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The Digital Mind: New Concepts in Mental Health 1

The promise of a model-based psychiatry: building 
computational models of mental ill health 
Tobias U Hauser, Vasilisa Skvortsova, Munmun De Choudhury, Nikolaos Koutsouleris

Computational models have great potential to revolutionise psychiatry research and clinical practice. These models 
are now used across multiple subfields, including computational psychiatry and precision psychiatry. Their goals 
vary from understanding mechanisms underlying disorders to deriving reliable classification and personalised 
predictions. Rapid growth of new tools and data sources (eg, digital data, gamification, and social media) requires 
an understanding of the constraints and advantages of different modelling approaches in psychiatry. In this Series 
paper, we take a critical look at the range of computational models that are used in psychiatry and evaluate their 
advantages and disadvantages for different purposes and data sources. We describe mechanism-driven and 
mechanism-agnostic computational models and discuss how interpretability of models is crucial for clinical 
translation. Based on these evaluations, we provide recommendations on how to build computational models that 
are clinically useful.

Introduction 
Over the past decade, computational models have become 
more prominent in psychiatric research and—aligned 
with the fourth industrial revolution—are also finding 
their way into clinical and commercial solutions for 
psychiatry. In this Series paper, we chart the landscape of 
computational models in psychiatry, highlight the 
communalities and differences between different types of 
computational models, discuss their advantages and 
disadvantages for research and clinical practice, and 
distinguish between mechanism-driven and mechanism-
agnostic models, which have traditionally served different 
purposes. Mechanism-driven models are biology-inspired 
models that mimic processes in the brain and are 
interpretable in their mechanisms. Conversely, 
mechanism-agnostic models use complex machine-
learning methods to distil information from large datasets 
and often provide little insight into the relevant 
mechanisms. Here we show that these model types are 
complementary and describe how models from both 
domains can be brought together to build more 
interpretable models that are more likely to find a place in 
clinical practice than using each model-type in isolation.

The digital psychiatrist 
The COVID-19 pandemic has inadvertently put mental 
health into the spotlight. Psychiatric symptoms have 
strongly increased and the demand for remedies is 
higher than ever.1,2 These changes have not gone 
unnoticed in the corporate sector. Mental health 
solutions are more popular than ever and startups in 
mental health have become a hot commodity.  
Companies that pursue automated and online-based 
solutions have gained much attraction from investors, 
and technology giants, such as Apple, have ventured into 
predicting mental health problems using our ever-
present smartphones.3

At the core of this excitement is the promise that 
computational approaches can help improve and broaden 
access to mental illness detection, prediction, and 
intervention. However, computational approaches to 
psychiatry are already well established in academic 
research, with the fields of computational psychiatry 
(panel 1) and precision psychiatry existing for almost a 
decade.4 In the first paper in this Series, we will selectively 
review the different computational approaches and their 
respective data sources that have been used in academic 
research. Rather than present a systematic literature review, 
we will provide a narrative description of the field and 
illustrate what we consider important contributions using 
selected examples from computational psychiatry and 
precision psychiatry. Although a delineation of these two 
fields is not clear cut and the terms are sometimes used 
interchangeably, traditionally computational psychiatry has 
focused more on understanding the mechanisms under
lying mental disorders whereas precision psychiatry has 
focused on prediction and individualised treatment. We 
discuss how different modelling approaches can be 
meaningfully brought together to overcome limitations 
and move towards clinically useful models. As academics, 
clinicians, and the industry are moving closer together, 
computational approaches could be greatly beneficial, but 
an in-depth crosstalk between these different fields is 
essential to build meaningful models.

What are the application areas of computational 
modelling in psychiatry? 
Computational modelling in psychiatry aims to achieve 
different objectives that can be roughly divided into four 
categories.4–7

Mechanism 
Many academic studies aim to understand the biological 
mechanisms that cause mental illness, often investigating 
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Panel 1: Glossary 

Bias-variance trade-off
A conflict between two types of errors that must be minimised 
when developing a computational model. Bias error arises due 
to underfitting and the model not capturing the relevant 
associations between features and output labels. Variance error 
mostly arises if the model is overfitting the training set and 
interprets random noise as meaningful variation.

Computational psychiatry
A field of research that seeks to characterise mental dysfunction 
in terms of aberrant computations over multiple scales.

Cross-validation
A procedure to split data into train and validation sets to 
provide unbiased estimates of model performance. The model 
is fitted on the training data and evaluated on the validation 
data that were not used to fit the model. This procedure is 
k-times repeated until all the data has been used in the test 
data once (eg, k=5-folds) to evaluate model robustness and 
prevent overfitting.

Deep autoencoders
Class of deep learning algorithms that have found great use for 
unsupervised learning problems. Using two symmetrical deep 
networks, the autoencoders are optimised to produce output 
data that resemble the input data via a compressed 
representation of the latter.

Deep learning, deep neural networks
A branch of machine learning that uses multilayer artificial 
neural networks to derive model predictions. Stacking several 
layers of artificial neurons on top of each other allows fitting 
of highly dimensional data with complex non-linear 
relationships, but it comes at the cost of increased model 
complexity (can reach several million free parameters) and 
problems with interpretability (black box models).

Dimensionality
Dimensionality of the data is determined by the number of 
input features. Highly dimensional data are rich in 
information and potentially more robust against noise, but 
they often require special models that can account for the 
redundancy and high covariance between features 
(eg, regularised models).

Diffusion tensor imaging
An MRI technique used to estimate the white matter (axonal) 
organisation of the brain.

Ecological momentary assessment
Methods of repeated sampling of an individual’s behaviour and 
experiences in real-time and in natural environments.

Effect size
A quantity that measures the strength of the dependency 
between dependent (features) and independent (labels) 
variables.

Functional MRI
An MRI technique that indirectly measures brain activity by 
registering differences in blood oxygen level. This is a common 
method to understand the functional neural organisation of 
cognition and behaviour.

Gamification
Describes the approach of making cognitive (and other) tasks 
more game-like using principles and design elements successfully 
used in electronic games with the goal of making them more 
entertaining and, therefore, increase user engagement.

Model features
Data or an aggregated substrate thereof is used to train a 
computational model to predict a label. Features could be 
continuous (numerical, such as height or weight of an 
individual), categorial (eg, gender), or more complex, such as 
text strings, graphs, or multidimensional syntactic features.

Model fitting
A process of finding model parameters so that the model’s 
predictions maximally resemble the data (parameter 
optimisation). Model fitting can be implemented through 
different optimisation methods.

Model labels
Outcome variables that the model tries to predict. Similarly, to 
model features, model labels could be numeric (continuous, 
such as the duration of hospitalisation), discrete (eg, whether 
an individual will develop a psychiatric disorder or not), or more 
complex entities (eg, the next word in a sentence).

Model selection
An important step in finding good computational models for 
mental health is to establish the best model among a pool of 
different possible models for the data given. Traditionally, 
selection considers the model fit and the model complexity, to 
avoid overfitting and underfitting. However, in this Series paper 
we discussed other aspects of model selection, such as 
mechanism-agnostic versus mechanism-driven models or 
interpretability of models that are less easily quantifiable. 
Therefore, it is crucial for researchers to have a clear 
understanding of the advantages and disadvantages of the 
models chosen, and to use the adequate selection criteria.

Natural language processing
A branch of machine learning focused on the algorithms that 
process, predict, and generate natural language and speech.

Occam’s razor 
A principle of constructing explanations formulated by 
scholastic philosopher William Ockham in the 13th century 
which states that “pluralitas non est ponenda sine necessitate”, 
translated to “plurality should not be posited without 
necessity.” This principle favours a simple theory or model over 
more complex one if the former can explain the phenomenon.

(Continues on next page)
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the neural mechanisms that underpin mental disorders. 
The goal of these approaches is to understand how 
processes in the brain go wrong, which can facilitate the 
development of better biomarkers for diagnosis, 
prevention, and therapeutic intervention.4,5,7

Subtyping 
A longstanding challenge for psychiatry is that we know 
little about the biological causes of mental health 
problems. Current diagnostic manuals are not informed 
by any neurobiological mechanisms, and their purely 
descriptive analyses of symptoms have been criticised 
because of doubts of the validity of diagnostic labels.8  
Therefore, there is hope that computational models will 
be able to deconvolve the heterogeneity of psychiatric 
disease taxonomy by generating new measures that are 
more objective and biologically driven.4,5 These 
approaches largely rely on unsupervised models, such as 
clustering, aimed at discovering meaningful patterns in 
the data that are then evaluated against external 
measures, like treatment outcomes.

Status prediction 
An important goal is to predict a mental health status, 
either concurrently or before the development of disease 
to predict the changes that are about to emerge.9 
Predicting mental illness before its development is 
particularly important because it might allow the 
prevention of adverse disease courses in a timely and 

efficient manner. These endeavours are most commonly 
used in the early psychosis field, in which high-risk states 
are well established, providing highly valuable windows 
of opportunity for preventive interventions.10

Treatment stratification 
From a therapeutic perspective, predicting which patient 
will benefit from a particular treatment is essential. 
Psychiatry has developed a variety of non-pharmacological 
and pharmacological treatments, but a substantial 
proportion of patients will not benefit from these 
treatments. Finding out which patients benefit from a 
specific treatment is often a tedious and slow trial and 
error process. Therefore, the hope is that computational 
models can help improve treatment predictions, be it 
either to select between different types of therapeutic 
strategies (eg, psychotherapy vs medication) or to select 
the specific form of treatment (eg, selective serotonin 
reuptake inhibitors vs serotonin and noradrenaline 
reuptake inhibitors).

Computational models: from mechanism-
agnostic to mechanism-driven models 
Why do we need computational models? 
Computational models attempt to structure information 
using mathematical equations. By doing so, 
computational models describe a lawful association 
between a set of input variables (eg, neural activity, self-
reported outcomes, and smartphone geolocations 

(Panel 1 continued from previous page)

Overfitting
A situation when the model explains the data too well because 
of poor model fitting procedure. Overfitting describes when the 
model takes the negligible deviations in the data into account 
and is unlikely to perform well with unseen data.

Parameter optimisation
A set of procedures of finding a set of parameter values in the 
model that will maximise the model’s objective function 
(eg, likelihood).

Precision psychiatry
An approach for the treatment and prevention of psychiatric 
disorders that considers individual variability in genes, biology, 
cognition, environment, and lifestyle.

Recurrent neural networks
A term used for two separate types of models: (1) a type of 
artificial neural networks that allows for information to be 
retained over time enabling memory in these networks and (2) 
network models with multiple artificial neurons that are 
connected to each other.

Regularisation
A set of constraints that are imposed on model parameters 
(eg, weights or coefficients) to prevent them from taking large 

values. These techniques stop the model from putting too 
much weight on some of the features, reduce model 
complexity, and help prevent overfitting.

Reinforcement learning
A domain of artificial intelligence that focuses on building 
intelligent agents who learn by trial and error to take actions 
that maximise their cumulative future reward.

Reliability
Quantifies how consistently a method or a model measures a 
phenomenon of interest (see panel 3: challenges).

Spiking neural networks
A type of artificial neural networks that incorporate spiking 
properties of natural neurons.

Support-vector machines
A type of machine learning supervised algorithms that are used 
for classification and predictive modelling. Support-vector 
machines construct linear and non-linear hyperplanes, which 
allow for separate data points to be put into different classes.

Validity
Quantifies how accurately a method or a model measures a 
phenomenon of interest. 
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[panel 2]) and one or multiple output variables 
(eg, behaviour, psychiatric diagnosis, and treatment 
response). Because these associations are specified 
mathematically, computational models can quantify how 
well they capture these output variables (ie, model fit), 
and even simulate such outputs, which allows us to 
interrogate these systems in silico to better understand 
how they work.

The elegance of computational models is primarily in 
their ability to detect meaningful hidden patterns in 
complex data. Often, mental health-relevant information 
is not directly observable in collected raw data (eg, brain 
activity or current social media usage), but only through 
aggregating this input data can one extract clinically 
useful patterns (eg, information processing biases in the 
brain and stereotyped behaviours). Therefore, the 
function of computational models is to condense and 
aggregate data, but also to determine the structure of 

meaningful variation, which can help forecast clinically 
relevant developments.

In this Series paper, we sort computational models 
according to how they are mechanistically formulated 
(figure 1A). On one hand, mechanism-agnostic models 
provide no information about how input variables 
meaningfully relate to or explain output variables—in 
machine learning these models are termed black box 
models because the model creator is oblivious about how 
the model works.20 On the other hand are mechanism-
driven models, also known as white box or glass box 
models,21 for which the link between input and output 
variables is clearly described and directly observable 
from the model formulation.

Mechanism-driven computational models 
A key goal of academic research in mental health is to 
understand why psychiatric disorders arise and what the 
neural underpinnings and mechanisms are. To this end, 
researchers combine neuroscience methods (eg, 
functional MRI) with computational modelling. These 
models are inspired by our knowledge about the brain 
function and imitate the information processing that 
takes place in the brain.

Due to brain complexity, most computational neuro
scientists do not attempt to replicate the brain one to one, 
but use abstractions based on principles that are known 
to guide brain function. This allows the computational 
models to remain interpretable. A key challenge for this 
approach in modelling mental ill health is to determine 
the right level of abstraction. If a psychiatric disorder 
arises from an ion channel impairment, then these 
channels should be explicitly characterised in the model. 
However, if a breakdown takes place at the level of 
communication between different hierarchically organ
ised brain regions, then modelling single synapses and 
neurons is probably not necessary and they can be 
approximated as entire ensembles.22,23 Thus far, 
computational psychiatry has seen approaches at many 
different levels of abstraction,23–27 but a superiority for one 
level of abstraction has yet to be shown.

Some of the most exciting recent insights are from 
approaches that allow movement between different levels 
of abstraction, allowing models to map processes 
spanning different layers of disease pathology. Spiking 
neural networks with hundreds of neurons can be 
simplified while keeping many of the key features and 
the versatility of the original models.24–28 Such models of 
neuronal populations can then be used to go beyond 
single brain regions and model the interactions between 
regions and even whole brain connectivity (figure 2).28,29 
Having translatable models at these different levels of 
abstraction is also appealing because they can accommo
date distinct brain recording modalities.

These network models are of great promise because 
they can capture key features of psychiatric disorders 
(such as schizophrenia),30–33 and extensions even allow 

Panel 2: Data sources 

Computational models in psychiatry have used a wide variety of different data sources, 
and they substantially differ in their advantages and disadvantages.

Clinical data
Data collected in the context of mental health care can range from hospitalisation 
duration to detailed notes on the patient from clinical staff. However, privacy concerns 
and missing data infrastructures make it challenging to harvest such data for modelling 
purposes.11,12

Laboratory-based data
Data collected in controlled environments for scientific studies. These often entail 
behavioural and biology-derived data. Due to the well controlled settings and often selective 
participant recruitment, noise in the data is reduced to yield maximal effect sizes. However, 
sample sizes due to expensive data collection methods are often restricted and translation to 
clinics is challenging as models are not prepared for the increased heterogeneity and noise in 
real-world clinical samples.

Digital data
Digital data can be roughly divided into passive and active data and includes any data that 
was collected from the participant using digital devices.13 Most commonly used data 
stems from mobile phones and social media.
•	 Active data requires the participant to interact with a request from the experimenters. 

Most common are probes that assess one’s self-reported mood and experiences. 
A second promising avenue are game-like cognitive assessments with smartphones. 
These short games help overcome the limitations of laboratory-based studies and to 
collect large samples.14 Such approaches also allow for repeated longitudinal 
assessments and context-specific assessments.

•	 Passive data does not require the participant to respond to the study, which has the 
advantage that participants are less likely to drop out and such data collection is well 
suited for longitudinal studies.13 Data ranges from social media activity and 
communication patterns to sensor data from smartphones and wearable devices. 
Social media activity and geolocation data has been particularly popular in mental 
health research,13,15,16–18 but other data sources, such as light sensors, voice recordings, 
accelerometers, and physiological recordings, also hold promise. Bringing together 
passive and active data sources, for example by collecting eye gazing data during 
game play,19 could yield new insights in future studies.
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modelling specific neurotransmitters directly. One can 
now assess how specific drugs can affect brain functioning 
and work towards finding the best possible treatment on 
the basis of a patient’s specific network imbalances.34–36 
These models provide a mechanistic insight into brain 
function and dysfunction, but might also be useful for 
informing psychiatry about new biologically driven 
subtypes and help to predict treatment response.

A second set of mechanism-driven modelling 
approaches focuses on capturing behaviour as closely as 
possible and is less tightly connected to the specific brain 
implementation. Specifically, reinforcement learning, 
Bayesian, and similar models are promising for 
representing complex behaviours and behavioural biases 
in patients and linking behaviour with subjective 
experiences and clinically relevant symptoms.37–40

Pervasive indecisiveness present in patients with 
obsessive-compulsive disorder41–44 is traditionally assessed 
using clinical interviews; by contrast patients with 
schizophrenia who show a jumping to conclusions.45–47 To 
objectively measure patient indecisiveness, we and 
others have used information gathering tasks (figure 3) 
to assess how much information participants accumulate 
before making a decision. Using Bayesian computational 
modelling, we can quantify how much they deviate from 
optimal behaviour48 and allow to closely capture 
participants’ behaviour. Because model parameters are 
well defined and functionally transparent, one can 
directly compare these model parameters and identify 
biased cognitive processes in developmental cohorts and 
patients.48,49 Moreover, by pairing modelling with causal 
brain-related interventions, such as pharmacological 
treatments, one can investigate the role of different brain 
and neurotransmitter systems in specific computational 
processes, such as indecisiveness.50 

Although mechanism-driven models facilitate a better 
understanding of which neural or cognitive processes are 
impaired in patients these models are not yet used to 
predict psychiatric phenotypes (diagnoses and outcomes) 
in clinical practice. Most models are used to find 
differences between groups, rather than using these model 
parameters to estimate an individual’s psychiatric status. 
Studies suggest that mechanism-driven, model-derived 
parameters are better at predicting disease status or longer-
term outcomes than standard neural, behavioural, or 
sometimes even clinical predictors51,52 (with balanced out-
of-sample accuracies of up to 80%). However, how well 
these mechanism-driven models perform compared with 
mechanism-agnostic models, and how they can be 
supplemented with other data sources is yet to be 
determined.

Mechanism-agnostic computational models 
Since the advent of modern machine learning methods 
there has been considerable enthusiasm for their use, 
including deep learning, for precision psychiatry. Unlike 
mechanism-driven strategies, mechanism-agnostic 
models are usually complex with hundreds or thousands 
of free parameters. These models have achieved 
previously unseen performance in a wide range of tasks, 

Figure 1: Trade-offs between models and data sources
(A) Models differ in their transparency of the mechanisms, which determines 
their best use. Although most complex models often achieve higher predictive 
performance, white box models allow an understanding of the underlying 
mechanisms. (B) The choice of data source matters. High quality data (such as 
laboratory experimental studies) are often expensive (eg, functional MRI). 
Passive data collection is inexpensive, but the features are often unclear and not 
well defined. By transforming laboratory-based methods (eg, using 
gamification), substantially larger datasets can be collected at lower costs.
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from image classification to predicting protein 
structures.53–55

In mental health, mechanism-agnostic models are 
being used together with different forms of data, 
including clinical records, brain-based measures, and 
passively collected smartphone or social media data 
(panel 2). The aim of most of these studies is to predict 
mental health status, either a specific future psychiatric 
disorder, or a specific mental health syndrome, such as 
suicidality.56

Clinical data 
With an ongoing digitalisation of health-care records 
across health-care systems, large clinical datasets for 
mental health are becoming available for interrogation. 
Although these datasets are sometimes limited in terms 
of data quality, organisation, and accessibility, as 

described by Koutsouleris and colleagues in Series 
paper 2,11 several studies have used mechanism-agnostic 
models with the primary aim of condensing and distilling 
information about mental health status and symptoms.57

In psychiatry, large amounts of clinical notes and 
medical records are difficult to condense because much 
of the relevant information is captured in the clinician’s 
notes, rather than in laboratory test indicators 
(eg, inflammation markers). Studies have successfully 
used natural language processing (NLP) algorithms, 
which allow the extraction of specific information from 
written text to help predicting outcomes, such as 
hospitalisation duration, readmission likelihood,58,59 and 
risk of suicide60,61 (with out-of-sample area under the 
receiver operating characteristic curve prediction 
from 0·58 to >0·80). However, these studies also make 
another key challenge apparent: what language features 
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should these algorithms be trained on? Training NLP 
algorithms on specific language features relevant to 
psychiatry, such as research domain criteria-related 
content, might help improve these predictive models 
over standard semantic corpus labels.

It is relevant to note that mechanism-agnostic models 
are not confined to written notes. These approaches also 
hold great promise for more complex data, such as audio 
and video recordings from assessments and therapy 
sessions. These algorithms could assist clinicians by 
alerting them to subtle (emotional) reactions and other 
features that might go unnoticed.62

Complex research data 
Scientific investigations of patients with psychiatric 
disorders often generate large data sets with many 
datapoints per participant. Neuroimaging (eg, MRI) data 
contain tens of thousands of datapoints per participant. 
This high dimensionality poses considerable challenges 
for analysing the data with traditional statistical 
approaches. Mechanism-agnostic models have been 
used mostly in two distinct approaches, either using data 
directly to classify and predict participants’ mental health, 
or using unsupervised (eg, clustering or factorisation) 
algorithms to create lower dimensional features, which 
can then be used for linkage with mental health status.

To predict current or future mental health status, many 
studies have used different variants of MRI data10,63,64 and 
deployed a wide range of machine learning models (with 
an out-of-sample predictive accuracy of usually >70%). 
Although these methods can discriminate between 
groups (eg, between patients and controls), newer studies 
have shown that these predictions improve significantly 
when integrating neuroimaging data with other data 
sources, such as clinician ratings, genetic data, and 
neuropsychological tests.64 This complementarity of 
neuroimaging data to other data sources also has 
implications for interpretability, because it allows a better 
understanding of the degree to which different sources 
are complementary, and how mechanism-driven features 
might shed light onto mechanism-agnostic features.

An alternative approach to analysing neuroimaging 
data is to use unsupervised models to generate 
low-dimensional brain organisation patterns, which can 
then be used to predict mental health status. Various 
methods have been used to generate such brain 
fingerprints, from clustering algorithms to canonical 
correlation analyses combining brain and behaviour to 
deep autoencoders.65–70 An advantage of these methods is 
that the intermediary brain fingerprints are often more 
interpretable and less noisy than when predicting mental 
health status directly from raw data, which can also help 
us to better understand the mechanisms underlying a 
specific status. For example, by using deep autoencoders 
of diffusion tensor imaging data, Chamberland and 
colleagues66 were not only able to predict various 
neurological and psychiatric disorders (area under the 

receiver operating characteristic curve from >0·6 
to >0·8), but also generate anomaly metrics that allowed 
them to establish which fibre tracts were most relevant 
for each disorder.

Digital phenotyping 
The use of digital data for predicting mental health has 
seen a substantial increase over the past few years. 
Because smartphones and social media are ubiquitous in 
our lives, they have become promising tools for collecting 
large amounts of data from participants capturing their 
dynamic real-world experiences;70 thus, smartphones are 
becoming ideal companions for data-hungry models. 
Many different types of measures can be extracted from 
digital data (panel 2). Generally, one distinguishes 
between passively collected or unobtrusive data, which 
do not require active responding by the participant, and 
active data collection, for which the participants are 
requested to engage (eg, mood self-reports). An advantage 
of passive data collection is that they only require 
minimal contributions from the participant, which 
greatly improves study compliance enabling efficient 
longitudinal data collection.13

Mental health has been linked to various types of 
passively collected data, including geolocation,71,72 sleep 
disturbance data,58,73 and smartphone usage patterns.15,74 
Although the passive data collected using smartphones 
might not be as informative as in-depth clinical 
measurements, the minimally invasive nature over 
longer time periods might lead these data to be 
considered to be as valuable as more costly data 
acquisition methods, especially when combined across 
multiple data sources. Of particular interest are data 
from social media, such as usage patterns or content of 
messages. These data have been used to predict mental 
health status and outcomes,56 as well as the likelihood of 
upcoming readmission to hospital. The wide range of 
predictive accuracy in these studies is likely due to 
different data sets, data features, and time horizons.75

The promise of using digital data is substantial and 
evidenced by a surge in research papers.56 This trend can 
be observed in many start-ups entering this field, and 
technology giants, such as Facebook, already using 
similar models for suicide prevention on their platforms. 

Building useful models 
Barriers for models to become useful 
Both mechanism-driven and mechanism-agnostic 
models have shown their potential for psychiatry. 
However, unlike other fields (eg, judicial system),76 few 
models have found their way into clinical practice.77 Of 
note, mechanism-driven and mechanism-agnostic 
models seem to have distinct implementational con
straints and difficulties.

For mechanism-driven models, a key challenge is 
their predictive performance. Traditionally, mechanism-
driven models are developed and optimised to capture 
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behaviour or neural responses. Because these models 
are not optimised to predict mental health status, ideal 
therapeutic response, or long-term outcomes, these 
parameters often display a more restricted predictive 
power than models optimised to predict mental health-
related phenotypes. Attempts to overcome this weakness 
use generative embedding strategies, which use 
mechanism-driven algorithms as a dimensionality 
reduction step before the subsequent generation of 
optimally predictive mechanism-agnostic models.78 
Another limitation of mechanism-driven models is that 
many rely on complex data collection, which sub
stantially restricts their use outside of academic settings.

For mechanism-agnostic models, the key challenge is 
understanding how these models operate and what they 
predict. Their complexity renders them opaque,79 but 
improving our understanding of them is crucial for 
three reasons: (1) only through understanding 
mechanism-agnostic models will we be able to establish 
which input variables are relevant and which could be 
removed, which is challenging in complex and 
non-linear mechanism-agnostic models; (2) under
standing enables us to detect biases and faults of the 

model that arise through biased training sets;11 
(3) predictions from unexplainable models can pose a 
substantial challenge when used in clinics because the 
uptake of model predictions strongly depends on clinical 
staff understanding and trusting them. We propose to 
use three strategies that could help alleviate these 
limitations.

Translation: from the laboratory and into the real world 
Many mechanistic assessments, such as computational 
psychiatry and neuroimaging tasks,80 have only been 
evaluated in small samples of highly selected 
participants, and little is known about their potential for 
predicting mental health status in real-world clinical 
cohorts. Therefore, we need to examine the use of 
mechanistic assessments outside of overly selective 
laboratory samples in large, epidemiologically sampled 
populations.11 This is crucial because these assessments 
still rely heavily on the experimenters’ instructions. For 
any assessment that should be applied to clinical 
practice, assessments that are robust to experimenter 
biases are required (panel 3). In addition, long 
assessments using expensive neuroimaging methods 

Panel 3: Challenges for computational models

Despite the plethora of computational models in psychiatry, 
they are all built on the same computational pillars and face 
similar challenges.

Noisy data
Noise in the data affects model quality and reliability and can 
add bias. Measurement noise can arise from participant 
inconsistencies (particularly in poorly controlled data collection 
environments),81 imprecise data collection (eg, MRI artifacts), or 
insensitive task measures.

Missing and sparse data
Missing data is one of the main concerns for model building 
and often requires additional statistical preprocessing and 
corrections, especially in longitudinal studies.82 Sparse data 
(eg, imbalanced samples) can lead to substantial biases even in 
large data sets and especially for minority populations.14

Validation
When using computational models, it is crucial that the 
model’s performance is validated against an independent test 
dataset (out-of-sample prediction, cross-validation). If such 
an approach is not used (ie, within-sample prediction), then 
the accuracy might be inflated and the results are prone for 
overfitting. Validation is crucial in contexts in which, besides 
the model parameters, hyperparameters are optimised, which 
requires a careful delineation of datasets.

Small sample size and reproducibility
Laboratory-based studies tend to include smaller and biased 
sample sizes, which could lead to non-reproducible effects and 
low statistical power.83–85 A solution to this can be online or 

smartphone-based data collection,86 which is particularly 
promising for assessing game-like computational tasks.

Reliability and validity
For computational models to produce generalisable and 
replicable results, it is important that the assessments produce 
reliable results. Unfortunately, little is known about 
psychometric properties of computational models and their 
data sources. Studies have assessed the reliability of tasks and 
introduced methods and task-related measures to improve 
reliability.87 Similarly, a low reliability of psychiatric diagnoses 
renders prediction more difficult.8

Temporal dynamics
Many data sources (mental health symptoms, brain activity, 
cognitive variables, and social media) show fluctuations and 
oscillations on different time scales (from seconds to years). 
These temporal dynamics might be disorder relevant or 
entirely independent. Because these dynamics cannot be 
detected when using cross-sectional or temporally sparse 
assessments, it is important to use repeated longitudinal 
assessments to assess and exploit these dynamics for 
modelling mental health.19

Generalisability
Generalisability describes the ability to use models beyond the 
data that were used to develop the original model (ie, predicting 
the labels correctly in new data). This is crucial for the clinical 
success of modelling efforts, but also a key challenge especially if 
the data samples differ substantially from clinical reality.
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are unlikely to become clinically viable; this means that 
proxies that substitute these measures in clinical settings 
require development.

A move towards online-based task assessments over 
the last decade constitutes a first step towards clinically 
usable data assessment tools.88,89 Using online worker 
platforms, researchers have developed methods for 
instructing complex tasks that are entirely digital,2,39 
showing similar behavioural patterns as observed in the 
laboratory.86 However, paid participants on such 
platforms are often professional experiment participants, 
and might not reflect the population that these tests will 
be used in.

Consequently, studies have now entirely departed from 
traditional participant pools towards more population-
reflective, crowd-sourced data collection. The use of 
gamified smartphone applications (eg, Brain Explorer, 
Great Brain Experiment [UCL, London], and Neureka 
[Trinity College, Dublin]) has proven to be promising.86,90–92 
By recruiting participants worldwide and from diverse 
demographic backgrounds, such big data approaches 
open promising new avenues for collecting data that are 
more representative of the reality encountered in clinics. 

Although gamified approaches are unable to replace 
neuroimaging markers directly, they can help to 
inexpensively approximate potential mechanisms. By 
using similar tasks used in neuroimaging scanners, we 
can use computational models to infer the probable 
neural mechanisms relevant for imbalanced processing. 
Moreover, by using pharmacological manipulations, we 
can obtain relevant information about possible neuro
transmitter involvement that can be helpful for 
pharmacological treatment predictions.43,93

A key advantage of mobile assessment platforms is that 
they are more amenable for repeated and triggered 
assessments. They can be combined with self-reports 
collected as ecological momentary assessments. In 
addition, bringing assessments together with passive 
data collection or physiological data, such as pupillo
metry,94 might provide additional crucial information. 

Explanation: from black to grey boxes 
The inability to understand many mechanism-agnostic 
models not only challenges their usability, but also 
threatens their uptake in clinics and might become a 
regulatory requirement. Over the past few years, various 
techniques, predominantly in image classification, have 
been developed trying to explain black box models 
(eg, deep dreaming95 and attention maps96). However, 
these explanations are not undisputed because they only 
provide an approximation to the true model. This means 
that they are unable to fully capture the model and could 
provide false explanations for a considerable number of 
cases.79

Complementarily, an important new trend in machine 
learning is the use of causal models that allow 
advancement beyond simple correlational effects. This 

is particularly relevant in psychiatry to identify factors 
that are causal for mental health and not simply 
coincidental. Although there are several different forms 
of models that allow the assessment of causality,97,98 
methods for more complex mechanism-agnostic models 
are only slowly emerging.99,100 Therefore, it is important 
to build mechanism-agnostic models that are 
transparent by selecting interpretable algorithms by 
design (eg, XGBoost).

Another method to increase interpretability is to use 
dimensionality reduction approaches before using these 
lower dimensional features for prediction. this 
modularisation is useful to assess the performance of 
each compartment independently and exploit the 
relatively low dimensionality of the final prediction 
model to establish better understandability. An example 
of such an approach is the prediction of psychosis onset, 
in which a combination of separately aggregated clinical, 
neuroimaging, and neuropsychological predictors have 
revealed partly additive and explainable effects.10 
Therefore, it is important to carefully consider the 
complexity of a model and to balance interpretability and 
complexity in accordance with the demand.

Figure 4: Bringing data sources together to improve modelling in psychiatry
Although most research has focused on single data sources for their models, bringing complementary data sources 
together can help improve model performance. Therefore, mechanism-driven model indicators can help with the 
interpretability of black box models. Substituting complex in-laboratory data sources with more readily available 
proxies, such as smartphone-based games, can help bring research-led findings into a real-world setting. These 
extended strategies might help build clinically useful models. 
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Combination: bringing together different sources and models 
Thus far, the computational modelling in psychiatry 
mainly consists of many scattered, independent 
approaches to explain mental health, but these different 
promising attempts have not yet been brought together. 
Building clinically useful models will require us to 
overcoming these fragmented aspirations to pursuing the 
integration of different data sources following modelling 
strategies that maximise complementarity and inter
pretability (figure 4). For example, for treatment prediction 
and stratification, a series of person-specific and disorder-
specific factors that predict success in treatment are 
known. Task-derived mechanistic models101 and digital 
markers56,101–103 could complement such data and improve 
performance.

When approaching data integration, it is crucial to be 
aware of the complementarity of the data. Data sources 
that capture entirely distinct data types (eg, computational 
tasks) are likely to be non-overlapping and thus add 
meaningful new dimensions that can help elucidate 
mental health heterogeneity. Therefore, by combining 
these different data sources and models, we might be 
able to more comprehensively parametrise a person’s 
mental health.

Focus should be directed towards mechanism-driven 
models and data sources that extract meaningful features 
of rich data; by bringing these data sources together in 
shallower and interpretable mechanism-agnostic models, 
we will be able to identify the role of each of these 
condensed features. Such approaches also allow us to 
assess which data sources contribute to prediction the 
most, and which can be eliminated without losing 

predictive power. The first attempts for fusing different 
data and modelling modalities show promise,64,96 but 
their clinical usefulness is yet to be determined. 
Moreover, by bringing together mechanism-driven and 
mechanism-agnostic models, we can detect shortcomings 
of our mechanism-driven models and improve our 
mechanistic understanding.104

Conclusion
A wealth of computational approaches to psychiatry 
make navigating this complex, rapidly evolving space 
challenging and understanding the uniqueness versus 
the relatedness of these models more difficult. A stricter 
standardisation of modelling strategies and enforcement 
of comparability is needed to achieve a transparent 
landscape of computational modelling in psychiatry. In 
this Series paper, we show how to dissociate these 
models based on their purpose. Moreover, we have 
highlighted the importance of bringing these disparate 
models and data sources together to increase both 
prediction and interpretability. In particular, the 
combination of mechanism-driven and mechanism-
agnostic models hold great promise to derive biologically 
informed and transparent prediction models, which 
could help to develop novel treatments and interventions.
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