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In this online appendix we prove the analytical results mentioned in Section 6 of the main

paper. The structure of this appendix is as follows: In Appendix A we characterize the

optimal cropped triangle rule. In Appendix B we show that the second-best in the public

goods problem can be implemented using an incentive compatible cropped triangle rule.

Appendix A: Welfare Maximization Among Incentive Compatible Cropped

Triangle Rules

The claim that we prove in this appendix concerns the maximization of expected welfare

with weight λ = 0.5 among all incentive compatible cropped triangle rules. To maximize

expected welfare among all these rules we shall restrict attention to cropped triangle rules

that satisfy the following symmetry condition: fA(t, t′) = fC(t′, t) and fB(t, t′) = fB(t′, t)

for all (t, t′) ∈ [0, 1]2. To see that this is without loss of generality consider any incentive

compatible decision rule (fA, fB, fC), and define a new, symmetric decision rule by swapping

the roles of players 1 and 2 and alternatives A and C with probability 0.5. Thus, with

probability 0.5 the original rule is applied, and with probability 0.5 player 1 finds himself in

the role of player 2 in the original rule. But since the original rule was incentive compatible

for players 1 and 2, so is the new rule. Moreover, with equal welfare weights, expected

welfare remains unchanged. Note that the argument is not restricted to cropped triangle

rules but is general. For cropped triangle rules, moreover, the function fB is symmetric

by construction. The above argument only establishes that for cropped triangle rules it is

without loss of generality to assume that also the functions fA and fC satisfy the symmetry

condition.

1Department of Economics, University of Michigan, 611 Tappan Street, 337 Lorch Hall, Ann Arbor, MI
48109-1220, U.S.A., tborgers@umich.edu.

2Department of Economics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United King-
dom, p.postl@bham.ac.uk.

1



The structure of our argument will be as follows. First, we establish a necessary condition

that all functions fB that are part of a symmetric, incentive compatible cropped triangle

rule have to satisfy. Then we determine the welfare maximizing choice of fB where fB is

as in Figure 3 of the main paper and satisfies the necessary conditions. Thus, we solve a

relaxed optimization problem. Finally, we show that the solution satisfies the constraints of

the original optimization problem, that is, that we can construct functions fA and fC that

make the rule fB incentive compatible.

If a function fB is part of a symmetric, incentive compatible cropped triangle rule, then

there must be interim probability functions pi mapping types into interim probabilities of

preferred outcomes that make the rule fB incentive compatible. For given fB the functions

pi are determined by Lemma 3, part (ii) (see main paper), once we have fixed the boundary

values pi(1). By the symmetry assumption, pi(1) will be the same for both i, and we denote

it for simplicity by p. Our necessary condition will be that it must be possible to find

some p ∈ [0, 1] such that, if we substitute this p for pi(1) in Lemma 3, part (ii), we obtain

functions pi(ti) that satisfy together with fB the “ex ante adding up” constraint, i.e. the ex

ante expected probability of the compromise and the ex ante expected values of p1(t1) and

p2(t2) add up to one.

To work out the necessary condition in detail, we first note that for cropped triangle

rules, the interim probability of the compromise is:

qi(ti) =





0 if 0 ≤ ti ≤ c,

ti − a if c ≤ ti ≤ 1 + a− c,

1− c if 1 + a− c ≤ ti ≤ 1.

The ex ante probability of the compromise, that is the ex ante expected value of qi (for i

either 1 or 2) can most easily be calculated as the size of the shaded area in Figure 3 of the

main paper, which is:

1

2
(1− a)2 − (c− a)2

where the size of the shaded area in Figure 3 of the main paper was determined as the size
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of a rectangular triangle with two sides of length 1 − a minus the size of the two smaller

triangles that are “cropped” in Figure 3 of the main paper, and that are rectangular with

two sides of length c− a.

Next, we infer, using Lemma 3 of the main paper, the interim probabilities of the most

preferred alternatives pi. Obviously, if 1 + a− c ≤ ti ≤ 1, incentive compatibility requires:

pi(ti) = pi(1)

= p.

If c ≤ ti ≤ 1 + a− c we have

pi(ti) = pi(1) + qi(1)− qi(ti)ti −
∫ 1

ti

qi(si)dsi

= p + (1− c)− (ti − a)ti

−
∫ 1+a−c

ti

(si − a)dsi − (1− (1 + a− c))(1− c)

where the integral was calculated in two parts, and the second part equals the size of a

rectangle with sides of length 1 − (1 + a − c) and 1 − c. We continue the calculation as

follows:

= p + (1− c)− (ti − a)ti

−
[
1

2
(si)

2 − asi

]1+a−c

ti

− (c− a)(1− c)

= p + (1− c)− (ti − a)ti

−1

2
(1 + a− c)2 + a(1 + a− c)

+
1

2
(ti)

2 − ati − (c− a)(1− c)

= p +
1

2
(1 + a− c)2 − 1

2
(ti)

2
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For 0 ≤ ti ≤ c we have:

pi(ti) = pi(1) + qi(1)− qi(ti)ti −
∫ 1

ti

qi(si)dsi

= p + (1− c)− 1

2
(1− a)2 + (c− a)2

where the integral was calculated as the size of a rectangular triangle with two sides of length

1− a minus the size of the two smaller triangles that are “cropped” in Figure 3 of the main

paper.

Now we are in a position to determine the ex ante expected value of pi:

p + c

[
(1− c)− 1

2
(1− a)2 + (c− a)2

]

+

∫ 1+a−c

c

1

2
(1 + a− c)2 − 1

2
(ti)

2 dti

= p + c

[
(1− c)− 1

2
(1− a)2 + (c− a)2

]

+(1 + a− 2c)
1

2
(1 + a− c)2 − 1

6

[
(ti)

3]1+a−c

c

= p + c

[
(1− c)− 1

2
(1− a)2 + (c− a)2

]

+(1 + a− 2c)
1

2
(1 + a− c)2 − 1

6
(1 + a− c)3 +

1

6
c3

=
1

3
+ p− c + c2 +

1

3
c3 + a + a2 +

1

3
a3 − 2ac− a2c

where the last step was verified by Mathematica.

The necessary condition with which we shall work is now that twice this value, plus the

ex ante expected value of qi must equal 1:

2

3
+ 2p− 2c + 2c2 +

2

3
c3 + 2a + 2a2 +

2

3
a3 − 4ac− 2a2c

+
1

2
(1− a)2 − (c− a)2 = 1 ⇔

− 1

12
− 1

2
a− 3

4
a2 − 1

3
a3 + c + ac + a2c− 1

2
c2 − 1

3
c3 = p

where the last step was again verified by Mathematica. The constraint that we shall work

with when maximizing expected welfare is now that there must be some p ∈ [0, 1] such that
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the above equation holds. This is the same as the requirement that the left hand side of the

above equation is contained in [0, 1]. In the following, we denote this expression by E(a, c).

We seek to determine the welfare-maximizing choice of a and c subject to the condition

E(a, c) ∈ [0, 1]. We proceed in two steps. We first ask which choices, if any, of c ∈ [
a, 1+a

2

]

are optimal for given a ∈ [0, 1]. Then we ask which choice of a is best.

Note that for given a welfare is maximized by choosing c as small as possible. The

smallest admissible value of c is c = a. If for this choice of c we have E(a, c) ∈ [0, 1], then it

is the optimal choice.

E(a, a) ∈ [0, 1] ⇔

− 1

12
− 1

2
a− 3

4
a2 − 1

3
a3 + a + a2 + a3 − 1

2
a2 − 1

3
a3 ∈ [0, 1] ⇔

− 1

12
+

1

2
a− 1

4
a2 +

1

3
a3 ∈ [0, 1].

Numerically, we can determine using Mathematica that this is the case if and only if

a ≥ 0.178846.

For smaller values of a Mathematica shows that we have: E(a, a) < 0. On the other

hand, E(a, 1+a
2

) > 0 where c = 1+a
2

is the largest admissible value of c. The proof is as

follows:

E(a,
1 + a

2
) = − 1

12
− 1

2
a− 3

4
a2 − 1

3
a3 +

1 + a

2
+ a

1 + a

2

+a2 1 + a

2
− 1

2

(
1 + a

2

)2

− 1

3

(
1 + a

2

)3

=
1

8

(
2 + a + 12a2 + 13a3

)
> 0

where the simplification in the last step was obtained using Mathematica. By the con-

tinuity of E(a, c) in c we can now conclude that there is a smallest c ∈ [a, 1+a
2

] such that

E(a, c) = 0. This c is the optimal choice, given a.
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To determine the optimal choice of a, we first prove that the optimal choice of c increases

in a. This is obvious for a ≥ 0.178846. For smaller values of a it follows from the fact that

the value of E(a, c) decreases in a. To show this we calculate:

∂E

∂a
= −1

2
− 3

2
a− a2 + c + 2ac

≤ −1

2
− 3

2
a− a2 +

1 + a

2
+ 2a

1 + a

2

= 0.

As the optimal c is increasing in a, it follows immediately that expected welfare is de-

creasing in a, assuming that for each a the optimal c is chosen. Therefore, the optimal choice

of a is a = 0. The corresponding choice of c is the smallest c for which E(0, c) = 0. This

equation is equivalent to:

− 1

12
+ c− 1

2
c2 − 1

3
c3 = 0.

Mathematica shows that there is a unique solution c∗ in [0, 1] of this equation, and that

it is: c∗ ≈ 0.087373.

We have now solved the relaxed maximization problem, and we complete the argument

by constructing functions fA and fC that make the optimal fB incentive compatible. We

define fA as follows:

fA(t1, t2) =





1
2

if t1 ≤ c∗ and t2 ≤ c∗,

1− (1−c∗−t2)(t2−c∗)
2c∗ if t1 ≤ c∗ and c∗ ≤ t2 ≤ 1− c∗

1 if t1 ≤ c∗ and t2 > 1− c∗

(1−c∗−t1)(t1−c∗)
2c∗ if c∗ < t1 ≤ 1− c∗ and t2 ≤ c∗,

1
2

if c∗ < t1 ≤ 1− c∗ and c∗ < t2 ≤ 1− t1,

0 otherwise.

The function fC is defined symmetrically, and we omit the formal definition. The construc-

tion of fA is shown in Figure 1. In Figure 1 we refer to a function h. We define for every

t ∈ [0, 1]:

h(t) ≡ (1− c∗ − t)(t− c∗)
2c∗

.
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Figure 1: The probability of alternative A under the optimal cropped triangle rule

To check that what we have defined are actually probabilities we need to verify that

h(t) ∈ [0, 1] for all t ∈ [c∗, 1− c∗].

It is obvious that h(t) is non-negative for all relevant t. Plotting it in Mathematica one

can verify that it is never more than 1. We also need to check that the probabilities that we

have defined add up to 1 for every type vector. This is obvious.

It remains to verify that these probabilities give rise to the interim probabilities pi(ti)

that make the decision rule incentive compatible. Clearly, the implied interim probabilities

of the compromise qi(ti) are monotonically increasing in type ti. It remains to verify that the

interim probabilities of the preferred alternatives are those required by part (ii) of Lemma 3

in the main paper. We have:

pi(ti) = p = 0 when 1− c∗ ≤ ti ≤ 1.

pi(ti) = c∗h(ti) +
1

2
(1− c∗ − ti)

=
(1− c∗ − ti)(ti − c∗)

2
+

1

2
(1− c∗ − ti)

=
(1− c∗ − ti)(1− c∗ + ti)

2

=
1

2
(1− c∗)2 − 1

2
(ti)

2 when c∗ ≤ ti ≤ 1− c∗.

In these first two cases we thus obtain the expressions that are required by incentive com-
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patibility and that were derived above. For the remaining, third, case: 0 ≤ ti ≤ c∗, no

calculation is needed. The conclusion can be derived from two observations. First, the total

probability of the preferred alternative that is assigned by our rule in this case is ex ante the

same as required by incentive compatibility. This is because our mechanism clearly has the

property that ex ante probabilities add up to 1. Indeed, it also has this property ex post.

Thus, the probability assigned to the preferred alternative ex ante if 0 ≤ ti ≤ c∗ is 1 minus

the probability assigned to the preferred alternative if t > c∗. Moreover, the probabilities

assigned to the preferred alternative and that are required by incentive compatibility add

up to 1. This is indeed the constraint under which we determined the optimal mechanism.

Because for ti > c∗ our mechanism assigns the correct probabilities to the preferred alterna-

tive, the same must be true ex ante if 0 ≤ ti ≤ c∗. The second observation is that incentive

compatibility requires the probability assigned to the preferred alternative to be constant

for 0 ≤ ti ≤ c∗. Our mechanism has this property. Therefore, it must assign exactly the

probabilities required by incentive compatibility to the preferred alternative for 0 ≤ ti ≤ c∗.

Appendix B: The Second Best Public Goods Rule as a Cropped Triangle Rule

In this appendix we prove the claim in Section 6 of the main paper that the function fB

that corresponds to the second-best in the public goods problem with equal welfare weights

and uniform type distribution can be implemented as an incentive compatible cropped trian-

gle rule. Recall that the second-best public goods decision rule corresponds to a function fB

of the type described in Figure 3 of the main paper with parameters a = c = 0.25. Clearly,

this rule implies that qi is increasing in ti for i = 1, 2. By Lemma 3 we therefore have an

incentive compatible decision rule if and only if the interim probabilities of the preferred

alternatives satisfy:

pi(ti) =





pi(1) + 3
4
− ti

(
ti − 1

2

)−
1∫

ti

(
si − 1

4

)
dsi

= pi(1) + 1
2
− 1

2
(ti)

2 if ti ≥ 0.25

pi(1) + 1
2
− 1

2
· (1

4

)2

= pi(1) + 15
32

if ti < 0.25
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We can achieve incentive compatibility by defining fA by:

fA(t1, t2) =





0.5 if t1, t2 < 0.25

1
8
− 2 (t1)

2 + 2t1 if t1 ≥ 0.25, t2 < 0.25

7
8

+ 2 (t2)
2 − 2t2 if t1 < 0.25, t2 ≥ 0.25

0.5 if t1, t2 ≥ 0.25, t1 + t2 < 1.25

0 if t1 + t2 ≥ 1.25

and defining fC analogously. It is trivial to verify that fA(t1, t2) ∈ [0, 1], fB(t1, t2) ∈ [0, 1]

and fA(t1, t2) + fB(t1, t2) + fC(t1, t2) = 1 for all (t1, t2) ∈ [0, 1]2. It remains to check the

incentive compatibility constraint. Note first that

pi(1) =
1

32

for i = 1, 2. Therefore, for ti ≥ 0.25, we need to check that:

pi(ti) =
17

32
− 0.5 (ti)

2 .

We calculate:

pi(ti) =
1

4

(
1

8
− 2 (ti)

2 + 2ti

)
+ (1.25− ti − 0.25)

1

2

=
17

32
− 1

2
(ti)

2 .

For ti < 0.25 we need to check:

pi(ti) =
1

2
.

We calculate:

pi(ti) =
1

4
· 1

2
+

1∫

1
4

7

8
+ 2 (tj) 2− 2tjdtj

=
1

2
.

9


