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Brain tissue temperature is a dynamic balance between heat generation from
metabolism, passive loss of energy to the environment, and
thermoregulatory processes such as perfusion. Perinatal brain injuries,
particularly neonatal encephalopathy, and seizures, have a significant impact
on the metabolic and haemodynamic state of the developing brain, and
thereby likely induce changes in brain temperature. In healthy newborn
brains, brain temperature is higher than the core temperature. Magnetic
resonance spectroscopy (MRS) has been used as a viable, non-invasive tool
to measure temperature in the newborn brain with a reported accuracy of
up to 0.2 degrees Celcius and a precision of 0.3 degrees Celcius. This
measurement is based on the separation of chemical shifts between the
temperature-sensitive water peaks and temperature-insensitive singlet
metabolite peaks. MRS thermometry requires transport to an MRI scanner
and a lengthy single-point measurement. Optical monitoring, using near
infrared spectroscopy (NIRS), offers an alternative which overcomes this
limitation in its ability to monitor newborn brain tissue temperature
continuously at the cot side in real-time. Near infrared spectroscopy uses
linear temperature-dependent changes in water absorption spectra in the
near infrared range to estimate the tissue temperature. This review focuses
on the currently available methodologies and their viability for accurate
measurement, the potential benefits of monitoring newborn brain
temperature in the neonatal intensive care unit, and the important
challenges that still need to be addressed.
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Introduction

In term infants, neonatal encephalopathy (NE) is the most common form of

perinatal brain injury in both high-income countries (HIC) as well as low- and

middle-income countries (LMIC). Hypoxic-ischemic encephalopathy (HIE) affects 1–6

per 1,000 live births and remains a major cause of morbidity and mortality in term
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infants (1–3). Seizures are the most common presentation of

neonatal neurological emergencies with an incidence of 1.9 to

2.2 per 1,000 live births (3). They are associated with further

neuronal injury, poor neurological outcome, increased brain

injury on MRI (4), and increased risk of epilepsy (5). Current

research focuses on identifying optimal neuroprotective

therapies for both these conditions to improve

neurodevelopmental outcomes. A detailed understanding of the

pathophysiological changes relating to brain metabolism and

perfusion and their impact on brain tissue in real-time is a key

factor in the assessment of both injury severity and its evolution.

Brain temperature is determined by the balance of heat

production and heat removal, and it is influenced by multiple

factors including cerebral metabolism, brain tissue injury,

cerebral blood flow (CBF), body-brain temperature difference,

various medications and infection (6–9). The brain and/or

body temperature elevation is often associated with brain

injury as seen in traumatic brain injury, adult stroke, and NE

(10–13). The magnitude of temperature elevation has been

shown to correlate with infarct size and severity in adults and

is a risk factor for poor clinical outcomes (13–15). With

significant changes in cerebral metabolism and perfusion

following hypoxic-ischaemic injury and during neonatal

seizures, it is likely to have brain temperature perturbation

following perinatal brain injury and real-time brain

temperature monitoring therefore might be an important

biomarker.
Changes in cerebral metabolism and
perfusion during neonatal
encephalopathy

The newborn brain suffers significant hemodynamic and

metabolic derangements following hypoxic-ischaemic brain

injury which causes a series of neurotoxic and neurochemical

cascades over a period of several hours, days, and weeks post-

injury (16). Early pre-clinical and clinical studies using

phosphorous (31P) magnetic resonance spectroscopy (MRS)

described the evolution of primary and secondary energy

failure with a reduction in high energy phosphates and a rise

in cerebral lactate following injury (17, 18). During the initial

insult, a proportion of cells undergo primary cell death, and

the neuronal supply of high energy metabolites such as

adenosine triphosphate (ATP) is exhausted, also termed

“primary energy failure.” Following successful resuscitation,

the brain enters a latent phase lasting for ∼6–24 h which is

characterized by the partial recovery of cerebral oxidative

metabolism and cerebral blood flow, (CBF) although a degree

of hypoperfusion continues (19, 20). The brain then enters a

period of “secondary energy failure” (SEF) characterized by

mitochondrial impairment and subsequent cell death with

associated cerebral autoregulatory disturbance and brain
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hyperperfusion (21). Hypoxia-ischaemia induces significant

cerebral inflammation with the production of

proinflammatory cytokines (22) and activation of complement

(23) that can further potentially be related to increased brain

temperature. The concept of secondary energy failure (SEF) is

a hallmark of NE and the primary target of current

therapeutic hypothermia (TH) treatment. Abnormal

autoregulatory control of cerebral haemodynamics with a

combination of vasodilatation and vasoparalysis (24) is

common after NE.
Changes in cerebral metabolism and
perfusion during neonatal seizures

NE remains the major etiological factor for the development

of neonatal seizures and TH reduces the seizure burden

following NE (25). Up to 75% of infants with NE can develop

seizures (26) which are defined as transient symptoms of

excessive or synchronous neuronal activity in the brain (27–

29). Mitochondrial metabolism is closely related to neuronal

activity. Studies using 31P MRS have revealed a drop in high-

energy phosphates by one-third and an increase in

mitochondrial oxidative phosphorylation by 45% during

neonatal seizure (30), indicating a depleted cerebral energy

state. Electroclinical and electrographic seizures produce an

increase in cerebral blood flow velocity (CBFV) (31), likely to

be due to excessive demand for glucose and oxygen but may

still be insufficient to meet the pathological demands. A

prolonged increase in cerebral blood flow is also likely to

contribute to cerebral oedema and vasoparesis with

accompanying loss of autoregulatory mechanisms. Cerebral

autoregulation has been noted to be absent both during the

seizures themselves and between seizures (32).

Previous studies with near-infrared spectroscopy (NIRS)

during neonatal seizures have also described changes in

cerebral hemodynamics and oxygenation (33–36). NIRS

measures concentration changes in oxygenated [Δ(HbO2)] and

deoxygenated haemoglobin [Δ(HHb)] which can then be used

to derive changes in total haemoglobin [Δ(HbT)] and

haemoglobin difference [Δ(HbD)]. Changes in [Δ(HbT)] and

[Δ(HbD)] represent changes in cerebral blood volume and

oxygenation respectively. In addition, cerebral oximeters can

also measure absolute brain tissue saturation (or cerebral

oxygenation) as an absolute percentage measurement of the

mixed arterial and venous saturation. A seizure typically

increases both cerebral blood flow and cerebral metabolic rate

(37). Any increase in cerebral blood flow may not always be

sufficient to match the cerebral metabolic demand during

prolonged seizures, indicating cerebral blood flow-metabolism

uncoupling (38) which can lead to reduced cerebral

oxygenation. Previous studies in preterm infants suggested a

10% reduction in cerebral oxygenation to be of clinical
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concern (39), while animal studies using NIRS have found

mixed cerebral oxygenation of 40%–50% (40, 41) to be the

limits below which significant cerebral hypoxia with poor

neurologic outcome occurs. Our previous work showed a

rapid increase in the change in the oxidation state of

cytochrome-c-oxidase [Δ(oxCCO)], noted at the onset of a

seizure episode along with a rise in the baseline aEEG

indicating an increase in neuronal activation and energy

demand. Cytochrome-c-oxidase is the terminal electron

acceptor in the mitochondrial electron transfer chain and is

responsible for most of the ATP production during oxidative

metabolism. Progressive decline in the [Δ(oxCCO)] baseline

during seizures suggests a progressive decrease in

mitochondrial oxidative metabolism (42). Neuronal energy

demand rapidly increases at the onset of seizures reflected by

a rapid increase in the mean aEEG activity coinciding with a

rise in Δ[oxCCO].
Methodologies for brain tissue
temperature measurement

Several different methodologies have been evaluated so far

for brain temperature measurements (Table 1). Proton MRS

(43–50), microwave radiometry (51–53) and ultrasound

thermometry (54). Other approaches are still under

experimental evaluation in animals, for example, non-invasive

wearable sensors to assess deep brain temperature based on

skin thermal conductivity (55), or invasive optical fibre-based

thermometry (56) Finally, there have been computationally

based approaches to estimate brain temperature changes from

traditional brain recordings such as MRI using mathematical

models of brain temperature (57, 58) that consider the brain’s

non-equilibrium thermodynamic nature between rest and

functional activity. However, in clinical practice, these

approaches remain to be tested. None of these methods is

feasible for long-term ambulatory clinical use in newborn

infants and requires large cost-intensive equipment. Optical

methods for brain temperature measurement provide an

option for use in clinical settings, even in ambulatory settings,

given their ease of handling through their portability and

cost-efficiency. Optical thermometry can furthermore,

determine the efficacy of hypothermia, noninvasively and

continuously throughout TH in HIE.
MRS brain thermometry

MRS thermometry has been used most for non-invasive and

in-vivo brain temperature measurement in the neonatal

population (47, 49, 59, 60). Clinical MRS reveals the

prominent peaks of N-acetyl-aspartate (NAA), Choline (Cho)

and Creatine (Cr). The much larger water peak is usually
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artificially suppressed as it obscures the visibility of the other

spectral peaks. The relative position of a peak in the spectrum

is described by its chemical shift. MRS thermometry is

possible because of the temperature dependence of the water

chemical shift relative to the temperature-insensitive chemical

shifts of NAA, Cho and Cr. Careful measurement of the

chemical shift separation between the water and reference-

metabolite peaks, along with suitable calibration, can yield

brain temperature estimation with an accuracy of ±0.5 °C and

precision of 0.3 °C (59, 61, 62).

Non-invasive local temperature measurement using proton

MRS has been demonstrated in vivo for many applications.

The chemical shift of water is approximately linearly

dependent on temperature in the physiological range

(Hindman). So, by measuring the chemical shift separation

between water and one or more reference metabolites, the

absolute temperature can be inferred. Figure 1 describes the

basic methodology. Spectra must first be obtained that show

the un-suppressed water peak and the reference peaks. This

can be done by acquiring a single un-suppressed spectrum

and removing the water signal in post-processing to reveal the

metabolite signals (50). Alternatively, this can be achieved by

acquiring a water spectrum and a water-suppressed metabolite

spectrum sequentially without changing the receiver frequency

(49). By fitting an assumed line shape function to the water

and metabolite peaks, the chemical shift separation in ppm

can be measured and converted into temperature using an

appropriate calibration.
Challenges for MRS temperature
measurement

The absolute change in the water peak chemical shift with

temperature is very small, about 0.01 ppm per degree Celcius.

Therefore, to measure temperature with a precision of 0.5 °C

it is necessary to be able to measure the chemical shift

separation to a precision of 0.005 pm. Compare this with a

typical water linewidth in vivo of about 0.05 ppm. Despite this

challenge, accuracies of 0.2–0.5 °C have been reported

(59, 61–63).
Choice of acquisition sequence

In-vivo MRS temperature measurement has been reported

using both single voxel methods (49, 50, 59, 63, 64) and

spectroscopic imaging (65–68). A challenge for both types of

methods is obtaining a good shim to make the magnetic field

as uniform as possible and thus minimise the water and

metabolite linewidths. The movement of the subject during

acquisition can make this even more challenging. Single voxel

methods may be easier to implement to obtain a high
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FIGURE 1

Brain temperature measurement using proton magnetic resonance spectroscopy. (A) Indicates the chemical shift separation between the water peak
and a reference metabolite (NAA), (B) represents the calculation of brain temperature using a calibration based on the water-NAA chemical shift
separation.
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precision measurement. In order to obtain sufficient signal to

make the measurement, many repeated data acquisitions are

averaged together. These can be compared and corrected for

artefacts due to subject motion, resulting in an improved final

measurement (50). However, single voxel acquisitions are

limited to reporting temperature from a single location.

Spectroscopic imaging methods allow the spatial variation of

temperature to be mapped, but it can be more challenging to

obtain a high-quality shim over an extended spatial region.
Choice of calibrations and reference
metabolite

The link between the measured chemical shift separation

between the water and reference peaks, and temperature is the

calibration data. Numerous calibrations have been published

(59, 60, 69, 70). Changes in protein and ionic concentration

have been shown to alter temperature calibration curves (71,

72). The apparent measured temperature decreases with ionic

concentration by about 1 degree C per 100 mmol and

increases with protein concentration (72). The calibration

data, therefore, show a dependence on the conditions under
Frontiers in Pediatrics 04
which they were collected, and it is important to select an

appropriate calibration for the desired application (73).

More than one reference peak can be used to make the

temperature measurement. This can increase the precision of

the measurement and the resilience of the measurement to

pathological changes to the spectrum composition (59). Care

must be taken when combining data from more than one

reference peak so that the calibrations are internally consistent

with each other (50). The choice of calibration will affect the

level of systematic error in the absolute temperature

measurement and so some care must be taken in interpreting

MRS-derived temperature data. It is likely that temperature

variation over time or relative spatial temperature differences

are more reliable measurements than the absolute values

themselves.
NIRS brain thermometry

Optical methods based on NIRS can also be used to monitor

tissue temperature. These methods are promising as they are

based on safe and portable instruments that can be used to

monitor the temperature continuously at the cot side. In the
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near-infrared region (650–1000 nm), the major endogenous

tissue chromophores, responsible for the light’s absorption of

the tissue, are water and oxy- and deoxy- haemoglobin. The

aim of NIRS is to quantify the concentrations, or change in

concentrations related to a specific event, of these

chromophores in tissue and its focus is to quantify the

oxygenation of the tissues. However, the linear temperature-

dependent changes in NIR water absorption spectra make the

measurement of tissue temperature possible with NIRS, as the

tissues are mostly composed of water (more than 70% of the

brain tissue composition for example).

Indeed, the water absorption spectra and its temperature

dependency has been well established (74, 75). These spectra

can be seen in Figure 2A (left), where the water absorption

peaks shift to higher wavelengths and decrease in amplitude

by approximately 0.8% per degree Celsius around 740, 840,

and 970 nm with decreasing temperature (74). The

absorptivity temperature coefficients between 550 and 900 nm

can also be seen in Figure 2B (right) (extracted from

reference 76), where the 2 peaks around 740 and 840 nm are

clearly visible. Using this property, the temperature of the

adult arm77 was measured using broadband continuous wave

NIRS (BNIRS). In that paper, Hollis et al. (77) used the

technique of principal component analysis (PCA) to calibrate

the temperature response of the absorption spectra of pure

water to predict the temperature response of the tissues. They

particularly focused on the bands at 740 and 840 nm and

reported a standard error of prediction of 1.2 °C. They noted

that the results could be improved if the scattering properties

of the tissues were accounted for, which was not the case in

that model to retrieve the changes in temperature. A similar

approach was then used by Holper et al. (78), focusing on the

840 band, in order to monitor the brain temperature of
FIGURE 2

NIRS thermometry. Left (A) - NIR absorption spectra of pure water at various
temperature coefficients (da/dT) for the 550–900 nm. Extracted from Langfo
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piglets and neonates. Using their methodologies, the authors

reported an overall mean error bias between NIRS predicted

brain temperature and body temperature of 0.436 ± 0.283 °C

(animal dataset) and 0.162 ± 0.149 °C (human dataset).

Other studies using broadband diffuse optical spectroscopy

(DOS) reported the measurement of the adult breas (79) and

forearm (80). In these studies, the water peak at 970 nm was

used to predict the temperature of tissues. The main

limitation of this technique is that the strong absorption of

the water at this wavelength limits its depth sensitivity, which

makes it difficult to use for the monitoring of brain

temperature in adults for example. However, the advantage of

the use of DOS is to be able to disentangle the absorption

and scattering properties of the tissues, thus reducing the

impact of the scattering on the temperature measurement.

Indeed, in NIRS measurements, as seen previously, it is often

assumed that the changes in the optical signal came from a

change in absorption only. However, in a clinical context,

significant physiological changes can induce significant

scattering changes which need to be considered to avoid

crosstalk between scattering and absorption (81). Indeed, the

scattering parameters of the tissue are mainly originating from

the subcellular structures (82) but also from the cerebrospinal

fluid layer in the subarachnoid space (83) and from the blood

flow (84). Clinically, it has been shown that the resting

scattering properties between the normal and affected areas in

patients with traumatic brain injury (TBI) (85) and stroke

(86) were significantly different. Moreover, dynamic changes

in scattering are also detected when a large variation of blood

flow is present (81). Thus, as blood flow variations are very

likely in NE, changes in scattering coefficient can be expected.

Therefore, one of the main challenges for NIRS instruments

aiming at measuring brain temperature in a clinical context is
temperature. Extracted from Hollis et al. (74). Right (B) - Absorptivity
rd et al. (75).
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TABLE 1 Different methodologies for brain temperature monitoring.

Non
invasive

Continuous
monitoring

Monitoring option
in NICU

Portable Cost-
effective

Depth
penetration

Ease of
handling

MRS thermometry Yes No No No No Excellent Poor

NIRS thermometry Yes Yes Yes Yes Yes Good Excellent

Ultrasound thermometry Yes No No Yes Yes Good Good

Microwave radiometry Yes No No No Yes Unknown Good

Zero-heat flux sensor Yes No No No Yes Unknown Poor

Invasive fibre-based
optical thermometry

No Yes No No Yes Good Poor
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to be able to measure both the absorption and scattering

properties of the tissue in order to give accurate thermometry

readings.

Finally, the brain temperature of piglets was measured using

a time-domain NIRS (TD-NIRS) (87). TD-NIRS is known to be

the most accurate of the NIRS techniques, can disentangle the

absorption and scattering properties of tissues, and has the

best depth sensitivity (88). Therefore, it makes it a great

candidate to measure brain temperature even in difficult cases.

Using this methodology, Bakhsheshi et al. used the bands at

740 and 840 nm in combination with the method of the PCA,

introduced by Hollis et al., to monitor brain temperature in

newborn piglets during cooling. The deep brain temperature

(DBT) was also measured continuously with a thermocouple

probe during this monitoring and the mean difference

between the optical and DBT was 0.5 °C ± 1.6 °C. This

methodology combined the two independent strengths of the

studies previously mentioned: a scattering-free method (like

DOS), increasing its accuracy, relying on the 740 and 840 nm

bands (like BNIRS), and increasing its depth sensitivity.

Looking to the future, broadband TD-NIRS systems could

further benefit brain temperature monitoring by NIRS

techniques, as in general, the accuracy of the temperature

prediction can be improved by acquiring a continuous

absorption spectrum. Indeed, it allows a more accurate

determination of chromophore concentrations compared to

discrete wavelengths, as more chromophores can be

quantified, and a more refined data analysis technique can be

used. Such systems have been reported in the literature (89,

90), however, temperature monitoring was out of the scope of

these studies. BNIRS is also able to monitor continuous

absorption and scattering properties of light when appropriate

algorithms and methodologies are used (91). Therefore, these

2 techniques appear to be good candidates in order to

develop robust optical brain thermometry tools for clinical use.

The recent technological developments, notably in terms of

electronics, enabled to reduce the footprint of TD-NIRS, which

facilitated its use for clinical applications (88) and compact TD-

NIRS systems are now available. Therefore, even though more

work remains to be done in order to develop an accurate and
Frontiers in Pediatrics 06
robust optical instrument to monitor the brain temperature at

the bedside, the recent technological developments make the

possibility to develop small footprint instrument able to

measure brain temperature now within reach. The next step

will be to test the current methodologies in the clinic, as it

has not been experimented so far.
Discussion

Brain temperature is determined by the balance of heat

production and heat removal, and it is influenced by multiple

factors including cerebral metabolism, brain tissue injury,

blood flow, body/brain temperature, drugs, sedation, seizures,

and infection (6–9). The brain and/or body temperature

elevation is often associated with brain injury as seen in

traumatic brain injury, adult stroke, and HIE (10–13). The

magnitude of temperature elevation correlates with infarct size

and severity and is a risk factor for poor clinical outcomes in

adults (13–15). MRS thermometry and mapping found the

lowest body temperature at the core of tissue injury in adults

with acute ischemic stroke and the highest brain temperature

in the penumbral region (11).

Hypothermia decreases the metabolic demand for glucose

and oxygen and attenuates secondary energy failure and

neuroapoptosis (92, 93). The efficacy of TH depends on the

target organ temperature and the neuroprotective effect

depends on achieving the correct target temperature range

(94, 95).

The current hypothermic strategy for NE uses rectal

temperature for servo-controlled feedback to maintain a

steady temperature profile. An in-vivo assessment of regional

brain temperature using proton MRS during whole-body TH

revealed heterogenicity of the brain temperature profile.

Hypothermia effectively lower deep grey matter structures,

whereas temperatures of more superficial structures in the

grey matter and white matter are significantly greater than

rectal temperatures (96). Findings also suggest that infants

with MRI evidence of injury had overall higher and more

homogenous brain temperature than those without injury
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(97). Non-homogenous patterns of brain temperature were also

shown in other studies (50–66). In infants developing brain

injury after NE, hypothermia decreased brain temperature

during the first days of life but did not prevent an early

increase of brain temperature (66). Wu et al. found

significantly higher temperatures and brain-rectal temperature

gradients in neonates with NE during TH (49). The

application of using one specific baby temperature (33.5 °C)

in NE for neuroprotection has improved the overall outcome

of HIE but a single core temperature may not provide equal

neuroprotective benefits to brain structures that have different

histology, metabolic needs, and blood supply distribution. The

threshold temperature to achieve neuroprotection may be

unique to different brain structures. The heterogenicity of

brain temperature while whole-body cooling raises the

question of whether the current cooling system or

methodology is the optimal way to cool. We need to explore

whether there is a way to improve the homogeneity of white

matter or cortical cooling and whether will this lead to

improved neurological outcomes.

An animal study suggested that focal seizures produce an

increase in neuronal activity and led to an elevation of local

blood flow, cerebral metabolism and a significant rise in brain

temperature (96). Generally, physiologic brain temperature is

slightly warmer than core body temperature and subcortical

structures are warmer than cortical structures (7, 67).

However, injuries such as stroke can generate a brain-body

temperature gradient, in which case core body temperature

becomes a poor surrogate of brain temperature (98, 99). In

adults with ischemic stroke, the temperature of the ipsilateral

hemisphere is greater than the contralateral hemisphere (11,

61). Indeed, temperature alterations after neurologic injury,

especially an increase in the brain or systemic temperature,

are related to poor clinical outcomes (13, 15, 100, 101).

During pathological processes such as neuroinflammation,

increase metabolic demands overwhelm the brain’s already

limited cooling mechanisms and drive temperature 1–2 °C

higher than core body temperature (102).

In animal studies focal cooling rapidly terminates

experimental neocortical seizures and histological examination

of the cortex after cooling has shown no evidence of acute or

delayed neuronal injury, and blood pressure and temperature

remained stable (103). Animal experiments show that gentle

cooling is capable of markedly reducing subsequent seizure

frequency and intensity (104). The efficacy of TH in reducing

seizure burden following NE has also been described (25).

Confirming brain injury at the bedside and determining the

type and severity remains a challenge, as does bedside

identification and monitoring of injuries likely involving

ongoing processes of oxidative stress, excitotoxicity,

inflammation, repair, and cell death, evolving over hours to
Frontiers in Pediatrics 07
weeks. As novel treatment strategies for neonatal brain

injuries and seizures become available, the need for non-

invasive and continuous bedside monitoring of disease

severity and response to treatment becomes increasingly

apparent. Non-invasive and continuous measurements of

brain temperature in the neonatal neurocritical care set-up

may permit the selection of neonatal candidates who may

benefit from an adjustment in their hypothermia therapy or

for additional neuroprotective therapies. Further studies are

now urgently needed to establish whether optical brain

monitoring can be a useful neuromonitoring tool in neonatal

neurocritical care set-up. In view of the heterogeneous profile

of brain temperature during TH, an option of continuous

non-invasive monitoring of brain temperature at the bedside

might also provide an opportunity to review and improve the

current cooling methodologies in neonatal neurocritical care

following NE.
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