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Abstract—Channel state information (CSI) estimation is part
of the most fundamental problems in 5G wireless communication
systems. In mobile scenarios, outdated CSI will have a serious
negative impact on various adaptive transmission systems, re-
sulting in system performance degradation. To obtain accurate
CSI, it is crucial to predict CSI at future moments. In this paper,
we propose an efficient channel prediction method in multiple-
input multiple-output (MIMO) systems, which combines genet-
ic programming (GP) with higher-order differential equation
(HODE) modeling for prediction, named GPODE. In the first
place, the variation of one-dimensional data is depicted by using
higher-order differential, and the higher-order differential data
is modeled by GP to obtain an explicit model. Then, a definite
order condition is given for the modeling of HODE, and an
effective prediction interval is given. In order to accommodate to
the rapidly changing channel, the proposed method is improved
by taking the rough prediction results of Autoregression (AR)
model as a priori, i.e., Im-GPODE channel prediction method.
Given the effective interval, an online framework is proposed for
the prediction. To verify the validity of the proposed methods, We
use the data generated by the Cluster Delay Line (CDL) channel
model for validation. The results show that the proposed methods
has higher accuracy than other traditional prediction methods.

Index Terms—MIMO, 5G, Channel prediction, Genetic pro-
gramming, Ordinary differential equation.

I. INTRODUCTION

In fifth-generation (5G) mobile communication systems,
multiple-input multiple-output (MIMO) efficiently achieves
high data rates for multi-user communications by increasing
the number of transmitter and receiver antennas [1], [2]. How-
ever, these results rely on the accurate understanding of the
channel state information (CSI) between the transmitter and
receiver. CSI describes the channel state of a communication
link. In frequency division duplex (FDD) system, the CSI
estimated at the receiving end is fed back to the sending
end, and the CSI obtained at the sending end may be out
of date before actual use, which is mainly due to feedback
delay. Although time division duplex (TDD) system can take
advantage of channel reciprocity to avoid feedback, processing
delays can still cause CSI inaccuracy, especially in high-
mobility scenarios. It has been widely proven that the outdated
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CSI seriously deteriorates system performance [3]–[7]. In 5G
systems, this problem will become more serious [8].

To cope with the problem of CSI degradation, researchers
have proposed a large number of solutions [9]–[11]. Chan-
nel prediction, if done reliably, can significantly reduce the
performance loss. Existing channel prediction methods can
be mainly divided into three categories: autoregressive (AR)
model [11], [12], a sum of sinusoids (SOS) model [13]–[15]
and neural network model [16]–[19].

The AR model uses a weighted linear combination of past
and current CSI to predict future CSI. Duel-Hallen [11] used
the AR model to track channel changes and calculate future
CSI based on outdated CSI. Since the AR model is a linear
prediction model [12], it has a good prediction effect under
slow-changing channels, but its performance is limited by
fast-changing channels. The wireless channel can also be
modeled as the sum of complex sinusoidal signals. Unlike
the AR model, the SOS model does not directly estimate
CSI but utilizes outdated CSI for parameter estimation. J.
Hwang [14] and M. Chen [15] used multiple signal classifica-
tion algorithm (MUSIC) to estimate physical parameters and
studied estimating signal parameter via rotational invariance
techniques (ESPRIT) to predict future CSI, respectively. When
the wireless channel parameters do not change with time, the
SOS model has superior prediction performance. However,
in actual communication systems, channel parameters will
change over time, which leads to performance degradation
over time. In recent years, the neural network has become
the principal method of prediction. The prediction methods
based on deep convolutional neural network (CNN) [17],
real-valued recurrent neural network (RNN) [18], and long
short-term memory network (LSTM) [19] were proposed, and
their prediction performance was evaluated in some simulated
communication cases. It has self-adaptive1 ability, and the
ability to capture complex nonlinear data rules is strong.
However, it has the issues of high data volume requirements,
complex parameter settings and poor model interpretation2, so
it is not appropriate for online channel prediction.

In scientific experiments and engineering designs, ordinary
differential equations (ODEs) are used to describe time-related
nonlinear and complex systems, and their theoretical analysis
can provide guidance for actual systems [20]–[22]. H. Helge et

1Artificial neural network can obtain the weights and structure of the
network through training and learning, showing strong self-learning ability
and adaptability to the environment, that is, it can automatically adjust the
network structure, node weights, step length, etc.

2Artificial neural networks are often referred to as “black boxes”, which
lack a clear connection between network parameters and approximate math-
ematical functions.
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al. proposed a prediction band based on speedy integration to
evaluate the uncertainty of the ODE model on cellular signals
[23]. Yang et al. proposed a complex-valued ODE modeling
for time series identification [24]. A differential polynomial
neural network (DPNN) with ODEs substitutions to predict
short-term power load was proposed by Zjavka et al. [25]. Cao
et al. used genetic programming (GP) to evolve ODE from the
observed time series [26]. The main idea is to embed genetic
algorithm (GA) into GP for the discovery and optimization of
the model structure. It also demonstrates that the method based
on GP has many advantages over other modeling methods.
Based on the CSI sequence analysis, CSI in the moving
scene is complex and nonlinear. Traditional methods cannot
accurately capture these characteristics. Therefore, we express
the change characteristics of CSI with high-order differential,
and model the high-order differential data through genetic
programming, and obtain an explicit model for CSI prediction.
An online prediction framework is proposed for long-term
prediction, and the simulation results indicate the effectiveness
of the proposed algorithm.

In this paper, we focus on the channel prediction problem
in time-varying MIMO environments. The main contributions
of this paper are as follows:
• GP and higher-order differential equation (HODE) are

proposed to model the channel of MIMO systems.
• Use the AR model prediction results as a priori to

improve the proposed method performance.
• Use the mean square error (MSE) as a tool to select the

order of higher-order differential equation.
• According to the effective prediction interval given by

the channel model, an online prediction framework is pro-
posed. The online channel prediction has higher accuracy
than offline channel prediction in real communication
environments.

The rest of this paper is organized as follows. Section II
briefly introduces the system model and nonlinearity. The
channel prediction method based on the GPODE modeling
is presented in Section III. In Section IV, the performance
analysis and simulation results are provided. Finally, section
V concludes this paper.

Notations: Throughout this paper, lowercase boldface letters
represent vectors, while uppercase boldface letters represent
matrices. AT , A−1 indicate the matrix transpose and inverse
of matrix A, respectively. Cm×n denotes the vector space of
all m×n complex matrices. || · ||, j =

√
−1 and x(i) represent

the L2-form operator, the imaginary unit and the derivative of
x (i is the order of the derivative), respectively.

II. SYSTEM MODEL AND NONLINEARITY

This section mainly introduces the system model and non-
linearity of time-varying channel.

A. System model

Considering the time-varying MIMO systems with Nt and
Nr antennas at the transmitter and receiver, respectively. The

signal y(t) received at time t through time-varying channel
H(t) is modeled as

y(t) = H(t)s(t) + n(t), (1)

where y(t) = [y1(t), y2(t), ..., yNr
(t)]T is the Nr × 1 vector

of received signals at time t, s(t) = [s1(t), s2(t), ..., sNt
(t)]T

is an Nt × 1 vector of transmitted signals, n(t) represents the
vector of independent and identically distributed (i.i.d) noise,
whose elements follow the complex Gaussian distribution with
zero mean and variance σ2

n. Also, H(t) = [hnrnt
(t)] ∈

CNr×Nt is the matrix of time-varying channel impulse re-
sponses at time t, and hnrnt

(t) ∈ C1×1 denotes the gain
of the fading channel between the (nt, nr) -antenna pair
(1 ≤ nt ≤ Nt, 1 ≤ nr ≤ Nr). Due to feedback and delay,
the CSI obtained at the transmitter may be out of date, i.e.,
H(t) 6= H(t+τ) for τ > 0, resulting in severe degradation of
the performance of the communication system [1]–[7], [27].

The simulation channel model considered in this paper is the
Cluster Delay Line (CDL) model. The CDL channel model is
used for generating realistic radio channel impulse responses
for system-level simulations of mobile radio networks, com-
pliance with 3GPP standard (TR 38.901) [28].

As in [28], the CDL channel from the u-th receiver antenna
to the s-th transmitter antenna through the n-th path at the t-th
time slot can be expressed as

hu,s,n(t) =

√
Pn
M

M∑
m=1

[
Frx,u,θ (θn,m,ZOA, φn,m,AOA)
Frx,u,φ (θn,m,ZOA, φn,m,AOA)

]T
 exp

(
jΦθθn,m

) √
κ−1
n,mexp

(
jΦθφn,m

)√
κ−1
n,mexp

(
jΦΦθ

n,m

)
exp

(
jΦφφn,m

)


[
Ftx,s,θ (θn,m,ZOD, φn,m,AOD)
Ftx,s,φ (θn,m,ZOD, φn,m,AOD)

]
exp

(
j2π(r̂Trx,n,m · drx,u)

c

)

exp

(
j2π(r̂Ttx,n,m · dtx,s)

c

)

exp

(
j2π

(r̂Trx,n,m · v)

c
t

)
, (2)

where Pn is the power of the n-th path, m is a sub-diameter
index in the diameter cluster, M is the number of sub-
diameters contained in the diameter cluster n, v is the velocity
of UE, Frx,u,θ and Frx,u,φ are the field patterns of the
u in the direction of the spherical basic vector θ and φ,
respectively, Ftx,s,θ and Ftx,s,φ are the corresponding field
modes of the s in the direction of the spherical basic vector θ
and φ , respectively, {Φθθn,m,Φθφn,m,ΦΦθ

n,m,Φ
φφ
n,m} are random

phases, κ−1
n,m is the cross-polarization power ratio and c is

the wavelength of the carrier frequency, r̂rx,n,m is a spherical
unit vector with an elevation angle of θn,m,ZOA and an arrival
angle of φn,m,AOA, and r̂tx,n,m is a spherical unit vector
with elevation angle θn,m,ZOD and departure angle φn,m,AOD.
Each path comes from a different scatterer and is composed
of multiple sub-paths.
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Fig. 1: Channel model.

In this channel, the moving speed only affects the doppler
frequency offset. For mathematical convenience, with fixed
antenna and diameter cluster, we can write it as

h(t) =

M∑
m=1

Amexp(j2πfmt), (3)

where fm =
r̂Trx,n,m·v

c is the doppler shift.
Fig. 1 shows the relationship between base stations (BS),

mobile users (MU) and scatterers in a multi-path fading
environment. The communication channel between BS and
MU is distorted by interference of multi-path and movement
of communication ends and/or scatterers. Now, we re-express
hntnr

(t) in (3) as the superposition of complex sinusoids

hntnr (t) = hntnrR(t) + jhntnrI(t), (4)

hntnrR(t) =

M∑
m=1

Amcos(2πfmt), (5)

hntnrI(t) =

M∑
m=1

Amsin(2πfmt). (6)

We further write h(t) = [hntnrI(t) hntnrR(t)].

B. Nonlinearity of time-varying channel

The characteristics of data are of great importance to the
selection of the prediction model, so it is necessary to analyze
the characteristics of time-varying channel.

In this section, we briefly analyze the stability (Augment
Dickey-Fuller (ADF) test in [29]), nonlinear (Brock-Dechert
Scheinkman (BDS) test in [30]), and complexity (sample
entropy in [31]) for time-varying channel data. We use the
CDL-C (Urban Macro) scenario that complies with the 3GPP
standard (TR 38.901) [28] to generate the channel, the initial
phase is a random variable with uniformly distributed over
[−π, π], the subcarrier frequency is 3.5 GHz. The UE velocity
is v = 10 km/h. Two groups of data are selected from the
generated channel data to test the real part and the imaginary
part, respectively, marked 1-4. The statistical analysis results
are shown in Table 1.

According to the statistical analysis, we have the following
conclusions. For the stationary test, the smaller the p-value, the

TABLE I: Channel characteristics analysis results.

Stability (p value) Nonlinearity Complexity

1 Stability (5.79e-13) Nonlinearity 0.314

2 Stability (0) Nonlinearity 0.411

3 Stability (2.42e-23) Nonlinearity 0.532

4 Stability (3.58e-24) Nonlinearity 0.536

greater the probability of rejecting the null hypothesis (non-
stationary sequences), which are stationary sequences in the
Table 1. The nonlinear test shows that the data generation is
related to the nonlinear system. The complexity can be seen
from sample entropy calculation, and the higher the value, the
higher the complexity. Therefore, according to the results of
timing analysis, we find that the CSI generated by the channel
model is nonlinear and complex. The non-linearity of the
channel is obtained based on the analysis of experimental data
and channel model, which is mainly caused by the scatterers
and the moving speeds. Therefore, it is very important to
design a prediction model that can model the nonlinearity of
the channel.

III. THE PROPOSED CHANNEL PREDICTION
METHOD

In this section, we first propose a modeling based on high-
order ordinary differential equations (HODE), which will be
utilized to directly model nonlinearities. Then, we propose a
HODE method based on GP to solve the dynamic modeling
problem of HODE, called GPODE. That is, we carry out
differential processing on the continuous observation data with
the scale of n, and use the self-organization and self-learning
characteristics of GP to model the processed data, and get the
expression of the equation. Its structure can be described with
a flowchart as shown in Fig. 2.

Fig. 2: GPODE flowchat.
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A. Proposed model

Let x be an n-dimensional column vector, whose Euclidean
norm is defined as

||x|| =

√√√√ n∑
i=1

x2
i ,

where xi is the i-th component of x.
We suppose that the sample observations for a set of

dynamic systems H at the past successive n time steps can be
written as

H = (h(t0), h(t1), ..., h(tn−1)), (7)

where ti = t0 + i ∗ 4t(i = 0, 1, 2, ..., n − 1), t0 denotes the
starting time, 4t denotes the interval between two observa-
tions. The modeling problem of HODE for H is to find an
m-order ODE model,

dmH∗

dtm
= f(t, h(t), h(1)(t), ..., h(m−1)(t)), (8)

where H∗ is the numerical solution, to describe the system
such that ||H∗−H|| is minimized and the values of H at the
next τ time steps {h(t+ 1), ..., h(t+ τ)} can be predicted to
based on the model, where m is the derivative order and f
is composed of some elementary functions, including triangle
functions, exponential functions and power functions.

Here, ||H∗ −H|| is defined as

||H∗ −H|| =

√√√√ n∑
i=0

[h∗(ti)− h(ti)]2. (9)

The structure of the HODE model defined is flexible, and
can be in the form of a complex nonlinear ODE with variable
coefficients. We define n as the number of modeling samples,
τ as the stepsize of prediction. It is normally called short-term
prediction for τ = 1, long-term prediction for τ ≥ 2.

B. Finite difference approximations

For the model shown in (8), first perform the following
transformation

(h(t), h(1)(t), ..., h(m−1)(t)) = (z0(t), z1(t), ..., zm−1(t)).
(10)

According to variable substitution, the HODE shown in (8)
is transformed into the ODEs system shown in (10)

z
(1)
0 = z1

z
(1)
1 = z2

...

z
(1)
m−2 = zm−1

z
(1)
m−1 = f(t, z1(t), z2(t), ..., zm−1(t)),

(11)

where t represents all time points of t1 ∼ tn.
In order to obtain the fluctuation rule of the data, it is

necessary to carry out finite difference processing on the
data, calculate the approximate value of the derivative [32].
Taking the calculation of the first derivative as an example,

the approximate value of the derivative is obtained by the
following numerical difference formula.

The data at time t0 is processed as

h(1)(ti) =
−h(ti+2) + 4h(ti+1)− 3h(ti)

2h
+O(h2); (12)

for time t1 ∼ ti−2:

h(1)(ti) =
h(ti+1)− h(ti−1)

2h
+O(h2); (13)

for time ti−1:

h(1)(ti) =
h(ti−2)− 4h(ti−1) + 3h(ti)

2h
+O(h2), (14)

where h represents the unit time interval, and h(ti) represents
the data at time i. The calculation of high-order are analogous
to ensure that data error at different times is always O(h2)3.

Carry on the m-order difference approximation to H to
obtain matrix Zn×(m+1):

Z =


h(t0) h(1)(t0) · · · h(m)(t0)
h(t1) h(1)(t1) · · · h(m)(t1)

...
...

...
h(tn−1) h(1)(tn−1) · · · h(m)(tn−1)

 . (15)

C. GP

1) Encoding of the model population:
After the HODE is transformed into ordinary differential

equations, only the m-th equation, which is essentially the
right-hand function form of the original HODE, can affect
the structure of the model. When the population is initialized,
some such individuals are generated along with the program,
and each body is expressed in the additive tree form unique
to the GP.

The structure of the additive tree model of ODE system
is evolved by using the tree structure based on an evolution-
ary algorithm. Therefore, we encode the right-hand side of
an HODE as an additive tree individual. For example, the
following second-order ODE is described

h(2) = R+ exp(t) + h ∗ h(1) + sin
(

h

h(1)

)
, (16)

where R is random constant number. The corresponding
equation

z2 = R+ exp(t) + z0 ∗ z1 + sin
(
z0

z1

)
, (17)

can be represented as an additive tree, as illustrated in Fig. 3.
The instruction set Q0 and the operator set Q1 are given to

generate the additive tree.{
Q0 = +2,+3, ...,+N,
Q1 = F ∪ T = {−, ∗, /, sin, cos, exp, log, t, R, zi},

(18)

3The numerical differentiation method we choose in our paper is the three-
point derivation, which mainly uses the forward and backward difference
and the central difference. The maximum error of this method is O(h2), so
maintaining the O(h2) can obtain the optimal approximate derivative value.
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Fig. 3: Example of a HODEs in the form of the additive tree
model.

where F = {+,−, ∗, /, sin, cos, exp, log} and T = {t, zi, R}
represent functions and terminal set. +N,−, ∗, /, sin, cos,
exp, log, t, zi and R denote addition, subtraction, multipli-
cation, protected division (∀a, b ∈ R : when b = 0, a/0 = 1),
sine, cosine, exponent, protected logarithm (∀a ∈ R, a 6= 0 :
log(a) = log(abs(a))), sample points and constant, which
taking N, 2, 2, 1, 1, 1, 1, 0, 0 and 0 parameters, respectively
[33]. N is an integer (the maximum value of items at the
right end of HODE), Q0 is the instruction and the root node,
and the instructions for the other nodes are selected from the
operation set Q1. We select the function set according to the
established channel model.

2) Fitness evaluation: A fitness function maps the ODE
to a scalar, and a real fitness value that reflects the ODE’s
performances on a given task. Suppose that the corresponding
system of ODEs of an arbitrary individual pi in the model
population has the general form of (11), then the fitness
calculation of qi can be written by:
• Let H∗ and 4H be both m-dimensional column vectors,

Z∗ is a (n + 1) ×m empty matrix, assign the first row
of Z to that of Z∗;

• Take the element of the 1-th row of Z as the initial value,
and use a numerical algorithm to integrate each individual
one step to generate the element of the i-th row of Z∗;

• Let H∗ = Z∗1, ( Z∗1 denotes the vector composed of the
first column of Z∗);

• Fitness (qi) = ||4H||, 4H = H−H∗.
It’s clear that the less the fitness, the better the individual.

Furthermore, due to the diversity of the systems of HODE
generated randomly, some of them may not be stable and will
give rise to overflow during the fitness calculation. In this case,
we return a large number of the fitness value as a penalty so
that these unreasonable models can be eliminated from the
population soon.

3) Selection strategy and design of genetic operators: The
genetic operator of GP is briefly introduced in the following.
The genetic operator includes selection operator, crossover
operator and mutation operator. The three operators and their
operation methods are as follows:

• Selection: Adopt a tournament selection strategy, and
select a certain number of individuals from the population
at a time (put back into the samples), then the best
one is selected to enter the progeny population, and this
operation is repeated until the new population reaches the
original population size.

• Crossover: The first two parent nodes are selected ac-
cording to the preset crossover probability, a non-terminal
node in the hidden layer is randomly selected for each
additive tree, and then the selected subtrees are swapped
to get two new subtrees.

• Mutation: Randomly select a mutation point from the par-
ent body, and replace the mutation point with a randomly
generated subtree as the root node to generate mutation
offspring.

D. Model solving

The HODE model obtained by GPODE algorithm is a kind
of nonlinear model, so it is usually solved by a numerical
method. The idea of this method is to transform the HODE into
a set of equations composed of several first-order equations,
and then solve the first-order equation one by one by using
the numerical method, which is the odeint solver toolbox in
Python [34]. Then, the numerical solution of the HODE is
obtained by using the results recursively.

The initial value of the ODEs: z1(t0)
...

zm(t0)

 =

 h′(tn−1)
...

hm−1(tn−1)

 . (19)

Through numerical methods, the equations shown in (11)
are solved recursively from bottom to top, and finally the
predicted value z0(t+ τ) is obtained, where τ is the predicted
step size.

E. The prediction framework

In this section, we mainly give the effective prediction
interval and two training methods.

1) Determine HODE order: The order of an ODE is also a
particularly important choice. When the order of the equation
is over high, its numerical solution is more complicated and
the stability is worse. We choose the simple and direct method
to determine the order, namely, the mean square error (MSE)
as the order criterion. From second-order to fifth-order, the
most appropriate order was selected to build the model. MSE
is defined as

MSE =
1

N

N∑
t=1

(h∗(t)− h(t))2, (20)

where N is prediction length.
2) Analysis on the interval of effective prediction:
Due to the variation of doppler, the effective prediction

in coherent time should be considered. According to the
derivation of the effective prediction interval in [35], [36], it is
assumed that h(t) is differentiable of m-order, we can obtain
similar interval of effective prediction (IEP) as
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Fig. 4: The framework for improved GPODE.

TIEP =
1

β
In
(

1 +
δ

2πAmwm

)
∝ δ

w2
m

, (21)

where β = 2πwm, and δ = |h′
(t + TIEP ) − h

′
(t)| is the

threshold.
It can be seen that TIEP is determined by the maximum

doppler frequency and the user’s movement direction. There-
fore, the faster the user moves in the direction of the scatterer,
the smaller the TIEP .

3) Improved GPODE: Due to user movement speed in-
crease, the channel fading volatility increases gradually, it is
difficult to capture the future state of the moment. Therefore,
we improve the finite difference data processing of the verifi-
cation set. Firstly, the AR channel prediction method is used to
preliminary predict the information of the past time, and the
information after AR prediction is taken as the information
before the initial value of the approximate derivative, which
is called the improved GPODE (Im-GPODE).

The specific framework is shown in Fig. 4, where h(t+ τ)
is the AR model prediction result.

4) Training framework: We consider two prediction frame-
works, one is to train a model based on certain data and use the
model to predict the subsequent data, which we call it offline
prediction for one-step prediction. The other is to continu-
ously update the prediction model according to the effective
prediction interval, called online prediction, which is suitable
for multi-step prediction. The online framework updates the
model by adding the latest data, making predictions in real
time. The offline framework can only input all the historical
data at one time and use the historical data to predict, and
cannot be updated in real time, so it is better to use the online
prediction framework for multi-step prediction. Fig. 5 is an
online prediction framework diagram.

F. computational complexity

Last but not least, we evaluate the computational complexity
of the proposed channel prediction algorithm. The number
of complex multiplications is taken as the measurement, the
number of generation is g, and the population size is p. For
GPODE, the computational complexity mainly includes the
calculation of approximate derivative value, the generation of
equation and the number of generation. Therefore, the com-
putational complexity of GPODE is O((p+ gp− 1)NtNrn).

Fig. 5: The framework for online CSI prediction .

Algorithm 1 The Channel Prediction Framework of MIMO.

Input: H(t), t = 1, 2, · · · , N
Functions set F = {+,−, ∗, /, sin, cos, exp, log}

Output: H(t+ τ)
1: for nt = 1; nt ≤ Nt; nt + +; do
2: for nr = 1; nr ≤ Nr; nr + +; do
3: Obtain the sub-channels hntnr

(t) following equa-
tion (4);

4: for m = 2; m ≤ 5;m+ +; do
5: The transformation matrix (15) is obtained by

equation (12)∼(14);
6: Randomly initialize the population;
7: while i = 0; i < Generation do
8: Evaluate fitness q(i);
9: The next generation parent is selected ac-

cording to fitness and selection strategy;
10: Recombine the next generation parent by

using genetic operators (crossover and mutation);
11: Evaluate the next generation parent’s fit-

ness;
12: i=i+1;
13: end while
14: The optimal individual using equation (20) to

calculate the MSE;
15: Compare MSE to select the optimal HODE;
16: end for
17: Predict the next time value hntnr

(t + τ) using
equation (19);

18: end for
19: end for
20: Combine the prediction H(t+ τ).
21: return H(t+ τ).

IV. SIMULATION RESULTS
In this section, we first describe the simulation scenario and

parameter settings. Then, we evaluate and analyze the perfor-
mance of the proposed channel prediction methods through
simulations. Some illustrative simulation results in terms of
the prediction trends and the predictive accuracy are presented.

A. Simulation configuration

In all simulation, we use simulated fading channels under
the CDL-C scenario in the 3GPP standard (TR 38.901) [28]
to characterize the performance of the proposed channel
prediction methods, where the carrier frequency is 3.5GHz,
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Fig. 6: MSE of training data with different step sizes.

the random phase is uniformly distributed within (−π, π), the
signal to noise power ratio (SNR) is set as 20 dB, and the time
slot duration is 50ms. We consider that the communication
between the BS and MU moves away from the BS at a speed
of v.

The system parameters are summarized in Table II while we
explicitly state parameter values if they are different from the
table. Population size is the number of individuals in the initial
population, Generation is the maximum generation, Crossover
rate is the pre-defined crossover probability, Mutation rate
is the pre-defined mutation probability, and Stepsize is the
step size of the numerical method. The selection of these
parameters is experienced, and different parameter selection
affects the convergence rate of the methods. In order to test
the effect of stepsize, we tried experiments with different
stepsizes. Fig. 6 illustrates the MSE of training data for
different stepsizes of 0.01, 0.5, and 1 for every 20 generations.
As evident, the error of HODE increases significantly when
the stepsize is about 1, while too small stepsize such as 0.01,
can provide smaller errors in the beginning, but offer little
improvement in the evolutionary process of HODE. Therefore,
we choose the optimal iteration step size of 0.5.

TABLE II: Parameters for experiment.

Parameter Value

Environment UMi
Carrier frequency 3.5GHz

MIMO 2× 2 ULA
Sampling rate 1MHz

Population size 50
Generation 200

Crossover rate 0.5
Mutation rate 0.1

Stepsize 0.5

In our simulation, we compare the following methods:
• True Value: Actual CSI.
• Outdated: No prediction is required, and the CSI at the

previous moment is directly used as the CSI at the current
moment.
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Fig. 7: The NMSE of the proposed method and AR.

• AR: Autoregressive prediction introduced in Section III.
• GPODE: GPODE trained with the measurements
{h(1), ..., h(t)} without any processing.

• Im-GPODE: Im-GPODE developed in Section V.

B. Prediction analysis

We mainly analyze our methods by prediction accuracy and
prediction trend. For short-time prediction, we choose offline
training method, while for long-time prediction, we choose
online training method.

1) Prediction Accuracy: To evaluate the accuracy of the
proposed methods, We define the normalized mean square
error (NMSE) as the performance metric

NMSE =

∑N
i=1(h̃i+1 − hi+1)∑N

i=1 hi+1

, (22)

where N is prediction length, h̃i+1, hi+1 are the predicted and
true channel data, respectively.

Firstly, we compare this channel prediction method with
AR(1) and AR(2) channel prediction methods for short-time
prediction of NMSE under different SNR. Our method is
similar to AR(1) method in the structure, but as can be seen
from Fig. 7, its accuracy is higher than that of AR(2) method.
We observe that the NMSE performance of the proposed
GPODE channel prediction method is significantly better than
that the traditional channel prediction methods. The proposed
channel prediction algorithm can effectively reduce CSI errors.
By increasing the SNR, the NMSE of 0 can be closed to by
the proposed GPODE when SNR = 25 dB. Therefore, the
proposed method is superior in terms of both the accuracy
and timeliness. It is effective to use the proposed channel
prediction method to predict time-varying CSI in MIMO
environment.

Then, the effect of the different BS antenna on channel
prediction is evaluated, and the results are shown in Fig.
8. We configure the number of BS antennas as SISO to 32
antennas. It can be seen that with the increase of the number of
antennas, the NMSE of CSI will increase due to the large error
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accumulation. The accuracy of our method is also improved
when the number of antennas is increased.

In order to verify that the framework of online training has
significant gain for long-term prediction, we compared the
predicted step size. As can be seen from Fig. 9, for long-
term prediction, our method have gained compared with the
traditional AR channel prediction method. The gain of the
improved method is more obvious, and when the predicted
step size is longer, the gain is also obvious. Our methods are
online sliding window prediction, so the error of stacking will
be appropriately reduced. However, for the CSI prediction, the
improvement of short-time prediction accuracy can improve
the transmission performance. This fully demonstrates that our
methods are effective.

2) Prediction Trends: In order to illustrate the prediction
trend of our proposed channel prediction methods, channel
data are selected for MU to leave the BS at different speed.

Fig. 10 shows the short-term results, where v = 10km/h is
used. The long-term results are shown in Fig. 11, where v =
20km/h. For trend prediction, an online learning framework
is adopted, and the prediction model is constantly updated by
sliding window to predict CSI. For the long-term prediction,
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Fig. 10: Prediction trends of the different method in a short
period.
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Fig. 11: Prediction trends of the different method in a long
period.

we use the improved model for prediction because the speed
changes too fast.

The results show that the proposed algorithm can track
the channel changes smoothly and provide reliable channel
prediction when the channel coefficients are monotonously
increasing/decreasing in a short time. However, when the
channel coefficient fluctuates significantly over a long period
of time, the predicted channel coefficient will vibrate due to
flutter interference. The improved GOPDE adds the prior of
AR prediction, so it combines AR’s prediction of the linear
part of GPODE’s modeling of the nonlinear part, making it
able to track the change in the channel. Notably, (21) also
shows that TIEP decreases significantly with increasing speed,
so more sophisticated signal processing techniques should be
used to improve prediction performance.

V. CONCLUSION

In this paper, we studied the channel prediction problem
for MIMO systems with mobile user, by leveraging genet-
ic programming techniques. Firstly, we analyzed the time-
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varying channel characterization for MIMO systems. Sec-
ondly, we proposed two channel prediction methods: the
GPODE channel prediction method, and the improved by
adding AR predictors, i.e., the Im-GPODE channel prediction
method. Then, we gave effective prediction interval and order
determination method of HODE. For the long-term prediction,
we presented two training modes: online and offline. The
numerical results demonstrated that both the proposed GPODE
and the Im-GPODE channel prediction methods can enhance
the accuracy of channel prediction methods compared with
existing methods, and for long-term prediction, the online
training mode was more accurate than the offline training
mode, the effectiveness of our algorithm was verified in the
CDL channel.
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