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The Digital Mind: New Concepts in Mental Health 2

From promise to practice: towards the realisation of 
AI-informed mental health care 
Nikolaos Koutsouleris*, Tobias U Hauser, Vasilisa Skvortsova, Munmun De Choudhury*

In this Series paper, we explore the promises and challenges of artificial intelligence (AI)-based precision medicine 
tools in mental health care from clinical, ethical, and regulatory perspectives. The real-world implementation of these 
tools is increasingly considered the prime solution for key issues in mental health, such as delayed, inaccurate, and 
inefficient care delivery. Similarly, machine-learning-based empirical strategies are becoming commonplace in 
psychiatric research because of their potential to adequately deconstruct the biopsychosocial complexity of mental 
health disorders, and hence to improve nosology of prognostic and preventive paradigms. However, the 
implementation steps needed to translate these promises into practice are currently hampered by multiple interacting 
challenges. These obstructions range from the current technology-distant state of clinical practice, over the lack of 
valid real-world databases required to feed data-intensive AI algorithms, to model development and validation 
considerations being disconnected from the core principles of clinical utility and ethical acceptability. In this Series 
paper, we provide recommendations on how these challenges could be addressed from an interdisciplinary perspective 
to pave the way towards a framework for mental health care, leveraging the combined strengths of human intelligence 
and AI.

The vision: precision in mental health 
Mental health remains the only domain in medicine that 
depends entirely on the patient’s ability to report their 
cognitive and emotional states, the course of their 
symptoms, and their interactions with relatives, friends, 
and colleagues. Similarly, current mental health-care 
practices demand that clinicians accurately recognise 
and map these dynamic states to diagnostic, prognostic, 
and therapeutic decisions under the constraints of 
varying resources, skillsets, and temperaments. This 
variability might lead to a hasty and superficial appraisal 
of the patient, or conversely, to a lengthy and exuberant 
exploration of the patient’s mental landscape. The ideal, 
however, assumes that diagnosis and prognosis are 
precise procedures that inform the selection of the 
optimal treatment regimen for the patient, following the 
principles of evidence-based medicine (EBM).

A host of arguments have been put forward to explain 
why our clinical reality deviates from principles of EBM. 
In many settings, therapeutic traditions, stigma, and 
negative attitudes towards mental illness1 impede the 
implementation of EBM.2 Even if EBM is delivered, it 
might fall short of resolving the variability of patients’ 
responses due to its reliance on group-level statistical 
evidence.3,4 Thus, clinicians and patients are still forced 
into cumbersome trial-and-error searches of the best 
therapeutic strategy if mean-based EBM recom-men-
dations are inadequate. This clinical reality under mines 
patients’ trust in a medical remedy of their illness, which 
in turn may exacerbate and prolongate disease pathology 
and precipitate poor outcomes.5,6

As Carr stated, “AI is the field of computer science that 
includes machine learning [algorithms], natural language 
processing, speech processing, robotics and similar 

automated decision-making”.7 The rapid growth of 
machine learning techniques within the artificial 
intelligence (AI) field (panel 1) has stirred hope that 
algorithms might be capable of overcoming the trial-and-
error-driven status quo in mental health care by 
supporting precise diagnoses, prognoses, and therapeutic 
choices.8 Recent reviews9,10 have highlighted (1) the 
methodological strengths and weaknesses of machine 
learning techniques;11,12 (2) their potential for clinical 
translation as the methodological backbone of 
personalised service delivery in mental health8,13 (eg, in 
psychotic14–16 or depressive disorders);17–19 (3) their utility 
for analysing the biobehavioural and environmental 
heterogeneity of the diagnostic system into more 
manageable factors, subgroups, and dimensions;20–24 and 
(4) their ethical implications for psychiatric care and 
research.25–27 However, a synoptical and critical discussion 
of these aspects in light of the expected transformative 
impact of AI-driven precision medicine tools in mental 
health care is currently missing. 

In parallel to the development of these data-driven, 
mechanism-agnostic methods, deeper insights into 
microscopic to macroscopic brain circuitry have given 
rise to mechanism-driven models that explain and 
simulate the development and expression of pathological 
human behaviour28,29 and its response to therapeutic 
interventions.30 In parallel, deep neural learning 
techniques in computational psychiatry, like generative 
embedding, are helping to link disease mechanisms to 
machine learning-based predictions, whereby inferences 
about patient-specific physiology or cognition are being 
used as features for subsequent supervised and 
unsupervised learning.31 Thus, mechanism-driven 
models could provide in-silico probes of the 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(22)00153-4&domain=pdf
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pathophysiological processes at work in a given 
patient,28,32 as demonstrated in a case study of patients 
with monogenic ion channelopathies,33 and thus 
facilitate more precise and personalised treatments (see 
Hauser and colleagues,34 the companion paper in this 
Series).

Finally, digital phenotyping tools, such as wearables, 
ecological momentary assessments, and electronic 
medical records (EMR) rapidly expand the evidence base 
for both mechanism-driven and agnostic modelling of 
human cognition, behaviour, and social interactions, 
providing unprecedented opportunities for the 

implementation of predictive data science in mental 
health care.16,35–37 Similarly, the costs for in-depth genetic 
and molecular testing are dropping, broadening the 
access to omics technologies beyond research and 
academia. Analogous to the rise of computer vision and 
natural language understanding to everyday ubiquity, 
this transition to a big-data, measurement-based care 
(MBC) paradigm in mental health care, which is an 
approach that uses symptom assessments to track patient 
outcomes over time and inform clinical decision 
making,38 could fuel the integration of AI in psychiatric 
research and service delivery (panel 2).39

Panel 1: Glossary

Anchoring (cognitive bias)
Relying on initial impressions too early in the diagnostic process 
and failing to adjust initial impressions when considering new 
information.

Artificial intelligence (AI)
Field of study that aims to enable machines to perceive their 
environment and rationally act on the processed information. 
Generally, AI is differentiated into weak and strong AI. Weak AI 
comprises mathematical models and robots with a narrow 
transactional scope (eg, building specific elements of a car, or 
predicting a set of diagnoses). Strong AI consists of methods that 
emulate natural human behaviour by being able to process diverse 
information sources and accordingly adapt their behaviour.

AI-ready real-world database
A database making structured qualitative and quantitative 
patient-level information available for analysis by means of AI 
methods (eg, enabling the goal of producing decision support 
tools for clinical practice). The database adequately represents 
the mixture of disease phenotypes in the given population in 
terms of disease prevalence, and cross-sectional and 
longitudinal heterogeneity across societal strata and diverse 
population groups. Representativeness guards against model 
bias caused by training machine learning algorithms on 
convenience samples and by applying them to patients not 
included in the original training cohort.

Data-body-machine entanglements
A structured information exchange framework encompassing 
humans and machine elements that aims to augment and 
widen human pattern recognition abilities or decision-making 
skills for the purpose of improved health-care service delivery.

Electronic medical records
Clinical database that collects, visualises, and disseminates 
procedural health information of patients in the given health-
care system over time (eg, referral sources, results of diagnostic 
procedures, and drug prescriptions).

Generative embedding
An integrated analytical strategy that first explains how the 
data might have arisen from the underlying pathophysiological 

and physiological processes, and then establishes machine 
learning models within the explanatory variable space. Thus, 
the goal of generative embedding is to make machine learning 
models’ predictions transparent with respect to the disease-
generating mechanisms.

Machine learning
An instantiation of AI that comprises methods to optimise 
mathematical functions for solving specific tasks (eg, explaining 
the variation of data [unsupervised machine learning], or 
predicting outcomes [supervised machine learning]). Earlier 
machine learning algorithms involved optimisation functions 
that typically weighted the elements of the input data 
(features) to generate output (shallow learning), whereas 
newer deep learning algorithms incorporate the feature 
engineering process previously accomplished by human 
experts.

Measurement-based care
A mental-health-care paradigm that relies on electronic medical 
records and that allows patients, relatives, and health-care 
providers to generate, process, analyse, and decide upon 
individualised quantitative information of mental conditions. 
Measurement-based care is supported by AI algorithms that aid 
health-care professionals, patients, and relatives to parse and 
filter rich health-care information into actionable health-care 
indications.

Natural language processing
Machine learning algorithms capable of parsing free written or 
spoken language into numerical representations that can be 
further analysed by predictive systems to predict disease 
outcomes or infer diagnoses, for example.

Premature closure (cognitive bias)
Accepting a diagnosis before it has been fully verified and 
believing in a single explanation of a situation without 
investigating other possibilities.

Reliance on authority (cognitive bias)
Relying unduly on authority or technology.
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However, while these innovations promise to 
revolutionise health care, little progress has been made 
toward real precision mental health applications.40,41 
Implementation of these applications is often an 
afterthought. Wiens and colleagues42 described current 
strategies as “far from optimal”, and current machine 
learning approaches rarely consider implementation or 
stakeholder-driven considerations in model design or 
evaluation. Despite some promising examples of AI in 
real-world mental-health-care settings,43 modelling and 
implementation phases remain largely disconnected. 
Accordingly, treatment strategies that rely on such 
advanced techniques might neglect grounded psychiatric 
evaluations, and might not display the empathic concern 
and awareness of human physicians.44 As a result, 
individuals who only rely on AI-based interventions are 
often discouraged to pursue treatment.45 Therefore, we 
will reflect on the current practices and unmet needs in 
the development, validation, and implementation phases 
of computational models from the end users’ and health 
systems’ perspectives. Thus, we aim to complement the 
methodological perspectives on psychiatric data science 
provided by Hauser and colleagues34 and hope to 
elucidate the cascade of translational challenges that 
need to be addressed for computational methods to 
become a reality in mental health.

Data and modelling considerations for 
successful implementation into health care 
Opportunities and challenges of big data in mental 
health care 
The development of robust predictive models starts with 
high-quality, reliable, and sufficiently representative data 
that capture both the variability, complexity, and 
specificity of the targeted phenomena (figure). Outside of 
health care, these principles have been exemplified by 
the research fields of computer vision and machine 
translation. First, ImageNet, an image-based ontological 
database comprising 14 million images, laid the 
groundwork for super-human object recognition that can 
now be delivered on demand by convolutional neural 
networks. Publicly released in 2007, this database both 
democratised and stimulated predictive data science, 
because it encouraged both collaboration and competition 
among AI researchers worldwide. Based on ImageNet, 
this community annually competed for the best computer 
vision algorithms and within only 7 years, improved 
algorithmic object recognition from an accuracy of 71·8% 
to 97·3%.46 Similarly, large corpora of parallel language 
segments—extracted from the internet using web 
crawlers, processed by human editors, and postprocessed 
by machine learning—enabled the machine translation 
field to transit from conventional statistical approaches 
to deep neural network algorithms.47 A prominent 
example is the open-source OPUS collection, which 
contains 57 corpora covering 700 languages and 
70 000 aligned bitexts across all corpora.48 The availability 

of these data accelerated the development of deep 
autoencoders based on self-attentional and attentional 
techniques, such as CUBBITT, which recently reported 
human-level translation performance.49

These examples illustrate that carefully curated datasets 
encompassing the heterogeneity of patient journeys 
across biological, behavioural, and environmental scales 
could encourage the development of machine learning 
algorithms in mental health care that can support both 
better prediction and understanding of diagnoses and 
forthcoming outcomes through inference and explan-
ations (figure).50–52 In particular, the imple-mentation of 
MBC based on digital phenotyping tools has been 
considered as the prerequisite for generating AI-ready 
mental-health-care data.53 However, MBC services are 
hampered by challenges ranging from data security and 
confidentiality concerns to system-level service 
bottlenecks like the complete absence of training 
resources, difficulties in implementing broad consent 
mechanisms, and fragmentation of data formats.54–57 
Also, the widespread belief that clinical judgement is 
superior to quantitative measures might have stalled the 
transition toward a digital health-care framework, 
although empirical data support the increased quality of 
care delivery once such systems are implemented.39 
Ultimately, these limitations hamper the adoption of 
MBC practices, and delay the generation of AI-ready real-
world databases of mental health disorders.

Promises and limitations of EMR-based databases for 
predictive data science 
The Clinical Record Interactive Search (CRIS) system, 
developed by The National Institute for Health and Care 
Research Maudsley Biomedical Research Centre, is one 
example of how these challenges could be overcome. CRIS 
that has collected over 400 000 anonymised mental health 
records since 2007. More recently, CRIS has been 
augmented with a portfolio of AI-powered natural 
language processing (NLP) algorithms that sift records for 

Panel 2: Key recommendations

• Transition to a measurement-based system of mental-health-care delivery that 
provides privacy-protecting broad-consent policies to collect large-scale 
representative datasets for the training and validation of generalisable AI tools

• Implement debiasing strategies during data acquisition, model training and validation 
to minimise the risk of erroneous model predictions at the point-of-care level, and 
increasing health-care disparities at the system level

• Enrich electronic medical record systems with procedural metadata to render 
predictive health-care processes, decisions, and results as transparent and actionable 
as possible during the model interpretation phase

• Strengthen research into human–AI interactions to better delineate personal and 
system-level biases on the human side, and design AI methods that optimally adapt to 
the specific user and health-care context

• Invest into extending medical curricula towards the concepts, opportunities, and 
challenges of AI-driven digital health care

For CUBBITT see https://lindat.
mff.cuni.cz/services/translation/

https://lindat.mff.cuni.cz/services/translation/
https://lindat.mff.cuni.cz/services/translation/
https://lindat.mff.cuni.cz/services/translation/
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more than 80 different target phenotypes.58 Furthermore, 
the predictive utility of EMR systems has been demon-
strated using the IBM Explorys Platform, a database that 
collates longitudinal, anonymised EMR datasets from 
different health-care systems into a standardised format.52 
Based on a training sample of 102 030 individuals, a 
recurrent neural network learned to predict psychosis by 
analysing EMR-coded patient journeys and achieved an 
area-under-the-curve of 0·80 in the external validation data 
(n=4770). These findings indicate that EMR data composed 
of information tokens capturing prescriptions, procedures, 
encounters, admissions, observations, and laboratory 
results could outperform conventional measures of 
psycho pathology, like observation-based ratings or patient-
reported outcomes, both in terms of multivariate com-
plexity and achievable sample size.

However, the strengths of EMR-based predictive 
feature spaces should be weighed against their obvious 

limitation: these data are collected to manage individual 
patient care, not to train predictive algorithms. As such, 
they reflect patients’ footprints across highly variable and 
potentially idiosyncratic health-care contexts. Many of 
these event-based features are therefore susceptible to 
multiple sources of bias at various levels of the respective 
health-care system59 (eg, the ordering and timing of 
laboratory tests is often dictated by the physiological 
process the test is measuring). Here, bias could stem 
from the fact that a great deal of information is contained 
in the context within which a laboratory test is taken60—
the same numerical value of a creatinine test can have 
different interpretations for a chronic kidney disease 
patient and for a patient with acute kidney injury—but 
most EMR datasets ignore such context to include only 
numerical values.61 EMR datasets might also be subject to 
change and inconsistency if service pathways and 
practices are updated, calling for ongoing recalibration of 

Figure: An artificial intelligence (AI)-informed learning health-care system
MBC pathways are embedded into a digital health-care space. The digital space covers different layers of granularity, including stakeholder-level information 
(eg, clinicians’ notes, patient-reported symptoms and outcomes, examinations, and treatments) and system-level data (eg, disease prevalence and socioeconomic 
parameters in a given community). Pathways are supported by AI-based decision support tools, which provide transparent predictions for shared decision making. 
Data generated within the digital health-care space are curated and stored within a representative ontological database. Multiple health-care contexts 
(eg, representing different health-care systems) feed similarly into the database so that a given condition is represented through multiple data instances. At regular 
intervals, data are extracted by interdisciplinary model-development teams and analysed using, for example, ethical AI methods to develop new or recalibrate 
existing prediction tools. Tools are made available via model libraries to clinical scientists who test them for clinical utility in stratified RCTs. Tools that successfully 
augment or improve the AI-informed learning health-care system, are embedded into the digital health-care space. This process is organised and analysed by 
implementation scientists. To mitigate bias and safeguard predictive fairness across the value chain from bedside to bench and back to bedside, regulators and 
stakeholder organisations supervise the effects of AI-augmented health-care pathways on patients’ outcomes, the data curation and model development processes, 
and the generation of model-based clinical evidence and implementation. Colour gradients for blocks B to E show the patients’ journey from lightweight accessible 
examination methods towards specialised restricted assessment tools in a given health care context. mHealth=mobile health. MBC=measurement-based care. 
RCT=randomised controlled trial.
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predictive algorithms and downstream stratified 
treatment decisions. Finally, it remains unclear how 
EMR-based AI algorithms could inform personalised 
treatments, because many of their predictive features are 
difficult to interpret or act on—either because they only 
indirectly relate to the biobehavioural processes under-
lying the targeted mental conditions, or because they 
depend on information not recorded in the EMR 
(panel 2). These unknowns could similarly concern other 
digital phenotypes that are collected passively by 
smartphones and other wearables. It is attractive to 
believe that low-cost, ubiquitous measures of social 
media use, physical activity, sleeping patterns, and heart 
rate variability could provide high-throughput substitutes 
for psychiatric or psychological ascertainment and 
patient-reported outcomes collected via questionnaires 
or ecological momentary assessments;16,62 however, the 
available clinical and neurobiological evidence 
supporting such assumptions is still insufficient.63,64

Moving forward, the associations between new digital 
phenotypes and established psychometric, neuro-
psychological, and neurobiological data domains should 
be investigated to identify digital features that could be 
used as accurate proxies for a specific data domain. 
Thorough psychometric, clinical, and biological 
validation of digital phenotyping could facilitate big-data-
based deep-learning approaches in psychiatric research 
and ultimately the implementation of diagnostic and 
prognostic models in clinical real world.

Tensions in selecting the right modelling approach 
Besides considering the data requirements for model 
generation and validation, the focus should also rest on 
the type of models that might be best suited for 
implementation. Occam’s razor and the robustness 
requirement for predictive models operating in the 
clinical real world might indicate a preference for simpler 
modelling approaches.65 Conversely, given the promise of 
performance from deep learning,66 this class of model 
might seem more attractive, although the trade-off 
between shallow and deep learning as a function of 
sufficiently large, well characterised samples needs to be 
systematically investigated going forward. In the first 
paper in this Series, Hauser and colleagues present an 
extended discussion surrounding this topic.34

Regarding implementation, as machine learning 
algorithms permeate contemporary information systems 
in domains including health care, studies have noted that 
machine learning is often presented as being universally 
applicable and that the application of machine learning 
without special expertise is actively encouraged.67 A 
positive aspect is that universality can allow general-
isability and ensure robustness beyond boutique models 
built for specific populations or applications. Machine 
learning can enable quick adaptation to novel, previously 
unseen contexts, by harnessing knowledge from historical 
data with similar patterns and characteristics (a feature 

offered by pretrained deep learning models), that has 
been harnessed to extract information from radiology 
reports68 and from clinical narratives, as described.69 
Generalisability is also a particularly important consid-
eration during implementation, because a prevalent 
criticism of using passive sensing data in mental health, 
has been that the models do not adapt to new contexts, 
given the high clinical heterogeneity in the experience of 
mental illness, and that models tend to be overfit or are 
biased to the particular sample or context, thus remaining 
underpowered to support translation and transferability.70 
Furthermore, generalisability is important because it can 
ensure modelling approaches are robust not only in terms 
of their performance on unseen data, but also against the 
messiness of real-world mental health data that often 
include inaccurate, incomplete, or missing entries, and 
the subjectivity of symptoms of mental ill health.71

Despite these strengths, researchers and practitioners 
will need to temper their enthusiasm, because although 
generalisable machine learning might deliver superior 
technical performance across a wide range of tasks, it 
could also compound societal inequities when they are 
naively adopted (eg, without taking into account the 
given application context and target groups).72,73 
Marginalised or low-resource communities often have 
unique mental health needs;74 however, AI models of 
mental health are often built on majority identity 
populations or convenience samples of individuals who 
are likely to be willing to volunteer their personal and 
sensitive data for algorithmic inferences.75 Consequently, 
these models are generalisable in many contexts for 
majority populations, but might not necessarily be 
sensitive to the needs, demands, and desires of 
individuals who are disproportionately disadvantaged.76 
As AI algorithms are implemented in the real world, they 
will need to factor in the situations of people who are 
marginalised in terms of access to mental health care 
and treatment. As mental illness has different effects on 
gender, racial, and ethnic groups,77 researchers have also 
advocated the use of various debiasing approaches 
(eg, appropriate undersampling or oversampling of data 
to correct for demographic representation and 
readjusting model weights) in model development to 
calibrate performance against inequities.78 A recent study 
showed that regional and racial biases present in 
machine learning models that were trained to rapidly 
detect COVID-19 on the basis of large-scale real-world 
patient data, could be successfully mitigated by using 
generative adversarial networks (panel 2).79

Building safeguards into models 
It is important to consider the effects of AI in clinical 
decision making. When AI starts to permeate these 
decisions, incorporating safeguards into the models 
becomes even more important. Unscrupulous AI could 
exacerbate social inequities by aggravating bias or 
demonstrate prejudice by arriving at assessments for 
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individuals based on race or gender without any 
grounded clinical rationale.25 Non-diverse, unrep-
resentative training data can intensify already biased 
evaluations. Such biases could arise due to systemic 
racism, which leads to reduced access to treatment 
among minority ethnicities, resulting in racialised 
treatment and interventions (eg Black individuals being 
at an increased risk of compulsory detention).80 Machine 
learning models trained with such data will over-
represent specific human biases and propagate inequity 
and injustice in mental health care, inventing “new 
classes which do not correlate with protected 
characteristics”.7

A safeguard to ensure effective implementation centres 
around ascertaining when, how, and for whom to 
prioritise predictive performance over providing 
transparent and interpretable predictions.81 These 
considerations are complicated by the fact that many 
projects on mental health and AI include interdisciplinary 
teams, involving computer scientists and clinicians.82 
Different team members could have different goals for a 
project of this nature, stemming from their domain-
specific training—computer scientists tend to prioritise 
predictive precision, whearas clinical researchers tend to 
be interested in the mechanisms and variable 
relationships that contribute to a mental health outcome 
(see the first paper in this Series by Hauser and 
colleagues34 for a discussion of mechanism-driven and 
mechanism-agnostic models). We argue that, for well 
defined and circumscribed machine learning application 
scenarios at the point of care, predictive machine 
learning might be sufficient, but the problems commonly 
experienced in mental health care—where objectives are 
not always clear (eg, which specific treatments or 
diagnostic criteria best describe a patient’s dynamic 
state), and where a multitude of environmental, clinical, 
and biological factors affect the outcome—mean an 
explanation is necessary for accountability.83 In practice, 
both prediction and explanation should be balanced;84 
hence, future work needs to consider machine learning 
methods that are precise and interpretable to concurrently 
satisfy both interests in the implementation phase.

Regarding safeguards in implementation, researchers, 
developers, and clinical practitioners should come to a 
consensus about how much error is acceptable for a 
machine learning model and how to better explain error 
to relevant stakeholders, so that the derived information 
could be actionable (eg, to inform treatment decisions, 
including medication, hospitalisation, and crisis 
interventions). Clinical utility is a particularly notable 
safeguard for implementation considerations because 
previous research has shown that despite overall high 
accuracy, carefully chosen trade-offs between specificity 
and sensitivity of machine learning models will be 
needed for effective risk stratification.85 For instance, 
smartphone sensing data are known to lack sufficient 
information on adverse events, such as experiences of 

paranoia. As a result, when such data are used to build 
algorithms, they might foster imprecise decision making 
that could even harm an individual because it does not 
incorporate relevant adverse effects, reactions, or events.86 
Therefore, researchers could consider model error-
representation paradigms that adapt to the clinical 
context, the patients’ unique needs, and respective ethical 
considerations.13 Future research can explore the 
understanding and acceptability of error and uncertainty 
and how best to mitigate it in a principled way. Here, 
researchers can benefit from theory-driven computational 
models that incorporate the predictive capabilities of 
both model accuracy and performance, as well as 
acceptability and explainability in feature interpretation.

Safeguards extend beyond clinical utility. We argue that 
equity, in terms of gender, sex, race, ethnicity, socio-
economic status, and importantly mental-health-care 
access are equally important, especially given that most 
digital exhaust data from smartphones, wearables, and 
social media often exclude key contextual information 
needed to assess mental health at the interpersonal, 
cultural, social, economic, and environmental levels.87 To 
safeguard against predictive biases and inequities in 
EMR systems like the CRIS system, we advocate a need 
to adopt strategies built for diverse populations spanning 
time, geography, and socioeconomic status, actively 
focusing heterogeneous subpopulations with contrasting 
individual differences, and leveraging signals from 
complementary sources that capture a wide range of 
patterns of behaviour and conditions. Analogous to the 
aforementioned computer vision and machine tran-
slation examples, an ontological database organ isation 
(figure) that explicitly mitigates bias risks through 
multiple data representations of a given concept could 
foster the generation of more equitable predictive 
systems in mental health care.

Robust, adaptive, secure, and transparent tools 
for a new paradigm of mental health care 
Thus far, we have described how implementation 
considerations need to be a part of the modelling process 
from the very start of the development of the underlying 
algorithms. Here we discuss outstanding issues that 
remain once AI models are incorporated at the point of 
care. With clinical translation in mind, Sendak and 
colleagues88 proposed four steps necessary to facilitate 
model implementation: (1) design and development to 
support clinical decision making, (2) evaluation and 
validation, (3) diffusion and scaling across health-care 
settings, and (4) sustained engineering to remain current 
with clinical practice needs. Building upon these 
guidelines, we specifically ask if mental health care is 
ready for machine-learning-based diagnostic, prognostic 
and therapeutic decision making.

Despite smaller studies demonstrating efficacy and 
feasibility, many of the robotic therapists (panel 3) have 
encountered important obstacles. Concerns have been 
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expressed about their clinical veracity and potential in 
supporting improved mental health outcomes for 
patients,96 the upfront costs, utility, and potential hazards 
of specialised information technology infrastructure.25 
Proprietary algorithms, such as that from Facebook, have 
also been met with criticism due to their lack of 
transparency, threats due to big-data surveillance, and 
potentially increased involvement of law enforcement as 
an approach to crisis mitigation.97 User consent and 
monetisation of sensitive data remain unclear issues, as 
was noted in the public backlash that followed Crisis Text 
Line after they shared their data with a for-profit 
organisation.98 Finally, there are ethical dimensions to 
consider in deploying conversational AI agents for 
mental health.99 Due to the lack of clinical grounding and 
context in these emerging technologies, responses to 
emergencies like the disclosure of immediate harm or 
suicidal ideation are often restricted and sometimes 
dangerously inappropriate, as Woebot and Wysa have 
reported.100

Readiness for real-world deployment 
Important questions concerning model implementation 
typically relate to the optimal timing of model 
deployment, and the minimum levels of algorithmic 
precision required for informing decisions. Here, a gap 
exists between academically acceptable gains in predictive 
performance and practical demands (the latter might be 
higher); scholars have critiqued that the practical gains of 
many machine learning algorithms, ranging from 
predicting consumer behaviour to predicting stock 
market indices, do not necessarily improve much over 
state-of-the-art prediction models.101 In the context of 
mental health, if model performance (eg, in terms of 
accuracy) matches clinicians’ assessments, it could 
broaden the availability of diagnostic or prognostic 
services in the community in times when the psychiatric 
workforce is shrinking or when the demand is increasing, 
such as during or in the aftermath of the COVID-19 
pandemic.102 Nevertheless, many digital mental health 
projects aim at achieving improved precision, which is 
counteracted by the inherent uncertainty of machine 
learning. In this case, the question is: how do we support 
graceful failure, when our data or models cannot stand 
up to the potential use case? Or, how can algorithms be 
designed to do no harm, as per the Hippocratic oath? 
Researchers in digital mental health have long been 
concerned about the considerable harm caused by 
suboptimal models made publicly available in the 
interest of open science and reproducibility.7 A good 
example comes from a recent study that built models to 
predict health-care-associated infections and found that 
attributes associated with risk at one site were protective 
in another.103 If such a model were to be indiscriminately 
implemented at multiple sites and the variables under 
consideration were to be corrected for during 
implementation, it could result in harm at those sites 

where the variables provided protective advantage to 
patients. Thus, doing no harm would need to include 
strategies to operationalise and embed the contexts in 
which the model qualifies to be applied to certain patient 
groups. Similar to Wiens and colleagues,42 we suggest 
that researchers go beyond predictive performance when 
comparing models, by including an application-specific 
“analysis of the trade-offs between simpler, faster, and 
more explainable models versus complex, slower but 
more accurate models”. 

Speaking further about real-world deployment, studies 
have repeatedly shown how individual technology-based 
mental health interventions do not exist in a vacuum;104 
rather, they form a part of socially situated and structurally 
influenced pathways to care. Unfortunately, most 
machine learning solutions in mental health are being 
developed in silos, without the inclusion of decision 
makers, experts, and end users.42 Specifically, individual 
factors, such as gender identity, sexual orientation, or 
levels of distress, might influence the types of care that 
people seek, which in turn affects where and how they 
look for resources when in need.105 Consequently, when 
attempting to access the desired care, barriers rooted in 
the design of mental health systems (eg, helplines) often 
limit people’s ability to engage with the resource, and 
further shape their interactions with other forms of care. 
For instance, people were dissuaded from calling mental 
health helplines after having poor experiences in therapy 
and, conversely, they were hesitant to try therapy after 
poor experiences of helplines.104 These intersections 
between individual needs, societal factors, and the design 
of the care system clearly demand that researchers 
consider how structural factors impede an individual’s 

For more on Woebot see 
https://woebot.io/

For more on Wysa see https://
www.wysa.io/

Panel 3: Existing real-world implementations of artificial intelligence in mental 
health care

AI is increasingly incorporated into digital interventions, particularly web and smartphone 
apps, to enhance user experience and optimise personalised health care. Although many 
of these apps use simplistic data science rather than sophisticated AI, they have been 
recommended as adjuvant care and are being considered for reimbursement by insurers.89 
Second, the newsfeeds and forums of Facebook, Twitter, and Reddit provide rich material 
for natural language processing systems.90 Consequently, Facebook has implemented 
machine learning tools to identify people at risk of self-harm.91 Similarly, Crisis Text Line, a 
text-messaging-based crisis counselling hotline has been using machine learning to 
retrieve content that can signal a person at risk of suicide or self-harm.92 The goal of such 
a program is to inform the person on hold to move to the front of the queue to be helped. 
Another example is the REACH VET program, which has leveraged its AI-ready electronic 
medical record database to introduce machine learning tools that identify individuals at 
high risk of suicide.93 Chekroud and colleagues94 similarly developed and deployed an 
AI-based decision support system to improve antidepressant treatment selection.94 Third, 
with conversational AI steadily improving, AI agents incorporating sophisticated natural 
language processing can now simulate a modest conversation employing 
psychotherapeutic techniques, such as cognitive behavioural therapy.95 Some examples 
include Woebot or Wysa, which provide mood tracking and cognitive behavioural therapy 
modules for the management of depression and anxiety.

https://woebot.io/
https://www.wysa.io/
https://woebot.io/
https://www.wysa.io/
https://www.wysa.io/
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care trajectory, and how the implementation of AI should 
recognise these complexities. Moreover, as Pendse and 
colleagues106 argued, patients’ needs might not necessarily 
be met by adding AI into existing pathways to care, and a 
Rawlsian notion of approaching justice in access to 
mental health-care solely on the basis of the existence of 
resources or institutions might not be enough.

Therefore, to support the translation of machine learning 
algorithms into technology-driven interventions, imple-
mentation research should identify ways to integrate them 
into both existing and newer pathways so that socio-
economic and political barriers in these pathways are over-
come and not aggravated (panel 2).107 Following Pendse 
and colleagues,106 we stress the importance of analysing 
how interlocking and intersecting societal systems 
influence who can and cannot access adequate care, and 
introducing AI on the basis of those insights. AI 
implementations in mental health systems might consider 
intelligent matching of resources (eg, helpline volunteers 
or crisis counsellors) to an individual’s needs. Auxiliary 
support systems that use conversational AI could provide 
preclinical emotional and informational support to people 
without a path or ability to access formal care, such as via 
online forums and communities. Also, these tools could 
accelerate people’s access to more specialised mental 
health services that use machine-learning-based clinical 
and neurobiological workflows to guide health-care 
professionals’ treatment decisions (figure).108

The future of AI-informed mental health work 
Several questions about the future of mental health care 
should be considered in tandem with implementation 
approaches. In a future where machine learning 
algorithms are adopted to administer treatment to 
patients or support public health decision making, it will 
be important to ensure that they comply with existing 
work practices of human experts (psychiatrists and 
therapists). Specifically, when AI models are imple-
mented, conflicts between human experts and models 
could arise. Such conflicts could result in situations in 
which algorithm-based prognostication is in 
disagreement with clinicians’ judgements, patients’ 
expectations, or patients’ self-reports. Although clinical 
decision support based on deep learning methods could 
be helpful in many health settings (eg, radiology),109 we 
argue that the mental health and psychiatry domains 
might benefit from weak AI, where such discrepancies 
and conflicts can be controlled more easily, and where 
there might be a need to develop multiple types of AI 
applications targeting specific tasks (eg, triggering an 
intervention vs recommending therapy) or symptom 
categories (eg, Research Domain Criteria informed 
treatment).110 Furthermore, integrating these algorithms 
in existing work practices raises the question of skill 
acquisition. Recently, researchers have speculated that 
real-world deployment of AI in psychiatry would also 
require human experts to understand how machine 

learning and AI models work.111 As a solution, researchers 
have advocated creating new roles within the treatment 
ecosystem called digital navigators, to enable better 
assimilation of AI technology in mental health care; 
essentially, such an individual can serve as an interface 
between the technology and the clinician, and the 
technology and hence the patient.112 In future research, it 
would be worthwhile to investigate the minimum skill 
requirements for the sufficiently safe integration of AI 
algorithms in point-of-care services and thus empirically 
decide about the need additional health-care roles, such 
as digital navigators.

We acknowledge that this future of mental health care, 
where algorithms are a part of the decision making 
process, is likely to affect human–human relation-
ships113—whether this is through the patient–clinician 
therapeutic alliance or coordination between public 
health personnel. To this end, the logistics of imple-
mentation need to be considered as some patients might 
perceive the clinicians’ use of patients’ sensitive data in 
AI models to be dehumanising82 or even presenting a 
conflict of interest because of sensitive non-clinical 
information (eg, from social media or a GPS sensor) 
being revealed inadvertently. Eroding trust in AI due to 
risks of surveillance114 and poor boundary regulation115 
might further damage the therapeutic relationship or 
present challenges to candid patient–clinician conver-
sations. Therefore, as we consider how real-world 
machine learning systems would function over time, we 
should recognise the importance of sustaining social 
relationships and protecting them against complicated 
interactions and compromised interpersonal boundaries. 
To this end, future research would benefit from engaging 
with technofeminist scholarship and theories of care.116 
This literature provides a generative analytical framework 
for conceptualising new types of human–non-human 
interactions and data-body-machine entanglements. As 
AI-based technologies in mental health care are 
increasingly integrated into a wider range of medical 
settings and everyday activities,117 these theories offer a 
starting point to rethink purely technical approaches to 
AI by rebalancing the focus of the implementation 
process toward stakeholder needs, interactions, and 
social concerns (panel 2).

Clinician-machine disconnects 
One of the major concerns that have been noted in recent 
digital health research has been the threat AI algorithms 
may pose to clinical professions, particularly 
psychiatrists.118 With its ability to produce precise AI 
models, scholars have noted that AI challenges orthodox 
boundaries of traditional medical expertise.119 Some 
medical informaticians argue that the core functions of 
physicians—such as gathering and monitoring patient 
information, diagnostics, prognostics, and formulating 
personal treatment plans—are all susceptible to 
disintermediation.120 However, other AI experts predict 
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that health-care professionals will always play a role in 
medical care, with humans and machines working as 
team players.121

Although we think that the former dystopian scenario 
is less probable, the introduction of AI in mental health 
clinical practice might produce scenarios that have not 
yet been conceived of. For instance, AI could facilitate the 
work of psychiatrists by highlighting previously 
inaccessible or less understood symptoms, behavioural 
patterns, and collateral information that can inform 
evidence-based decisions, and helping to meet some of 
the growing demand, as discussed earlier. That said, 
because of the underlying uncertainty of machine 
learning models,   clinicians will need to guard against 
well known, but now technology-amplified cognitive 
biases, such as anchoring, premature closure or reliance 
on authority (panel 1).121 To counteract these biases, AI 
could take the form of mixed-initiative interfaces,122 
which is an interaction strategy whereby human and 
computer agents respond to each other’s creative 
contributions to improve output and at the most 
appropriate time. In the context of mental health care, 
these interaction strategies could consist of models that 
strengthen the clinicians’ and patients’ shared decision 
making abilities by (1) automatically collating 
informational content from the literature on the patient’s 
condition and prognosis at the point of care, and (2) 
adapting this information by integrating the users’ 
profiles, preferences, contexts, and uncertainties via AI-
powered dialogue techniques.

However, as humans and algorithms share initiatives in 
such a setup,124 legal and ethical considerations 
surrounding the duty to rescue would also have to be 
navigated. Additional issues might include unclear 
boundaries of how much freedom there needs to be for the 
human and the machine, and how to navigate disconnects 
and disagreements. In a crisis scenario, for instance, 
whose final word should prevail? If the machine overrides 
the human in some situations, who will be held liable, 
given the many harms that can be caused when the chosen 
intervention is inadequate? To address these challenges, 
national and international regulatory policies will need to 
be defined in parallel to model implementation, thus 
avoiding the increase of health-care disparities through 
biased personal and institutional use of AI. Legal protection 
for the clinicians within the implementation framework 
will also have to be put in place, so that clinicians feel safe 
when using AI in their everyday work.

Conclusion 
As digital technologies enrich mental health care, 
advancements in AI promise to build a new future in 
which individuals receive timely, accurate, and context-
ualised care, and clinicians are empowered to make better 
decisions (figure). This Series paper discussed the 
prospects of this future from the perspective of imple-
mentation. By integrating implementation considerations 

from the modelling to the deployment stages of AI-driven 
health care, we considered the challenges that lie ahead.

Moving forward, the partnership of computational and 
clinical researchers throughout the modelling-to-
implementation pipeline will be needed to improve rigour 
and mitigate issues surrounding practical use (figure). 
Additionally, as the field moves towards generalising these 
findings to new types of data, new populations, or new 
opportunities for implementation, validity and clinical 
utility should be carefully maintained throughout the 
various modelling practices. Navigating these issues 
requires the need to find ways to balance between the 
disciplinary tensions that emphasise testing and evaluation 
of AI technology in different ways. Support from 
international collaborative and regulatory infrastructures 
can advance model creation towards proper validation and 
clinical implementation (panel 2). Furthermore, imple-
mentation considerations will also need to represent and 
augment heuristic decision making, such as how clinicians 
make diagnostic, prognostic, and therapeutic decisions, 
and respective mistakes.125 Modelling these processes will 
be helpful in informing the next generation of predictive 
tools that optimally augment clinical decision making 
toward a cybernetic model of mental health-care.108 Broadly, 
we hope our reflections will provide valuable perspectives 
and directions to the emergent field of digital mental 
health, especially when it comes to taking the potential of 
precision mental health tools from research to practical 
use.

Search selection and strategy criteria

The ideas and content of this work were developed through a series of discussions between 
the authors, which took place between Sep 21 and Dec 2, 2021. These discussions followed 
a multistage, iterative process, in which the authors drew upon their distinctive disciplinary 
trainings, experience, and expertise in computer science, (computational and precision) 
psychiatry, and digital mental health to identify candidate topics for consideration. This 
wide angle of perspectives on the development and integration of AI tools in future mental 
health-care led to the formulation of two primary foci (and respective papers) on modelling 
and implementation challenges of AI in mental health care. The two primary foci were 
discussed in-depth, respective content ideas were further grouped into sections, and 
keywords for literature search on PubMed and Google Scholar were formulated for each 
section. Text-based keyword search was performed using: (“mental disease” OR “mental 
illness” OR “mental disorder” OR “depression” OR “psychosis” OR “anxiety” OR “addiction” 
OR “suicide”) AND (“precision medicine” OR “precision psychiatry” OR “computational 
psychiatry” OR “digital phenotyping” OR “machine learning” OR “pattern recognition” OR 
“pattern classification” OR “multivariate pattern analysis” OR “deep learning” OR “artificial 
intelligence”) AND (“decision support” OR “diagnosis” OR “prognosis” OR “prediction” OR 
“mechanism” OR “simulation” OR “social media” OR “social network” OR “smartphones” OR 
“wearables”). In addition, relevant references from the obtained papers were also 
considered. Obtained papers (published after 2010) were critically (non-systematically) 
selected based on the representativeness of the work for the given section topics and the 
quality of research. The selection of references was discussed and supplemented as required 
to substantiate the authors’ viewpoints from different perspectives. The focus was on 
papers published in English, but papers in German (ie, the language the authors also spoke) 
were also considered.
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