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Abstract. Fetal growth assessment from ultrasound is based on a few
biometric measurements that are performed manually and assessed rela-
tive to the expected gestational age. Reliable biometry estimation de-
pends on the precise detection of landmarks in standard ultrasound
planes. Manual annotation can be time-consuming and operator depen-
dent task, and may results in high measurements variability. Existing
methods for automatic fetal biometry rely on initial automatic fetal
structure segmentation followed by geometric landmark detection. How-
ever, segmentation annotations are time-consuming and may be inaccu-
rate, and landmark detection requires developing measurement-specific
geometric methods. This paper describes BiometryNet, an end-to-end
landmark regression framework for fetal biometry estimation that over-
comes these limitations. It includes a novel Dynamic Orientation Deter-
mination (DOD) method for enforcing measurement-specific orientation
consistency during network training. DOD reduces variabilities in net-
work training, increases landmark localization accuracy, thus yields ac-
curate and robust biometric measurements. To validate our method, we
assembled a dataset of 3,398 ultrasound images from 1,829 subjects ac-
quired in three clinical sites with seven different ultrasound devices. Com-
parison and cross-validation of three different biometric measurements on
two independent datasets shows that BiometryNet is robust and yields
accurate measurements whose errors are lower than the clinically permis-
sible errors, outperforming other existing automated biometry estimation
methods. Code is available at https://github.com/netanellavisdris/fetalbiometry.

Keywords: Fetal biometry estimation · Fetal ultrasound · Anatomical
landmarks’ localisation · Computer-assisted diagnosis.
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1 Introduction

Ultrasound (US) based estimation of fetal biometry is widely used to monitor
fetal growth assessed relative to the expected gestational age and to diagnose pre-
natal abnormalities. Reliable estimation of fetal biometry depends on the local-
ization of fetal landmarks on standard planes (SPs) by the sonographer. Common
SPs include the trans-ventricular plane to measure the fetal head circumference,
the trans-abdominal plane to measure the fetal abdominal circumference, and
femoral plane to measure the femur length. Obtaining manual measurements
can be time-consuming and operator-dependent, especially for trainees [9], and
results in high inter-and intra-operator variability [13]. In fetal biometry, inter-
operator measurements variability range between ±4.9% and ±11.1% and an
intra-operator variability between ±3% and ±6.6% [19]. This variability con-
tributes to biometry uncertainty and hampers fetal growth evaluation in the
clinic. Automating fetal biometry can reduce measurement variability and im-
prove fetal monitoring and clinical decision making.

Numerous methods have been developed for automatic computation of dif-
ferent measurements in US-based fetal biometry [21], e.g., biparietal diameter
[1,24], head circumference [12], and femur length [14]. Recently, methods for
comprehensive biometry required for fetal weight estimation have been pro-
posed [6,16]. Similar methods have been developed for other imaging modalities,
e.g., fetal MRI [5] and 3D US [17]. These methods rely on obtaining segmentation
masks to train fetal anatomy segmentation models, which is time-consuming, and
on developing geometric methods for each measurement.

An alternative approach is the detection of landmarks directly on the image
without relying on segmentation masks. The advantages of this approach are that
it follows the clinical workflow – the sonographer locates on the two landmarks
required for biometric measurement directly on the image, and that obtaining
ground-truth data is fast and straightforward. Landmark-based approaches have
been proposed for various medical imaging modalities [23], e.g. CT and MRI, to
quantify lesions progression [20], for fetal MRI biometry estimation [4], and for
fetal landmark detection in US using reinforcement learning agents [2]. However,
this approach has not been used for automating fetal biometry in US SPs.

Automating fetal US biometry presents numerous challenges. First, imaging
quality varies across different US devices, heterogeneous in overall appearance,
particularly regarding gain and zoom. Second, some fetal anatomical structures
may become difficult to image with increasing gestational age. Third, anatomical
structure position, size, orientation, and appearance present significant variabil-
ity (Fig. 1). Since the fetus can lie in any of a wide variety of positions, anatomical
landmarks can be in orientations that are off the horizontal. Finally, biometric
parameters have different geometric characteristics and performed on different
SPs, thus each requires its own individual method.

We propose BiometryNet, an end-to-end framework that automates US fe-
tal biometry for multiple fetal structures using direct landmark detection that
overcomes these challenges. Unlike other methods [6,1,17,24,21], BiometryNet
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Fig. 1. Fetal biometry variability for the head (red) and femur (blue) SPs. The graphs
show (left to right) the distributions of the position (structure center point), size
(structure area with respect to image area) and orientation (structure angle with
respect to horizontal plane). Sample US image inserts illustrate the distribution.

only requires measurement landmark annotations for training. The main contri-
butions of our work are:

– We show for the first time that US fetal biometry can be automated with
high accuracy using only landmark annotations that can be acquired easily.
We demonstrate our approach on a large fetal biometry dataset of 3,398 US
images from 1,820 subjects acquired by various operators and US devices at
multiple clinical centers.

– We propose a novel Dynamic Orientation Determination (DOD) method to
determine measurement-wise orientation and provide consistent landmark
class for various measurements. We show that DOD is robust for variabil-
ities in the SPs orientations, leading to improved biometry estimates and
generalization on unseen datasets.

2 Method

We propose BiometryNet, a framework for the estimation of fetal US biometry
using a landmark regression convolution neural network (Fig. 2). BiometryNet
locates two landmark points on an US image for three biometric parameters:
biparietal diameter (BPD) and occipito-frontal diameter (OFD) in the trans-
ventricular (head) plane, and femur length (FL) in the femur plane. It includes
Dynamic Orientation Determination (DOD) used during training for consistent
landmark class. At inference time, the trained BiometryNet predicts two biom-
etry landmarks, followed by scale recovery in order to estimate image resolution
needed to compute the actual biometric measure.

2.1 Landmark Regression Network

The landmark regression network is a modified HRNet [22], trained to predict
a heat map for each landmark defined by a Gaussian function centered at the
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Fig. 2. BiometryNet framework. Top: during training, annotated head and femur
planes are fed into the DOD module and to the landmark regression network to pre-
dict two landmarks per biometric measurement. Bottom: during inference, the trained
model predicts the landmarks followed by scale recovery for biometric measurements
estimation.

landmark coordinates whose co-variance describes the landmark location uncer-
tainty. We used HRNet since it has achieved state-of-the-art performance for
computer vision tasks, e.g. object detection, semantic segmentation, face land-
mark detection and human pose estimation. HRNet is a Convolutional Neural
Network that combines the representations of multi-scale high-to-low resolution
parallel streams into a single stream. The representations are then input to a
two-layer convolution classifier. The first layer combines the feature maps of
all four resolutions; the second layer computes a Gaussian heat map for each
of the two landmarks. One network is trained for each biometric measurement
(two landmarks points) with the Mean Squared Error loss between the Gaussian
maps created from the ground-truth landmarks and the predicted heat maps.
At inference time, the two landmarks’ locations are defined by the coordinates
of the pixel with the maximal value on each heat map.

To compensate for the high variability in acquisition orientation and object
scales in fetal US images (Fig. 1), two training time augmentations are used:
1) rotations around the image center at randomly sampled angles in the range
[−180, 180]o followed by cropping to preserve a fixed image size; 2) image scaling
at randomly sampled scales in the range [−5,+5]%.

2.2 Dynamic Orientation Determination (DOD)

Since fetal structure may appear in various orientations (Fig. 1) and CNN are
not rotation-invariant, orientation variability must be handled properly. A com-
mon approach to handle such variability is augmentation. However, rotation
augmentation may cause landmark class labeling (e.g left/right landmarks) to
be inconsistent with image coordinates, i.e. the left and right points may be
erroneously switched, which will hamper network training (Fig. 1 Supp.). This
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Fig. 3. Illustration of Dynamic Orientation Determination (DOD). Left: Initial setup
stage, measurement direction vector computation between GMM centroids fitted to nor-
malized landmark points; Right: Training stage, re-assignment of each landmark pair
class by projecting the landmarks on the direction vector and ordering them.

inconsistency can be corrected by landmark class reassignment (LCR) [4] to
preserve horizontal (left/right) landmark class consistency after augmentation.
However, different biometric measurements may have different spatial orienta-
tion, e.g., OFD is mostly vertical and BPD is mostly horizontal.

To overcome this issue, we introduced Dynamic Orientation Determination
(DOD), a method that determine measurement-wise orientations and perform
class reassignment accordingly, instead of computing only the horizontal mea-
surement landmark pairs as in [4]. DOD consists of two stages (Fig. 3). In initial
setup stage, biometry orientation is determined. First, Gaussian Mixture Model
of two Gaussians was fitted onto the ground-truth landmarks of training dataset
of each biometric measurements with Expectation-Maximization algorithm [8].
Next, biometry orientation is computed as directional vector between the two
Gaussian centroids, −→d =

−−−→
C1C2. In the network training stage, the learned ori-

entation is used to enforce consistency. After all augmentations are performed,
each resulting biometric measurement landmark pair (P = p1, p2) is projected
on the directional vector ri = (pi ·

−→
d )/|−→d | and then ordered according to its

projection sort(|ri|) to obtain their reassigned class.

2.3 Scale Recovery

To obtain actual measurements that can be compared to those obtained in the
clinic, scale conversion from pixel to millimeter units is required. While this
information is usually available during examination or is embedded in the raw
image data, some retrospectively collected images may lack it. Therefore, we
perform scale recovery using the approach presented in [6]. Briefly, it recovers
true scale by detecting ruler markers using template matching.

3 Experimental Setup

Datasets and Annotations: we use two public datasets, Fetal Planes (FP) [7]
and HC18 [12]. FP [7] was originally designed for US SPs classification challenge.
The US images were acquired on six US devices: three GE Voluson E6, one Volu-
son S8, one Voluson S10 and one Aloka at two clinical sites in Barcelona, Spain.
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Since not all images in FP qualified as SPs for fetal biometry [18], we selected
1,638 (909 subjects) fetal head and 761 (630 subjects) fetal femur SPs. Not all
subjects are included in both planes datasets, resulting in a total of 2,399 im-
ages from 1,014 unique subjects. An obstetrician then manually annotated the
landmarks on each image with the VIA annotation tool [10]. On average, each
plane annotation for landmarks took 20 seconds, which is far less than 70 sec-
onds required for manual structure delineation. HC18 [12] was designed for fetal
head circumference (HC) challenge. The US images were acquired with two US
devices: GE Voulson E8 and 730, in one clinical site in the Netherlands. All
HC18 training set, 999 (806 subjects) fetal head SPs, were annotated with a
HC measurement. We computed the BPD and OFD biometric measurements
from the major and minor axes of an ellipse by least-square fitting [11] onto the
ground-truth mask.

Evaluation Metrics: we use the mean and median of L1 difference, bias and
agreement. For two sets of n biometric measurements, M1 = {m1

i }, M2 = {m2
i },

let m1
i and m2

i (1 ≤ i ≤ n) be two measurement values, the ground-truth and the
computed one, respectively. The difference between each pair of measurements
is defined as di = m1

i −m2
i . The mean and median differences for M1,M2 are

defined as L1(M1,M2) = 1/n
∑n

i=1 |di| and L̃1(M1,M2) = mediani(|di|), re-
spectively. We use the Bland-Altman method [3] to estimate the bias and agree-
ment between two biometry measurement sets. Agreement is defined by the 95%
confidence interval CI95(M1,M2) = 1.96×

√
1/n

∑n
i=1 (L1(M1,M2)− di)2. The

measurements bias is defined as Bias(M1,M2) = 1/n
∑n

i=1 di.

Study Setup: the two datasets FP and HC18 were split into training and test
sets. For the FP head and femur SPs, we selected 757 (449 subjects) and 437
(368 subjects) images for training and 881 (460 subjects) and 324 (262 subjects)
images for testing, respectively. For a fair comparison of head planes in FP and
HC18, we selected from HC18, similar number of 737 images (600 subjects) for
training. The remaining 262 images (206 subjects) were used for the test set.
BiometryNet was implemented in PyTorch and trained for 200 epochs in about
2 hours on a single NVIDIA 1080Ti GPU with a batch size of 16 using the
ADAM optimizer [15], an initial learning rate of 10−4 and a drop factor of 0.2
in epochs 10, 40, 90, and 150. For validation, a comparison to four networks was
performed: (a) Vanilla HRNet [22]; (b) HRNet with fixed horizontal orienta-
tion determination; (c) HRNet with fixed vertical orientation determination for
biometric measurements with horizontal orientation (OFD, FL) and vertical ori-
entation (BPD); and, (d) FMLNet [4], which is an HRNet with fixed horizontal
orientation determination, test-time augmentation and a method for prediction
reliability estimation.
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Fig. 4. Effect of learned dynamic orientation (first row) on training (2nd row) and
inference (3rd row) for three measurements (columns) on convergence (yellow boxes):
OFD, BPD and FL, in the FP dataset. Four models were trained: HRNet (black), with
horizontal (blue) fixed orientation, vertical (green) fixed orientation and BiometryNet
with DOD (red). Dotted lines denote the best performing epoch metric for each model.

4 Results

We conducted three experimental studies on the FP and HC18 datasets to quan-
tify the performance of BiometryNet and compare it to other existing methods.

Study 1: Effect of DOD on training: we evaluated the effect of DOD on
training and inference dynamics on three biometric measurements: OFD, BPD,
and FL in the FP dataset. OFD and FL have mostly horizontal orientations
and BPD has mostly vertical orientation. Fig. 4 shows the results. Note that for
all biometric measurements, the learned orientation is similar to the preferred
orientation. BiometryNet converged faster and performed better than networks
trained on fixed orientations of both the training and test sets, similar to those
with the preferred fixed orientation, and better than the Vanilla HRNet, which
performed poorly. This advantage becomes more evident when the landmarks’
locations are more disperse, e.g. for FL. This shows that DOD provides robust-
ness with respect to orientation variability and yields an improved performance.

Study 2: Performance comparison: we evaluate the performance of Biom-
etryNet on the FP and HC18 datasets. Table 1 lists the results. HRNet per-
formed poorly on all biometric measurements, with a high CI95 and error. Fixed
orientation determination yielded better results in preferred orientation of mea-
surement, i.e. horizontal in OFD and FL, and vertical in BPD. FMLNet [4]
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Table 1. Study 2 and 3 results for head (OFD, BPD) and femur (FL) biometric mea-
surements for the FP and HC18 datasets. For each biometric measurement, bias, agree-
ment CI95, and mean L1 and median L̃1 differences with respect to expert annotations
are listed. The best performance for each metric and dataset in indicated in Bold. (*)
indicates only images with reliable predictions were included in FMLNet evaluation.

Train
DB

Test
DB Method Head - OFD Head - BPD Femur - FL

Bias
[mm]

CI95
[mm]

L1

[mm]
L̃1

[mm]
Bias
[mm]

CI95
[mm]

L1

[mm]
L̃1

[mm]
Bias
[mm]

CI95
[mm]

L1

[mm]
L̃1

[mm]

FP FP

HRNet [22] 6.23 26.40 6.30 3.30 2.84 22.57 3.20 0.80 1.80 18.40 2.70 0.62
Horizontal 2.65 10.23 2.87 1.90 2.36 21.60 2.78 0.76 0.17 3.27 0.99 0.59
Vertical 4.73 23.51 4.86 2.46 0.77 8.28 1.28 0.65 0.33 10.27 1.47 0.65
FMLNet* [4] 1.96 7.80 2.16 1.43 1.30 14.56 1.71 0.65 0.14 3.00 1.02 0.68
BiometryNet 0.21 2.75 1.01 0.71 0.04 2.50 0.77 0.58 0.18 3.03 0.97 0.62

HC18 BiometryNet 2.31 5.21 2.46 1.85 0.84 2.70 1.06 0.91

HC18 HC18

HRNet [22] 0.64 6.01 1.51 0.92 2.64 21.48 3.10 0.71
Horizontal 2.82 23.9 3.69 0.93 1.35 12.86 1.75 0.59
Vertical 4.02 29.15 4.92 0.97 0.50 5.13 0.98 0.65
FMLNet* [4] 2.23 17.48 2.61 1.02 0.73 4.00 0.93 0.64
BiometryNet 0.56 4.43 1.39 0.84 0.16 3.54 0.88 0.61

FP BiometryNet -3.24 6.01 3.54 2.72 -1.11 3.35 1.40 1.08

performed better than fixed horizontal in all cases, but at the expense of dis-
carding 8% of test inputs in average. BiometryNet outperformed other methods
in OFD and BPD biometric measurements in all metrics. While FL has a slightly
better bias and CI95 in FMLNet, considering only included cases by all meth-
ods, the paired t-test (p = 0.02) shows that BiometryNet outperforms all other
methods, including FMLNet.

BiometryNet yields a median error (< 0.84mm (OFD), < 0.61mm (BPD) and
< 0.62mm (FL)) that is better than the error reported in [6] (1.30mm (OFD),
0.80mm (BPD) and 2.1mm (FL)). In addition, the results are better than [1],
which was the best BPD performer in a 2022 review on fetal US biometry [21],
that achieved a mean error of 2.33mm, bias of 1.49mm and CI95 of 5.55mm.
Furthermore, the variance of all methods except BiometryNet is higher than
the reported inter-observer variability [24] of 5.0mm (OFD), 3.0mm (BPD) and
4.3mm (FL) [19]. These results suggest that overall BiometryNet performs bet-
ter and is more stable (lower variance) than the existing methods.

Study 3: Impact of training dataset: to demonstrate the generalization ca-
pabilities of BiometryNet, we analyzed its performance by cross-validation on
unseen datasets. For this purpose, we train the OFD and BPD models on FP
dataset and test each on HC18 dataset, and vice versa. Table 1 lists the results.
Note that training on one dataset and testing on the other (rows 6 and 12) results
in high mean and median errors, with significant and complementary (2.31mm vs
-3.24mm in OFD, 0.81mm vs -1.11mm in BPD) bias and acceptable variance. In
contrast, testing on the same dataset (rows 5 and 11) results in low bias, but sim-
ilar variance (CI95) as before. This bias can be explained by the differences in an-
notation protocol between the two datasets. In HC18, the landmark annotations
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lie between the outer contours of the skull, while in FP, they are marked in the
middle of the fetal skull contour, thus resulting in a consistent bias (Fig. 2 supp.).
Clinically, both protocols are acceptable, and their selection depends on the spe-
cific clinical site. We also observe that using FP annotations for network training
produced better and more consistent results than using those of HC18. This may
occur because HC18 annotations are extracted from HC ellipse rather than an-
notated directly at the BPD/OFD landmarks. We conclude from these results
that BiometryNet is capable of generalization, as it can learn to annotate like the
annotation protocol, and can be tuned for use across many sites and protocols.

5 Conclusions

We proposed BiometryNet, an end-to-end network for automatic fetal biome-
try estimation from standard US planes. BiometryNet only required anatomical
landmarks annotations for biometric measurements prediction without the need
of any geometric methods as post-processing. To overcome the variability that
is inherently present in the acquired US planes, we introduced a novel dynamic
orientation determination mechanism which enforced measurement-wise orien-
tation consistency in network training. This resulted in reduced variability and
improved landmarks’ localization, thus leading to more accurate biometric mea-
surements compared to the state-of-the-art methods. Through the analysis of
two large and independent datasets, we demonstrated the generalization ability
of our proposed method. Moreover, BiometryNet resulted in minimal error which
is lower than the clinically permissible error [19], thus showing the potential for
clinical translation to improve fetal growth assessment.

In future work, we plan to analyze the abdominal plane and its measurement
using BiometryNet. Furthermore, BiometryNet assumes SP is already available
for the measurement, which is not always the case in clinical settings. Therefore,
we will design a holistic network to jointly learn SP selection and fetal biometry.
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Fig. 1. Dynamic Orientation Determination (DOD): illustrative example. (a) original
standard plane (SP) ultrasound (US) image of fetal trans-ventricular plane with the
bi-parietal diameter (BPD) biometric measurement up (red) and down (green) ground
truth landmarks; (b) SP after rotation showing an inconsistent landmark labeling in
which the up and down landmarks are switched); (c) reassignment of the landmark up
and down labels by DOD (blue and red intermittent lines).
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Fig. 2. Example showing different results of two annotation methods and the resulting
BiometryNet predictions. Two models were trained, one on the FP training dataset
(first column) and the second on the HC18 training dataset (second column). Both
were run on the FP testing dataset (first row) and the HC18 testing dataset (second
row). Landmarks are marked in the middle of the fetal skull in FP dataset and on
the outer extrema of the skull in HC18 dataset. This introduces a bias that results
in a relatively larger error, although still within the clinically acceptable limit when
generalizing from FP→HC18 or HC18→FP. The quantitative results are presented in
Table 1 and discussed in Study 2 and 3. The images show ground truth annotations
(blue) and computed predictions (green) on representative examples of BPD biometry.
The relevant areas are enlarged in the yellow box.
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