the unidirectional bias of autoregressive mod-
els, the fixed order of sequence elements imposes a perceptually unnatural bias
to attention in brain images, constrained to information from preceding elements
in the sequence, [16] employed an ensemble of models with differently ordered
versions of a unidimensional input derived from the multidimensional latent rep-
resentation of vector quantized variational autoencoder (VQ-VAE). Summing
across the ensemble improves performance, but at the cost of inference time
(the authors used eight transformers to process each 2D image), hindering ap-
plication in time-critical scenarios. This problem is accentuated with increased
data dimensionality (e.g., when analysing 3D data), where even more transform-
ers might be required to achieve good coverage of the image context. In many
clinical contexts, such as live data quality control and clinical alerting systems,
transformer-based inference times are too slow (>5 min) to make them clinically
useful.

Another issue is the accumulation of prediction errors. The sequential sam-
pling strategy introduces a gap between training and inference, as training relies
on so-called teacher-forcing [4] or exposure bias [22], where the ground truth
is provided for each step, whilst inference is performed on previously sampled
elements. In anomaly segmentation, this training-inference gap can introduce
significant accumulations of errors during the computation of the likelihoods, or
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in the sampling process involved when “healing” anomalous sequence elements,
possibly affecting the quality and coherence of the generated anomaly-corrected
images.

In this study, we use denoising diffusion probabilistic models (DDPM or
diffusion models for brevity) [8,23] to create a fast approach that is clinically
viable, to eliminate the unidirectional bias, and to avoid accumulated prediction
errors during the “healing” process (i.e., the process that remove anomalies from
the input image). In essence, DDPMs are trained to iteratively denoise the input
by reversing a forward diffusion process that gradually corrupts it. These models
are well-founded in principled probabilistic modelling and are able to generate
diverse and high-quality images in computer vision [3,8,13]. Based on recent
advances in generative modelling [4,7,19], we use a VQ-VAE [26] to compress the
input image and model its latent space using at diffusion model. This approach
uses DDPMs flexibly, rapidly, and efficiently in high dimensional data, such as
3D neuroimaging. In summary, we propose mechanisms to explore the capacities
of DDPMs and perform extensive experiments on brain data with synthetic and
real lesions.

2 Background

2.1 Compression model

Based on previous works [16,19], we used a VQ-VAE to learn a compact latent
representation that offers significantly reduced computational complexity for the
diffusion model. The encoder maps any given image, x ∈ RH×W , to a latent rep-
resentation E(x) = z ∈ Rh×w×nz . Next, we use the codebook (containing a finite
number of embedding vectors ek ∈ Rnz , k ∈ 1, ...,K, where K is the size of the
codebook) to perform an element-wise quantization of each latent variable onto
its nearest vector ek, where k is selected using k = argminj‖E(x)−ej‖22, creating

Latent Space

E

D

Diffusion process

...

Denoising U-Net

Fig. 1. The diffusion and reverse processes involved in our anomaly segmentation
method, combining a compression model (autoencoder) and a DDPM.
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the quantized latent representation z. Then, the decoder G reconstructs the ob-
servations G(z) = x̂ ∈ RH×W . The encoder E, the decoder G, and the codebook
can be trained end-to-end via LV QV AE = ‖x− x̂‖+ Lcodebook + β‖sg[ek]− ze‖
where the operator sg denotes the stop-gradient operation. We used the expo-
nential moving average updates for the codebook loss [26]. In our experiments,
our encoder downsamples the image by a factor of f .

2.2 Denoising Diffusion Probabilistic Models

In this study, we use the DDPM [8,23] to learn the distribution of the latent
representation of healthy brain imaging. The DDPM are latent-variable models
consisting of a forward process (or diffusion process - q(x1:T |x0)) and a reverse
process (pθ(x0:T )) (Fig. 1). Given a sample from the data distribution x0 ∼
q(x0), the diffusion process gradually destroys the structure of the data via a
fixed Markov chain over T steps. Each step in the forward direction is a Gaussian
transition defined by q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI) where βt follows a

fixed variance schedule β1, ..., βT . By setting αt := 1−βt and ᾱt :=
∏t
s=0 αs, the

diffusion process allows sampling xt at an arbitrary time step t in an efficient
closed form: q(xt|x0) = N (xt;

√
αtx0, (1− ᾱt)I). From which any sample can be

expressed in terms of some ε ∼ N (0, I) as: xt(x0, ε) =
√
ᾱtx0 +

√
1− ᾱtε

The reverse process is modelled as a Markov chain which learns to recover
the original data x0 from the noisy input xT . Since the magnitude of the noise
added at each forward step is configured to be small, we can well approxi-
mate the true posterior q(xt−1|xt) to a Gaussian distribution, pθ(xt−1|xt) =
N (xt−1;µθ(xt, t),Σθ(xt, t)). Similar to [8], we use a fixed Σθ(xt, t) obtained ac-
cording to our variance schedule, and we parametrize our model to predict the
cumulative noise ε0 that is added to the current intermediate image xt to de-
rive µθ(xt, t) = (1/

√
αt)(xt−(βt/

√
αt − 1)εθ(xt, t)). Recently, different methods

have been proposed to speed up the reverse process (e.g., Denoising Diffusion
Implicit Models - DDIM), reducing by 10× ∼ 50× the number of necessary
reverse steps [24].

Although the data likelihood is intractable, the model can be efficiently
trained by maximizing the variational lower bound on the log-likelihood. Fol-
lowing [8], our loss function can be decomposed as

E[− log pθ(x0)] ≤ L := Eq[DKL(q(xT |x0)‖p(xT ))︸ ︷︷ ︸
LT

+
∑
t>1

DKL(q(xt−1|xt,x0)‖pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x1|x0)︸ ︷︷ ︸
L0

] (1)

where the term Lt−1 penalises errors in one reverse step and requires a direct
comparison between pθ(xt−1|xt) and its corresponding diffusion process poste-
riors. We obtain a closed-form expression of the objective since q(xt−1|xt,x0)
is also a Gaussian distribution; this way, all KL Divergences are comparisons
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between Gaussians. Using the parametrization from [8], we obtain the simplified
training objective Lsimple = Et,x0,ε[‖ε − εθ(

√
ᾱtx0 +

√
1− ᾱtε, t)‖] where t is

sampled uniformly between 1 and T and εθ is the learned diffusion model.

3 Proposed anomaly segmentation method

Our approach explores the generative model that the DDPM learns from a
healthy dataset to guide the brain image healing process. In brief, we use the
learned variational lower bound across the DDPM’s Markov chain to identify the
latent values that were unlikely to occur in the training set. We replace these
unlikely values with more probable ones according to the DDPM, and then we
use the latent spatial information to filter the residual maps (obtained from the
difference between the original image and the healed image).

After training the VQ-VAE and DDPM on normal data, we use VQ-VAE
to obtain the latent representation z of the test images. After that, we use
the DDPM’s forward process to obtain the noisy representations zt across the
Markov chain. For each step, we use the Lt−1 values from Eq. 1 to verify how
close each reverse step is to the expected Gaussian transition q(xt−1|xt,x0). We
observed that if the input image is from a healthy subject, the reverse process
will only remove the added Gaussian noise, resulting in a low KL Divergence in
Lt−1. However, if the image contains an anomaly, the reverse process removes
part of the signal of the original anomalous regions. This signal removal does
not follow the expected Gaussian transition, resulting in a high Lt−1 in the
anomalous regions. Using a threshold, we can create a binary mask indicating
where the anomalies are and use it to guide the “healing” process.

To find an appropriate threshold, we first obtain the values of Lt−1 for all
our images in the healthy validation set. Instead of using the whole Markov
chain, we focus on the steps t inside an intermediary range. As reported in [8],
different t values are responsible for modelling different image features, where
higher values are associated with large scale features, and the lower ones are
responsible for fine details. In our study, we find that the range of t = [400, 600]
was less noisy than lower values (t < 150) and were more specific than high values
(t > 800) to highlight anomalies across different experiments and lesion types.
With the L400,600 ∈ Rh×w×nz×200, we compute the mean values inside the t range
and across the nz dimension. This results in a vk ∈ Rh×w for each one of the
validation samples k. Finally, we obtained our 2D threshold using the percentiles
97.5 of validation subjects percentile97.5(vvalidation set) = threshold ∈ Rh×w.
Similarly, the evaluated image has its v obtained, and its values were binarized
using mi,j = 1 if vi,j ≥ thresholdi,j , 0 otherwise.

The next step of our method is the healing process of the original z. The goal
is to inpaint the highlighted regions in m using the rest of the image as context.
For that, we initialize our inpainting process with t = 500 (in our synthetic lesion
tests, we observed that this starting point was enough to heal the lesions). Using
the reverse process, we removed “noise” from the regions that have anomalies
while keeping the rest as the original z0, i.e., z′t−1 ∼ pθ(zt−1|m�z′t+(1−m)�z0).
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This way each step denoises the masked regions a little bit but keeps the rest of
the image as original. The resulting z0 of this process is the latent variable with
the anomalies corrected.

Then, we use the VQ-VAE to decode z(= z0) back to the pixel space x̂′ and
obtain the pixel-wise residuals |x− x̂′|. To clean areas that the DDPM did not
specify as anomalous, we upsample our latent mask, smooth it using a Gaussian
filter, and multiply it with the residuals. Finally, we can identify regions with
anomalies of each brain image from the regions on the final residual maps with
high values.

4 Experiments

4.1 Anomaly Segmentation and Detection on Synthetic Anomalies

In this experiment, we used the MedNIST dataset corrupted with sprites (details
in Appendix C). We trained our models with “HeadCT” 9,000 images and we
evaluated our method on 100 images contaminated with sprites.

Table 1 shows how each step of our method improves its performance. Step
(a) corresponds to applying a series of reverse steps on z (no masks, neither
masked inpainting). A significant improvement is observed when applying the
upsampled mask to the residual maps (step b), and finally, we had the best
results with our complete approach (step c). Our single model method has a
significant higher performance compared to the transformer while showing a
slightly better performance than the ensemble on the dDICEe but a slightly
smaller AUPRC. We also evaluate the anomaly detection performance of our
models based on the mean KL Divergence of the images across the whole Markov
chain. Using the corrupted images as near out-of-distribution class, our method
obtained AUCROC=0.827 and AUPRC=0.702. These values are slightly worse
than the transformer-based approach (AUCROC=0.921 and AUPRC=0.707).

Table 1. Performance of DDPM-based method on synthetic dataset. The performance
is measured with best achievable DICE-score (dDICEe) and area under the precision-
recall curve (AUPRC) on the test set.

Method dDICEe AUPRC
AE (Spatial) [2] 0.165 0.093
VAE (Dense) [2] 0.533 0.464
f-AnoGAN [21] 0.492 0.432
Transformer [16] 0.768 0.808
Ensemble [16] 0.895 0.956
DDPM (f = 4) (a) [Ours] 0.777 0.810
DDPM (f = 4) (b) [Ours] 0.908 0.950
DDPM (f = 4) (c) [Ours] 0.920 0.955
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Table 2. Performance on anomaly segmentation using real 2D MRI lesion data. We
measured the performance using the theoretically best possible DICE-score (dDICEe).
We highlight the best performance in bold and the second best with †.

UKB MSLUB BRATS WMH
VAE (Dense) [2] 0.016 0.039 0.173 0.068
f-AnoGAN [21] 0.060 0.034 0.243 0.048
Transformer [16] 0.104 0.234 0.328 0.269
Ensemble [16] 0.232 0.378 0.537 0.429
DDPM (f = 4) (b) [Ours] 0.208† 0.204 0.469† 0.272
DDPM (f = 4) (c) [Ours] 0.232 0.247† 0.398 0.298†

4.2 Anomaly Segmentation on MRI data

In this experiment, we trained our models on a normative dataset of 15,000 par-
ticipants with the lowest lesion volume in the UK Biobank (UKB)[25]. We used
FLAIR images, and we evaluated our method on small vessel disease (White
Matter Hyperintensities Segmentation Challenge (WMH) [10]), tumours (Multi-
modal Brain Tumor Image Segmentation Benchmark (BRATS) [1]), demyelinat-
ing lesions (Multiple Sclerosis dataset from the University Hospital of Ljubljana
(MSLUB) [11]), and white matter hyperintensities (UKB) (details in Appendix
C). Table 2 shows that our method performs as well as an ensemble of trans-
formers on the same dataset used to train (i.e., UKB). It performs better than
the single transformer on all datasets; however, the ensemble generalizes better.

4.3 Inference Time of Anomaly Segmentation on CT data

In this experiment, we focused on analysing the inference time of our anomaly
segmentation methods in a scenario where time consumption is critical for clin-
ical viability: the analysis of intracerebral haemorrhages (ICH). We trained our
models on CT axial slices that did not contain ICH from 200 participants from
the CROMIS dataset [29]. To evaluate, we used 21 participants from CROMIS
and the KCH and CHRONIC [12] datasets (details in Appendix C).

In Table 3, we divide our methods according to the inference time to process
100 slices from the KCH dataset (similar to the number occupied by the brain) on
a single GPU (NVIDIA Titan RTX). All slices were fitted in a single minibatch
for all models. We analysed different downsampling factors, and we added step
(d) of our method where we use L′400,600 (with only 50 values evenly spaced)
and a DDIM to perform the reverse process (using 50 steps instead of 500). Our
methods were able to perform in an acceptable time under 1 minute. Using the
DDIM sampler allowed us to significantly improve inference time while keeping
a similar performance. All our methods were faster than the transformer-based
approaches. As the length of the input sequence grows (changing from f = 8
to f = 4), the transformers potentially need to make more forward passes to
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Table 3. Performance on anomaly segmentation using real 2D CT lesion data. We
measured the performance using the theoretically best possible DICE-score (dDICEe).

CROMIS KCH CHRONIC Time [s]
VAE (Dense) [2] 0.185 0.353 0.171 < 1

<1minf-AnoGAN [21] 0.146 0.292 0.099 < 1
DDIM (f = 8) (d) [Ours] 0.286 0.483 0.285 12
DDIM (f = 4) (d) [Ours] 0.220 0.469 0.210 46

DDPM (f = 8) (c) [Ours] 0.284 0.473 0.297 81
1min∼10minDDPM (f = 4) (c) [Ours] 0.215 0.471 0.221 324

Transformer [16] 0.205 0.395 0.253 589

Ensemble [16] 0.241 0.435 0.268 4907
>1hourTransformer (f = 4) [Ours] 0.356 0.482 0.116 8047

Ensemble (f = 4) [Ours] 0.471 0.631 0.122 > 8000

replace the unlikely tokens. This limits their application of transformers in a
higher resolution latent space (which would improve the ability to find smaller
lesions). On the other hand, the number of forward passes that DDPM performs
is constant for different resolutions, making it easier to scale.

5 Conclusions

We proposed a method to use DDPMs to perform anomaly detection and seg-
mentation. The model performed competitively compared with transformers on
both synthetic and real data, where it showed a better performance in most cases
when compared to a single transformer. Our method holds promise in scenarios
where the model prediction has time constraints, especially when using DDIMs.
As pointed out in recent studies, anomaly detection methods are essential to ob-
taining robust performance in clinical settings[6]. We believe that our method’s
faster inference will help bring high-performance anomaly detection to the clin-
ical front line. DDPMs have just recently caught the attention of the machine
learning community, rivalling Generative Adversarial Networks in sample qual-
ity and autoregressive models in likelihood scores, built upon a solid theoretical
foundation, and fitting within several different theoretical frameworks. We be-
lieve that DDPMs have the potential to be even further improved, bringing more
advances to anomaly detection in a medical image.
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