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A classical result due to Lovász (1967) shows that the iso-
morphism type of a graph is determined by homomorphism 
counts. That is, graphs G and H are isomorphic whenever the 
number of homomorphisms K → G is the same as the num-
ber of homomorphisms K → H for all graphs K. Variants of 
this result, for various classes of finite structures, have been 
exploited in a wide range of research fields, including graph 
theory and finite model theory.
We provide a categorical approach to homomorphism count-
ing based on the concept of polyadic (finite) set. The latter is 
a special case of the notion of polyadic space introduced by 
Joyal (1971) and related, via duality, to Boolean hyperdoc-
trines in categorical logic. We also obtain new homomorphism 
counting results applicable to a number of infinite structures, 
such as trees and profinite algebras.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A celebrated result of Lovász [25] states that two (finite, directed) graphs G and H
are isomorphic if and only if, for all graphs K, the number of graph homomorphisms 
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K → G is the same as the number of graph homomorphisms K → H (Lovász proved this 
result, more generally, for finite σ-structures over a finite relational signature σ). This 
is a prototypical example of homomorphism counting result. Extensions and variations 
of this theorem have been exploited in a broad range of research areas, such as graph 
theory, finite model theory and quantum information [11,16,29].

Categorical generalisations of Lovász’ result were proved by Pultr [36] and Isbell [19], 
cf. also [26], utilising a direct generalisation of Lovász’ combinatorial counting argument. 
A different approach, generalised in the present paper, was adopted in a recent joint work 
with Dawar and Jakl [9]. These results apply to a large class of locally finite categories, 
i.e. categories with only finitely many morphisms between any two objects. Examples 
include graphs, finite groups and, more generally, finite members of any equationally 
defined class of universal algebras.

The aim of this article is two-fold. On the one hand, we show that homomorphism 
counting results are basically a consequence of a more general result about polyadic 
(finite) sets, a special case of Joyal’s polyadic spaces [21]. The latter are dual—in the sense 
of Stone duality for Boolean algebras [42]—to Boolean hyperdoctrines, a fundamental 
tool of categorical logic [24]; for more details, see [30]. This exposes a new connection 
between homomorphism counting, as studied in graph theory and related fields, and the 
structural methods of category theory and categorical logic.

On the other hand, we exploit the framework of polyadic sets, combined with a topo-
logical argument, to extend homomorphism counting results beyond categories of finite 
structures. We thus obtain new results which apply, for example, to finitely branch-
ing trees and (topologically finitely generated) profinite algebras. An application to 
finite-variable logics in finite model theory, which relies on the notion of game comonad 
introduced by Abramsky, Dawar et al., is also presented.

The present paper is structured as follows. In Section 2 we recall some basic categorical 
definitions and facts, and introduce the notion of (left- and right-) combinatorial category, 
in which the isomorphism types of objects are determined by homomorphism counts. In 
Section 3 we study polyadic (finite) sets and prove some of their main properties. These 
results are used in Section 4 to establish homomorphism counting results for locally finite 
categories. In Section 5 we prove a general theorem characterising the isomorphism type 
of certain objects in categories that are not necessarily locally finite, and specialise it to 
the setting of locally finitely presentable categories. Several applications of these results 
are discussed in Section 6. For the benefit of the reader, two appendices on proper 
factorisation systems and comonads of finite rank, respectively, are included.

2. Preliminaries and basic notions

Throughout the paper, we assume the reader is familiar with basic notions of category 
theory; standard references include [3,27].
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Recall that a category A is well-powered if, for each object a ∈ A, the collection of 
subobjects of a is a set (as opposed to a proper class), see e.g. [3, Definition 7.82]. Dually, 
A is well-copowered if the opposite category Aop is well-powered.

Assumption 2.1. All categories A under consideration are assumed to be locally small, 
well-powered and well-copowered.

Let Set be the category of sets and functions. Given a category A, denote by Â the 
category of presheaves over A, i.e. the functor category SetA

op
. The Yoneda embedding

yA : A → Â

sends an object a of A to the presheaf

yA
a : Aop → Set, b �→ yA

a (b) := homA(b, a).

When the category A is clear from the context, we omit the superscript and simply write 
y and ya. A well known consequence of the Yoneda Lemma (cf. e.g. [3, Theorem 6.20]) 
states that, for all objects a, b ∈ A,

a ∼= b ⇐⇒ ya
∼= yb. (1)

That is, a and b are isomorphic (as objects of A) precisely when the hom-functors ya

and yb are naturally isomorphic.
In general, two functors F, G : A → B can be pointwise isomorphic (i.e., F (a) ∼= G(a)

for all a ∈ A) without being naturally isomorphic; we illustrate this point with an 
example due to Joyal [22, Exemple 6].

Example 2.2. Let A be the category of finite sets and bijections. Consider the functor 
F : A → A sending a finite set a to its set of permutations. Given a morphism f : a → b

in A, F (f) sends a permutation ϕ of a to the permutation f ◦ ϕ ◦ f−1 of b. Further, 
let G : A → A be the functor that sends a finite set to the set of its linear orderings. If 
f : a → b is a morphism in A, G(f) sends a linear order R ⊆ a × a on a to the linear 
order {(f(x), f(y)) | (x, y) ∈ R} on b.

The functors F and G are pointwise isomorphic because the number of permutations 
of an n-element set a is n!, which is also the number of linear orders on a. However, they 
are not naturally isomorphic; just note that there is no natural way of assigning a linear 
order to the identity permutation.

Broadly speaking, a homomorphism counting result asserts that the existence of a 
natural isomorphism ya

∼= yb in equation (1) can be replaced with the weaker condition 
that ya and yb are pointwise isomorphic.
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Definition 2.3. A category A is said to be right-combinatorial if, for all objects a, b ∈ A,

a ∼= b ⇐⇒ ∀c ∈ A (ya(c) ∼= yb(c)).

Note that the isomorphisms on the right-hand side above are nothing but bijections 
between sets. Thus, the isomorphism type of an object a of a right-combinatorial category 
A is completely determined by the cardinalities | homA(c, a)| of the hom-sets for c which 
varies in A.

There is of course a dual notion of left-combinatorial category:

Definition 2.4. A category A is left-combinatorial provided that Aop is
right-combinatorial. A category that is both left- and right-combinatorial is called a 
combinatorial category.

Let us hasten to point out that the term combinatorial category was coined by 
Pultr [36] (and used, e.g., in [9]) to refer to what we call a right-combinatorial category. 
As both notions of left- and right-combinatorial category are interesting and useful, we 
opted for a nomenclature that distinguishes between these dual notions.

3. Polyadic sets

The aim of this section is to introduce the main tool of this paper: polyadic sets. 
In Section 3.1 we introduce the amalgamation property for presheaves. Polyadic sets, 
which are presheaves with the amalgamation property, are studied in Section 3.2, where 
the construction of the Stirling kernel is presented. In Section 3.3, we prove a result 
concerning Stirling kernels that will be used to establish homomorphism counting results 
in the subsequent sections.

3.1. The amalgamation property

Let us say that a category A has the amalgamation property if any span of morphisms 
in A can be completed to a commutative square:

· ·

· ·

By extension, we say that a presheaf F : Aop → Set has the amalgamation property 
if so does its category of elements

∫
F . Recall that objects of 

∫
F are pairs (a, x) with 

a ∈ A and x ∈ F (a), and a morphism (a, x) → (a′, x′) is a morphism f : a → a′ in A such 
that F (f)(x′) = x (see, e.g., [28, §I.5]). Unravelling the definition above, we see that a 
presheaf F : Aop → Set has the amalgamation property if, for all spans of morphisms
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b · a
g f

in A and elements x ∈ F (a) and y ∈ F (b) such that F (f)(x) = F (g)(y), there exist a 
commutative square

· a

b c

f

g g′

f ′

in A and z ∈ F (c) such that F (g′)(z) = x and F (f ′)(z) = y.

Lemma 3.1. Any representable functor Aop → Set has the amalgamation property.

Proof. It suffices to show that, for an arbitrary object a ∈ A, the functor ya : Aop → Set
has the amalgamation property. The statement then follows because the amalgamation 
property for presheaves is preserved under natural isomorphisms.

Consider a span of morphisms

b · c
g f

in A and let h ∈ ya(c) and k ∈ ya(b) satisfy ya(f)(h) = ya(g)(k). The latter equation 
amounts to the commutativity of the following square:

· c

b a

f

g h

k

Observe that the identity morphism ida ∈ ya(a) satisfies ya(h)(ida) = h and ya(k)(ida) =
k, and so ya has the amalgamation property. �

When the category A admits pushouts, the amalgamation property for presheaves 
Aop → Set can be rephrased as follows. Recall that a commutative square

u s

t ·

j′

i′ i

j

in Set is a quasi-pullback if the unique mediating morphism u → p, where p is the 
pullback of i along j, is a surjection. In other words, whenever x ∈ s and y ∈ t satisfy 
i(x) = j(y), there is a (not necessarily unique) z ∈ u such that j′(z) = x and i′(z) = y.

We have the following elementary result:
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Lemma 3.2. Let A be a category with pushouts. The following statements are equivalent 
for any functor F : Aop → Set:

(1) F has the amalgamation property.
(2) F sends pushout squares in A to quasi-pullbacks in Set.

Note that, whenever A has pushouts, Lemma 3.1 can be deduced from Lemma 3.2 and 
the fact that representable functors preserve limits. Further, in this case any presheaf 
F : Aop → Set that is a filtered colimit of representable ones has the amalgamation 
property. Just recall that filtered colimits in Set commute with finite limits (see e.g. [27, 
Theorem 1 p. 215]).

3.2. Polyadic sets and Stirling kernels

Definition 3.3. A polyadic set on a category A is a functor

F : Aop → Set

with the amalgamation property. If, in addition, the sets F (a) are finite for all a ∈ A, 
then F is called a polyadic finite set.

Let FinSet denote the full subcategory of Set defined by the finite sets. Throughout 
this paper, we shall identify polyadic finite sets with functors Aop → FinSet satisfying 
the amalgamation property.

Note that, with this terminology, Lemma 3.1 states that all representable presheaves 
are polyadic sets.

Remark 3.4. Polyadic sets are a discrete variant of Joyal’s notion of polyadic space [21], 
which we now recall. Let Stone denote the category of Stone spaces (i.e., zero-
dimensional compact Hausdorff spaces, also known as Boolean spaces) and continuous 
maps. In [21], a polyadic space (on FinSet) is defined to be a functor

F : FinSetop → Stone

satisfying the following conditions:

(i) F sends pushout squares in FinSet to quasi-pullbacks1 in Stone.
(ii) F (f) is an open map for any morphism f in FinSet.

1 A commutative square in Stone is a quasi-pullback if its image under the underlying-set functor 
Stone → Set is a quasi-pullback in Set.
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The observation that condition (i) above can be generalised in terms of the amalgamation 
property is due to Marquès [30].

By Stone duality between Stone and the category Boole of Boolean algebras and 
their homomorphisms [42], polyadic spaces can be identified with the pointwise duals of 
Boolean hyperdoctrines FinSet → Boole. For a thorough account of this connection, 
we refer the interested reader to [30].

Polyadic sets are obtained by dispensing with condition (ii) above, which has a topo-
logical nature. In particular, note that a polyadic finite set (on FinSet) is the same as 
a polyadic space F : FinSetop → Stone such that, for all n ∈ FinSet, F (n) is a finite 
(equivalently, discrete) space.

For the remainder of this section, we fix an arbitrary category A equipped with a 
proper factorisation system (Q, M). That is, a weak factorisation system such that every 
Q-morphism is an epimorphism and every M-morphism is a monomorphism. For more 
details and some basic properties of these factorisation systems, see Appendix A. We refer 
to M-morphisms as embeddings and denote them by �. Q-morphisms will be referred to 
as quotients and denoted by �. A proper quotient is a quotient that is not an isomorphism 
(in view of Lemma A.2(b) in the appendix, proper quotients can be identified with arrows 
in Q \M).

The following easy observation will come in handy in the following.

Lemma 3.5. Any polyadic set F : Aop → Set sends quotients in A to injections.

Proof. Let f : n � m be a quotient in A and let s, t ∈ F (m) be arbitrary elements satis-
fying F (f)(s) = F (f)(t). By the amalgamation property for F there are a commutative 
diagram

n m

m p

f

f h
g

and an element u ∈ F (p) such that F (h)(u) = s and F (g)(u) = t. Since g ◦f = h ◦f and 
f is an epimorphism, we get g = h. Thus, s = F (g)(u) = t and so F (f) is injective. �

Next, we introduce the Stirling kernel construction for polyadic sets. This notion is due 
to Joyal in the more general context of polyadic spaces (private e-mail communication; 
see Paré’s work [35] for a special case) and has been further explored by Marquès in [30].

Before giving a formal definition, let us motivate the idea underlying Stirling kernels 
with an example. Consider the polyadic set

FinSetop → Set, n �→ [0, 1]n
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obtained by restricting the representable functor y[0,1] : Setop → Set, where [0, 1] is the 
unit interval regarded as a set. Each (generalised) cube [0, 1]n can be decomposed into 
smaller ‘pieces’. Some of these pieces will have maximal dimension, i.e. dimension n, 
while the others will have lower dimension. The decomposition of [0, 1] is the trivial one 
consisting of a single piece, namely [0, 1] itself (dimension 1). Moving one dimension up, 
the square [0, 1]2 can be decomposed into its diagonal (dimension 1) and two triangles 
(dimension 2):

Similarly, [0, 1]3 can be decomposed into its diagonal, consisting of the points (x, y, z)
such that x = y = z, the six triangles depicted below consisting of the points where 
exactly two of the coordinates are equal,

(0,0,0)

(1,1,1)

(0,0,0)

(1,1,1)

(0,0,0)

(1,1,1)

along with the remaining three-dimensional (convex) polyhedra. (All these decomposi-
tions are determined by the polyadic set in a canonical way.) The Stirling kernel of this 
polyadic set associates with a finite set n the subset of [0, 1]n defined by the ‘generic’ 
points, i.e. those points that belong to a piece of maximal dimension in the decompo-
sition; equivalently, the points whose coordinates are all distinct. The discussion above 
for n ≤ 3 suggests that in the passage from the polyadic set to its Stirling kernel no 
essential information is lost: a cube [0, 1]n can be fully reconstructed as long as we know 
the generic points of all cubes [0, 1]m with m ≤ n.

Definition 3.6. Given a polyadic set F : Aop → Set and an object n ∈ A, we say that 
an element x ∈ F (n) is degenerate if there exist a proper quotient f : n � m and an 
element y ∈ F (m) such that F (f)(y) = x. The elements of F (n) that are not degenerate 
are called generic. The subset of F (n) consisting of the generic elements is denoted by 
F •(n).
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If g is a morphism in A, then the function F (g) need not preserve generic elements. 
However, this is the case when g is an embedding. This is the content of the following 
lemma, where we denote by A∗ the category with the same objects as A and morphisms 
the embeddings in A. (The dual of the category A∗ is denoted by Aop

∗ , in place of the 
unwieldy (A∗)op.)

Lemma 3.7. Let F : Aop → Set be a polyadic set. The assignment

n �→ F •(n)

yields a functor F • : Aop
∗ → Set.

Proof. It suffices to show that, for all embeddings g : n � n′ in A, the map 
F (g) : F (n′) → F (n) preserves generic elements, for then it restricts to a map F •(n′) →
F •(n) (functoriality is clear).

Let x ∈ F (n′) be an arbitrary generic element. Suppose that there exist a quotient 
f : n � m and an element y ∈ F (m) such that F (f)(y) = F (g)(x). By Lemma A.5 in 
the appendix, the span formed by f and g can be completed to a commutative square

n m

n′ p

f

g g′

f ′

and there exists z ∈ F (p) satisfying F (f ′)(z) = x (and F (g′)(z) = y). As f ′ is a quotient 
and x is generic, f ′ must be an isomorphism. It follows easily by Lemma A.2(a),(b),(f) 
that f is an isomorphism. Therefore, F (g)(x) is a generic element of F (n). �
Definition 3.8. The Stirling kernel of a polyadic set F : Aop → Set is the functor 
F • : Aop

∗ → Set.

In Corollary 3.13 below we shall see that, under mild assumptions on A, the Stirling 
kernel of a polyadic set on A is a polyadic set on A∗.

The next example will play a pivotal role in the study of homomorphism counting 
results.

Example 3.9. Let F : Aop → Set be any representable presheaf. Up to a natural isomor-
phism, we can assume that F = ya for some object a ∈ A. By Lemma 3.1, F is a polyadic 
set. Its Stirling kernel F • : Aop

∗ → Set sends an object b ∈ A to the set M(b, a) of all 
embeddings b � a. In other words, an element of F (b) = ya(b) is generic if, and only if, 
it is an embedding. This was proved in [9, Lemma 11]; for the sake of completeness, we 
provide a proof of this fact.

Let f be an arbitrary element of ya(b). Assume that f is generic, and take its (Q, M)
factorisation:
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b c a

f

g h

Since ya(g)(h) = f and the latter is generic, g must be an embedding. By Lemma A.2(a), 
f = h ◦ g is also an embedding.

Conversely, suppose that f is an embedding and pick a quotient g : b � c and an 
element h ∈ ya(c) such that ya(g)(h) = f , i.e. h ◦ g = f . By Lemma A.2(f), g is an 
embedding, so it is not a proper quotient. It follows that f is generic.

The next proposition shows that, under mild assumptions, a polyadic set can be 
recovered from its Stirling kernel as an appropriate left Kan extension.2 This observation 
is due to Joyal (for polyadic spaces), see also [30]; the proof offered below is a simple 
adaptation to the discrete case.

For all objects a ∈ A, we denote by Q(a) and M(a), respectively, the poset of quotients 
of a and the poset of embeddings of a; for a definition, see Appendix A. Loosely speaking, 
the elements of Q(a) are equivalence classes of quotients from a, and the elements of M(a)
are equivalence classes of embeddings into a. The category A is said to be Q-well-founded
if, for all objects a ∈ A, the poset Q(a) is well-founded. That is, any non-empty subset 
of Q(a) has a minimal element. Similarly, A is M-well-founded if, for all objects a ∈ A, 
the poset M(a) is well-founded.

Proposition 3.10. Let F : Aop → Set be a polyadic set and assume that A is Q-well-
founded. The following statements hold:

(a) For all n ∈ A,

F (n) ∼=
∐

n�m

F •(m)

where the coproduct is indexed by the set Q(n).
(b) F ∼= LanJ F •, where LanJ F • is the left Kan extension of F • along the inclusion 

functor J : Aop
∗ ↪→ Aop.

Proof. (a) Let A and F : Aop → Set be as in the statement. For each quotient 
f : n � m in Q(n), the function F (f) : F (m) → F (n) is an injection by Lemma 3.5. 
Let ξf : F •(m) � F (n) be the obvious restriction of F (f). By the universal property of 
the coproduct in Set, the family of functions {ξf | f ∈ Q(n)} induces a unique map

ξ :
∐

n�m

F •(m) → F (n).

2 For applications to homomorphism counting in the next section, only the first part of Proposition 3.10
is needed. The reader unfamiliar with the concept of Kan extension can safely ignore the second part of the 
proposition.
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We claim that ξ is a bijection. For injectivity, suppose there are quotients f1 : n � m1, 
f2 : n � m2 and elements x1 ∈ F •(m1) and x2 ∈ F •(m2) such that ξ(x1) = ξ(x2). That 
is, F (f1)(x1) = F (f2)(x2). By the amalgamation property for F and Lemma A.5, there 
are quotients g1 : m1 � p and g2 : m2 � p making the square below commute,

n m1

m2 p

f1

f2 g1

g2

and y ∈ F (p) such that F (g1)(y) = x1 and F (g2)(y) = x2. As x1 and x2 are generic, 
g1 and g2 must be isomorphisms. In particular, the isomorphism g−1

2 ◦ g1 : m1 → m2
witnesses the fact that f1 = f2 as elements of Q(n). Since ξ is injective on each summand, 
it follows that x1 = x2.

For surjectivity of ξ, suppose that x ∈ F (n) and consider the set

S := {f ∈ Q(n) | F (f)−1(x) �= ∅}.

If S = ∅, then x ∈ F •(n) and thus it belongs to the image of ξ. Therefore, assume S
is non-empty. Because A is Q-well-founded, S has a minimal element g : n � m. Let 
y ∈ F (m) be such that F (g)(y) = x. As g is minimal, y must belong to F •(m), and so 
x is in the image of ξ.

(b) Fix an arbitrary object n ∈ A. Consider the composite functor

G : J ↓n Aop
∗ Setπ F•

where J ↓n is the comma category and the functor π sends an object (m, J(m) → n), 
where J(m) → n is an arrow in Aop, to its first component m. In view of Lemma A.4(a), 
we can replace without loss of generality the category J ↓n with its full subcategory D
consisting of the pairs (m, J(m) → n) whose second components correspond to quotients 
in A. Note that D is a groupoid, i.e. every arrow in D is an isomorphism. Just observe 
that a morphism

(m′, J(m′) → n) → (m,J(m) → n)

in D corresponds to a commutative triangle

n

m m′

in A, and by Lemma A.2(b),(e) the horizontal arrow in necessarily an isomorphism. 
Upon choosing representatives, this is equivalent to considering the small diagram
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G′ : Q(n)op Aop
∗ Setπ′ F•

where Q(n) is regarded as a set (i.e., a discrete category) and π′ sends (the equivalence 
class of) a quotient n � m in A to its codomain.

The colimit of G thus coincides with the coproduct 
∐

n�m F •(m) indexed by the set 
Q(n). Moreover, any morphism h : n → n′ in A induces a unique function

∐
n�m′

F •(m′) ←−
∐

n′�m

F •(m)

whose restriction to F •(m), for all (representatives of equivalence classes of) quotients 
f : n′ � m, is the function F •(m) → F •(m′) obtained by applying F • to the bottom 
horizontal arrow in the following commutative diagram.

n n′

m′ m

h

f

By item (a), and the colimit formula for pointwise left Kan extensions (cf. [27, Theorem 1 
p. 237] for the dual statement), we see that F ∼= LanJ F •. �

We illustrate the previous proposition by means of an example, which also justifies 
the terminology Stirling kernel:

Example 3.11. Let F : FinSetop → Set be any polyadic set on the category FinSet, 
and equip the latter with the usual (surjective, injective) factorisation system. We denote 
by n ∈ FinSet an n-element set. For all non-negative integers m ≤ n, the number of 
non-equivalent surjections n � m in Q(n) coincides with the number of ways to partition 
an n-element set into m non-empty subsets. This is commonly denoted by S(n, m) and 
known as the Stirling number of the second kind associated with the pair (n, m), see e.g. 
[15, §1.5]. Therefore, denoting by k n the disjoint sum of k copies of n, Proposition 3.10
yields the formula

F (n) ∼=
∐
m≤n

S(n,m)F •(m)

for all finite sets n. In particular, if F is a polyadic finite set, we get

|F (n)| =
∑
m≤n

S(n,m) · |F •(m)|.

Remark 3.12. The assumption in Proposition 3.10 that A be Q-well-founded is necessary, 
even when F is a polyadic finite set. For instance, let A be the set N of natural numbers 
with the usual total order, regarded as a category. If A is equipped with the factorisation 
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system (Q, M) where Q consists of all morphisms, and M consists of the identity mor-
phisms, then A∗ is the category with set of objects N and no arrows but identities. Note 
that A is not Q-well-founded: for all n ∈ A, the strictly increasing sequence of natural 
numbers n < n + 1 < n + 2 < · · · induces the strictly decreasing sequence

n � n + 1 � n + 2 � · · ·

in Q(n). Thus, the latter is not well-founded. Now, let a be any non-empty finite set, and 
let F : Aop → FinSet be the constant functor of value a. It is not difficult to see that F
is a polyadic finite set, and F • : Aop

∗ → FinSet is the constant functor of value ∅. Then 
LanJ F • : Aop → FinSet is also the constant functor of value ∅ and so F � LanJ F •.

Corollary 3.13. Let A be Q-well-founded. The Stirling kernel of a polyadic (finite) set on 
A is a polyadic (finite) set on A∗.

Proof. Let A be as in the statement and let F : Aop → Set be an arbitrary polyadic set. 
We claim that F • : Aop

∗ → Set has the amalgamation property. Consider embeddings 
f1 : n � m1, f2 : n � m2 and generic elements s ∈ F •(m1) and t ∈ F •(m2) such that 
F (f1)(s) = F (f2)(t). By the amalgamation property for F , there exist a commutative 
square

n m1

m2 p

f1

f2 g2

g1

in A and an element u ∈ F (p) such that F (g2)(u) = s and F (g1)(u) = t. By Proposi-
tion 3.10(a), there exist a quotient h : p � q and a generic element v ∈ F •(q) such that 
F (h)(v) = u. Clearly, we have

F (h ◦ g2)(v) = s and F (h ◦ g1)(v) = t.

It suffices to show that h ◦g1 and h ◦g2 are embeddings, for then the following commutative 
square in A∗ shows that F • has the amalgamation property.

n m1

m2 q

f1

f2 h◦g2
h◦g1

To see that h ◦ g1 is an embedding, take its (Q, M) factorisation:

m2 q

·e

h◦g1

l
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Let x := F (l)(v). As F (e)(x) = t and t is generic, it follows that e is an isomorphism. 
Therefore, h ◦ g1 is an embedding by Lemma A.2(a),(b). The same proof, mutatis mu-
tandis, shows that h ◦ g2 is an embedding.

Finally, note that if F is a polyadic finite set, then so is F •. �
3.3. Pointwise isomorphisms

The main result of this section (Proposition 3.15 below) states that, under appro-
priate assumptions, whenever two polyadic finite sets are pointwise isomorphic, their 
Stirling kernels are also pointwise isomorphic. This observation is at the core of the 
homomorphism counting results presented in Sections 4 and 5.

Recall that two parallel functors F, G : C → D are pointwise isomorphic if, for all 
c ∈ C, there is an isomorphism ηc : F (c) → G(c) in D. This contrasts with the concept 
of natural isomorphism between F and G, whereby the isomorphisms ηc are required to 
be natural in c.

In view of Proposition 3.10, if F and G are polyadic sets whose Stirling kernels F • and 
G• are pointwise isomorphic, then F and G are also pointwise isomorphic. The converse 
holds for polyadic finite sets and follows from an application of the Möbius inversion 
formula, due to Gian-Carlo Rota.

Recall that, given a finite3 poset P , the incidence algebra of P has as elements the 
functions f : P ×P → R satisfying f(x, y) = 0 whenever x � y. These functions form an 
associative algebra over the reals with respect to pointwise sum, pointwise multiplication 
by scalars, and the convolution product h = fg defined as

h(x, y) :=
∑

x≤z≤y

f(x, z)g(z, y).

The identity element of the incidence algebra is the Kronecker function δ(x, y) satisfying 
δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise. The zeta function of P is the element 
ζ(x, y) of the incidence algebra such that ζ(x, y) = 1 if x ≤ y and ζ(x, y) = 0 otherwise. 
The function ζ is invertible in the incidence algebra, see [39, Proposition 1], and its 
(two-sided) inverse μ is called the Möbius function of P .

Lemma 3.14 (Möbius inversion [39]). Let P be a finite poset and let f1, f2 : P → R be 
any two functions. For all y ∈ P ,

f1(y) =
∑
x≤y

f2(x) ⇐⇒ f2(y) =
∑
x≤y

f1(x)μ(x, y),

where μ is the Möbius function of P .

3 More generally, throughout this paragraph we could consider a locally finite poset, i.e. a poset P such 
that, for all x, y ∈ P , the interval [x, y] := {z ∈ P | x ≤ z ≤ y} is finite.
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Proposition 3.15. Suppose A is Q-well-founded, and let F, G be polyadic finite sets on A. 
If F and G are pointwise isomorphic, then so are their Stirling kernels F • and G•.

Proof. Let F, G : Aop → FinSet be any two polyadic finite sets, and suppose they are 
pointwise isomorphic. We must prove that F •(n) ∼= G•(n) for all n ∈ A. Let us fix an 
arbitrary object n ∈ A. By Proposition 3.10(a),

F (n) ∼=
∐

n�m

F •(m)

where the coproduct is indexed by the set Q(n). As the left-hand side is a finite set, there 
exist finitely many quotients

q1 : n � m1, . . . , ql : n � ml

such that F (n) ∼=
∐l

i=1 F
•(mi). Similarly, there are finitely many quotients

ql+1 : n � ml+1, . . . , qu : n � mu

such that G(n) ∼=
∐u

i=l+1 G
•(mi). Let P be the sub-poset of Q(n) defined by the elements 

q1, . . . , qu and the identity of n. For convenience of notation, we let m0 := n and let 
q0 : n � m0 be the identity. Note that q0 is the top element of P . Clearly, F (n) ∼=∐u

i=0 F
•(mi) and G(n) ∼=

∐u
i=0 G

•(mi).
Consider the functions on P determined, for all i ∈ {0, . . . , u}, by the cardinalities of 

F (mi) and F •(mi), respectively:

f1 : P → N, f1(qi) := |F (mi)|

and

f2 : P → N, f2(qi) := |F •(mi)|.

Then f1(q0) =
∑

x∈P f2(x) and so, by the Möbius inversion formula,

f2(q0) =
∑
x∈P

f1(x)μ(x, q0)

where μ is the Möbius function of the poset P . Reasoning in a similar manner for 
the functions g1, g2 : P → N defined, respectively, by g1(qi) := |G(mi)| and g2(qi) :=
|G•(mi)|, we get

g2(q0) =
∑
x∈P

g1(x)μ(x, q0).

By assumption, for all i ∈ {0, . . . , u}, we have |F (mi)| = |G(mi)| and so f1(qi) = g1(qi). 
We conclude that f2(q0) = g2(q0), i.e. F •(n) ∼= G•(n). �
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Remark 3.16. Note that, in the proof of the previous proposition, the reason why Möbius 
inversion cannot be applied directly from the equation

∑
n�m

|F •(m)| =
∑
n�m

|G•(m)|

is that the poset Q(n) might contain infinite intervals (cf. Footnote 3). Therefore, we 
first need to restrict ourselves to a finite sub-poset P ⊆ Q(n).

If the category A has pushouts, then Proposition 3.15 can be proved by exploiting 
the inclusion-exclusion principle (see e.g. [41, §2.1]), rather than the Möbius inversion 
formula, in which case we can dispense with the assumption that A be Q-well-founded. 
This is an immediate consequence of a result established in [9], and will come in handy 
in Section 5.

Proposition 3.17. Suppose that A has pushouts, and let F, G be polyadic finite sets on A. 
If F and G are pointwise isomorphic, then so are their Stirling kernels F • and G•.

Proof. The statement was proved in [9, Lemma 12] under the assumption that 
F, G : Aop → FinSet are functors sending pushout squares in A consisting of quo-
tients to pullback squares in FinSet. (The proof of the aforementioned result relies on 
the inclusion-exclusion principle.)

In turn, every polyadic (finite) set has this property. Just observe that, by Lemmas 3.2
and 3.5, a polyadic set Aop → Set sends pushout squares of quotients in A to quasi-
pullbacks of injections. But a quasi-pullback in Set consisting of injections is a pullback, 
because the unique mediating map into the pullback is both injective and surjective. �
4. Homomorphism counting in locally finite categories

We shall now exploit the framework of Section 3, and in particular Proposition 3.15, 
to establish a homomorphism counting result for so-called locally finite categories (The-
orem 4.3 below).

Definition 4.1. A category A is locally finite if, for all objects a, b ∈ A, the set homA(a, b)
is finite.

To start with, we record for future reference a well known and easily proved fact about 
finite monoids. Recall that a monoid (M, ·, 1) satisfies the left-cancellation law provided 
that, for all x, y, z ∈ M ,

x · y = x · z =⇒ y = z.

Lemma 4.2. A finite monoid satisfying the left-cancellation law is a group.
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Theorem 4.3. Let A be a locally finite category admitting a proper factorisation system 
(Q, M) such that A is Q-well-founded. Then A is right-combinatorial.

Proof. Let A be as in the statement. For any object a ∈ A, the representable functor 
ya : Aop → FinSet is a polyadic finite set by Lemma 3.1, and its Stirling kernel sends 
an object c ∈ A to the finite set M(c, a) consisting of the embeddings c � a (see 
Example 3.9).

Now, if a, b ∈ A are any two objects such that ya(c) ∼= yb(c) for all c ∈ A then, 
by Proposition 3.15, M(c, a) ∼= M(c, b) for all c ∈ A. In particular, as M(a, a) is non-
empty (it contains the identity arrow), there exists an embedding i ∈ M(a, b). Similarly, 
there exists an embedding j ∈ M(b, a). Note that, by Lemma A.2(a), j ◦ i ∈ M(a, a). 
Lemma 4.2, combined with the fact that every embedding is a monomorphism, entails 
that the set M(a, a) equipped with the composition operation is a group. So, j ◦ i has 
an inverse. It follows from Lemma A.2(b),(e) that j is an isomorphism. �
Remark 4.4. A variant of Theorem 4.3, where Q is the collection of extremal epimor-
phisms and M is the collection of monomorphisms, and each poset of embeddings M(a)
is finite, was proved by Pultr [36, Theorem 2.2] exploiting a direct generalisation of 
Lovász’ original counting argument [25].

Furthermore, reasoning along the same lines as in the previous proof, we get the 
following variant of Theorem 4.3 by applying Proposition 3.17 instead of Proposition 3.15: 
A locally finite category admitting pushouts and a proper factorisation system is right-
combinatorial. This result was first proved in [9, Theorem 5].

Theorem 4.3 admits a dual version (cf. Remark A.3 in the appendix):

Theorem 4.5. Let A be a locally finite category admitting a proper factorisation system 
(Q, M) such that A is M-well-founded. Then A is left-combinatorial.

We conclude this section with several examples of applications of Theorems 4.3
and 4.5.

Example 4.6. Let V be any variety of universal algebras (regarded as a category, with 
morphisms the homomorphisms). By Theorems 4.3 and 4.5, the full subcategory Vfin
of V consisting of the finite members is combinatorial. Just observe that, if (Q, M) is 
the proper factorisation system consisting of surjective and injective homomorphisms, 
respectively, then Vfin is both Q-well-founded and M-well-founded. For instance, the 
following classes of algebras are combinatorial: finite Boolean algebras, finite monoids, 
finite groups, and finite Abelian groups.

Example 4.7. Generalising the previous example, let C be any class of finite universal 
algebras closed under taking subalgebras. Then the usual factorisation system in the 
category of all algebras for the given algebraic signature, consisting of surjective and 
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injective homomorphisms, respectively, restricts to C. Thus, C is combinatorial (when 
regarded as a category, with morphisms the homomorphisms). A similar fact holds if 
C is closed under taking homomorphic images. For example, the following classes of 
algebras are closed under homomorphic images and therefore combinatorial: finite regular 
semigroups, finite inverse semigroups, and finite p-groups (cf. [18, Lemma 2.4.4], [8, 
Lemma 7.35], and [40, Exercise 6(c) p. 32], respectively).

Example 4.8. Let σ be a relational signature, i.e. a (possibly infinite) set of relation 
symbols of finite arity, and let R(σ) be the category of σ-structures with their homomor-
phisms. Then the full subcategory Rfin(σ) of R(σ) defined by the finite σ-structures is 
combinatorial; for a finite signature σ, this is precisely Lovász’ homomorphism counting 
theorem [25].

First, recall that epimorphisms and monomorphisms in R(σ) coincide, respectively, 
with the surjective and injective homomorphisms. Further, strong epimorphisms (respec-
tively, strong monomorphisms) coincide with the epimorphisms (respectively, monomor-
phisms) that reflect the relation symbols. The same holds in Rfin(σ).

Now, note that the factorisation system (Q, M) in Rfin(σ), where Q consists of the 
strong epimorphisms and M of the monomorphisms, is proper and Rfin(σ) is Q-well-
founded. Thus, Rfin(σ) is right-combinatorial by Theorem 4.3. On the other hand, the 
factorisation system (Q′, M′) in Rfin(σ), where Q′ consists of the epimorphisms and M′

of the strong monomorphisms, is also proper and Rfin(σ) is M′-well-founded. So, Rfin(σ)
is left-combinatorial in view of Theorem 4.5.

Therefore, Rfin(σ) is combinatorial. Observe that, when σ is infinite, the category 
Rfin(σ) need not be Q′-well-founded nor M-well-founded.

5. Beyond locally finite categories

In Theorem 4.3 we saw that a large class of locally finite categories is right-
combinatorial. The main result of this section (Theorem 5.10 below) is a ‘local’ extension 
of this fact to categories that need not be locally finite. This result is then specialised to 
the case of locally finitely presentable categories.

5.1. Nerves and hom-spaces

Throughout this section we fix a category D admitting a proper factorisation system 
(Q, M), and a full subcategory C of D such that:

(i) C is a small dense subcategory of D, i.e. every a ∈ D is the colimit of the canonical 
diagram given by the forgetful functor C ↓ a → D.

(ii) C has all finite colimits and they are preserved by the inclusion functor C ↪→ D.
(iii) For every composite a � b � c in D, if a, c ∈ C then also b ∈ C.
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Remark 5.1. Because C is closed in D under finite colimits by item (ii), the diagrams of 
the form C ↓ a → D in item (i) are automatically filtered.

Further, item (iii) amounts to saying that the proper factorisation system (Q, M) in 
D restricts to a (proper) factorisation system in C. This condition is satisfied, e.g., if C is 
closed in D under Q-images (i.e., given a quotient a � b in D, if a ∈ C then also b ∈ C) 
or under M-subobjects. Also, note that item (iii) implies that C is closed in D under 
isomorphisms.

Given an object a ∈ D, its nerve Na : Cop → Set is the restriction of the presheaf 
ya : Dop → Set to Cop. We consider the nerve functor

N : D → Ĉ, a �→ Na.

In Theorem 5.10, we will identify a class of objects of D such that any two objects in 
this class are isomorphic precisely when their nerves are pointwise isomorphic.

It is useful to observe that the nerve functor N is full and faithful because C is a 
dense subcategory of D, see e.g. [3, p. 218]. Hence, N is conservative (that is, it reflects 
isomorphisms). Explicitly, this means that a morphism f : a → b in D is an isomorphism 
if, and only if, the function

f ◦ − : Na(c) → Nb(c)

is a bijection for every c ∈ C.
Since we want to be able to count morphisms from objects of C, it makes sense to 

restrict our attention to those objects of D that look ‘finite’ from the viewpoint of every 
object of C:

Definition 5.2. An object a ∈ D is of finite C-type provided that the set homD(c, a) is 
finite for each c ∈ C.

Example 5.3. The previous definition makes sense for all categories D equipped with 
a (full) subcategory C. For instance, let D be the opposite of the category of groups 
and group homomorphisms, and let C be the full subcategory of D defined by the finite 
groups. Then any finitely generated group is of finite C-type, because there are finitely 
many homomorphisms from a finitely generated group to a finite one.

Lemma 5.4. Let a ∈ D be an object of finite C-type. The following statements hold:

(a) The nerve Na : Cop → FinSet is a polyadic finite set.
(b) The Stirling kernel of Na sends an object c ∈ C to the set M(c, a) of embeddings 

c � a.
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Proof. We show that, for any polyadic set F : Dop → Set, its restriction to Cop is also 
a polyadic set. Item (a) then follows at once from Lemma 3.1.

Let F : Dop → Set be an arbitrary polyadic set. Since C has pushouts, by Lemma 3.2
it suffices to show that F sends pushout squares in C to quasi-pullbacks in Set. Consider 
a pushout square in C as on the left-hand side below and the corresponding square in 
Set as on the right-hand side.

· a

b c

g

f F (·) F (a)

F (b) F (c)

F (f)

F (g)

If x ∈ F (a) and y ∈ F (b) are such that F (f)(x) = F (g)(y), by the amalgamation 
property for F there exist d ∈ D, morphisms f ′ : b → d and g′ : a → d such that 
f ′◦g = g′◦f , and an element z ∈ F (d) such that F (g′)(z) = x and F (f ′)(z) = y. Because 
the inclusion C ↪→ D preserves pushouts, there exists a unique morphism h : c → d

making the ensuing diagram commute. The element F (h)(z) ∈ F (c) then witnesses the 
fact that the rightmost square above is a quasi-pullback.

Item (b) follows by reasoning as in Example 3.9, using the fact that the factorisation 
system in D restricts to a proper factorisation system in C. �

Consider any two objects a, b ∈ D and the canonical colimit cocone

{bi → b | i ∈ I}

over the diagram C ↓ b → D. In particular, each bi belongs to C. The representable 
functor ya : Dop → Set preserves limits, thus we have an isomorphism

ya(b) ∼= lim
i∈I

ya(bi)

in the category of sets. Let us assume that a is of finite C-type, so that each ya(bi) =
Na(bi) is finite. As pointed out in Remark 5.1, the diagram C ↓ b → D is filtered. So, if 
we equip the sets ya(bi) with the discrete topologies, the hom-set ya(b) carries a natural 
Stone topology (cf. Remark 3.4), namely the inverse limit topology. Explicitly, this is 
the topology generated by the sets of the form

U〈u,v〉 := {h ∈ ya(b) | h ◦ u = v}
c

b a

u v

h

for c ∈ C, u ∈ Nb(c) and v ∈ Na(c).



L. Reggio / Advances in Mathematics 410 (2022) 108712 21
Let us denote by Ea(b) the ‘hom-space’ obtained by endowing the set ya(b) with the 
Stone topology just described.4 Next, we prove some useful properties of the space of 
endomorphisms Ea(a):

Lemma 5.5. The following statements hold for every a ∈ D of finite C-type:

(a) Ea(a) is a topological monoid with respect to composition.
(b) M(a, a) is a closed submonoid of Ea(a).

Proof. For item (a), we must prove that the map

◦ : Ea(a) × Ea(a) → Ea(a), (f, g) �→ f ◦ g

is continuous. Consider (f, g) ∈ Ea(a) × Ea(a) and an open neighbourhood U〈u,v〉 of 
f ◦ g. Then the set U〈g◦u,v〉 × U〈u,g◦u〉 is an open neighbourhood of (f, g) whose image 
is contained in U〈u,v〉. Just observe that, for all (f ′, g′) ∈ U〈g◦u,v〉 × U〈u,g◦u〉, we have 
f ′ ◦ g′ ◦ u = f ′ ◦ g ◦ u = v. Hence, the composition operation is continuous.

For item (b), suppose that f ∈ Ea(a) is not an embedding. We must find an open 
neighbourhood V of f disjoint from M(a, a). Because f is not an isomorphism and the 
nerve functor N : D → Ĉ is conservative, there exists c ∈ C such that the map

f ◦ − : Na(c) → Na(c)

is not a bijection. Since Na(c) is a finite set, f ◦− cannot be injective. Hence, there exist 
distinct morphisms u, v ∈ Na(c) such that f ◦u = f ◦v. The set V := U〈u,f◦u〉∩U〈v,f◦v〉 is 
clearly an open neighbourhood of f . We claim that V is disjoint from M(a, a). Assume, 
by way of contradiction, that g : a � a is an embedding that belongs to V . Then 
g ◦ u = f ◦ u = f ◦ v = g ◦ v. As g is a monomorphism we get u = v, a contradiction. �
Remark 5.6. Recall that a topological monoid is profinite if, and only if, its underlying 
space is Stone [34]. Thus, it follows from Lemma 5.5 that Ea(a) and M(a, a) are profinite 
monoids.

Lemma 4.2 for finite monoids admits a non-trivial generalisation to topological 
monoids, which we now recall. This result will be applied in (the proof of) Theorem 5.10
to the topological monoids M(a, a) as in Lemma 5.5.

Lemma 5.7 (Numakura’s Lemma [33, Lemma 2L]). Let S be a topological monoid whose 
topology is compact and Hausdorff. If S satisfies the left-cancellation law then it is a 
group.

4 Although we shall not need this fact, let us point out that the assignment b 
→ Ea(b) yields a functor 
Ea : Dop → Stone which extends ya : Dop → Set.
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We are interested in determining when two non-isomorphic objects a, b ∈ D of finite 
C-type can be distinguished by counting the number of morphisms from objects of C. 
To this end, we will assume that a and b satisfy an additional ‘separability’ property. 
(The latter is satisfied by any object of a locally finitely presentable category D, for an 
appropriate choice of the subcategory C, cf. the proof of Theorem 5.12.)

Definition 5.8. An object of D is C-separable if it is the colimit of a filtered diagram J
in C such that:

(i) The colimit cocone consists of embeddings.
(ii) For every compatible cocone of embeddings over J , the unique mediating morphism 

is also an embedding.

Intuitively, an object a is C-separable if there exists a (filtered) family S of M-
subobjects of a such that, for all objects d ∈ D, a can be embedded into d precisely 
when all objects in S can be embedded coherently into d (and, moreover, a is the union 
of its subobjects in S).

Remark 5.9. Note that, by Lemma A.2(f), item (i) in the previous definition implies that 
the diagram J in C consists entirely of embeddings.

We are now in a position to prove the main result of this section:

Theorem 5.10. For any two C-separable objects a, b ∈ D of finite C-type,

a ∼= b ⇐⇒ homD(c, a) ∼= homD(c, b) for all c ∈ C .

Proof. Let a, b ∈ D be as in the statement. For the non-trivial direction, suppose that 
homD(c, a) ∼= homD(c, b) for all c ∈ C. By assumption, b is the colimit of a filtered 
diagram {bi | i ∈ I} in C satisfying the conditions in Definition 5.8. Therefore, b ∼=
colimD bi entails

ya(b) ∼= lim
i∈I

Na(bi),

i.e. the map associating with a compatible cocone {bi → a | i ∈ I} the unique mediating 
morphism b → a is a bijection. If each finite set Na(bi) is equipped with the discrete 
topology, then the induced inverse limit topology τ on ya(b) coincides with the topology 
of Ea(b) and so we have a homeomorphism of Stone spaces

Ea(b) ∼= lim
i∈I

Na(bi). (2)

Just observe that the diagram of the bi’s is a subdiagram of the canonical diagram 
C ↓ b → D, and so the identity map Ea(b) → (ya(b), τ) is continuous. In turn, since any 
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two comparable compact Hausdorff topologies on a set must coincide, the two topologies 
are one and the same.

The space limi∈I M(bi, a), endowed with the inverse limit topology, can be identified 
with a subspace of limi∈I Na(bi). We claim that the homeomorphism in (2) restricts to a 
homeomorphism between M(a, b) and limi∈I M(bi, a). If a compatible cocone {bi → a |
i ∈ I} induces a mediating morphism b → a that is an embedding then Lemma A.2(a), 
combined with item (i) in the definition of a C-separable object and Remark 5.9, entails 
that each bi → a is an embedding. Conversely, if {bi → a | i ∈ I} is a compatible 
cocone consisting of embeddings then the unique mediating morphism is an embedding 
by item (ii) in the definition of a C-separable object. Hence, M(b, a) is homeomorphic to 
limi∈I M(bi, a).

By assumption, the nerves Na, Nb : Cop → FinSet are pointwise isomorphic. It follows 
from Proposition 3.17 and Lemma 5.4(a) that their Stirling kernels are also pointwise 
isomorphic. So, by Lemma 5.4(b),

M(bi, a) ∼= M(bi, b)

for every i ∈ I. As the sets M(bi, b) are non-empty (they contain the colimit maps), we 
conclude that the space M(b, a) is the inverse limit of non-empty finite discrete spaces 
and thus M(b, a) �= ∅ (see e.g. [17, Theorem 2-85]). That is, there exists an embedding 
α : b � a. By symmetry, there exists also an embedding β : a � b.

The composite α ◦ β belongs to the monoid M(a, a), which is a Stone topological 
monoid by Lemma 5.5. It follows from Numakura’s Lemma that α◦β has an inverse and 
so α is an isomorphism by Lemma A.2(b),(e). �
5.2. Locally finitely presentable categories

In this section we specialise Theorem 5.10 to the case of locally finitely presentable 
categories. To start with, we recall some basic definitions; for a more thorough treatment, 
the reader can consult e.g. [5].

An object a of a category A is finitely presentable (respectively, finitely generated) if 
the associated covariant hom-functor

homA(a,−) : A → Set

preserves directed colimits (respectively, directed colimits of monomorphisms). A cate-
gory A is said to be locally finitely presentable if it is cocomplete, every object is a directed 
colimit of finitely presentable objects, and there exists, up to isomorphism, only a set of 
finitely presentable objects (see e.g. [5, Definition 1.9] and the subsequent remark).

Let A be a locally finitely presentable category. Then A admits a proper factorisation 
system (Q, M) where Q consists of the strong epimorphisms and M of the monomor-
phisms. Further, an object a ∈ A is finitely generated if, and only if, there exist a finitely 
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presentable object b ∈ A and a quotient (i.e., a strong epimorphism) b � a. For a proof 
of these facts see, e.g., [5, Propositions 1.61 and 1.69(ii)].

Throughout, we denote by Afp and Afg the full subcategories of A consisting, re-
spectively, of the finitely presentable and finitely generated objects. Upon choosing a 
representative for each isomorphism class, we can assume without loss of generality that 
Afp is a small category. Similarly for Afg, since in a locally finitely presentable category 
there is, up to isomorphism, only a set of finitely generated objects (see e.g. [5, p. 54]).

In this context, the role of the small dense subcategory C in Theorem 5.10 is played 
by Afg. However, it is an easy observation that objects of finite Afg-type coincide with 
objects of finite Afp-type:

Lemma 5.11. Let A be a locally finitely presentable category. An object of A is of finite 
Afp-type if, and only if, it is of finite Afg-type.

Proof. For the non-trivial direction, suppose that a is of finite Afp-type and consider 
an arbitrary b ∈ Afg. If f : c � b is a quotient with c finitely presentable, the map 
− ◦ f : homA(b, a) → homA(c, a) is injective. Since the latter set is finite, so is the 
former. Hence, a is of finite Afg-type. �
Theorem 5.12. Let A be a locally finitely presentable category. For any two objects a, b ∈
A of finite Afp-type,

a ∼= b ⇐⇒ homA(c, a) ∼= homA(c, b) for all c ∈ Afg .

Proof. Recall that Afg is a dense subcategory of A because so is Afp (see e.g. [5, Propo-
sition 1.22]), and it is closed in A under Q-images (see e.g. [5, Proposition 1.69(i)]). 
Further, it is a folklore result that Afg has all finite colimits and these are preserved 
by the inclusion functor Afg ↪→ A. Finally, every object of A is Afg-separable (cf. [5, 
Proposition 1.62 and Theorem 1.70]). Therefore, an application of Theorem 5.10 with 
D := A and C := Afg, combined with Lemma 5.11, yields the statement. �

We now specialise Theorem 5.12 to ind- and pro-categories. The ensuing results are 
then applied in concrete cases in Section 6. A further application of Theorem 5.12, this 
time to categories of coalgebras for certain comonads, is presented in Section 5.3.

Given an essentially small category C, denote its ind-completion and pro-completion by 
Ind(C) and Pro(C), respectively (see e.g. [20, §VI.1]). These are the free cocompletion of C
under filtered colimits, and the free completion of C under cofiltered limits, respectively. 
Up to an equivalence of categories, we can and will identify C with a full subcategory of 
both Ind(C) and Pro(C).

We shall say that C is closed under strong epimorphic images in Ind(C) provided that, 
whenever a � b is a strong epimorphism in Ind(C) and a ∈ C, also b ∈ C. Dually, C is 
closed under strong subobjects in Pro(C) if, whenever a � b is a strong monomorphism 
in Pro(C) and b ∈ C, also a ∈ C.
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Corollary 5.13. Let C be an essentially small category with finite colimits that is closed 
under strong epimorphic images in Ind(C). For all objects a, b ∈ Ind(C) of finite C-type,

a ∼= b ⇐⇒ homInd(C)(c, a) ∼= homInd(C)(c, b) for all c ∈ C .

Proof. If C is essentially small and has finite colimits then Ind(C) is a locally finitely 
presentable category; see e.g. [20, Corollary VI.1.3] and [5, Theorem 1.46]. Furthermore, 
every finitely presentable object of Ind(C) is isomorphic to an object of C (this follows 
from the fact that C has finite colimits, hence it is idempotent-complete, combined with 
[23, Exercise 6.1(iii)]). The same is true of finitely generated objects of Ind(C), as C
is closed under strong epimorphic images in Ind(C). Therefore, the statement follows 
directly from Theorem 5.12. �

We record for future reference the dual version of Corollary 5.13.

Corollary 5.14. Let C be an essentially small category with finite limits that is closed 
under strong subobjects in Pro(C). Let a, b ∈ Pro(C) be such that the sets homPro(C)(a, c)
and homPro(C)(b, c) are finite for all c ∈ C. Then

a ∼= b ⇐⇒ homPro(C)(a, c) ∼= homPro(C)(b, c) for all c ∈ C .

5.3. Coalgebras for comonads of finite rank

In this section we specialise Theorem 5.12 to categories of coalgebras for comonads 
on locally finitely presentable categories.

Whenever T is a comonad on a category A, we write EM(T ) for the category of 
Eilenberg-Moore coalgebras for T , and

A ⊥ EM(T )
F

U

for the associated adjunction. For the latter notions, see Appendix B. In the next result, 
we will assume that A is locally finitely presentable and T is of finite rank, and so the 
category EM(T ) is also locally finitely presentable. Comonads of finite rank were defined 
by Diers in [10]; for a definition and some basic facts, we refer the reader to Appendix B.

Corollary 5.15. Let A be a locally finitely presentable category and let T be a comonad 
of finite rank on A with associated adjunction U � F . The following statements are 
equivalent for all objects a, b ∈ A of finite Afp-type:

(1) F (a) ∼= F (b).



26 L. Reggio / Advances in Mathematics 410 (2022) 108712
(2) For all x ∈ EM(T )fg,

homA(U(x), a) ∼= homA(U(x), b).

Proof. Since T is of finite rank, Theorem B.5 in the appendix entails that the category 
EM(T ) is locally finitely presentable and the forgetful functor

U : EM(T ) → A

preserves (and reflects) finitely presentable objects.
Note that the object F (a) is of finite EM(T )fp-type whenever a is of finite Afp-type. 

Just observe that, for all x ∈ EM(T )fp,

homEM(T )(x, F (a)) ∼= homA(U(x), a)

which is a finite set because U(x) is finitely presentable. Therefore, an application of 
Theorem 5.12 yields the desired statement. �
Remark 5.16. Suppose we are in the situation of the previous corollary. In view of Corol-
lary B.6 in the appendix, if the finitely presentable objects in A coincide with the finitely 
generated ones, then the same holds in EM(T ).

In this case, Corollary 5.15 states that, for all objects a, b ∈ A of finite Afp-type, 
F (a) ∼= F (b) if, and only if,

homA(U(x), a) ∼= homA(U(x), b)

for all x ∈ EM(T ) such that U(x) is finitely presentable.
This occurs, for instance, when A is the category of sets or the category R(σ) of σ-

structures for a finite relational signature σ. A similar remark applies to Corollary 5.17
below.

We include a ‘relative’ version of Corollary 5.15 which will be needed in Section 6.3
for applications to finite-variable logics. To this end, given a functor G : C → D and a 
full subcategory C̃ of C, we write G[C̃] for the full subcategory of D defined by the objects 
of the form G(c) with c ∈ C̃.

Corollary 5.17. Let A′ be a locally finitely presentable category and assume that there is 
a full and faithful functor J : A → A′ with a left adjoint H. Let T, T ′ be comonads on 
A and A′, respectively, with associated adjunctions U � F and U ′ � F ′. Suppose T ′ is of 
finite rank and the adjunction H � J restricts to functors U [EMfg(T )] � U ′[EMfg(T ′)]:
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A ⊥ A′

U [EMfg(T )] U ′[EMfg(T ′)]

J

H

The following are equivalent for all objects a, b ∈ A of finite Afp-type:

(1) F ′J(a) ∼= F ′J(b).
(2) For all x ∈ EM(T )fg,

homA(U(x), a) ∼= homA(U(x), b).

Proof. In view of Corollary 5.15, item 1 in the statement is equivalent to saying that, 
for all x′ ∈ EM(T ′)fg,

homA′(U ′(x), J(a)) ∼= homA′(U ′(x), J(b)). (3)

In turn, it is an easy observation that the latter condition is equivalent to item 2 in the 
statement. This is essentially the content of [9, Lemma 27]; for the sake of completeness, 
we provide a proof. Suppose that equation (3) holds for all x′ ∈ EM(T ′)fg, and fix an 
arbitrary x ∈ EM(T )fg. We have

homA(U(x), a) ∼= homA′(JU(x), J(a)) J full and faithful
∼= homA′(JU(x), J(b))JU(x) ∈ U ′[EMfg(T ′)]
∼= homA(U(x), b). J full and faithful

Conversely, suppose item 2 in the statement holds. For all x′ ∈ EM(T ′)fg,

homA′(U ′(x), J(a)) ∼= homA(HU ′(x), a) H � J

∼= homA(HU ′(x), b)HU ′(x) ∈ U [EMfg(T )]
∼= homA′(U ′(x), J(b)) H � J

and so equation (3) holds. This concludes the proof. �
6. Examples

6.1. Trees

If (P, ≤) is a poset, then C ⊆ P is a chain if it is linearly ordered. A forest is a poset 
(P, ≤) such that, for all u ∈ P , the set

↓ u := {v ∈ P | v ≤ u}
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is a finite chain. The covering relation ≺ associated with a partial order ≤ is defined 
by u ≺ v if and only if u < v and there is no w such that u < w < v. The roots of a 
forest are the minimal elements. A tree is a forest with at most one root (note that a 
tree is either empty, or has a unique root, the least element in the order). Morphisms of 
trees are maps that preserve the root and the covering relation. The category of trees 
is denoted by T. Monomorphisms and strong epimorphisms in T coincide, respectively, 
with the injective and surjective tree morphisms.

It is well known that T is a locally finitely presentable category in which the finitely 
presentable objects, which coincide with the finitely generated ones, are precisely the 
finite trees. Moreover, it is not difficult to see that a tree (P, ≤) has finite Tfp-type if, 
and only if, it is finitely branching. That is, for every u ∈ P , the set {v ∈ P | u ≺ v} is 
finite.

Thus, Theorem 5.12 entails at once the following result:

Theorem 6.1. Let P, Q be any two finitely branching trees. Then P ∼= Q if and only if, 
for all finite trees R, the number of tree morphisms R → P is the same as the number 
of tree morphisms R → Q.

Remark 6.2. In the last part of the proof of Theorem 5.10, we used the fact that

∀i ∈ I. M(bi, a) �= ∅ =⇒ M(colimi∈I bi, a) �= ∅

where, using the notation of the aforementioned theorem, the objects bi sit in the category 
C and a is a C-separable object of finite C-type.

This can be regarded as a generalisation of König’s Lemma for trees, stating that 
every finitely branching infinite tree contains an infinite simple path. Just observe that a 
countably infinite simple path Pω is a colimit in T of finite simple paths Pn of (increasing) 
length n. If Q is a finitely branching tree, then it has finite Tfp-type (and is Tfp-separable). 
If, in addition, Q is infinite, then for all n there exists an embedding Pn � Q and so 
there is an embedding Pω � Q.5 In this sense, a version of König’s Lemma holds, in 
particular, in every locally finitely presentable category.

6.2. Profinite algebras

In this section we focus on profinite universal algebras; a nice expository paper on the 
subject is [6].

Let V be an arbitrary variety of universal algebras, regarded as a category with mor-
phisms the homomorphisms. The full subcategory Vfin of V defined by the finite algebras 
is essentially small and has finite limits, which are computed in the category of sets. The 

5 In the specific case of trees, embeddings could be replaced with arbitrary arrows. Just note that every 
morphism in T whose domain is linearly ordered is automatically injective.
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same holds for any full subcategory C of Vfin that is closed under subalgebras and finite 
products.

Let us fix a full subcategory C of Vfin closed under subalgebras and finite products. 
The category Pro(C) can be identified with a full subcategory of the category KV, whose 
objects are the topological V-algebras carrying a compact Hausdorff topology and whose 
morphisms are the continuous homomorphisms.6 Explicitly, a topological algebra A ∈ KV

belongs to Pro(C) if and only if, whenever f, g : B → A are distinct morphisms in KV, 
there exists a morphism h : A → C with C ∈ C such that h ◦ f �= h ◦ g. We shall refer 
to the objects of Pro(C) as pro-C algebras. If C = Vfin, these coincide with the usual 
profinite V-algebras.

The monomorphisms in KV are precisely the injective maps, i.e. the maps that provide 
(topological and algebraic) isomorphisms with the image. This holds in Pro(C) as well, 
because the latter is a reflective subcategory of KV. In particular, the subobjects in 
Pro(C) can be identified with the closed subalgebras. For the previous assertions, cf. [6]
and the references therein. It follows that C is closed under (strong) subobjects in Pro(C).

Finally, recall that a universal algebra A is said to be finitely generated if there exists a 
finite subset S ⊆ A such that the inclusion-smallest subalgebra 〈S〉 of A containing S is A
itself. In the setting of topological algebras it is customary to relax the previous condition 
and say that a topological algebra A is topologically finitely generated if there exists a 
finite subset S ⊆ A such that 〈S〉 is dense in the topology of A. Now, if A ∈ Pro(C) is 
topologically finitely generated and C ∈ C, the set homPro(C)(A, C) is finite. Just observe 
that, if S ⊆ A is a finite subset such that 〈S〉 is dense in A, the obvious restriction function

homPro(C)(A,C) → CS

is injective because a continuous map into a Hausdorff space is completely determined 
by its behaviour on any dense subset of its domain.

Hence, the following is an immediate consequence of Corollary 5.14:

Theorem 6.3. Let V be a variety of universal algebras, C ⊆ Vfin a class of finite algebras 
closed under subalgebras and finite products, and A, B two topologically finitely gener-
ated pro-C algebras. Then A ∼= B if and only if, for all (discrete) algebras C ∈ C, the 
number of continuous homomorphisms A → C is the same as the number of continuous 
homomorphisms B → C.

The previous result applies, e.g., when C is the class of finite lattices, or finite Heyting 
algebras, or finite semigroups, and provides a characterisation of the isomorphism relation 
for (topologically finitely generated) profinite lattices, profinite Heyting algebras, and 
profinite semigroups, respectively.

6 Under this identification, an algebra in C is regarded as a topological algebra with respect to the discrete 
topology.
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Next, we restrict our attention to topologically finitely generated profinite groups, 
whose topological structure is determined by the algebraic one.

Instantiating Theorem 6.3 with C the class of finite groups, we obtain the follow-
ing result: Two topologically finitely generated profinite groups G, H are isomorphic (as 
topological groups) if and only if, for all finite discrete groups K, the number of con-
tinuous group homomorphisms G → K is the same as the number of continuous group 
homomorphisms H → K.7

In turn, a remarkable result of Nikolov and Segal [31,32] states that the topological 
structure of a topologically finitely generated profinite group is completely determined 
by its algebraic structure. More precisely, the subgroups of finite index of a topologically 
finitely generated profinite group coincide with the open subgroups. (In the special case of 
pro-p-groups, this was proved by Serre in the 1970s, cf. [40, Exercise 6 p. 32].) This implies 
that (i) any group homomorphism from a topologically finitely generated profinite group 
to a finite discrete group is continuous, and (ii) any two topologically finitely generated 
profinite groups are isomorphic as topological groups if, and only if, they are isomorphic 
as abstract groups. The homomorphism counting result in the previous paragraph can 
then be restated as follows: Two topologically finitely generated profinite groups G, H are 
isomorphic if and only if, for all finite groups K, the number of group homomorphisms 
G → K is the same as the number of group homomorphisms H → K.

A similar result, whose statement we shall omit, holds for (topologically finitely gen-
erated) Abelian profinite groups, also known as proabelian groups, by taking as C the 
class of finite Abelian groups.

For an example where C is a proper subclass of Vfin, let C consist of the finite p-groups. 
We deduce that: Two topologically finitely generated pro-p-groups G, H are isomorphic 
if and only if, for all finite p-groups K, the number of group homomorphisms G → K is 
the same as the number of group homomorphisms H → K.

A typical homomorphism counting result will count the number of morphisms (into, 
or from a given object) in the monoid N of natural numbers. Now, recall that the proof of 
Theorem 5.10 (and similarly, the proof of Theorem 4.3 in the locally finite case) consists 
essentially of two steps. First, using the Stirling kernel construction, we show that the 
functors M(−, a) and M(−, b) are pointwise isomorphic whenever the functors hom(−, a)
and hom(−, b) are pointwise isomorphic. Second, Numakura’s Lemma is invoked to show 
that a ∼= b if, for all c,

M(c, a) �= ∅ ⇐⇒ M(c, b) �= ∅.

Dispensing with the first step, we obtain a weaker result whereby the isomorphism type 
of an object is determined by counting the number of embeddings (or, dually, quotients) 
in the two-element monoid ({0, 1}, ∨, 0). We state a special case of this result, which 
generalises a known fact in profinite group theory (cf. [37, Theorems 3.2.7 and 3.2.9]).

7 This fact was first conjectured by Mima Stanojkovski (private e-mail communication).
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Proposition 6.4. Let V be a variety of universal algebras, C ⊆ Vfin a class of finite algebras 
closed under subalgebras and finite products, and A, B two topologically finitely generated 
pro-C algebras. Suppose that, for all (discrete) algebras C ∈ C, there exists a quotient8
A � C if and only if there exists a quotient B � C. Then A ∼= B.

6.3. Finite-variable logics

In this section we assume familiarity with the basic notions of first-order logic and 
finite model theory. We shall present an application of the results in Section 5 to ho-
momorphism counting in finite model theory; this is the topic of the recent work [9]. 
Following [9], we apply the framework of game comonads in (finite) model theory intro-
duced by Abramsky, Dawar et al. in [1,2].

Let us fix a finite relational signature σ and a positive integer k. We recall from [1]
the pebbling comonad Pk on the category R(σ) of σ-structures (cf. Example 4.8), which 
models k-pebble games.

Set k := {1, . . . , k}. Given a σ-structure A, we consider the set (k ×A)+ of plays in 
A, i.e. all non-empty finite sequences of elements of k×A. A pair (p, a) ∈ k ×A is called 
a move. Intuitively, the move (p, a) corresponds to placing the pebble p on the element a. 
Whenever [(p1, a1), . . . , (pl, al)] is a play, pi is called the pebble index of the move (pi, ai). 
Define the map

εA : (k ×A)+ → A, [(p1, a1), . . . , (pl, al)] �→ al

sending a play to the element of A in its last move. Let Pk(A) be the σ-structure with 
universe (k × A)+ and such that, for every R ∈ σ of arity j, its interpretation RPk(A)

consists of the tuples of plays (s1, . . . , sj) such that:

(i) The si’s are pairwise comparable in the prefix order.
(ii) Whenever si is a prefix of si′ , the pebble index of the last move in si does not 

appear in the suffix of si in si′ .
(iii) (εA(s1), . . . , εA(sj)) ∈ RA.

This assignment extends to a functor R(σ) → R(σ) by setting, for all homomorphisms 
of σ-structures h : A → B,

Pk(h) : Pk(A) → Pk(B), [(p1, a1), . . . , (pl, al)] �→ [(p1, h(a1)), . . . , (pl, h(al))].

In fact, Pk is a comonad on R(σ) when equipped with the counit ε described above 
and the comultiplication δA : Pk(A) → PkPk(A) given by

[(p1, a1), . . . , (pl, al)] �→ [(p1, s1), . . . , (pl, sl)],

8 That is, a continuous surjective homomorphism.
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where si := [(p1, a1), . . . , (pi, ai)] for i ∈ {1, . . . , l}. Moreover, it follows directly from [1, 
Proposition 22] that a σ-structure A admits a coalgebra structure for Pk if, and only 
if, it has tree-width less than k (the notion of tree-width for relational structures was 
introduced in [12] and generalises the homonymous concept for graphs).

Denote by L (respectively, L(w.o.= )) the extension of first-order logic (respectively, first-
order logic without equality) obtained by adding counting quantifiers ∃≥i for all natural 
numbers i. The k-variable fragments of L and L(w.o.= ) are denoted by Lk and Lk(w.o.= ), 
respectively. Further, consider the adjunction U � F : R(σ) → EM(Pk) associated with 
the comonad Pk. For any two finite σ-structures A and B we have

F (A) ∼= F (B) ⇐⇒ A ≡
Lk(w.o.= ) B,

i.e. F (A) ∼= F (B) precisely when A and B satisfy the same sentences of Lk(w.o.= ). For 
the latter assertion, cf. [1, Theorem 18] and [9, §VI].

It is well known that R(σ) is a locally finitely presentable category, and every finitely 
presentable σ-structure is finite. Since we assumed that the signature σ is finite, the 
converse holds as well, and so the finitely generated objects in R(σ) coincide with the 
finitely presentable ones and are precisely the finite σ-structures. See e.g. [5, pp. 200–201]. 
It follows easily from the criterion in Lemma B.1 in the appendix that Pk is finitary, and 
it can be verified that it satisfies the conditions in the definition of comonad of finite 
rank (cf. also Remark B.4). As the forgetful functor U : EM(Pk) → R(σ) preserves and 
reflects finitely presentable objects by Lemma B.2, a coalgebra x ∈ EM(Pk) is finitely 
presentable if and only if U(x) is a finite σ-structure.

Therefore, in view of Corollary 5.15 and Remark 5.16, the following statements are 
equivalent for all finite σ-structures A, B:

(1) A ≡
Lk(w.o.= ) B.

(2) For all finite σ-structures C with tree-width less than k, the number of homomor-
phisms C → A is the same as the number of homomorphisms C → B.

To characterise equivalence in the logic Lk with equality, we proceed as follows. Let 
σ′ be the relational signature obtained by adding a binary relation symbol I to σ. There 
is an adjunction H � J : R(σ) → R(σ′), where:

• J sends a σ-structure A to the σ′-structure obtained by interpreting I as the identity 
relation on A;

• H sends a σ′-structure B to the quotient structure B−/∼, where B− is the σ-reduct 
of B and ∼ is the equivalence relation generated by the interpretation of I in B.

For a proof of this fact, see [9, Lemma 25].
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Since the comonad Pk was defined for an arbitrary relational signature σ, we have a 
corresponding comonad P ′

k on R(σ′) with associated adjunction U ′ � F ′. It follows from 
[1, Theorem 18] that, for all finite σ-structures A, B,

F ′J(A) ∼= F ′J(B) ⇐⇒ A ≡Lk B.

Moreover, the adjunction H � J restricts to the full subcategories of R(σ) and R(σ′)
defined by the structures with tree-width less than k (this assertion is trivial for J ; for 
H, this follows directly from [9, Proposition 23]).

Thus, Corollary 5.17 and Remark 5.16 entail the following result, which was first 
proved in [9, Theorem 21] for an arbitrary relational signature σ (by means of an indirect 
argument) and generalises a result of Dvořák for graphs [11]:

Theorem 6.5. Let σ be a finite relational signature and let A, B be any two finite σ-
structures. Then A ≡Lk B if and only if, for all finite σ-structures C with tree-width less 
than k, the number of homomorphisms C → A is the same as the number of homomor-
phisms C → B.
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Appendix A. Proper factorisation systems

In this section we recall the notion of proper factorisation system in a category A, 
and some of its main properties.

Given arrows e and m in A, we say that e has the left lifting property with respect to 
m, or that m has the right lifting property with respect to e, if for every commutative 
square as on the left-hand side below

· ·

· ·

e

m

· ·

· ·

e

d

m

there exists a (not necessarily unique) diagonal filler, i.e. an arrow d such that the right-
hand diagram above commutes. If this is the case, we write e�m. For any class H of 
morphisms in A, let �H (respectively H�) be the class of morphisms having the left 
(respectively right) lifting property with respect to every morphism in H.

Definition A.1. A pair of classes of morphisms (Q, M) in a category A is a weak factori-
sation system provided it satisfies the following conditions:
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(i) Every arrow f in A decomposes as f = m ◦ e with e ∈ Q and m ∈ M.
(ii) Q = �M and M = Q�.

A proper factorisation system is a weak factorisation system (Q, M) such that all arrows 
in Q are epimorphisms and all arrows in M are monomorphisms.

We refer to Q-morphisms and M-morphisms, respectively, as quotients (denoted by 
�) and embeddings (denoted by �).

It is easy to see that any proper factorisation system is an orthogonal factorisation 
system, meaning that the diagonal fillers are unique. In particular, factorisations are 
unique up to (unique) isomorphism.

Furthermore, recall that a strong epimorphism is an epimorphism that has the left 
lifting property with respect to all monomorphisms, and a strong monomorphism is a 
monomorphism that has the right lifting property with respect to all epimorphisms. 
Given any proper factorisation system (Q, M), the following inclusions are immediate:

{strong monomorphisms} ⊆ M ⊆ {monomorphisms},
{strong epimorphisms} ⊆ Q ⊆ {epimorphisms}.

Next, we state some well known properties of weak factorisation systems (cf. [13]
or [38]):

Lemma A.2. Let (Q, M) be a weak factorisation system in A. The following statements 
hold:

(a) Q and M are closed under compositions.
(b) Q ∩M = {isomorphisms}.
(c) The pullback of an embedding along any morphism, if it exists, is again an embedding.
(d) The pushout of a quotient along any morphism, if it exists, is again a quotient.

Moreover, if (Q, M) is proper, then the following hold:

(e) g ◦ f ∈ Q implies g ∈ Q.
(f) g ◦ f ∈ M implies f ∈ M.

Let A be a category equipped with a proper factorisation system (Q, M). In the same 
way that one usually defines the poset of subobjects of a given object a ∈ A, we can 
define the poset of M-subobjects of a. Given embeddings m : b � a and n : c � a, let 
us say that m � n provided there is a morphism i : b → c such that m = n ◦ i (note 
that, if it exists, i is necessarily an embedding). This yields a preorder on the class of 
all embeddings with codomain a. The symmetrization ∼ of � can be characterised as 
follows: m ∼ n if, and only if, m = n ◦ i for some isomorphism i : b → c.
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Let M(a) be the class of ∼-equivalence classes of embeddings with codomain a, 
equipped with the natural partial order ≤ induced by �. We systematically represent 
a ∼-equivalence class by any of its representatives. As every embedding is a monomor-
phism, and we are assuming that all categories under consideration are well-powered (cf. 
Assumption 2.1), we see that M(a) is a set. We refer to M(a) as the poset of embed-
dings of a. Likewise, dualising the construction outlined above, we consider the poset of 
quotients of a, denoted by Q(a). Hence, for any two (equivalence classes of) quotients 
f : a � b and g : a � c, we have f ≤ g if and only if f factors through g.

Remark A.3. Let (Q, M) be a proper factorisation system in A. Recall from Section 3.2
that A is Q-well-founded (respectively, M-well-founded) if, for all objects a ∈ A, the 
poset Q(a) (respectively, M(a)) is well-founded.

Let Q′ be the class of morphisms in Aop obtained by reversing the arrows in M, and 
M′ the class of morphisms in Aop obtained by reversing the arrows in Q. Then (Q′, M′)
is a proper factorisation system in Aop, and A is Q-well-founded if and only if Aop is 
M′-well-founded. Just observe that the posets Q(a) and M′(a) are isomorphic for all 
objects a (because, intuitively, the notion of ‘factoring through’ is self-dual).

Lemma A.4. Let A be a category equipped with a proper factorisation system (Q, M). The 
following statements hold:

(a) Any commutative triangle in A admits a commutative subdivision as displayed below.

·

· ·
· ·

(b) If A has the amalgamation property, then any span of the form · · · can 
be completed to a commutative square as follows:

· ·

· ·

In particular, any span of quotients in A can be completed to a commutative square 
of quotients.

Proof. For item (a), consider morphisms f1, f2, g in A such that g ◦ f1 = f2. Let (e1, m1)
and (e2, m2) be the (Q, M) factorisations of f1 and f2, respectively. We obtain a com-
mutative diagram as follows.
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·

· ·
· ·

f1 f2e1 e2

m1 m2
g

Then the following square admits a diagonal filler,

· ·

·

· ·

e2

e1

m1

g
m2

which is a quotient by Lemma A.2(e). This settles the statement.
For item (b), suppose we have a span · · · in A. As A has the amalgamation 

property, we can complete this span to a commutative square as on the left-hand side 
below.

· ·

· ·

· ·

· · ·

If we consider the (Q, M) factorisation of the lower horizontal morphism, then we obtain 
a diagonal filler as on the right-hand side above. This yields the desired completion of 
the original span. For the second part of the statement, note that in any commuting 
square of the form

· ·

· ·

the right vertical morphism must be a quotient by Lemma A.2(a),(e). �
Let F : Aop → Set be a presheaf, and let U :

∫
F → A be the natural forgetful functor 

defined on the category of elements of F . If A is equipped with a proper factorisation 
system (Q, M), then we can equip 

∫
F with a factorisation system (Q′, M′) by simply 

letting Q′ be the class of morphisms f in 
∫
F such that U(f) ∈ Q, and M′ the class 

of morphisms g in 
∫
F such that U(g) ∈ M. It is not difficult to see that (Q′, M′) is a 

proper factorisation system. In the proof of the next lemma, we will assume that 
∫
F is 

equipped with this factorisation system.

Lemma A.5. Let A be a category equipped with a proper factorisation system, and let 
F : Aop → Set be a polyadic set. For all spans
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b · a
g f

in A and elements x ∈ F (a) and y ∈ F (b) such that F (f)(x) = F (g)(y), there exist a 
commutative square

· a

b c

f

g g′

f ′

in A and z ∈ F (c) such that F (g′)(z) = x and F (f ′)(z) = y. Moreover, if g is a quotient, 
we can assume that g′ is also a quotient.

Proof. This follows directly from Lemma A.4(b) by setting A :=
∫
F . �

Appendix B. Comonads of finite rank

Given a monad on a locally finitely presentable category, we may ask if the associ-
ated category of Eilenberg-Moore algebras is locally finitely presentable. The answer is 
positive, provided the monad is finitary (see e.g. [5, p. 124]). The analogous question for 
comonads requires more care and leads to the notion of comonad of finite rank (Defi-
nition B.3 below). In this section we shall collect some basic facts about comonads of 
finite rank; most of the material presented here can be found in Diers’ monograph [10], 
albeit in a more condensed form (detailed references are provided below).

Let (T, δ, ε) be a comonad on a category A, with comultiplication δ and counit ε. 
Recall that an Eilenberg-Moore coalgebra for T is a pair (a, g) where a is an object of A
and g : a → T (a) is a morphism in A such that the following diagrams commute.

a T (a)

T (a) T 2(a)

g

g δa

T (g)

a T (a)

a

g

ida
εa

A morphism of coalgebras (a, g) → (b, h) is an arrow f : a → b in A satisfying T (f) ◦ g =
h ◦ f . Eilenberg-Moore coalgebras and their morphisms form a category, denoted by 
EM(T ). The forgetful functor U : EM(T ) → A, sending a coalgebra morphism (a, g) →
(b, h) to the corresponding arrow a → b, has a right adjoint F : A → EM(T ) which 
sends an arrow f : a → b in A to T (f) : (T (a), δa) → (T (b), δb). We refer to U � F as the 
adjunction canonically associated with T .

Recall that a functor is finitary if it preserves directed colimits. By extension, we say 
that a comonad is finitary if so is its underlying functor.

The next lemma, which provides sufficient conditions for a comonad to be finitary, 
is an immediate consequence of a result of Adámek, Milius, Sousa and Wissmann [4, 
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Theorem 3.4]. Note that item 2 below is a direct generalisation of the ‘ε-δ characteri-
sation’ of continuity for Scott continuous maps between algebraic domains, see e.g. [14, 
Proposition II-2.1] (we are grateful to Samson Abramsky for pointing this out to us).

Lemma B.1. Let A be a locally finitely presentable category in which every finitely 
generated object is finitely presentable, and let T be a comonad on A that preserves 
monomorphisms. The following statements are equivalent:

(1) T is finitary.
(2) For all b ∈ A, every subobject c � T (b) with c finitely presentable factors through 

the T -image of a finitely presentable subobject of b.

The following useful fact was proved by Diers in [10, p. 45], where some details were 
omitted; for the sake of completeness, we offer a detailed proof.

Lemma B.2. Let T be a finitary comonad on a category A, with canonically associated 
adjunction U � F : A → EM(T ). The following statements hold:

(a) F preserves directed colimits.
(b) U preserves and reflects finitely presentable objects.

Proof. For item (a), let {ci | i ∈ I} be an arbitrary directed diagram in A. Since T is 
finitary and U preserves colimits (as it is left adjoint),

UF (colimi∈I ai) ∼= colimi∈I UF (ai) ∼= U(colimi∈I F (ai)).

That is, if ϕ : colimi∈I F (ai) → F (colimi∈I ai) denotes the obvious mediating morphism, 
then U(ϕ) is an isomorphism. Using the fact that U reflects isomorphisms (see e.g. [3, 
Proposition 20.12(5)] for a proof of the dual fact), we deduce that F (colimi∈I ai) ∼=
colimi∈I F (ai).

For item (b), consider an arbitrary coalgebra x = (b, h) ∈ EM(T ). If x is finitely 
presentable then, for any directed diagram {ai | i ∈ I} in A,

homA(U(x), colimi∈I ai) ∼= homEM(T )(x, F (colimi∈I ai))
∼= homEM(T )(x, colimi∈I F (ai))by item (a)
∼= colimi∈I homEM(T )(x, F (ai))
∼= colimi∈I homA(U(x), ai).

Thus, U preserves finitely presentable objects.
To see that U reflects finitely presentable objects, assume that b = U(x) is finitely 

presentable. Let {(ai, gi) | i ∈ I} be a directed diagram in EM(T ) and αi : (ai, gi) →
(a, g) a colimit cocone. We claim that the function
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colimi∈I homEM(T )((b, h), (ai, gi)) −→ homEM(T )((b, h), (a, g)) (4)

induced by the cocone

αi ◦ − : homEM(T )((b, h), (ai, gi)) −→ homEM(T )((b, h), (a, g))

is bijective, thus showing that x = (b, h) is finitely presentable.
Suppose that fi : (b, h) → (ai, gi) and fj : (b, h) → (aj , gj) are morphisms in EM(T )

such that αi ◦ fi = αj ◦ fj . As the diagram I is directed, there are transition morphisms 
ϕik : (ai, gi) → (ak, gk) and ϕjk : (aj , gj) → (ak, gk) such that

αk ◦ ϕik = αi and αk ◦ ϕjk = αj .

Hence αk ◦ϕik ◦ fi = αk ◦ϕjk ◦ fj . By the definition of finitely presentable object, there 
exists a transition morphism ϕkk′ such that ϕik′ ◦ fi = ϕjk′ ◦ fj . That is, fi = fj in 
colimi∈I homEM(T )((b, h), (ai, gi)). Therefore, the map in (4) is injective.

For surjectivity, consider an arbitrary morphism f : (b, h) → (a, g) in EM(T ). Because 
U preserves colimits, U(f) belongs to

homA(b, a) ∼= homA(b, colimi∈I ai) ∼= colimi∈I homA(b, ai),

so there exist i ∈ I and fi : b → ai such that U(f) = U(αi) ◦ fi.

Claim. TU(αi) ◦ gi ◦ fi = TU(αi) ◦ T (fi) ◦ h.

Proof of Claim. The commutativity of the diagrams

b ai T (ai)

a T (a)

fi

U(f)
U(αi)

gi

TU(αi)

g

b T (b)

a T (a)

h

U(f) TU(f)

g

entails that TU(αi) ◦ gi ◦ fi = TU(f) ◦ h. Since U(f) = U(αi) ◦ fi, we obtain

TU(αi) ◦ gi ◦ fi = T (U(αi) ◦ fi) ◦ h = TU(αi) ◦ T (fi) ◦ h. �
As T preserves directed colimits, T (a) is the colimit of the cocone given by the morphisms 
TU(αi) : T (ai) → T (a). By the Claim and the definition of finitely presentable object, 
there is a transition morphism U(ϕij) : ai → aj satisfying TU(ϕij) ◦ gi ◦ fi = TU(ϕij) ◦
T (fi) ◦ h. Because TU(ϕij) ◦ gi = gj ◦ U(ϕij), we obtain

gj ◦ U(ϕij) ◦ fi = T (U(ϕij) ◦ fi) ◦ h,
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showing that U(ϕij) ◦ fi : (b, h) → (aj , gj) is a morphism in EM(T ). Furthermore, note 
that the following diagram commutes

b a

aj
U(ϕij)◦fi

U(f)

U(αj)

and so the function in (4) is surjective. �
Definition B.3. Let T be a comonad on a category A, with forgetful functor U : EM(T ) →
A. We say that T is of finite rank provided that the following conditions are satisfied:

(i) T is finitary.
(ii) Every morphism f : a → U(x) in A, with a finitely presentable, admits a factorisa-

tion

a U(y) U(x)

f

β U(γ)

where U(y) is finitely presentable.
(iii) The factorisation in (ii) is essentially unique, i.e., if β′ : a → U(y) satisfies U(γ) ◦β′ =

f , then there exist y′ ∈ EM(T ) with U(y′) finitely presentable and morphisms

y y′ xλ γ′

in EM(T ) such that U(λ) ◦ β = U(λ) ◦ β′ and γ = γ′ ◦ λ.

Remark B.4. Note that, if the morphism U(γ) in item (ii) is a monomorphism, then 
item (iii) is automatically satisfied.

Comonads of finite rank were introduced by Diers in [10, Definition 1.12.0], where 
item (iii) in Definition B.3 was omitted. This condition of essential uniqueness is needed 
to prove Theorem B.5 below, which appears as Proposition 1.12.1 in [10]. To remedy 
this omission, we offer a complete proof of the following result:

Theorem B.5. Let T be a comonad on a locally finitely presentable category A. If T is of 
finite rank then the Eilenberg-Moore category EM(T ) is locally finitely presentable and 
the forgetful functor U : EM(T ) → A preserves and reflects finitely presentable objects.

Proof. Note that EM(T ) is cocomplete because A is cocomplete and U creates colimits 
(cf. [3, Proposition 20.12(10)] for a proof of the dual fact). Further, U preserves and 
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reflects finitely presentable objects by Lemma B.2(b). Since in A there is, up to isomor-
phism, only a set of finitely presentable objects, the same holds in EM(T ). It remains 
to prove that every object of EM(T ) is a directed colimit of finitely presentable objects.

We will show that each (a, g) ∈ EM(T ) is the colimit of the canonical diagram given 
by the forgetful functor

D : EM(T )fp ↓ (a, g) → EM(T ),

where EM(T )fp is the full subcategory of EM(T ) defined by the finitely presentable 
objects. This diagram is filtered because finitely presentable objects are closed under 
finite colimits [5, Proposition 1.3]. The desired conclusion then follows from the fact that 
every (small) filtered diagram can be reduced to a (small) directed diagram, see e.g. 
[5, Theorem 1.5]. Because U reflects colimits, it is enough to show that U(a, g) is the 
colimit of the diagram U ◦D : EM(T )fp ↓ (a, g) → A. Further, since U preserves finitely 
presentable objects, U ◦D factors as

EM(T )fp ↓ (a, g) Afp ↓U(a, g) A

U◦D

J D′

where D′ is the canonical diagram associated with U(a, g) and J is the functor sending 
a morphism (b1, h1) → (b2, h2) in EM(T )fp ↓ (a, g) to its image under U . Because the 
colimit of D′ is U(a, g), it suffices to show that the functor J is cofinal. We prove 
that the following two properties hold, which in turn imply that J is cofinal (cf. [7, 
Proposition 2.11.2]):

• For all c ∈ Afp ↓U(a, g) there is c → J(d) with d ∈ EM(T )fp ↓ (a, g).
• For any two morphisms β1 : c → J(d1) and β2 : c → J(d2) with c ∈ Afp ↓U(a, g) and 

d1, d2 ∈ EM(T )fp ↓ (a, g), there are d ∈ EM(T )fp ↓ (a, g) and morphisms ϕ1 : d1 → d, 
ϕ2 : d2 → d in EM(T )fp ↓ (a, g) satisfying J(ϕ1) ◦ β1 = J(ϕ2) ◦ β2.

The first property is precisely item (ii) in the definition of a comonad of finite rank. For 
the second one, consider any two objects γ1 : (b1, h1) → (a, g) and γ2 : (b2, h2) → (a, g) of 
EM(T )fp ↓ (a, g), an object α : c → U(a, g) of Afp ↓U(a, g), and arrows β1 : c → U(b1, h1)
and β2 : c → U(b2, h2) such that

U(γ1) ◦ β1 = α = U(γ2) ◦ β2.

Since D is filtered, there exist an object γ : (b, h) → (a, g) in EM(T )fp ↓ (a, g) and mor-
phisms ψ1 : (b1, h1) → (b, h) and ψ2 : (b2, h2) → (b, h) in EM(T ) such that γ ◦ ψ1 = γ1
and γ ◦ ψ2 = γ2. It follows that

U(γ) ◦ U(ψ1) ◦ β1 = U(γ1) ◦ β1 = U(γ2) ◦ β2 = U(γ) ◦ U(ψ2) ◦ β2.
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By item (iii) in the definition of a comonad of finite rank, and the fact that U reflects 
finitely presentable objects, there exist γ′ : (b′, h′) → (a, g) in EM(T )fp ↓ (a, g) and λ ∈
homEM(T )((b, h), (b′, h′)) satisfying γ = γ′ ◦ λ and

U(λ) ◦ U(ψ1) ◦ β1 = U(λ) ◦ U(ψ2) ◦ β2.

Therefore, the morphisms ϕ1 := λ ◦ ψ1 and ϕ2 := λ ◦ ψ2 satisfy J(ϕ1) ◦ β1 = J(ϕ2) ◦ β2
as desired. �
Corollary B.6. Let T be a comonad of finite rank on a locally finitely presentable category 
A. If every finitely generated object in A is finitely presentable, then the same holds in 
EM(T ).

Proof. Suppose that every finitely generated object in A is finitely presentable, and let 
x be an arbitrary finitely generated object of EM(T ). By Theorem B.5, the category 
EM(T ) is locally finitely presentable and the forgetful functor U : EM(T ) → A preserves 
and reflects finitely presentable objects. Thus there is a strong epimorphism f : y � x in 
EM(T ) with y finitely presentable. As left adjoint functors preserve strong epimorphisms 
(see e.g. [7, Proposition 4.3.9]), U(f) is a strong epimorphism in A. Since U preserves 
finitely presentable objects, it follows that U(x) is finitely generated in A and thus finitely 
presentable. Using the fact that U reflects finitely presentable objects, we see that x is 
finitely presentable. �
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