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Abstract

Two agents must select one of three alternatives. Their ordinal rankings are commonly

known and diametrically opposed. Efficiency requires choosing the alternative the agents

rank second whenever the weighted sum of their von Neumann Morgenstern utilities is

higher than under either agent’s favorite alternative. The agents’ utilities of the middle-

ranked alternative are i.i.d., privately observed random variables. In our setup, which is

closely related to a public goods problem where agents face liquidity constraints but no

participation constraints, decision rules that truthfully elicit utilities and implement efficient

decisions do not exist. We provide analytical and numerical results on second-best rules.

Keywords : Arbitration; Compromise; Mechanism design without transferrable utility.

JEL classification: C72; D70; D80.
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1. Introduction

You and your partner disagree about which restaurant to go to. You prefer the Italian

restaurant over the English restaurant, and the English restaurant over the Chinese restau-

rant. But your partner has exactly the opposite preferences. Should you compromise by

going to the English restaurant, or should you go to a restaurant that one of you likes best?

The answer to this question presumably depends on how strongly each partner prefers his

favorite restaurant over the compromise, and how strongly he prefers the compromise over

the bottom ranked alternative. Is there a way of finding out the partners’ strengths of

preference, or will they, for example, necessarily pretend to have a lower valuation of the

compromise than they really have? This is the question which this paper addresses.

We need to say first what we mean by “strength of preference.” One interpretation could

be that the strength of preference is equal to the amount of money that an agent is willing

to pay in order to obtain one outcome rather than another. If this were what we have in

mind, then one could try to elicit the strength of the partners’ preferences by introducing a

mechanism that obliges any partner whose favorite restaurant is chosen to pay compensation

to the other.

Here, we want to abstract from such side payments because they seem inappropriate in

many situations. Spouses, for example, rarely pay money to each other to resolve conflicts.

Another context in which money payments are uncommon is voting. Voting rules might try

to elicit, in some sense, the “strength of preference” for candidates, yet voters are typically

not asked to offer payments together with their votes. The problem that we study here is a

simplified version of the problem of designing voting rules that elicit strengths of preferences

without side payments.

If side payments are ruled out, what do we mean by “strength of preferences,” and how

can we elicit them? We mean in this paper by “strength of preference” the von Neumann

Morgenstern utility of alternatives. If we evaluate different mechanisms from an ex ante

or an interim perspective (Holmström and Myerson [10]), then von Neumann Morgenstern

utilities have to be taken into account when resolving conflicts. How can we elicit von

Neumann Morgenstern utilities truthfully? By exposing agents to risk. Agents’ choices
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among lotteries indicate their von Neumann Morgenstern utilities. If agents play a game

with incomplete information, then they are almost always automatically exposed to risk.

Their choices can then reveal their utilities.

We develop this theme in a simple stylized example with two agents and three alterna-

tives. We assume that it is commonly known that the agents’ rankings of the alternatives

are diametrically opposed. Their von Neumann Morgenstern utilities for the alternatives

are, however, not known. Decision rules are evaluated using the ex ante Pareto criterion.

This is equivalent to maximizing a weighted sum of ex ante expected utilities. Not taking

into account incentive compatibility of truthful reporting of types, a rule is efficient if and

only if it picks for every realization of von Neumann Morgenstern utilities an alternative

that maximizes the weighted sum of the two agents’ utilities.

For such a first-best decision rule to be implementable when von Neumann Morgenstern

utilities are privately observed, the rule needs to be incentive compatible. Our first main

result is that no first-best decision rule is incentive compatible if the distribution of von Neu-

mann Morgenstern utilities has a density with full support. We complement this observation

with a study of second-best decision rules, that is, decision rules that are efficient among

all incentive compatible rules. We explain that the structure of the second-best problem in

our context is different from that in other, more familiar settings, and that a full analytical

solution to the second-best problem appears difficult. We then report a mixture of partial

analytical, and more complete numerical results about second-best decision rules. Our re-

sults indicate that the shape of second-best rules is different from the shape of second-best

rules in more familiar settings, and that the amount of inefficiency that second-best rules

imply is surprisingly small.

One motivation for our paper is that mechanisms for efficient compromising are poten-

tially relevant to many areas of conflict, such as labor relations or international negotiations.

A second motivation was already mentioned above: we are interested in the application of

the theory of Bayesian mechanism design to voting. The current study is a first and limited

step into that direction. Traditionally, the literature on voting has either studied strategic

behavior under specific voting rules, or the design of voting rules using solution concepts
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that rely on weak informational assumptions, such as dominant strategies (Gibbard [7], Sat-

terthwaite [18], Dutta, Peters and Sen [6]), or undominated strategies (Börgers [2]). Our

purpose here is to explore the theory of voting with stronger informational assumptions,

which are, however, frequently made in other areas of incentive theory. A third motivation

for this paper is that it is a case study in Bayesian mechanism design without transferrable

utility. Much of the literature on Bayesian mechanism design has relied on the assumption

of transferrable utility. It seems worthwhile to explore what happens if this assumption is

relaxed.

It turns out that the setting that we study, although formally without transferrable utility,

is closely related to models of mechanism design for public goods with transferrable utility as

studied by d’Aspremont and Gérard-Varet [5], Güth and Hellwig [8], Rob [17], and Mailath

and Postlewaite [14]. These papers all consider settings in which there are two goods, a

public good, and “money.” Agents’ preferences are assumed to be additive in the quantity of

the public good that is provided and “money.” In our setting there is no “money.” However,

for each agent the probability with which their most preferred alternative is chosen serves

in some sense as “money.” The public good is the probability with which the compromise

is implemented. Agents “pay” for an increased probability of the compromise by giving up

probability of their most preferred alternative. Agents’ preferences are additive in the “real

good” and “money” because they are von Neumann Morgenstern preferences over lotteries,

which are additive in probabilities.

The details of the analogy between our work and the literature on mechanism design for

public goods will be explained later. Two points deserve emphasis. Firstly, an important

difference between our work and the established public goods literature is that agents, in

our model, face a liquidity constraint, which is absent from traditional models. The liquidity

constraint arises from boundaries on the amount of probability which agents can surrender:

for instance, it cannot be larger than one.

The second difference is that our model does not feature individual rationality constraints.

Most, though not all, of the previous literature on public goods has postulated an individual

rationality constraint (see the discussion in Hellwig [9]). Although in our setting there is
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no “outside option” which would guarantee agents a minimum utility, a lower boundary for

agents’ expected utility nevertheless easily follows from the facts that there is only a finite

number of allocation decisions, and that there is an upper boundary for the “payments”

which agents can make. Thus the liquidity constraint has a similar effect as an individual

rationality constraint.

In the light of the above discussions, it becomes intuitively plausible that it is not possible

to implement the first-best in our setting. Analogous results have been obtained for the

public goods setting by Güth and Hellwig [8], Rob [17], and Mailath and Postlewaite [14].

The analysis of the second-best in our setting is more involved than in the established public-

goods literature because of the difficulty involved in taking account of the implicit liquidity

constraint. Our results on second-best rules indicate that the amount of inefficiency implied

by second-best rules in our set-up is much smaller than the inefficiency of second-best rules in

the corresponding public goods set-up. The reason is that the liquidity constraints implicit

in our model are less restrictive than the individual rationality constraints present in the

public goods model.

This paper is organized as follows. In Section 2 we introduce our model. Section 3

explains the analogy between our setting and the public goods problem. In Section 4 we

characterize incentive compatible decision rules. Section 5 proves the impossibility of im-

plementing first-best decision rules. Section 6 explores second-best in a special case: equal

welfare weights and uniform type distribution. For this case we give a detailed presentation

of numerical findings as well as some partial analytical results. In Section 7 we pursue the

numerical approach in a more general context. Whereas the bulk of the paper is concerned

with ex ante efficiency we briefly weaken the efficiency concept in Section 8 and consider

interim efficiency. Section 9 concludes.

2. The Model

Two agents i = 1, 2 collectively choose one alternative from the set {A,B,C}. Agent 1

prefers A over B, and B over C. Agent 2 prefers C over B, and B over A. These preferences
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are common knowledge among the two agents. We refer to alternative B as the “compromise”

because it is the middle-ranked alternative for each of the two agents.

Each agent i has a von Neumann Morgenstern utility function ui : {A,B, C} → R. We

normalize utilities so that u1(A) = u2(C) = 1 and u1(C) = u2(A) = 0. These features of the

von Neumann Morgenstern utility functions are common knowledge among the two agents.

For i = 1, 2 we write ti for ui(B). We refer to ti as player i’s type. We assume that ti is a

random variable which is only observed by agent i. The two players’ types are stochastically

independent, and they are identically distributed with cumulative distribution function G.

We assume that G has support [0, 1], that it has a continuous derivative g, and that g(t) > 0

for all t ∈ (0, 1). The joint distribution of (t1, t2) is common knowledge among the agents.

Definition 1 A decision rule f is a function f : [0, 1]2 → ∆({A,B,C}) where ∆({A,B,

C}) is the set of all probability distributions over {A,B, C}.

We write fA(t1, t2) for the probability which f(t1, t2) assigns to alternative A, and we

define fB(t1, t2) and fC(t1, t2) analogously. Given any decision rule f , we denote for every ti ∈
[0, 1] by pi(ti) the probability that agent i’s favorite alternative is implemented, conditional

on agent i’s type being ti, i.e.:

p1(t1) =

∫ 1

0

fA(t1, t2)g(t2)dt2 and p2(t2) =

∫ 1

0

fC(t1, t2)g(t1)dt1.

We denote by qi(ti) the probability that the compromise is implemented, conditional on

agent i’s type being ti, i.e. for i = 1, 2:

qi(ti) =

∫ 1

0

fB(t1, t2)g(tj)dtj where j 6= i.

Finally, we denote by Ui(ti) agent i’s expected utility, conditional on being type ti, that is:

Ui(ti) = pi(ti) + qi(ti)ti.

We restrict attention to decision rules for which the integrals pi(ti) and qi(ti) exist for every

i = 1, 2 and every ti ∈ [0, 1].
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We evaluate decision rules using a utilitarian welfare criterion. Welfare is defined as the

weighted sum of the agents’ ex ante expected utilities.

Definition 2 For any λ ∈ [0.5, 1) the λ-weighted ex ante welfare associated with decision

rule f is:

λ

∫ 1

0

U1(t1)g(t1)dt1 + (1− λ)

∫ 1

0

U2(t2)g(t2)dt2.

In this definition we focus without loss of generality on the case that agent 1’s weight λ

is at least 0.5, and we rule out the trivial case in which λ = 1.

As noted by Holmström and Myerson [10], the set of all decision rules maximizing λ-

weighted ex ante welfare for some λ is the same as the set of all ex ante efficient rules. As

Holmström and Myerson suggest, we shall compare rules that are classically efficient, i.e.

ex ante efficient among all feasible rules (“first-best”), and rules that are ex ante incentive

efficient, i.e. ex ante efficient among all incentive compatible, feasible rules (“second-best”).

While the focus of this paper is on ex ante efficiency, we shall briefly consider in Section 8

interim efficiency. As Holmström and Myerson [10] point out, this is equivalent to allowing

the weight λ attached to an agent i to depend on that agent’s type ti.

The expression in Definition 2 can equivalently be written as:

∫ 1

0

∫ 1

0

(λfA(t1, t2) + [λt1 + (1− λ)t2] fB(t1, t2) + (1− λ)fC(t1, t2))g(t1)g(t2)dt1dt2.

From this expression it is obvious which decision rules f maximize λ-weighted ex ante welfare

among all decision rules. We call such decision rules λ-weighted first-best rules.

Definition 3 A decision rule f is called λ-weighted first-best if with probability 1 we have:

• If λ = 0.5:

t1 + t2 > 1 ⇒ fB(t1, t2) = 1

t1 + t2 < 1 ⇒ fB(t1, t2) = 0

• If λ > 0.5:

λt1 + (1− λ)t2 > λ ⇒ fB(t1, t2) = 1

λt1 + (1− λ)t2 < λ ⇒ fA(t1, t2) = 1
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If λ > 0.5 the first-best decision rule is uniquely determined except for a set of types of

measure zero. By contrast, if λ = 0.5, there are many first-best decision rules, and these

rules differ from each other on a set of types of positive probability measure. The reason is

that, for λ = 0.5, Definition 3 does not restrict the probabilities with which alternatives A

and C are chosen if the compromise is not implemented.

Because types are privately observed, in practice one can only implement incentive com-

patible rules.

Definition 4 A decision rule f is incentive compatible if for i = 1, 2 and for any types

ti, t
′
i ∈ [0, 1]:

pi(ti) + qi(ti)ti ≥ pi(t
′
i) + qi(t

′
i)ti.

The purpose of this paper is to study the potential discrepancy between λ-weighted

first-best rules and incentive compatible rules. For this purpose we focus on λ-weighted

second-best rules.

Definition 5 A decision rule f is called λ-weighted second-best if it maximizes λ-weighted

ex ante welfare among all incentive compatible decision rules.

We now discuss some features of our model. We begin with the modeling of the utility

functions. Our model implies that for each interim preference ordering that a player might

have there is a unique type of that player with these preferences. The main implicit restriction

is that we rule out multiple types that have the same interim preferences, i.e. whose von

Neumann Morgenstern utility functions differ only by an affine transformation. From the ex

ante point of view, it could be important to keep types with identical interim preferences in

the model, because welfare maximization might assign different allocations to these types.

However, if two types have identical interim preferences, they will make the same choice,

provided that the optimal choice is unique. An incentive compatible mechanism will not be

able to assign different outcomes to these types.1 Therefore, not much is lost by assuming

that for each interim preference ordering there is only one type that has this preference

ordering.

1For a more thorough discussion of this point, though in a different setting, see Hortala-Vallve [11,
Proposition 1].
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The fact that for each agent the normalization of utilities is the same across different types

is not restrictive. Differences in the normalization of utilities for different types would reflect

that these types receive different weight in the decision maker’s ex ante expected utility

maximization. These weight differences can equivalently be expressed by the probability

distribution of types.

The assumption that types are identically distributed for the two players can easily be

relaxed. In fact, it is immediate that our theoretical analysis and results in Section 4 would

remain unchanged. The numerical analysis would change, although the findings that we

report in Sections 6 and 7 are robust in the sense that small changes to the distributions

would not change the results by much.

It is also potentially important that types are independently distributed. In mechanism

design with transferrable utility, models with types that are not independent sometimes

have incentive compatible rules that achieve first-best (e.g. Crémer and McLean [4]). The

constructions used in this context in the literature do not immediately extend to a setting

without transferrable utility. We have not yet explored relaxations of the independence

assumption in our model.

3. Analogy with the Public Goods Problem

There is a close analogy between our model and models typically considered in the theory

of Bayesian mechanism design for non-excludable public goods (d’Aspremont and Gérard-

Varet [5], Güth and Hellwig [8], Rob [17], Mailath and Postlewaite [14]). We can view the

probability with which the compromise is chosen in our framework as the quantity of a

public good without exclusion that is consumed by both agents. Each agent’s private type

determines the agent’s valuation of the public good. Agents pay for the public good with a

reduced probability of their favorite alternative.

To make this analogy more precise let us define somewhat arbitrarily the outcome in

which each of the two extreme alternatives A and C is chosen with probability 0.5 as the

default outcome. For every agent i define mi(t1, t2) to be the difference between the default
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probability of this agent’s favorite alternative, and the probability with which the agent’s

favorite alternative is chosen by a given decision rule if the types are (t1, t2):

m1(t1, t2) ≡ 0.5− fA(t1, t2)

m2(t1, t2) ≡ 0.5− fC(t1, t2)

for all (t1, t2) ∈ [0, 1]2. We can think of mi(t1, t2) as the payment made by agent i if types

are (t1, t2). The probability of the compromise is then:

fB(t1, t2) = m1(t1, t2) + m2(t1, t2)

for all (t1, t2) ∈ [0, 1]2. We can think of this probability as the quantity of a public good

that is produced if types are (t1, t2). The above equation shows that the public good is

produced with a one-to-one technology where the quantity produced equals the sum of

agents’ payments. The quantity of the public good can obviously not be more than one, and

we can model this by assuming that the marginal cost rise to infinity if the quantity exceeds

one.

Our model is then isomorphic to the traditional set-up for Bayesian mechanism design

for non-excludable public goods, except that we have to respect a liquidity constraint: For

every i ∈ {1, 2} and every (t1, t2) ∈ [0, 1]2 we must have:

mi(t1, t2) ∈ [−0.5, +0.5].

Otherwise fA(t1, t2) or fC(t1, t2) would be larger than one or smaller than zero. This implicit

ex post liquidity constraint of individual agents is a first feature that distinguishes, to our

knowledge, our set-up from all public good models that have been studied in the literature.

A second feature that distinguishes our set-up from the traditional public goods set-up is

the absence of individual rationality constraints in our model. In the public goods context,

and in other related contexts, one is often interested in characterizing all decision rules that

11



are incentive compatible and individually rational.2 But in the context of arbitration there

is no natural role for individual rationality.

The two differences between our context and the traditional set-up neutralize each other

to some extent. Specifically, even though there is no individual rationality constraint, there

is a lower boundary for the interim expected utility of the agents because there is only a

finite number of alternatives, and agents cannot be asked to pay more than their budget

allows.

4. Incentive Compatibility

In this section we translate standard characterizations of incentive compatible decision rules

into our setting. Because the proofs of these results are familiar from the literature, we omit

them.

Lemma 1 A decision rule f is incentive compatible if and only if for i = 1, 2 we have:

(i) qi is monotonically increasing in ti;

(ii) for any two types ti, t
′
i ∈ [0, 1] with ti < t′i:

−t′i(qi(t
′
i)− qi(ti)) ≤ pi(t

′
i)− pi(ti) ≤ −ti(qi(t

′
i)− qi(ti)).

The first item in this Lemma states that the probability of the compromise, conditional

on an agent’s type, increases as this agent’s utility of the compromise increases. Where is

this probability taken from? The second item in Lemma 1 shows that some of the probability

has to be taken from the probability assigned to the agent’s favorite alternative. It is intu-

itive that the probability of the most preferred alternative must decrease. If the additional

probability for the compromise were only taken from the agent’s least preferred alternative,

then the agent would have an incentive to report a higher utility for the compromise than he

actually has. The agent has to pay for a higher probability of the compromise with a lower

probability of his favorite alternative.

2An exception is d’Aspremont and Gérard-Varet [5].

12



The inequality in the second item in Lemma 1 provides a lower and an upper boundary

for the change in the probability of the most preferred alternative. Both of these boundaries

are negative. The boundaries are such that among two types the higher type prefers to pay

the price and obtain a higher probability of the compromise, whereas the lower type prefers

not to pay the price.

The next lemma describes incentive compatibility in terms of properties of the interim

expected utility.3

Lemma 2 A decision rule f is incentive compatible if and only if for every agent i = 1, 2:

(i) qi is monotonically increasing in ti;

(ii) for every ti ∈ [0, 1] such that qi is continuous at ti:

U ′
i(ti) = qi(ti).

We can use the differential equation in the second item of Lemma 2 to obtain a formula

that links the interim expected probabilities of each agent’s favorite alternative to the interim

expected probabilities of the compromise. This is done in Lemma 3. To solve the differential

equation, we have to take the value of the interim expected utility at some boundary point

as given. We choose here the highest type, i.e. ti = 1, rather than, as is convention in the

literature, the lowest type, ti = 0, because this turns out to be more useful in the proof of

Proposition 2 below. Apart from this modification, the proof of Lemma 3 is again standard,

and is therefore omitted.

Lemma 3 A decision rule f is incentive compatible if and only if for every agent i = 1, 2:

(i) qi is monotonically increasing in ti;

(ii) pi(ti) = pi(1) + qi(1)− qi(ti)ti −
∫ 1

ti
qi(si)dsi for all ti ∈ [0, 1].

3See, for example, Section 5.1.1 of Krishna [13] for a proof of a similar result.
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5. Impossibility of Implementing First-Best Rules

For asymmetric welfare weights the impossibility of implementing the first-best rule is ele-

mentary. In this case there is essentially one λ-weighted first-best decision rule. Moreover,

this decision rule never implements the most preferred action of the agent who has the lower

welfare weight. But, as Lemma 1 revealed, this probability is the main instrument by which

an agent can be given incentives to reveal truthfully their type.

Proposition 1 No λ-weighted first-best decision rule is incentive compatible for λ > 0.5.

Proof: By Definition 3 the λ-weighted first-best decision rule implies q2(t2) = 1 −
G

(
1− 1−λ

λ
t2

)
and p2(t2) = 0 for all t2 ∈ [0, 1] if λ > 0.5. But this violates condition (ii)

of Lemma 1. For any t2, t
′
2 with 0 < t2 < t′2 the left hand and the right hand sides of the

inequality in condition (ii) of Lemma 1 are negative, but the expression in the center of that

inequality is zero.

Q.E.D.

The case of symmetric welfare weights is more subtle. In this case, there are multiple λ-

weighted first-best decision rules, and the interim probability of each agent’s most preferred

alternative may vary with that agent’s type. Thus, an instrument for providing incentives

is available for each agent. Yet these instruments are never flexible enough to make the

first-best decision rule incentive compatible.

Proposition 2 No λ-weighted first-best decision rule is incentive compatible for λ = 0.5.

We shall prove Proposition 2 by showing that, if λ = 0.5, any first-best decision rule that

is incentive compatible has the property that the ex ante probability of the compromise, and

the ex ante probabilities of alternatives A and C, as implied by incentive compatibility, add

up to more than one. This then contradicts the definition of decision rules.

If our set-up is interpreted as a public goods set-up, as indicated in Section 3, our

result shows that the contributions which individuals are willing to make under incentive

compatibility are not enough, from an ex ante point of view, to cover the total resources

required to produce the first-best quantity of the public good. The same reasoning is also
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behind the impossibility of implementing the first-best in standard models of incentives in

public goods provision (for example: Güth and Hellwig [8]). However, as argued above,

our set-up differs from the most common set-up in that we have no individual rationality

constraint. If there is no individual rationality constraint in the public goods framework,

then the first-best can be implemented (d’Aspremont and Gérard-Varet [5]). We obtain

a different result because, as explained in Section 3, our agents face individual liquidity

constraints. These liquidity constraints imply lower boundaries for the utility of each type,

even if no individual rationality is required.

Despite the differences between our model and the public goods model, the proof of

Proposition 1 that we provide below parallels the modern approach to proving impossi-

bility results in the field of mechanism design. For example, it is analogous to Milgrom’s

[15, p.79] version of the proof of the Myerson-Satterthwaite [16] impossibility theorem. We

begin the proof by arguing that Lemma 3 implies that all incentive compatible first-best

decision rules have the same ex ante probabilities for the three alternatives. We then con-

struct one particular incentive compatible first-best decision rule for our problem, namely a

Vickrey-Clarke-Groves (VCG) mechanism. We show for this decision rule that the ex ante

probabilities of the three alternatives add up to more than one. It then follows that the

same has to be true for all incentive compatible decision rules.

An important difference between the structure of our proof and similar proofs of ear-

lier impossibility results in Bayesian mechanism design is that in earlier proofs individual

rationality is used to select the mechanism on which to focus among all conceivable VCG-

mechanisms. In our proof, the VCG-mechanism on which we focus is determined by the

condition that the highest type, ti = 1, has to expect the compromise with probability 1,

and all other alternatives with probability zero. Thus, we use efficiency, and this agent’s

“liquidity constraint” to select the appropriate VCG-mechanism.

Proof: The proof is indirect. Suppose there were a first-best decision rule that is incen-

tive compatible. Then qi(ti) = 1−G(1− ti) for i ∈ {1, 2} and almost all ti ∈ [0, 1]. We want

to use Lemma 3 to infer the functions pi. For this we need to know pi(1) + qi(1). Because

qi(ti) = 1 − G(1 − ti) holds only for almost all ti ∈ [0, 1], we cannot assume that it holds
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for ti = 1. However, interim expected utility Ui is continuous because, by Lemma 3, it is an

integral. For almost all types interim expected utility is at least qi(t1)ti = (1−G(1− ti))ti.

By continuity, therefore, the expected utility of type ti = 1 has to be equal to 1.

We can now apply Lemma 3. Because sets of measure zero do not affect the value of the

integral, we can deduce pi(ti) = 1 − (1 − G(ti))ti −
∫ 1

ti
(1 − G(si))dsi for all ti ∈ [0, 1]. This

implies that the value of
∫ 1

0
pi(ti)g(ti)dti is the same for all first-best, incentive compatible

decision rules.

The idea of the proof is now to show that the interim probabilities implied by first-best

and incentive compatibility add up to more than one. We show this by considering the

following decision rule, where we ignore for the moment that the components of this rule do

not add up to one for every type vector. The function fB is the first-best rule of Definition

3. The functions fA and fC are defined as follows.

fA(t1, t2) = (1− fB(t1, t2))(1− t2) for all (t1, t2) ∈ [0, 1]2;

fC(t1, t2) = (1− fB(t1, t2))(1− t1) for all (t1, t2) ∈ [0, 1]2.

We assume that players evaluate outcomes under this rule by the expected utility calculation

shown in Section 2, ignoring the fact that the components of the decision rule do not always

add up to one.

This rule is incentive compatible. This follows from the fact that it is a weakly dominant

strategy for each player to report his true type. To see that truth telling is weakly dominant,

consider, say, player 1, and assume that player 1’s true type is t1. Suppose player 2’s reported

type is t2. Assume first that t2 is such that t1 + t2 > 1. If player 1 reports his true type,

he receives utility t1. If he reports a type τ1 such that τ1 + t2 < 1, then player 1’s utility

becomes under the above rule: 1 − t2. Player 1 will prefer to report his true type because

t1 > 1− t2 ⇔ t1 + t2 > 1, by assumption. Now suppose alternatively that player 2’s reported

type is some t2 such that t1 + t2 ≤ 1. Then, if player 1 reports his true type, he gets: 1− t2.

If, alternatively, he pretends to have a type τ1 such that τ1 + t2 > 1, then he receives utility

t1. Player 1 prefers to report his true type because 1− t2 ≥ t1 ⇔ t1 + t2 ≤ 1, by assumption.
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The interim expected values of fA and fC implied by the above decision rule have to

satisfy condition (ii) of Lemma 3. This is because the fact that the values of fA, fB and fC

add up to 1 for all type vectors plays no role in the proof of Lemma 3. Therefore, the values

of pi(ti) for i ∈ {1, 2} and ti ∈ [0, 1] that are implied by the above decision rule must be the

same as the ones associated with any first-best, incentive compatible decision rule.

We complete the proof by showing that for the above decision rule the sum of the expected

values of qi(ti) (for arbitrary but fixed i ∈ {1, 2}), p1(t1) and p2(t2) is greater than one. This

sum is equal to the expected value of the sum fA(t1, t2) + fB(t1, t2) + fC(t1, t2). Calculating

this sum yields:

fA(t1, t2) + fB(t1, t2) + fC(t1, t2) =





1 if t1 + t2 ≥ 1

2− t1 − t2 if t1 + t2 < 1.

Because the bottom line is strictly larger than one, and because we have assumed that G has

support [0, 1] it is obvious that the ex ante expected value of fA(t1, t2)+fB(t1, t2)+fC(t1, t2)

is greater than one.

Q.E.D.

6. Second-Best Rules: Uniform Type Distribution and Equal Welfare Weights

Analytical characterizations of second-best rules are difficult to obtain. Consider, for simplic-

ity, the case of equal welfare weights: λ = 0.5. We could try to mimic the typical approach

to characterizing second-best mechanisms, which proceeds by writing the optimization prob-

lem that defines second-best rules so that only directly welfare-relevant variables appear as

choice variables. In our model, when the agents have equal welfare weights, the directly

welfare-relevant variables are the probabilities of the compromise, fB(t1, t2). Thus, we might

seek to eliminate from the problem the variables fA(t1, t2) and fC(t1, t2) which are needed

to maintain incentives, but do not directly enter the welfare function. To do so, we need a

characterization of all functions fB that can be part of an incentive compatible decision rule.
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In the theory of public goods, allocation rules that can be part of an incentive compatible

scheme are those for which the interim expected allocations of the public good are mono-

tonically increasing, and for which the agents’ ex ante payments, as implied by an incentive

compatibility condition like condition (ii) in Lemma 3, add up to the ex ante expected quan-

tity of the public good. That is, ex ante, in expected terms, the contributions to the public

good have to cover the cost of producing the public good. These conditions are not only

necessary, but also sufficient for an allocation to be part of an incentive compatible scheme

(see, e.g., Theorem 1 in Mailath and Postlewaite [14]) because, whenever ex ante budget

balance is satisfied by an incentive compatible decision rule, one can construct a payment

scheme that is ex post budget balanced, incentive compatible, and that supports the same

allocation rule and the same interim expected utilities.

This argument does not apply in our setting. If we mimic the standard construction of ex

post budget balanced rules (as described, for example, in the proof of Lemma 3 in Cramton,

Gibbons and Klemperer [3]), then we violate the individuals’ liquidity constraints. That is,

individuals would be asked to give up so much probability of their favorite alternative that

this probability would become negative. Thus, although ex ante budget balance is necessary,

it is not sufficient for a rule fB to be part of an incentive compatible decision rule in our

setting.4

In this section we begin by presenting some numerical results about second-best decision

rules, focusing on the case of equal welfare weights: λ = 0.5 and uniform type distribution

G. For this case, we also provide some analytical results that back up some of our numerical

findings. In the next section we provide numerical results for other cases. For our numerical

work we discretize the type space and postulate 80 equally spaced types.5 For finite type

spaces the problem of finding a second-best decision rule is a linear programming problem.

The choice variables are the probabilities of the three alternatives for each possible pair of

types. The objective function as well as the constraints are linear in these probabilities. For

the computations reported in this section we used the implementation of the interior point

4We could seek to introduce further conditions on fB so that ex post budget balance can be achieved.
For a simpler setting than ours, Border [1] has found such conditions. However, generalizing his results to
our context seems hard.

5We have chosen the discretization as fine as was possible with the computing facilities available to us.
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Figure 1: Probability of the compromise under the second-best rule for uniform type distri-
bution and equal welfare weights

algorithm for linear programming that is available in Mathematica 6.0 for Linux x86.

Our computations take account only of “local” incentive constraints: No type can gain from

pretending to be a neighboring type. As in other standard models, local incentive constraints

imply global incentive constraints. This is, for example, the logic behind Lemma 2.

Figure 1 shows the probability of the compromise B under the second-best rule. The

figure shows a grid representing the possible 80×80 type pairs. Each grid point is associated

with a square whose color represents the probability with which the compromise is chosen

by the second-best rule. If the square is white, the probability of B is 0. If the square is

black, the probability of B is 1. If the color is grey, the probability is between 0 and 1. A

darker shade of grey implies a larger probability of B.6

A surprising aspect of Figure 1 is how similar the second-best and the first-best rules

are. First-best decision rules assign probability 1 to the compromise B if the types are above

the diagonal connecting the points (1, 0) and (0, 1), and they assign probability zero to B if

the types are below this diagonal. The second-best rule is identical to this rule except that

the area in which the compromise is implemented is cut off in the extreme corners of the

unit square. Our calculations suggest that the compromise is implemented with very small

probability only if the type of one of the agents is 13/160, and it is not implemented at all

6Gridlines have been suppressed in Figure 1, as well as in all other figures below.
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Figure 2: The probability of alternative A under the second-best rule for uniform type
distribution and equal welfare weights

if the type of one agent is less than or equal to 11/160. A consequence is that the ex ante

welfare loss under the second-best rule, relative to the first-best, is very small, approximately

0.015%.

It is instructive to compare Figure 1 to the second-best mechanism in the public goods

problem that corresponds to the compromise problem. In this case, the second-best rule can

easily be analytically determined. It implements production of the public good if and only if

the sum of types is above 1.25. Geometrically, instead of cutting off corners as in Figure 1,

the diagonal is shifted to the North East in the second-best public good rule. The associated

relative welfare loss is approximately 2.23%. Thus, numerically, it appears that the interim

individual rationality constraint in the public goods problem is a more restrictive constraint

than the ex post liquidity constraint in the compromise problem.

In Figure 2 we report the probabilities of alternative A under the second-best rule. The

method that we use for the graphical representation of these probabilities is the same as in

Figure 1. In the first-best, the allocation of probabilities to alternatives A and C below the

diagonal is not relevant for welfare. In the second-best rule, this probability is chosen by the

optimization routine to provide at the interim stage incentives for agents 1 and 2 to report

their true valuations of the compromise. The probability assigned to A by the second-best

rule for type pairs below the diagonal does not seem to follow any particular pattern.
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We now complement the numerical results of Figures 1 and 2 by some analytical insights.

To make the problem analytically tractable we consider a subclass of decision rules with only

two parameters. We choose this subclass so that it includes a rule that is very close to the

one shown in Figure 1, and so that it includes the rule that would be second-best in the

public goods setting that corresponds to our model. The subclass of decision rules to which

we restrict attention is described in Definition 6.

Definition 6 A decision rule f is called a cropped triangle rule if the probability of the

compromise is of the form:

fB(t1, t2) =





1 if t1 ≥ c, t2 ≥ c and t1 + t2 ≥ 1 + a,

0 otherwise,

where a ∈ [0, 1] and c ∈ [a, 1+a
2

].

The function fB for a typical two-parameter rule is illustrated in Figure 3, where fB(t1, t2) =

1 in the shaded area.

In Appendix A, contained in a supplementary document archived in the “Supplementary

Materials” section of the J. Econ.Theory web site, we show that among all incentive compat-

ible cropped triangle rules those that maximize expected welfare with equal welfare weights

have parameters a = 0 and c = c∗ where c∗ is the unique c that solves −1+12c−6c2−4c3 = 0

in the interval [0, 1] (c∗ ≈ 0.0874). Note how similar this solution is to the rule of Figure 1

21



where corners are cut at approximately 13/160 ≈ 0.0813. For the optimal cropped triangle

rule the welfare loss relative to first-best is 2(c∗)3/7, which is approximately 0.0191%.7

In Appendix C, contained in the supplementary material available from the J. Econ.Theory

web site, we also show that the class of cropped triangle rules includes a rule that can be

analytically shown to be second-best in the public goods problem not just among all incen-

tive compatible cropped triangle rules, but among all rules, and even if one neglects that fA

and fB need to be between zero and one. This rule has a = 1.25 and c = 0. We show in the

appendix that this rule can be implemented with probabilities fA and fC that are between

zero and one. In other words, in the public goods problem that corresponds to our problem,

if one determines second-best taking into account only interim individual rationality, but not

the ex post liquidity constraints, then one obtains an optimal solution that also satisfies the

ex post liquidity constraints. In this sense, the interim individual rationality constraints are

more restrictive than the ex post liquidity constraints. This explains why the welfare loss is

larger in the public goods problem than in the compromise problem.

7. Second-Best Rules: The General Case

In this section we explore the robustness of our insights into second-best decision rules

obtained in Section 6 for uniformly distributed types and equal welfare weights. The first step

in our robustness check is to consider changes in the type distribution G while maintaining

the assumption of equal welfare weights. We shall focus on the case that the types follow

a discretized Beta-distribution. We vary separately each of the two shape-parameters of

the Beta-distribution from 0.5 to 5 in increments of 0.5. We thus obtain 100 different type

distributions. The uniform distribution corresponds to the case that both parameters equal

1.

We first attempt to give some insight into how the shape of the second-best decision

rule varies with the type distribution when welfare weights are equal. To this end we have

7It is possible to show that, with equal welfare weights and uniformly distributed types, the optimal
cropped triangle rule is second-best overall. The proof of this result is provided in Appendix C in the
supplementary material available from the J. Econ.Theory web site. We are very grateful to Rakesh Vohra
for contributing, in recent personal communication, the solution to a relaxed second best problem, that,
together with our own results in Appendix A of the supplementary material, allows us to conclude that the
optimal cropped triangle rule is second-best.
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Figure 4: Average deviations from first-best for 100 type distributions

computed numerically the second-best decision rule in the compromise setting for all 100

type distributions. We report in Figure 4 for each pair of types the average deviation of

the second-best decision rule from the first-best rule, where the average is taken across our

100 type distributions. For grid points marked by white squares the average deviation from

first-best is zero. For grid points marked in black the average deviation is 1. If the average

deviation is between zero and 1, we have indicated the value by choosing an appropriate

level of grey, where darker grey implies a larger deviation.

Figure 4 suggests that the observation made in the case of the uniform distribution that

deviations form first-best occur only in the extreme corners of the unit square seems to hold

regardless of the type distribution. The different shades of grey in Figure 4 indicate that

the 100 second-best rules differ from each other only with regard to the threshold at which

the extreme corners of the first-best decision rule have been cropped. The magnitude of the

threshold at which the corners have been cut off appears to be related to the type distribution.

For example, our computations suggest that amongst type distributions that are symmetric

around the midpoint of the unit interval, those distributions that place high probability

weight on extreme values at either end of the type-space feature a smaller threshold than

those distributions with low probability weight on the extreme types. In particular, our

numerical calculations indicate that for Beta-distributions where the two shape parameters

take the same value, the threshold increases as we successively raise the value of the shape-
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Figure 5: Frequency distribution of ex ante welfare losses for 100 type distributions

parameters from 0.5 to 5.8

Next, we describe how the magnitude of the welfare loss under the second-best decision

rule varies with the type distribution. For each of our 100 second-best rules we have cal-

culated the associated ex ante welfare loss, relative to the first-best. Figure 5 displays a

histogram of these welfare losses. The main point to notice is that in all cases the ex ante

welfare loss is less than 0.025%. Thus, the observation made in the case of the uniform

distribution that the ex ante welfare loss is very small seems to hold quite generally.

To provide a standard of comparison for evaluating these very small welfare losses we

have computed numerically the second-best public good rule, and the relative welfare loss

associated with it, for all 100 type distributions.9 We find that in all 100 cases the relative

welfare loss associated with the second-best public goods rule is strictly larger than the

relative welfare loss under the second-best in the compromise setting. This suggests that

also for distributions other than the uniform distribution the participation constraints are

more restrictive than the ex post liquidity constraints. To explore this observation further,

we have calculated numerically, for all 100 type distributions, the second-best decision rule

when both participation constraints and ex post liquidity constraints are imposed. Our

computations yield the same level of ex ante social welfare in the second-best of the public

good setting and in the second-best of the setting with participation constraints and liquidity

8Increasing the value of the shape-parameters shifts probability weight from extreme types at either side
of the unit interval towards intermediate types around the midpoint of the unit interval.

9To reduce computing time, the comparison of the second-best in the compromise and the public good
settings is based on a discretization of 20 types.
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Figure 6: Probabilities of A and B, resp., under the second-best rule for uniform type
distribution and λ ≈ 0.505

constraints. This indicates that, just as with uniformly distributed types, the participation

constraints are more restrictive than the ex post liquidity constraints in the sense that the

latter constraints will not be binding if participation constraints are imposed.

The second step in our robustness check is to study, for the case of uniformly distributed

types, the effect of a change in agent 1’s welfare weight λ. We have computed the second-

best decision rule and the relative welfare loss associated with it for 52 different values of λ

equally spaced between 0.5 and approximately 0.99.

We first study the effect of a change in agent 1’s welfare weight on the shape of the

second-best decision rule. We display in Figures 6 and 7 our results for two examples of

asymmetric welfare weights: λ ≈ 0.505 and λ = 0.6. Figures 6 and 7 illustrate the second-

best decision rules by displaying the probability of alternative A on the left hand side and

the probability of the compromise B on the right hand side. Both figures show, in addition

to the diagonal that connects points (0, 1) and (1, 0), a steeper line that represents all type-

pairs for which the λ-weighted sum of the agents’ types equals agent 1’s welfare weight λ.

For type-pairs above this line the first-best rule selects the compromise B with probability

1. Below this line it selects alternative A.

The second-best probabilities of the compromise in Figures 6 and 7 involve two types

of distortions relative to the first-best: First, a distortion of the slope of the the line above

which the first-best decision rule implements the compromise B. This type of distortion is
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Figure 7: Probabilities of A and B, resp., under the second-best rule for uniform type
distribution and λ = 0.6

absent in the case of equal welfare weights. Second, the area in which the second-best rule

selects the compromise appears to be cropped at the top left corner of the unit square. Figure

7 suggests furthermore that the area in which the second-best rule selects the compromise

is also cropped in the bottom right corner of the unit square once agent 1’s welfare weight

becomes sufficiently large. These second distortions are reminiscent of the distortions that

we found in the case of equal welfare weights. The second-best probabilities of alternative A

in Figures 6 and 7 show that under asymmetric welfare weights the second-best rule differs

from first-best also in that agent 1’s favorite alternative A is not always chosen when the

compromise is not, but instead alternative C is sometimes chosen. This is necessary to

provide incentives to agent 1 to reveal his type.

We finally describe how the magnitude of the relative welfare loss under the second-best

decision rule varies with agent 1’s welfare weight. The relation is non-monotone. Welfare

loss increases for λ close to, but above 0.5, and then decreases. The maximum welfare

loss is approximately 5%. Two opposing forces cause the non-monotonicity. To provide

incentives the second-best decision rule must choose alternative C with positive probability.

This is a deviation from first-best the relative importance of which increases as λ increases.

On the other hand, for large λ, first-best and second-best implement the compromise less

frequently, and therefore the need to provide incentives decreases, and with it the deviation

of second-best from first-best.
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8. Interim Efficient Rules

So far we have evaluated decision rules using welfare weights that do not depend on types.

In this section we consider briefly the case that welfare weights are allowed to depend on

types. There are thus two functions λi : [0, 1] → R+ for i = 1, 2, and the welfare associated

with a decision rule f is:

∫ 1

0

λ1(t1)U1(t1)g(t1)dt1 +

∫ 1

0

λ2(t2)U2(t2)g(t2)dt2.

We revisit with this specification of welfare weights the question addressed in Section

5 whether first-best rules are incentive compatible. We give two examples. Suppose that

weights are given by: λ(ti) = ti for i = 1, 2. The first-best rule is then uniquely determined

except for a set of pairs (t1, t2) of measure zero. The rule is shown in Figure 8. Clearly,

this rule is not incentive compatible for any distribution G of types. As each agent’s type

increases from 0 to 0.5, both the interim probability of B and the interim probability of the

agent’s most preferred alternative increase. Therefore, each agent has an incentive to report

their type as ti = 0.5 even if the true type is ti < 0.5.

In Figure 8, as agents report a higher type, the first-best mechanism not only infers that

agents have a higher valuation of the compromise, but it also attaches higher weights to

agents. It might be argued that this effect generates the incentive to distort preferences for

agents with low types. We next consider an example in which agents’ weights are decreasing
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in their types: λ(ti) = 1 − ti for i = 1, 2. The first-best rule for these weights is shown

in Figure 9. Once again it is obvious that this rule is not incentive compatible for any

distribution G of types. As each agent’s type increases from 0 to 0.5, the probability of the

most preferred alternative of that agent decreases, while the probability of the compromise

is zero. Therefore, each agent will have an incentive to report their type as ti = 0 even if

the true type is ti ∈ (0, 0.5]. The decreasing weight creates an incentive to understate one’s

type.

The two examples that we have given suggest that for most λi functions the first-best

will not be incentive compatible. For given λi functions, the first-best choice will be uniquely

determined for almost all (t1, t2), and there is no reason why in general the first-best rule

should provide adequate incentives to truthfully reveal one’s type.10

9. Conclusion

For a simple compromise problem with non-transferrable utility we have shown the im-

possibility of implementing the first-best, and we have determined some characteristics of

second-best decision rules. In future research we plan to extend our work to a scenario in

which agents’ rankings of the alternatives as well as their von Neumann Morgenstern util-

ities are privately observed. We suspect that in this setting second-best decision rules can

10We have not proved a formal version of the intuition developed in the text, nor have we analyzed second-
best rules in the case of type-dependent weights. It seems that a further investigation of these issues would
not add much further insight beyond what we have obtained so far.
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only be determined numerically. We also plan to examine in more detail the robustness

of the decision rules that we obtain in our simple Bayesian setting, and to compare these

decision rules to decision rules which are optimal if informationally less demanding concepts

of implementation are considered.
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