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Abstract
We investigate the non-equilibrium dynamics of isolated quantum spin systems
via an exact mapping to classical stochastic differential equations. We show
that one can address significantly larger system sizes than recently obtained,
including two-dimensional systems with up to 49 spins. We demonstrate that
the results for physical observables are in excellent agreement with exact results
and alternative numerical techniques where available. We further develop a
hybrid stochastic approach involving matrix product states. In the presence of
finite numerical sampling, we show that the non-Hermitian character of the
stochastic representation leads to the growth of the norm of the time-evolving
quantum state and to departures for physical observables at late times. We
demonstrate approaches that correct for this and discuss the prospects for further
development.

Keywords: quantum spins, quantum quench, stochastic processes, non-
equilibrium

(Some figures may appear in colour only in the online journal)

1. Introduction

Experimental progress on cold atomic gases and trapped ions has led to pristine realizations

of isolated quantum spin systems in and out of equilibrium [1–4]. This has stimulated intense

theoretical activity to expose the unitary dynamics of paradigmatic spin Hamiltonians, with a
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view toward extracting universal results [5–7]. Much of the attention has focused upon one-
dimensional spin models due to the availability of analytical [8–13] and numerical [14, 15]
techniques. This has yielded fundamental insights into the nature of thermalization [16–18] and
to the development of new techniques [9, 19, 20]. The prediction of dynamical quantum phase
transitions (DQPTs) occurring in the time-domain [21] has been confirmed by experiment
on Ising Hamiltonians realized with trapped ions [22]. This opens the door to time-resolved
dynamics in tunable quantum spin systems, allowing direct comparison between theory and
experiment.

A recent theoretical approach to non-equilibrium quantum spin systems permits an exact
mapping to classical stochastic differential equations (SDEs) [23–27]. The time-evolution of
quantum observables is encoded by classical averages over independent realizations of the
stochastic process. The method is therefore inherently parallelizable and can be implemented
by numerically sampling the SDEs [26, 27]. The stochastic approach is rather general, since it
applies to both integrable and non-integrable Hamiltonians, including those in higher dimen-
sions. The stochastic framework also reveals deep connections between classical and quantum
dynamics, as recently illustrated in the context of DQPTs [26, 27].

In this work, we show that the stochastic approach to quantum spin systems can address
significantly larger system sizes than previously possible [26, 27]. This is obtained through the
use of a Heun integration scheme and the elimination of divergent stochastic trajectories. We
show that the results obtained for the one-dimensional (1D) quantum Ising model are in very
good agreement with those obtained from free fermions [21] and via matrix product operator
(MPO) methods [28]. We also provide results for the two-dimensional (2D) quantum Ising
model with up to 49 spins. We relate the growth of stochastic fluctuations at late times to the
non-Hermiticity of the effective stochastic Hamiltonian. Due to the impact of finite numeri-
cal sampling, this leads to an increase in the norm of the time-evolving quantum state and to
departures for observables at late times. This can be partially corrected by rescaling by the
norm. We show that a hybrid numerical scheme combining SDEs with matrix product states
can reduce the number of noise variables, thereby extending the simulation time. We conclude
and provide directions for research.

2. Stochastic approach

Here, we briefly recall the principal steps in the stochastic approach to quantum spin systems
[23–25] following the notations in [25, 26]. We begin with a generic Heisenberg Hamiltonian

Ĥ = −1
2

∑
ijab

Jab
i j Ŝa

i Ŝb
j −

∑
ia

ha
i Ŝa

i , (1)

where i and j indicate lattice sites, Jab
i j are exchange interactions, and ha

i are magnetic fields.

The spin operators, Ŝa
i , obey the canonical commutation relations, [Ŝa

i , Ŝb
j] = iεabcδi jŜc

i , with
� = 1 and a, b, c ∈ {x, y, z}. The corresponding time-evolution operator between times ti and

t f is of the form Û(t f , ti) = T e−i
∫ t f

ti
Ĥ(t)dt, where T denotes time-ordering. The key idea is that

the exchange interactions can be decoupled using a Hubbard–Stratonovich transformation,
which introduces fluctuating stochastic fields ϕ [23–25]. The time-evolution operator can be
expressed as

Û(t f , ti)=
∫

Dμ(ϕ)T exp

[
−i
∫ t f

ti

dt
∑

ja

(
−1√

i
ϕa

j−ha
j

)
Ŝa

j

]
, (2)

2



J. Phys. A: Math. Theor. 53 (2020) 50LT02

with the Gaussian noise measure Dμ(ϕ) =
∏

jaDϕa
j exp

(
− 1

2

∫ t f
ti

dt
∑

ijabϕ
a
i (J−1)ab

i j ϕ
b
j

)
[23, 25]. This formulation describes N decoupled spins evolving under effective ‘magnetic’
fields. It is inherently non-Hermitian due to the factor of 1/

√
i, and the presence of complex

fields ϕ [26, 27]. Focusing upon the case where a = b in (1), we can diagonalize the N × N
matrix (Jaa)−1, for a given a. Explicitly, we may write (Jaa)−1 = VaDa(Va)−1 where Da is a
diagonal matrix and Va is an eigenvector matrix, where a labels the matrices and not their com-
ponents. It is also convenient to introduce the white noises [25] φa

i (t) =
∑

j(D
a)1/2

ii (Va)−1
i j ϕ

a
j(t),

which satisfy

〈φa
i (t)φb

j(t
′)〉 = δabδi jδ(t − t′), 〈φa

i (t)〉 = 0. (3)

It follows from (2) that the resulting dynamics are described by a local stochastic Hamil-
tonian, Ĥs

j(t)≡
∑

aΦ
a
j(t)Ŝ

a
j , where Φa

j(t) =
−1√

i

∑
i(D

a)−1/2
j j Va

jiφ
a
i (t) − ha

j . Letting 〈· · ·〉φ =∫
Dμ(φ) . . . denote the average with respect to the Gaussian measure, the time-evolution oper-

ator can be expressed as an average over stochastic evolution operators. Explicitly, Û(t) =〈
Ûs(t)

〉
φ

where Ûs(t) =
∏

jÛ
s
j(t) and Ûs

j(t) = T e−i
∫ t

0 dt′ Ĥs
j(t

′); here we write Û(t) ≡ Û(t, 0) for

brevity. Since Ûs
j(t) has an exponent that is linear in the Ŝa

j with complex coefficients, Ûs
j(t) is an

element of SL(2,C). As such it can be re-expressed as a product of exponentials without time-
ordering, via a disentanglement transformation [25, 29, 30]. Using the Gauss parametrization
[25, 31]

Ûs
j(t) = T e−i

∫ t
0 dt′ Φa

j (t′)Ŝa
j ≡ eξ

+
j (t)Ŝ+j eξ

z
j(t)Ŝ

z
j eξ

−
j (t)Ŝ−j , (4)

where ξ±,z
j ∈ C are referred to as disentangling variables [25, 26]. The disentanglement is

achieved independently on each site by solving the Schrödinger equation i(∂tÛs
j)Û

s −1
j =∑

aΦ
a
j(t)Ŝ

a
j . This yields [25]

iξ̇+j = Φ+
j +Φz

jξ
+
j − Φ−

j ξ
+2

j , (5a)

iξ̇z
j = Φz

j − 2Φ−
j ξ

+
j , (5b)

iξ̇−j = Φ−
j eξ

z
j . (5c)

Where Φ±
j ≡ 1

2 (Φx
j ∓ iΦy

j). The equation (5) are SDEs for the ξ-variables due to the stochas-

tic fields Φa
j(t) [25]. Quantum observables, 〈Ô(t)〉 are calculated as classical averages over

functions f(ξ) of the ξ-variables, via 〈Ô〉 = 〈 f (ξ)〉φ. In order to evolve the ξ-variables for-
ward in time, we solve the SDEs (5) using a stochastic Heun predictor-corrector method in
the Stratonovich formalism [32, 33]. We find that this is capable of maintaining accuracy with
larger time-steps than the Euler–Maruyama scheme used previously [26, 27], thereby reducing
the computational cost.

3. Parametrization

To gain some intuition into the dynamics of the SDEs (5), it is instructive to consider the
parametrization (4) in more detail. The stochastic evolution operator Ûs

j(t) has a particu-

3



J. Phys. A: Math. Theor. 53 (2020) 50LT02

Figure 1. Projection of the Bloch sphere for an un-normalized quantum spin onto
the complex plane, parametrized by ξ+. The point P on the unit sphere is projected
onto the point PN via the north pole, N. The point ξ+ = 0 corresponds to spin-down
|↓〉, while |ξ+| →∞ corresponds to spin-up |↑〉. Potential divergences associated with
|ξ+| →∞ can be avoided via a two-patch parametrization: the upper (lower) hemisphere
is parametrized by projection from the south (north) pole. A mapping between the two
patches is performed at the equator.

larly simple form when acting on spin-down states [26, 27], due to the explicit form of the
parametrization (4):

∣∣ψs
j(t)

〉
= Ûs

j(t) |↓〉 =
(
|↓〉+ ξ+j (t) |↑〉

)
e−

ξz
j(t)

2 , (6)

where the variable ξ−j (t) drops out. Any stochastic state |ψs(t)〉 =
∏

j

∣∣ψs
j(t)

〉
can be

parametrized in this way by introducing a preparation stage in which the initial state,
∣∣ψs

j(0)
〉
,

is obtained as a rotation from a spin-down state |↓〉; see appendix A.
For a normalized spin state, spin-down |↓〉 corresponds to ξ+j (t) = 0 and spin-up |↑〉 cor-

responds to |ξ+j (t)| →∞; this is a stereographic projection of the Bloch sphere, via the north
pole, as shown in figure 1. The complex parameter ξz

j(t) determines the amplitude and phase
of the spin state. Divergences in the SDEs (5) [26, 27] corresponding to |ξ+j (t)| →∞ can be
avoided by a two-patch parametrization of the Bloch sphere by projecting from the south pole
for states in the upper hemisphere. This can be implemented by the change of variables

ξ+j (t) → ξ̄+j (t) ≡ 1/ξ+j (t), (7a)

ξz
j(t) → ξ̄z

j(t) ≡ ξz
j(t) − 2 ln(ξ+j (t)), (7b)

whenever the spins cross the equator. The corresponding SDEs for the new coordinates are
given in the appendices. This approach for avoiding divergences in SDEs has also been used in
[34]. We will use this two-patch approach throughout the manuscript. For simplicity, we focus
on the nearest neighbor spin-1/2 ferromagnetic quantum Ising model

ĤI = −J
2

∑
〈i j〉

Ŝz
i Ŝ

z
j − Γ

N∑
j=1

Ŝx
j , (8)

where we impose periodic boundary conditions. Throughout this paper we set J = 1 in the
simulations.

4
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Figure 2. Loschmidt rate function, λL(t), following a quantum quench in the 1D and 2D
quantum Ising model. We start in the ground state |ψ(0)〉 = 1√

2
(|⇓〉+ |⇑〉) for Γ = 0

and quench to Γ = 8J. (a) 1D case with N = 50 spins. The results obtained from the
SDEs (dots) are in excellent agreement with those obtained via the MPO WI method
(solid line). Deviations occur for t�1/J as the stochastic fluctuations become harder to
sample. The inset shows a zoomed in portion of the first Loschmidt peak for N = 75
spins, demonstrating similar agreement with MPO WI . For comparison, we show the
exact results of Heyl et al [21] in the thermodynamic limit (dashed line). It is readily
seen that the rounding of the Loschmidt peak is a finite-size effect. In both figures we
use a time-step of dt = 10−2, except in the vicinity of the peaks, where dt = 10−3 is
used. The results are obtained by averaging over 107 stochastic samples. (b) 2D case for
a 5 × 5 lattice using 1.5 × 107 samples. The results are in agreement with QuSpin [35]
(solid line). The inset shows results for a 7 × 7 lattice, which cannot be obtained using
QuSpin. Convergence is checked by changing the number of samples.

4. Loschmidt amplitude

As discussed in [26, 27], one of the simplest quantities to examine in the stochastic approach is
the Loschmidt amplitude, A(t) ≡ 〈ψ(0)| Û(t) |ψ(0)〉. The corresponding rate function λL(t) ≡
− 1

N ln |A(t)|2 plays a similar role to the equilibrium free energy density: as N →∞ it exhibits
non-analytic peaks at DQPTs [21]. We first consider the one-dimensional case. In order to
compare to results obtained in the thermodynamic limit [21] it is convenient to evolve from
the ground state |ψ(0)〉 = 1√

2
(|⇓〉+ |⇑〉) at Γ = 0. Here |⇑〉 and |⇓〉 correspond to the states

with all the spins pointing up and down respectively. Time-evolving these separately using the
SDEs (5) one obtains:

A(t) =
1√
2

(
〈ψ(0)| Ûs(t)|⇓〉φ + 〈ψ(0)| Ûs(t)|⇑〉φ

)
, (9)

where 〈ψ(0)| Ûs(t) |⇓〉 = 1√
2

∏
j(1 + ξ+j (t))e

−ξz
j(t)

2 , and 〈ψ(0)| Ûs(t) |⇑〉 is obtained by ξa → ξ̄a.

The SDEs are solved with the initial conditions ξa(0) = 0 and ξ̄a(0) = 0 respectively. The
results for λL(t) corresponding to time-evolution with Γ = 8J are shown in figure 2(a), for
a 1D system with N = 50 spins. The results go beyond what is achievable using exact

5
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Figure 3. Normalized eigenvalue distributions of the effective Hamiltonian Ĥeff for
the 1D quantum Ising model with Γ = 8J and N = 10, obtained via the SDEs with
dt = 10−4. The upper and lower panels show the real and imaginary parts, εR and εI
respectively, at times t = 0.25, 2, 10; the abscissa in the upper plots is scaled by time.
The results correspond to a small number of samples, N = 100, to illustrate the non-
Hermitian character of the stochastic representation. The distribution of εR is approxi-
mately uniform at late times whereas the distribution of εI is approximately normal, as
shown by the solid (red) lines.

diagonalization (ED) and are in excellent agreement with those obtained via the MPO WI

method [28], implemented using ITensor [36]. Deviations are observed for t�1/J as the
stochastic fluctuations become harder to sample. The inset shows the first Loschmidt peak
for N = 75, which again demonstrates excellent agreement. For comparison we display exact
results obtained in the thermodynamic limit, N →∞ [21]. Although the finite-size effects are
stronger in the vicinity of the peak, the SDE and MPO results remain coincident for all of
the system sizes considered. Results for the same quench on a 5 × 5 lattice in 2D are shown
in figure 2(b) (dots), and are verified against those obtained using QuSpin’s time-evolution
solver [35] (solid line). The inset shows the first Loschmidt peak for a 7 × 7 lattice, which
goes beyond what we can readily verify using other techniques. We check for convergence
near the peak by doubling the number of samples, N , and noting that the results change by
less than 0.5% in this region.

5. Growth of fluctuations

To quantify the role of stochastic fluctuations it is instructive to consider the spectrum of an
effective Hamiltonian, Ĥeff(t), defined by

Ûs(t) =
∏

j

eξ
+
j (t)Ŝ+j eξ

z
j(t)Ŝ

z
j eξ

−
j (t)Ŝ−j ≡ e−iĤefft, (10)

in analogy to Floquet systems [37]. Since Ûs(t) is non-unitary, the eigenvalues of Ĥeff,
ε = εR + iεI, are generically complex. The spectrum of Ĥeff(t) can be calculated directly from
(10) by time-evolving the SDEs to the time of interest. This can also be obtained by noting that
Ûs(t) can be calculated directly as a product of random matrices, Ûs(t) = Ûs(t, t − δ)Ûs(t −
δ, t − 2δ) . . . Ûs(δ, 0), by time-slicing into small intervals of size δ, without the disentangling
transformation. In figure 3 we show the time-evolution of the eigenvalue distribution of Ĥeff,

6
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for 100 stochastic samples with Γ = 8J and N = 10 in 1D. It can be seen that the distribution
of εR is uniform at late times, while that of εI is well approximated by a normal distribution. In
appendix B we show that the variance of the distribution of εI, denoted by σ2(t) = 〈ε2

I 〉 − 〈εI〉2,
exhibits damped oscillations as a function of time, with extrema that occur in proximity to those
in the time-dependent magnetization. In general, the presence of the positive imaginary eigen-
values results in the growth of the norm of individual stochastic states over time. Due to the
effect of finite numerical sampling, this leads to the growth of the norm of the overall quantum
state, and to departures for physical observables. As we will see below, this can be partially
compensated by rescaling by the norm.

6. Magnetization dynamics

As discussed in [26, 27], time-dependent physical observables can be obtained by using two
Hubbard–Stratonovich transformations to decouple the forwards and backwards evolution
operators:

〈Ô(t)〉 = 〈ψ(0)| Ûs†(φ̃)ÔÛs(φ)|ψ(0)〉φ,φ̃, (11)

where φ and φ̃ are independent noise variables. In this representation, the local magnetization
is given by [26]

〈Ŝz
j〉 = −1

2

〈
e−

1
2 (χz+χ̃z∗)

(
1 − ξ+j ξ̃

+∗
j

)∏
i �= j

(
1 + ξ+i ξ̃+∗

i

)〉
φ,φ̃

, (12)

where χ ≡
∑

iξ
z
i , χ̃ ≡

∑
iξ̃

z
i , and we implicitly take the real part; in general, observables have

imaginary parts which vanish in the limit of infinite sampling [19, 34, 38]. In figure 4(a) we
show results for the time-dependent magnetization M(t) = 1

N

∑
j〈Ŝz

j(t)〉, following a quantum
quench from the fully-polarized initial state |⇓〉 to Γ = 8J for a 1D system with N = 25 spins.
The results are in good agreement with MPO calculations until times t�1/J when stochastic
fluctuations become large. In figure 4(b) we show results for the norm of the time-evolving
state as computed from the SDEs:

|ψ(t)|2 =

〈
e−

1
2 (χz+χ̃z∗)

∏
i

(
1 + ξ+i ξ̃+∗

i

)〉
φ,φ̃

, (13)

where again, we take the real part. It is readily seen that the norm departs from unity once
the stochastic fluctuations become significant. In figure 4(c) we show results for the re-scaled
magnetization Mres(t) = M(t)/|ψ(t)|2 which provides much better agreement with the MPO
results until later times. This should not be regarded as a rigorous procedure for comput-
ing physical observables, but it demonstrates the effect of the changing norm. This approach
may provide a useful approximation for time-intervals where the results are under-sampled.
Fluctuations in Mres(t) still occur however, especially when the norm of the state is close to
zero. This clearly highlights the importance of normalization and stochastic sampling in the
computation of observables. In appendix D we demonstrate logarithmic scaling of the simu-
lation time with the number of samples. This mirrors the computational requirements of other
classical time-evolution methods for quantum many-body systems.

7



J. Phys. A: Math. Theor. 53 (2020) 50LT02

Figure 4. (a) Time-dependent magnetization M(t) following a quantum quench in the
1D quantum Ising model from the fully-polarized initial state |⇓〉 toΓ = 8J with N = 25
spins. The results obtained from the SDEs (solid line) with 2.5 × 106 samples are in
agreement with MPO WI (dashed line) until t ∼ 1/J. (b) Time-evolution of the norm
of the quantum state |ψ(t)|2 following the quench in (a). The norm departs from unity
when the stochastic fluctuations become significant. (c) Time-evolution of the rescaled
magnetization Mres(t) showing better agreement with MPO WI . It can be seen that fluc-
tuations in Mres(t) occur whenever |ψ(t)|2 is close to zero. (d) Time-evolution of M(t)
using a hybrid stochastic-MPS approach for N = 50 spins, with 50 000 samples and a
maximum bond dimension of Di = 20. The results are in good agreement with MPO WI

(dashed line).

7. Matrix product states

Another approach to reducing fluctuations in observables is to decompose the time-evolving
state into a matrix product state (MPS):

|ψ(t)〉 =
∑
σ1,...σn

d1,...dn−1

Aσ1
1,d1

Aσ2
d1,d2

. . . .Aσn
dn−1,1 |σ1σ2 . . . σn〉 , (14)

where Aσi are matrices with physical spin indices, σi, and auxiliary indices di ∈ 1, . . . , Di,
where Di are the bond dimensions; see [39] for an introduction. The time-evolution is imple-
mented via the SDEs (5), but the state is stored as an MPS when physical observables are
computed. This reduces the number of noise variables required since only a single Hub-
bard–Stratonovich transformation is needed for time-evolution; see appendix C. One may also
calculate the norm of the state using MPS techniques, thereby eliminating fluctuations from
the stochastic sampling of |ψ(t)|2. In figure 4(d) we show the results of the hybrid stochastic-
MPS approach for a quantum quench in a 1D system with N = 50 spins. The results are in
excellent agreement with the MPO approach, in spite of doubling the system size and reduc-
ing the number of stochastic samples. A notable disadvantage of this hybrid approach is that

8
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one must store the MPS state in memory at the expense of the stochastic parallelization.
Nonetheless, the marriage of these approaches may be useful for future developments.

8. Conclusions

In this work we have demonstrated that the stochastic approach to non-equilibrium quantum
spin systems can address significantly larger systems than recently obtained, in both one and
two dimensions. We have shown that the non-Hermitian character of the representation leads
to a growth of the norm of |ψ(t)〉, due to the effect of finite numerical sampling. However,
this can be compensated for by rescaling by the norm. We have shown that the approach can
be combined with a decomposition in terms of matrix product states, for the calculation of
time-dependent observables. There are many directions for research, including extensions to
larger system sizes and later times. At present, the simulation time is limited by the expo-
nential dependence of the breakdown time on the number of samples. This permits short and
intermediate time simulations, depending on the system size, but it inhibits long time simula-
tions. It would also be interesting to extend the investigations into higher-dimensional systems,
where few techniques are available.
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Appendix A. Parametrization

As discussed in the main text, we may eliminate divergent trajectories from the SDEs (5) by a
suitable parametrization of the stochastic time-evolution operator, Ûs

j(t). Adopting the Gauss
parametrization of SL(2,C) [25]

Ûs
j(t) ≡ eξ

+
j (t)Ŝ+j eξ

z
j (t)Ŝ

z
j eξ

−
j (t)Ŝ−j . (A.1)

For spin-1/2 systems this can be represented in matrix form as

Ûs
j(t) =

⎛
⎝e

1
2 ξ

z
j + ξ+j ξ

−
j e−

1
2 ξ

z
j ξ−j e−

1
2 ξ

z
j

ξ+j e−
1
2 ξ

z
j e−

1
2 ξ

z
j

⎞
⎠ , (A.2)

where ξ±,z
j ∈ C, and the initial conditions ξ±,z

j (0) = 0 ensure that Ûs
j(0) = I is the identity oper-

ator. In general, this corresponds to a representation of the group SL(2,C) with three complex
parameters. The action of Ûs

j(t) on a generic initial state |ψ j(0)〉 = a |↓〉+ b |↑〉, with a, b ∈ C

yields

∣∣ψs
j(t)

〉
= e−

1
2 ξ

z
j (t)

[(
a + bξ−j (t)

)
|↓〉+

(
aξ+j (t) + b eξ

z
j (t) + bξ+j (t)ξ−j (t)

)
|↑〉

]
, (A.3)
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Although (A.3) is formally exact, the parametrization contains some redundancy: an arbitrary
un-normalized spin state can be represented by four parameters, including the overall phase.
To see that a reduction is possible it is instructive to consider an initial spin-down state |↓〉
corresponding to a = 1 and b = 0. This yields

∣∣ψs
j(t)

〉
= Ûs

j(t) |↓〉 = e−
1
2 ξ

z
j(t)

(
|↓〉+ ξ+j (t) |↑〉

)
, (A.4)

where the complex parameter ξ−j (t) has dropped out. In this case, the divergence in the SDE
(5a) corresponding to |ξ+j | →∞ is associated with an inability to parametrize the spin-up state
|↑〉, using a projective representation of the Bloch sphere. As discussed in the main text and in
appendix B below, this can be avoided by using a two-patch parametrization. Although these
considerations apply only for an initially spin-down state, more general initial states can always
be prepared by rotation from this state. Explicitly, we may introduce a state-preparation proto-
col starting at t = −δ, with δ > 0, and evolving deterministically until t = 0. In this approach,

the time-evolution operator takes the form Ûs
j(t,−δ) = T e−i

∫ t
−δ Ĥs

j(t
′)dt′ where

Ĥs
j(t) =

{
αa

j Ŝ
a
j , −δ � t < 0;

Φa
j(t

′)Ŝa
j , t � 0,

(A.5)

and the coefficients αa
j specify the initial conditions according to

∣∣ψs
j(0)

〉
= Ûs

j(0,−δ) |↓〉.
In practice, this is equivalent to setting non-trivial initial conditions for the ξ-variables and
evolving under the SDEs (5a). For example, the initial state |ψ j(0)〉 = 1√

2

(
|↓〉+ |↑〉

)
corre-

sponds to ξ+j (0) = 1 and ξz
j(0) = ln 2, as follows directly from (A.4). In this approach the

trivial initial conditions correspond to t = −δ, so that ξ+j (−δ) = ξ−j (−δ) = ξz
j(−δ) = 0 and

Ûs
j(−δ,−δ) = I.
In general, the time-evolution of an arbitrary product state is given by

|ψ(t)〉 =
〈∏

j

e−
1
2 ξ

z
j(t)

(
|↓〉+ ξ+j (t) |↑〉

)〉
φ

, (A.6)

where the initial conditions ξa
j (0) specify the initial spin-orientation at each site. A generic

superposition can be obtained by summing over (A.6) with the appropriate initial conditions.
Stochastic expressions for physical observables are readily obtained from the projective rep-
resentation (A.4). For example, the Loschmidt amplitude to remain in the spin-down state is

given by A(t) = 〈e−
1
2
∑

jξ
z
j(t)〉φ, in agreement with (9) and [26]. In a similar way, the quantum

expectation value of the spin operator Ŝ j is given by

〈Ŝ j(t)〉 =
〈∏

i

|ψs
i (t)|2n j(t)

〉
φ,φ̃

, (A.7)

where

n j(t) =
1
2

(
2 Re(ξ+j (t))

1 + |ξ+j (t)|2 ,
−2 Im(ξ+j (t))

1 + |ξ+j (t)|2 ,
−1 + |ξ+j (t)|2

1 + |ξ+j (t)|2

)
(A.8)

corresponds to the position of a spin on the Bloch sphere. The factor of

|ψs
i (t)|2 = e−Re(ξz

i (t))(1 + |ξ+i (t)|2) (A.9)
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Figure B1. Time-evolution of a divergent trajectory |ξ+1 (t)| (solid line) following a quan-
tum quench in the 1D quantum Ising model from the fully polarized state |⇓〉 to Γ = 8J,
with N = 7 spins. The diverging quantity is evaluated on the first site, and overflows at
tdiv = 6.25. For comparison, the two-patch variable |ζ+1 (t)| (dotted) does not diverge.

is the norm of the state
∣∣ψs

i (t)
〉
. In writing (A.7), (A.8) and (A.9), it is implicit that ξa∗

j is an

independent variable from ξa
j , which we denote by ξ̃a∗

j = ξa∗
j in the main text. The result (A.7)

is readily generalized to multipoint correlation functions. For example,

〈Ŝa
j(t)Ŝ

b
k(t)〉 =

〈∏
i

|ψs
i (t)|2na

j(t)n
b
k(t)

〉
φ,φ̃

. (A.10)

The expressions for entangled states can be obtained by averaging over the initial conditions
for ξ(0) and ξ̃(0).

Appendix B. Eliminating divergent trajectories

As discussed above and in the main text, the SDE (5a) exhibits divergences corresponding to
|ξ+j | →∞. These can be avoided by two-patch parametrization of the Bloch sphere. To this
end, it is convenient to define new variables ξ̄a via the generalization of equation (A.4), where
the roles of |↓〉 and |↑〉 are interchanged:

∣∣ψs
j(t)

〉
=

(
ξ̄+j (t) |↓〉+ |↑〉

)
e−

1
2 ξ̄

z
j(t). (B.1)

Equating the coefficients of (A.4) and (B.1), one obtains the identifications

ξ̄+j (t) =
1

ξ+j (t)
, ξ̄z

j(t) = ξz
j(t) − 2 ln(ξ+j (t)). (B.2)

This coordinate system is related to the original Gauss parametrization (A.1) by swapping the
pole of projection from the north to the south pole. Performing this change of variables, the
SDEs (5a) and (5b) become

i
˙

ξ̄+j = Φ−
j − Φz

jξ̄
+
j − Φ+

j ξ̄
+2
j , (B.3a)

i
˙

ξ̄z
j = −Φz

j − 2Φ+
j ξ̄

+
j . (B.3b)
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Figure B2. Time-dependence of the variance σ2(t) of the imaginary eigenvalues εI of
Ĥeff (10) for the 1D quantum Ising model with Γ = 8J, N = 10 and N = 100 (upper).
The variance exhibits damped oscillations as a function of time. The extrema occur in
proximity to the turning points in the magnetization M(t), obtained via exact diago-
nalization, following a quench from the fully-polarized initial state |⇓〉 to Γ = 8J for
N = 10 spins, as indicated by the vertical lines (lower).

A convenient place to perform the change of variables (B.2) is when the spins cross the equator,
since the magnitude of |ξ+j (t)| = |ξ̄+j (t)| = 1 at this point, and the numerical error associated
with simulating the nonlinear term in (5a) is minimized. This approach is also used in [34].
In practice, the initial state will determine which parametrization is initialized on each site.
Denoting

ζ+j (t) =

{
ξ+j (t), lower half − sphere with |ξ+j | ∈ [0, 1];

ξ̄+j (t), upper half − sphere with |ξ̄+j | ∈ [0, 1),
(B.4)

one may track the dynamics of this single variable over all times. In figure B1 we plot the time-
evolution of the single-patch variable |ξ+1 (t)| following a quantum quench in the 1D quantum
Ising model. For the chosen parameters and the specific noise realization, it can be seen that
this quantity diverges at time tdiv = 6.25. As a result, ξ̇+1 (t) overflows due to the ξ+

2

1 (t) term
in (5a), and numerical integration fails for this trajectory. In contrast, the two-patch variable
|ζ+1 (t)| remains finite, and we can evolve beyond tdiv. This enables us to retain all the stochastic
trajectories when computing the time-dependent magnetization, in contrast to previous work
[26, 27].

To analyze the spectrum of Ûs(t, 0), or equivalently Ĥeff =
i
t ln Ûs(t, 0) as illustrated in

figure 3, the parameter ξ−j is also required; this dropped out in (A.4). Under the transformation
(ξ+j , ξz

j) → (ξ̄+j , ξ̄z
j) the SDE (5c) becomes

iξ̇−j = Φ−
j

eξ̄
z
j

ξ̄+2
. (B.5)

In order to ensure that (B.5) is well-behaved as ξ̄+j → 0 it is convenient to make the change of
variables

ξ−j → ξ̄−j ≡ ξ−j +
eξ̄

z
j

ξ̄+j
. (B.6)
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The resulting SDE for ξ̄−j is given by

i
˙

ξ̄−j = −Φ+
j eξ̄

z
j , (B.7)

which mirrors (5c) up to a sign change and Φ−
j → Φ+

j . The maps (B.2) and (B.6) can now be

conducted simultaneously to avoid the divergence associated with ξ+j →∞, allowing Ûs(t, 0)
to be calculated at much later times. Eventually this strategy will break down if (5c) or (B.7)

cannot be integrated due to eξ
z
j →∞ or eξ̄

z
j →∞ respectively. However, ξ−j and ξ̄−j are not

required for the time-dependent magnetization, this is not a limitation. The spectrum of Ĥeff

(10) is calculated directly from trajectories by mapping between the ξa
j and ξ̄a

j variables in
accordance with the prescription (B.4). As discussed in the main text, damped oscillations of
the variance of the imaginary eigenvalues of Ĥeff occur as a function of time; see figure B2.

Appendix C. Hybrid technique with matrix product states

As discussed in the main text, the time-evolving quantum state evaluated within the stochastic
approach can be represented as a matrix product state. This allows one to perform the time-
evolution via the SDEs (5), while evaluating physical observables using the standard techniques
for matrix product states. This approach halves the number of noise variables required since
only a single Hubbard–Stratonovich transformation is needed to evaluate |ψ(t)〉 = Û(t) |ψ(0)〉.
However, this comes at the cost of storing the state in memory, so the method is no longer fully
parallelizable. Here we demonstrate how this representation is obtained. The quantum state is
first written as the sample average of the stochastic state:

|ψ(t)〉 = |ψs(t)〉φ =
1
N

N∑
r=1

N∏
i

(
|↓〉+ ξ+,r

i |↑〉
)

e−
ξ
z,r
i
2 , (C.1)

where r = 1, . . . ,N is the sample index. A MPS is given by

|ψ〉 =
∑

σ1,...,σN
d1,...,dN−1

Aσ1
1,d1

Aσ2
d1,d2

. . . .AσN
dN−1,1 |σ1σ2 . . . σN〉 , (C.2)

where the matrices Aσi carry physical spin indices σi and auxiliary indices di ∈ 1, . . . , Di,
where Di are the bond dimensions. To cast the state (C.1) into MPS form, we first note that
each configuration of indices d1, d2, . . . in (C.2) forms a product state that can be identified as
one term in the sum (C.1). We can identify a trivial, inefficient MPS representation of (C.1) by
taking a diagonal form for the MPS tensors. For example

A↓ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e−
ξz,1
i
2 0 . . . . 0

0 e−
ξ
z,2
i
2 . . . 0

...
...

. . .
...

0 0 . . . e−
ξz,N
i
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (C.3)

where the factor of 1/N in (C.1) can be absorbed into one of the Aσi matrices. The state |ψ〉
can be compressed to a lower bond-order, full rank MPS by using a sequence of singular value
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decompositions (SVDs). In practice, we may perform this procedure in batches. The MPS
tensors in each batch can be further combined and compressed by first collecting them into a
block diagonal MPS tensor given by

Aσi =

⎛
⎜⎜⎜⎝

Aσi,1 0 . . . . 0
0 Aσi,2 . . . 0
...

...
. . .

...
0 0 . . . Aσi,k

⎞
⎟⎟⎟⎠ , (C.4)

where the batch index runs from 1 to k. A subsequent sequence of SVDs would again lead to
an MPS with reduced bond order and full rank. For example, the results in figure 4(d) were
obtained by dividing the 50 000 trajectories into 50 batches of size 1000. After the initial com-
pression, the batches were combined in pairs according to (C.4) and compressed again. This
was repeated two more times in groups of five batches. In practice, if the bond dimension after
a compression exceeds the nominal value of 20 we truncate it back to this value. Since the
mapping to MPS must be carried out at each time where observables are calculated, it is more
efficient to only carry it out at the times of interest.

For all the MPO WI [28] simulations carried out in the main text we use a maximum bond
dimension of 50, a minimum singular value cut-off of 10−14, and a time-step of dt = 0.001.

Appendix D. Scaling

In order to quantify the scaling properties of the real-time stochastic approach, we consider
the time-scale over which the simulations are accurate as a function of the system size and the
number of samples. For simplicity we focus on the scaling of the stochastic approach without
the use of MPS. The latter simply halves the number of noises, so similar scaling is expected,
with improved coefficients. Since the stochastic approach only produces perfectly normalized
quantum states in the limit N →∞, deviations of the norm from unity can provide an estimate
of the simulation’s convergence and the time-scale over which the method can be trusted.
As illustrated in figure 4, rescaling by the norm can lead to good approximations for physical
observables, even if the norm deviates significantly from unity. In view of this, we define the
breakdown time, tb, as the earliest time for which a 10% error is observed in the norm. In
figure D1(a) we show tb as a function of the inverse system size N−1, for quenches in the 1D
quantum Ising model from the fully polarized initial state |⇓〉 to Γ = 8J, for a fixed number of
samples N = 106. The data are well approximated by the linear relation

Jtb = 16.94N−1 + 0.12. (D.1)

That is to say, for a fixed number of samples the breakdown time scales with the inverse of
the system size. This is consistent with the results of [27]. In figure D1(b) we also show tb

as a function of the number of samples, for the same quench, but for a fixed system size,
with N = 7 spins. The data are compatible with the relation Jtb = 0.22 ln N − 0.6, i.e. the
number of samples required to reach a given time tb therefore scales exponentially, N ∝ eαJtb ,
where α ≈ 4.5, in this example. This is consistent with the scaling of fluctuations analyzed
in [27] using different diagnostics. The exponential scaling of the computational requirements
with the simulation time is a common feature of classical time-evolution methods for quantum
many-body systems.
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Figure D1. Breakdown time, tb, of the simulations following a quantum quench in the 1D
quantum Ising model from the fully polarized initial state |⇓〉 to Γ = 8J. The breakdown
time is defined as the time at which the norm deviates by 10% from unity. (a) Scaling
of tb with inverse system size with N = 106 held fixed. The data are well approximated
by a linear fit (solid line), particularly for large system sizes. (b) Scaling of tb with the
number of samples for a fixed system size with N = 7. The linear fit (solid line) suggests
an exponential dependence of the number of samples on the tb according to N ∝ eαJtb ,
with α ≈ 4.5.
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