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Abstract

As a task that requires strong professional experience as support, predictive

biomedical intelligence cannot be separated from the support of a large amount

of external domain knowledge. By using transfer learning to obtain sufficient

prior experience from massive biomedical text data, it is essential to promote the

performance of specific downstream predictive and decision-making task mod-

els. This is an efficient and convenient method, but it has not been fully devel-

oped for Chinese Natural Language Processing (NLP) in the biomedical field.

This study proposes a Stacked Residual Gated Recurrent Unit-Convolutional

Neural Networks (StaResGRU-CNN) combined with the pre-trained language

models (PLMs) for predictive tasks based on biomedical texts. By exploring re-

lated paradigms in biomedical NLP based on external expert knowledge transfer

learning and comparing some Chinese and English language models. We found

some key points that have not been developed or have practical applicability

difficulties in the Chinese biomedicine field. Therefore, we also propose a Chi-

nese bioMedical Language Model series (CMedLMs) with a detailed downstream

tasks evaluation. By using transfer learning, language models are introduced

with prior knowledge to improve the performance of downstream tasks and solve
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specific predictive NLP tasks related to the Chinese biomedical field to serve the

predictive medical system better. Additionally, a free-form text Electronic Med-

ical Record (EMR)-based Disease Diagnosis Prediction task is proposed, which

is used in the evaluation of the analyzed language models together with Clinical

Named Entity Recognition, Biomedical Text Classification tasks. Our exper-

iments prove that the introduction of biomedical knowledge in the analyzed

models significantly improves their performance in the predictive biomedical

NLP tasks with different granularity. And our proposed model also achieved

competitive performance in these predictive intelligence tasks.

Keywords: Natural Language Processing, Predictive Intelligence, Biomedical

Text Mining, Named Entity Recognition, Text Classification, Transfer

Learning, Pre-trained Language Model

1. Introduction

About one-fifth of the world’s population speaks Chinese. Hundreds of mil-

lions of Chinese speakers’ medical information is contained in large and complex

electronic medical data management systems. At present, in the situation of

such a huge number of electronic medical data, it is imperative to implement5

convenient and effective means of processing these massive amounts of textual

data. The processing part means using deep learning-based NLP, modeling

complex medical text data through deep learning-based NLP to build a more

robust medical prediction system to provide more accurate clinical suggestions.

Therefore, it can become another new and effective auxiliary diagnosis method10

besides relying on expert experience.

Some of the most effective paradigms today are based on the newly emerging

pre-trained language models. They were introduced with a large amount of prior

knowledge to raise the performance of downstream NLP tasks (e.g., EMR-based

healthcare decision reference). These new methods can compensate for the15

predicament of insufficient training data in supervised learning and enhance the

ability to encode the semantics of context in texts adequately. The effectiveness
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of these models that use prior knowledge to solve different tasks they have

been demonstrated in many recent experiments on various mainstream NLP

tasks [1, 2]. It is now widely recognized by professionals as a new frontier20

in the NLP field. However, pre-trained language models (trained by large-

scale prior knowledge) and their downstream task models, specifically in the

Chinese biomedical field, have not been studied yet. Consequently, the NLP

tasks processing Chinese biomedical data are often narrowed by the lack of prior

domain knowledge and training resources. Compared with similar tasks using25

other languages (e.g., English), it is often not possible to reach a comparable

performance in practical business scenarios, thus limiting the deployment in

real-world medical Human-Computer Interaction (HCI) scenarios.

Many studies confirm that most of the selection of downstream task models

have a limited impact on the performance of specific tasks [3, 4, 5, 6, 7]. At30

the same time, several studies [8, 9, 10] have begun to explore the introduction

of external knowledge in language representation models. However, due to the

late start in the usage of Chinese E-health technologies and the privacy prob-

lems related to storing and processing medical data. These all have played a

certain role in limiting the development of Chinese biomedical language mod-35

els. In addition, the introduction of Chinese biomedical field knowledge into

pre-trained models poses a number of challenges, the first being that trainable

resources, such as medical data, are difficult to access, and knowledge in specific

professional fields is often abstract and diverse, making it difficult to comprehen-

sively and deeply cover. Despite the terminology specifications, the expression40

of medical knowledge is still complicated and diverse in actual business (e.g.,

abbreviations, polysemy, free-form writing). Entities may have completely dif-

ferent definitions in different contexts. This, combined with frequent mixtures

of Chinese and English terminologies, increases the difficulty for the model to

process complete sentences correctly. Finally, the inaccuracy of Chinese word45

segmentation often leads to unsatisfactory actual results.

For the reasons detailed above, NLP in the Chinese biomedical field is cur-

rently incomparable to its English counterpart. There is a large amount of
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open medical text data, corpus (JNLPBA, NCBI, BC2GM, etc.) and related

research competitions (e.g., i2b2, SemEval, TREC Medical/CDS) [11] that deal50

with NLP tasks in English in the biomedical field. For example, the 2020 and

2019 studies [1, 12] on biomedical pre-trained language models were the pio-

neers in the English field. And the evaluation of downstream tasks [13, 14]

has recently begun to be adopted, proving the value of this emerging research

field. Pre-trained language models, which have absorbed a lot of the Chinese55

biomedical domain knowledge, can benefit the related Chinese NLP tasks. A

Chinese medical record can be served as the context representation of medical

terms and be used to train a model to enhance its capability in executing down-

stream prediction-related NLP tasks. This also provides strong support for the

construction of medical predictive intelligent systems.60

In this study, we designed a Stacked Residual Gated Recurrent Unit Convo-

lutional Neural Networks (StaResGRU-CNN) combined with the pre-trained

SOTA language models for prediction tasks based on biomedical texts and

achieved competitive performance in these tasks. We also introduce CMed-

Language Models (CMedLMs), a series of domain-specific, pre-trained language65

models for downstream tasks with Chinese biomedical textual data. The series

is made up of 3 major pre-trained language models (BERT, Word2Vec, GloVe)

trained with a large, real Chinese biomedical corpus. We use them (CMed-

BERT, CMed-Word2Vec, and CMed-Glove) with their downstream models (in-

cluding our proposed) to perform three text-based prediction tasks with different70

granularity (Clinical Named Entity Recognition [a term fragment boundary and

category prediction task], Biomedical Text Classification [label prediction task],

and Free-form Text EMR-based Disease Diagnosis Prediction) in detailed and

extensive comparative experiments (including ablation experiments). In addi-

tion, we also discuss some practical difficulties with EMR-based clinical diag-75

noses. This research is also currently the first comprehensive work of pre-trained

biomedical models with extensive experimental evaluations to the best of our

knowledge. This contributes to medical predictive intelligence tasks related to

biomedical NLP.
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2. Related Works80

2.1. Predictive Intelligence

Predictive intelligence is very good at dealing with known knowns and can

fill the gap between know unknowns well. This is usually done through a large

amount of historical data or prior knowledge as the training samples so that the

model can learn the information carried in these massive data to solve specific85

predictive tasks [15, 16, 17, 18, 19]. These predictive tasks also play many roles

in the field of natural language processing [20, 21, 22, 23, 24]. Most predictive

NLP tasks can be transformed into discrete data-oriented classification tasks.

Therefore, the label prediction of text sequences at different granularities can be

clearly defined as multi-class classification, multi-label classification, or sequence90

labeling tasks (e.g., Named Entity Recognition, a term fragment boundary and

category prediction task).

And the machine cannot predict unprecedented things. Therefore, in many

cases, the machine has a high probability of making a misjudgment in the

prediction of unknown data. And through large-scale transfer learning (e.g.,95

pre-training language model) or incremental learning of known knowledge from

external sources, it ameliorates the weaknesses of the correct results inferred

by the wrong decision-making process or similar situations. This can also en-

hance the decision-making accuracy and robustness of predictive intelligence to

a certain extent.100

2.2. Deep Learning-based NLP

Deep learning technologies derived from neural network models are the most

researched machine learning entities in the contemporary academic field. Many

studies proved the effectiveness of these models and led to a change of views

in the entire researcher community. Among them, the most representative of105

the deep learning models, including Convolutional Neural Network (CNN) and

Recurrent Neural Network (RNN), are commonly used as models in develop-

ing natural language processing strategies. These are also widely used in many
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major NLP tasks: sequential tagging, classification, text generation, etc. Stud-

ies confirmed the effectiveness of deep learning paradigms for sequence labeling110

tasks. Tomori et al. [25] proposed and trained a DNN+R model (a method that

refers to real-world data to improve Named Entity Recognition (NER) specific

to a domain.) and found that it performed much better on NER tasks than

other simpler DNN models. Lample et al. [26] proposed two neural network

architectures: a bidirectional LSTMs, with Conditional Random Fields (CRF),115

while another network constructs and segments labels, obtaining the best NER

performance results ever reported in standard evaluation settings, even if com-

pared to models that make use of use external resources, such as gazetteers.

Bharadwaj et al. [27] added a layer of phoneme features to Lample et al.’s

LSTM and achieved an even better performance in a monolingual setting using120

supervision.

Deep learning also challenges traditional methods in classification tasks.

Venkataraman et al.[28] used LSTM-RNNs classifying unstructured medical de-

scriptions, reaching accuracy and F1 score higher than those of decision trees [29]

and random forests [30]. Mironczuk et al. [31] quantitatively analyzed the liter-125

ature on text classification in springer, Elsevier, ACM, and IEEE repositories,

studied what the most impacting elements in the performance of text classifica-

tion tasks are. They found that many works relied on the generation of embed-

dings to provide richer semantic representations for classifiers [32, 33, 34, 35].

The authors also conducted a detailed literature review of machine learning type130

text classification methods, including neural networks. At the same time, deep

learning model strategies are also constantly being updated iteratively. Du et

al. [36] proposed recurrent BLS (R-BLS) and gated BLS (G-BLS), two novel

text classification learning methods derived from a flat neural network known

as Broad Learning System (BLS). These two methods can simultaneously learn135

from two sets of inputs, making them more accurate than LSTM. Thanks to the

noniterative learning of BLS, the training process is faster than that of LSTM.

Kim et al. [37] used a capsule network architecture for text classification tasks,

proving how it provides more advantages than CNNs. At the same time, it also
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proved that its accuracy is better than that of SA-LSTM [38], VA LSTM [39]140

and DCNN [40] on seven benchmark datasets.

2.3. Pre-trained Language Models

Pre-trained Language Models have been proven to improve the performance

of NLP models based on deep learning [38, 41, 42, 43] on different benchmark

datasets. Traditional vector representations with varying granularities (e.g.,145

Word2Vec [44] and GloVe [45]) tend to be uncontextualized and encapsulate all

meaning within a single vector. However, some of the latest and most advanced

models, like ELMo [41] and BERT [46], consider the context in which they

operate and can consequently achieve better performance.

BERT [46] is a language model designed to pre-trained deep bidirectional150

representations from the unannotated text by collectively turning both the left

and the right context in every layer. As a result, a pre-trained BERT model

can be fine-tuned using only one additional output layer to create state-of-the-

art (SOTA) models for a multitude of tasks, such as question-and-answering,

language inference and named entity recognition, without any substantial task-155

specific architecture modifications [47].

3. Methodology

This research proposes the Stacked Residual Gated Recurrent Unit-Convolutional

Neural Networks (StaResGRU-CNN). This method is inspired by the model

structure of Recurrent Convolutional Neural Networks (RCNN) [48]. Compared160

with the previous method, this method has some improvements in multiple

tasks. It can be divided into three aspects:

• Compared with Recurrent Neural Networks (RNN) as a model for text

context information modeling, Gated Recurrent Unit (GRU) can handle

long-distance dependencies better. Furthermore, compared with RNN and165

Long Short Term Memory (LSTM), it has a more simplified structure and

fewer parameters, so the computing efficiency of each layer has a certain

improvement.
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Figure 1: StaResGRU-CNN Structure

• This method uses Stacked GRU as the basis of feature modeling to repre-

sent features by constructing deeper networks.170

• The Residual Connection is also introduced in Stacked GRU to center the

layer gradients and the propagation error.

This model inherits the structural characteristics of RCNN: it makes full

use of the advantages of RNN and CNN. Similar to the structure of RCNN,

this model mainly creates a four-layer Stacked GRU (Dual Bidirectional GRU)175

with Residual Connection and combines Max-Pooling in CNN. The model can

determine which features are critical in tasks related to classification to capture

the key components in the text. Its specific structure is shown in Fig. 1.

The specific process can be divided into the following five steps:

• Use Stacked GRU to obtain contextual information.180
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• Add a Residual Layer after each BiGRU to speed up the convergence rate.

• Mapping the vectors to lower dimensions.

• At each position in the hidden size vector, take the maximum value of the

all-time series to obtain the final feature vector (Max-Pool).

• Softmax classification.185

Therefore, the proposed model can be expressed in the following parts:

3.1. Stacked Residual GRU

As a variant of RNN, GRU uses the current input xt and the hidden state

ht−1 passed down from the previous node. This hidden state contains informa-

tion about the previous node. By combining xt and ht−1, GRU will get the190

output of the current hidden node yt and the hidden stateht passed to the next

node. In the GRU, the gate state is obtained through the state ht−1 transmitted

from the previous node and the input xt of the current node. Among them, r

represents the reset gate, and z represents the update gate. σ is the sigmoid

function, through which the data can be transformed into a value in the range195

of [0, 1] to act as a gate signal.

rt = σ (Wr · [ht−1, xt]) (1)

zt = σ (Wz · [ht−1, xt]) (2)

After obtaining the gate signal, first to use the reset gate to get the data

rt · ht−1 after “reset”, then concatenate ht−1 with the input xt, and then scale

the data to the range of [−1, 1] through tanh activation function, that is:

h̃t = tanh (W · [rt · ht−1, xt]) (3)

The h
′

here mainly contains the current input xt data and specifically adds200

h
′

to the current hidden state, which can also be considered as “Memorized the

state of the present moment.”
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Another key process is to “renew” the memory. This stage includes two

sub-steps: forgetting and remembering. The updated expression is as follows:

ht = (1− z)� ht−1 + z � h′ (4)

This step is to forget the information of some dimensions in the passed ht−1,205

and add the information of some dimensions input by the current node.

The gate signal z has a range of [0, 1]. The closer to 1, the more data

is “remembered”, and the closer to 0 the more “forgotten”. (1 − z) � ht−1

represents the selective “forgetting” of the original hidden state. z � h′
means

to selectively “memorize” the h
′

containing the current node information.210

In our model, we stack multiple layers of bidirectional GRU (BiGRU) to-

gether, where the hidden representation h
(l)
t of the previous layer is used as the

input of the next layer, and l is the layer. Therefore, the hidden state of time t

in the l layer can be expressed as:

←−
h
(l)
t =

←−−−
GRU

(
xt,
←−−
h
(l)
t−1

)
+ xt (5)

−→
h
(l)
t =

−−−→
GRU

(
xt,
−−→
h
(l)
t−1

)
+ xt (6)

3.1.1. Residual Connection Layer215

When multiple layers of neurons are stacked, the neural network will degen-

erate due to the low convergence speed of training errors. However, the residual

network can solve this problem. Therefore, inspired by ResNet [49], we add

Residual Connection Layer at the end of each BiGRU. This method accelerates

convergence by transferring residual information. Inspired by Toderici et al.220

/citetoderici2017full, h
(o)
t represents output, and W and U represent convolu-

tional linear transformation. i.e., they are composites of Toeplitz matrices with

padding and stride transformations.

ht = (1− zt)� ht−1 + zt � tanh (Wxt + U (rt � ht−1)) + αhWhht−1 (7)
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hot = ht + αxWoxxt (8)

In addition, each Residual Connection Layer will not add any additional

parameters that need to be learned, so it will not increase the complexity of the225

model.

3.2. Max-pooling, Fully Connection Layer and Softmax

3.2.1. Max-pooling

The overall structure of the StaResGRU-CNN mainly uses Stacked GRU to

replace the convolutional layer in CNN to obtain the semantic representation of230

the context and combines the Max-pooling layer in CNN. Through this layer, a

fixed-length vector can be obtained. And obtain the latent semantic information

that best represents the meaning of the text.

y(2) =
n

max
i=1

y
(1)
i (9)

3.2.2. Fully Connection Layer

y(3) = Wy(2) + b (10)

3.2.3. Softmax235

Finally classify through Softmax.

pi =
exp

(
y
(3)
i

)
∑n

k=1 exp
(
y
(3)
k

) (11)

4. Tasks Description

4.1. Pre-trained Language Model

The combination of various language models to enhance the effect in NLP

downstream tasks has proven to be effective [50]. Researchers have lately been
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applying prior external knowledge in specific fields to run downstream tasks, ef-240

fectively improving the adaptability and accuracy of these results. Since the cur-

rent research development in the field of Chinese biomedical language models is

almost none, the research also focuses on introducing Chinese biomedical knowl-

edge into language representation models. Through this potential paradigm, it

will attempt to improve downstream tasks related to Chinese biomedical NLP.245

Therefore, inspired by the idea in [50], we divide the pre-trained language model

into two categories according to the characterization type: Word Embedding

(Word2Vec, GloVe) and Seq2Seq (BERT).

4.2. Fine-Tuning the Pre-trained Language Models

A language representation model is greatly influenced by the scale and qual-250

ity of the training data in downstream training tasks. Most of the existing pre-

trained language models use commonly available data, such as online encyclo-

pedias, Q&A discussion groups, and forums as sources [51, 46, 52]. For another,

biomedical texts contain a large number of specific expressions (such as “Radical

thyroidectomy for thyroid carcinoma”) and proper nouns (e.g., “Electronic Med-255

ical Record Basic Dataset Specification of P.R.China”), which are understand-

able by professional medical practitioners only. Consequently, language models

that are pre-trained using wide-domain sources have more limited performance

in specific downstream tasks belonging to the biomedical field. Especially im-

portant when dealing with Chinese biomedical texts, it is necessary to consider260

the number of training samples available, the word segmentation accuracy, the

vocabulary, and the expressions’ diversity, as well as the coding uniformity of

the characters (e.g., double-byte, single-byte, special symbols, GBK encoding),

the expertise level of the authors, the uniformity of the text format specification

and the quality of the dataset (noise content ratio), among other constraints.265

On a semantic level, understanding the meaning of sentences is more difficult

in Chinese than in English [53]. Therefore, a pre-trained model, trained with

specialized medical data in Chinese, will be used for solving three main biomed-

ical NLP fine-grained prediction-related tasks (Clinical NER, Biomedical Text
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Figure 2: Overview of the overall structure of Chinese Medical Language Models (CMedLMs)

Classification, and Free-form Text EMR-based Disease Diagnosis Prediction).270

Both crowdsourced and actual Chinese EMR datasets are used in the experi-

ments to evaluate the performance of the pre-trained language models on the

various downstream tasks (Fig. 2).

4.2.1. Clinical Named Entity Recognition (Clinical NER)

Clinical NER, an essential task in biomedical text mining, includes the iden-275

tification of a large amount of domain-specific nouns and can be transformed

into NLP extraction and classification tasks [54, 55]. Specifically, in the biomed-

ical field, its task can be described as: “For a given set of EMR text documents,

identify and extract all medical nouns, then classify them into one of some pre-

defined categories (e.g., diseases, treatments, examinations).” Many researchers280

are currently focusing on a type of pipeline that combines LSTM and CRF. Oth-

ers focus on this type of incremental pipeline [56, 57] instead. And other SOTA

methods adopt pre-trained language models to obtain words or even charac-

ters representations [58, 59, 60]. However, in these models, biomedical-specific

knowledge is not usually included as prior knowledge, thus limiting their effec-285

tiveness. Meanwhile, this task can be regarded as a fine-grained predictive task
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at the next level to a certain extent. This prediction task aims to enable the

model to recognize the boundaries of term fragments in the text sequence and

which category the fragments within a certain byte range belong to.

4.2.2. Biomedical Text Classification290

Biomedical Text Classification is one of the main tasks of Biomedical NLP.

Its goal is to infer a label (or a collection of labels) for a given text (be it a

sentence, a document, etc.). Its role in the biomedical field is to label texts

based on their specific area of interest. Classification is an indispensable core

step in information retrieval, leading to automatic sorting of electronic medical295

records, hospital outpatient guiding robots, doctor-patient dialogue intention

identification, Disease Diagnosis Prediction and more. Moreover, it is also a fine-

grained category prediction task based on prior knowledge/expert experience.

Therefore, as one of the most critical downstream tasks in the NLP field [61,

62, 11], classification can be used as a task to evaluate the performance of pre-300

trained models. We use biomedical data captured from the four mainstream

Chinese online medical knowledge encyclopedias (Tab. 2) in order to test the

performance of the multi-class classification task. We will finally compare these

results with those of the original models we used have used before applying any

changes.305

4.2.3. Free-form Text EMR-based Disease Diagnosis Prediction

Outpatient diagnostic records contain a detailed history of the progression

and treatment of a patient’s illness. When visiting outpatients, doctors make

some initial judgments on likely diseases based on patients’ chief complaints,

past medical history, and medical conditions. This information is of great help310

in possible later stages to accelerate diagnosis processes.

Free-form Text EMR-based Disease Diagnosis Prediction is a contextualized

action derived from the classification task. However, this task has higher require-

ments than ordinary classification tasks: for example, it has a larger number of

disease diagnosis labels (Super Multi-class Classification). There are also many315
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cases where a single medical record can diagnose multiple diseases (Multi-label

Classification). In our study, the diagnosis of a patient with an illness is inferred

from two pieces of data: a similar diagnosis found in the EMR dataset and in-

formation specific to the patient, such as the content of the patient’s complaint,

the history of the illness, on-site checkups, etc.320

By training the model on the contents of EMRs and using preliminary diag-

nostic information (labels), the task can be transformed into super multi-class

and multi-label classification (each disease diagnosis being a label) with EMR

text mining. Therefore, we model the HPI (History of Present Illness) records in

the EMRs and use the information from the corresponding “initial diagnosis”,325

or “admitting diagnosis”, as label sets to train and test the model and make

diagnostic predictions for a given disease record; then, using multiple deep learn-

ing models, we analyzed the contents of a medical record to predict the most

likely disease given the symptoms. This will benefit the medical community

as a way to provide doctors with a predictive reference for diagnosis through330

expert experience (a large amount of potential knowledge stored in biomedical

text data, including electronic medical records, medical books, encyclopedias,

etc.).

5. Experiments

5.1. Experimental Environment335

The machine where we deployed our CMed-BERT pre-trained model a TPU

v3-8 (128 GiB VRAM), with 4 vCPU and 15 GB of RAM. The CMed-Word2Vec

and CMed-GloVe models and their downstream tasks are trained with dual

NVIDIA 1080Ti GPUs (with 11 GB VRAM for each), an Intel Xeon CPU E5-

2678 v3 and 64GB of RAM.340

5.2. Description of Pre-train Corpora and Downstream Tasks’ Datasets

5.2.1. Description of Pre-train Corpora

We have collected a large amount of Chinese biomedical literature and real-

world electronic medical record data (both in Chinese and English) for pre-
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training our language models. These are mainly taken from 3 sources: Chinese345

online biomedical encyclopedias, EMR datasets provided by the Second Affili-

ated Hospital of Soochow University (SAHSU, the large version), and Chinese

biomedical books. The specific quantities, categories, and other relevant infor-

mation can be found in Tab. 1.

Table 1: Description of Pre-trained Corpora
Corpus Source Corpus Description Size (Chinese Characters)

Medical Books

We used 13 books as a corpus, including Manual For ICU Attending Doctor,

Reading X-ray Guide, CT Diagnostics, Immunology, Pathology, Clinical Drug Therapy, Psychiatry,

Clinical Electrocardiogram Detailed Analysis and Diagnosis, Tumor, Surgery, Hyperemia,

Gynaecology and other books of disciplines.

4,384,503 (4M)

SAHSU5

The electronic medical records of the Second Affiliated Hospital of Soochow University,

including 5,090 electronic medical records from the 3 departments of

General Surgery, Intervention and Oncology from the last 2 years.

2,002,202 (2M)

Online Resources

From the 4 mainstream Chinese websites in the medical field named

“39 Health”1, “XunYiWenYao”2, “Feihua Health”3, “NetEase Health”4

to capture the text data about medical encyclopedias such as

disease symptoms, drugs, medical term explanations, medical cases, treatment plans, etc.

29,092,216 (29M)

1 www.39.net, 2 www.xywy.com, 3 www.fh21.com.cn, 4 jiankang.163.com, 5 The large

version of SAHSU electronic medical records dataset, separated from the full version of the

SAHSU dataset.

5.2.2. Description of Downstream Tasks’ Datasets350

We have selected specific datasets for different tasks, which are all mainly

composed of EMRs and online open medical text data. Details are listed in

Tab. 2.

Table 2: Description of Downstream Tasks’ Datasets
Task Name Dataset Description Size (Records)

Clinical Named

Entity Recognition

1,000 randomly selected labelled Electronic Medical Records from CCKS 2019 and

SAHSU1 respectively for testing Clinical Named Entity Recognition task
2 × 1,000 records

Biomedical Classification

The dataset is taken from 4 mainstream Chinese online medical encyclopedias

and Q&A websites (Refer to the “Online Resources” section of the table above),

for a total of 48,151 records. These typically include 6 sections: “Cause”, “Description”,

“Diagnosis”, “Prevention”, “Symptom”, “Treatment”. These sections are used as the

basis for multi-class classification.

48,151 records

Free-form Text EMR-based

Disease Diagnosis & Prediction

An EMR-based Disease Diagnosis Prediction dataset with “Admitting Diagnosis”

labels integrated by SAHSU1 and CCKS 2019 after data cleaning. (Named SAHSU-CCKS)
2,808 records

1 The small version of SAHSU electronic medical records dataset, separated from the full

version of the SAHSU dataset
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5.3. Pre-training Seq2Seq Language Models Process

BERT is a huge Seq2Seq type language model; Its training process is longer355

and more complicated than that of Word Embedding type models. When pre-

training CMed-BERT, due to the huge memory consumption of the BERT and

the limited memory of the TPU (TPU v3-8 with 128 GB of memory), the

training program can only be run when the batch size is adjusted to 32 and the

maximum sequence length is adjusted to 384. Pre-training included 120k steps360

and took 12 days, 20 hours, 11 minutes 10 seconds, with a final loss of 1.633,

which is already a relatively ideal result.

The hyper-parameter settings for pre-training CMedLMs (CMed-BERT, CMed-

Word2Vec and CMed-GloVe) and different types of downstream models can be

found in Tab. 3-6.365

In addition, the hyperparameter settings of our proposed model depend on

the tasks involved and the datasets used. Therefore, we refer to and adopt

the hyperparameter setting strategies commonly used in previous studies to

set specific parameters for different tasks and datasets. The general parameter

settings used in the different datasets of the three tasks in the experiment include370

the batch size is 64, epochs are 100, dropout is 0.5, the activation function in

CNN is ReLu, and the final activation layer of the overall model using Softmax.

Table 3: List of Hyper-parameters Settings and Training Process Data Records for Pre-training

CMed-BERT

max predictions per seq 77

max sequence length 384

learning rate 1e-4

num warmup steps 10,000

batch size 32

smoothed 1.625

num train steps 120.00k

time-consuming 12d 20h 11m 10s

final loss 1.633
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Table 4: List of Hyper-parameter Settings for Pre-training CMed-Word2Vec1

sentences None workers 3

size 100 min alpha 0.0001

alpha 0.025 sg (skip-gram) 0 (disable, adopt CBOW)

window 5 negative
5 (negative sampling,

5 noise words)

min count 5 cbow mean 1 (enable)

max vocab size None hashfxn hash

sample 1e-3 iter 5

seed 1 null word 0

trim rule None (min count) sorted vocab 1

batch words MAX WORDS IN BATCH hs (hierarchica softmax) 0 (negative sampling)

1 The overall hyper-parameter setting of CMed-GloVe is consistent with CMed-Word2Vec.

Table 5: List of Hyper-parameter Settings for the Overall Models and LSTM/GRU Compo-

nents

batch size 64

epochs 100

dropout 0.4

bilstm units 512

dense units 512

dense layers activation Softmax

Table 6: List of Hyper-parameter Settings in the CNNs Component

filters 64

kernel size 3

padding same

activation ReLU

To compare the effects of different semantic segmentation (Chinese word

segmentation) applied to biomedical texts, we designed two types of segmen-

tation methods to operate on raw corpus: word-level and character-level seg-375

mentation. In CMed-Word2Vec and CMed-GloVe, a corpus of nearly 36 million

characters was mapped to both word vectors and character vectors for training

purposes, after going through the processes of word segmentation and character
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Figure 3: 2-D scatter graphs of CMed-Word2Vec (Word-Level)

segmentation, and finally generates a 50-dimensional vector for each word or

character. Consequently, we obtained a total of 4-word embedding models: 2380

CMed-Word2Vec models (Word-Level and Character-Level) and 2 CMed-GloVe

models (Word-Level and Character-Level). Fig. 3 shows 2-D scatter graphs of

the word vectors (CMed-Word2Vec). Taking Fig. 3 as an example (approximate

range), the drug name and dose are mainly embedded in the yellow region. The

anatomy term and disease name are mainly concentrated in the green region;385

the blue area mostly contains the vocabulary of surgical terms. These word

embeddings are trained from a large-scale biomedical corpus containing mixed

Chinese and English.

Additionally, we conduct detailed ablation studies to verify the actual perfor-

mance of the following three types of language models on different downstream390

tasks: bare embedding, the original pre-trained language models (based on gen-

eral knowledge pre-training), the Chinese biomedical models (based on Chinese

biomedical domain knowledge pre-training). In these models, we use GloVe
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pre-trained based on the official offline version of Wikipedia (Chinese) [63] and

Word2Vec pre-trained on Chinese Wikipedia and Baidu encyclopedia6 [64] as395

the word embedding for ablation experiments. At the same time, we also use

“BERT-Base, Chinese” [46] provided by Google as the embedding of the original

BERT model. For the bare embedding method in the ablation experiments, a

random parameter initialization method is used to generate each token vector.

6. Results and Analysis400

6.1. Clinical Named Entity Recognition

CCKS 2019 Task1 is an academic evaluation task for Chinese EMR Named

Entity Recognition. The dataset published together with the task is also the

largest and only open Chinese EMR medical entity recognition dataset glob-

ally. Its records are organized in 6 categories: “Drugs”, “Anatomical Sites”,405

“Diseases and Diagnoses”, “Surgery”, “Laboratory Inspection”, and “Image Ex-

aminations”. We randomly selected 1,000 complete samples and divided them

into 3 datasets for training, validation, and testing with an 8:1:1 random split

before training. In addition, we have also used the EMRs provided by the Sec-

ond Affiliated Hospital of Soochow University, randomly selecting 1,000 sample410

records and splitting them into the same categories as above. To uniform the

two datasets, we manually labeled the latter records to give each of the six cat-

egories of the dataset from CCKS 2019 Task1. The annotation specification is

also consistent with the details in CCKS 2019 Task1.

6.1.1. CCKS 2019415

On the CCKS 2019 dataset, the performance of CMed-BERT compared to

vanilla BERT on the five downstream models has an average of F1-Score im-

provement of 2.04% per model. The average of F1-Score of each downstream

model reached 73.31%, whereas the official BERT has 71.27% and fine-tuned

6baike.baidu.com
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BERT 72.56%. In addition, compared to word embedding models like gen-420

eral GloVe, Word2Vec, and Bare Embedding, CMed-BERT performs better,

with a higher average of F1-score of 18.98%, 16.82%, and 13.35%, respec-

tively. Among these models, the best-performing one follows a CMed-BERT-

StaResGRU-CNN-CRF pipeline; its F1-Score reached 76.32%, 1.33% higher

than with a BERT-ResGRU-CNN-CRF pipeline (the best performing pipeline425

for BERT). The performance of CMed-Word2Vec (Word-Level & Character-

Level) and CMed-GloVe (Word-Level & Character-Level) is less than that of

CMed-BERT and BERT. The average F1-Scores of CMed-Word2Vec are 68.01%

and 64.33% for its Word-Level and Character-Level variants, respectively. The

difference between the two is 3.68%, which is higher than the difference be-430

tween CMed-BERT and BERT (i.e., 2.04%). These performances are poorer

than those of CMed-BERT and BERT, but better than those of CMed-GloVe

Word-Level (56.10%) and Character-Level (55.94%).

6.1.2. SAHSU

Using the SAHSU dataset, the gap between the performance of similar lan-435

guage models in each downstream model is smaller than that using CCKS 2019.

The average of F1-Score performance gap of models within the same class is

always less than 1%. Precision, Recall, and F1-Score stats of the models, com-

pared with those found using CCKS 2019, have shown better results (the overall

average of F1-Score being 16% higher than with CCKS 2019). Compared with440

the general pre-training models, CMedLMs increased the performance of each

downstream model by an average of 4.64%. Among them, the best-performing

model is still CMed-BERT-ResGRU-CNN-CRF (improving upon the BERT-

ResGRU-CNN-CRF pipeline by 2.21% and upon a fine-tuned BERT by 3.53%

in their F1-scores), which demonstrates how CMed-BERT contributes to the445

performance on NER tasks.

Fig. 4 and Fig. 5 show how the F1-Scores of different pre-trained language

models change during training and the difference in performance between these

models. In summary, CMedLMs provide significant improvements in the perfor-
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Figure 4: Performance of the top three pipelines under each type of embedding on the NER

task (CCKS 2019)

mance of NER tasks. With the CCKS 2019 NER dataset, CMedLMs bring an450

additional 2.84% F1-Score improvement for each downstream model over gen-

eral language models. On the SAHSU NER dataset, the performance showed

a 4.64% increase. The best pipeline of CMed-BERT (which is CMed-BERT-

ResGRU-CNN-CRF) shows improvements of 3.76% and 3.53% respectively on

the two datasets compared with fine-tuned BERT models (Tab. 7).455

6.2. Biomedical Text Classification

The classification tests in this study use a dataset obtained and compiled

from 4 mainstream Chinese biomedical Q&A and encyclopedia websites (see

Tab. 2). This dataset can be split into 6 major categories. We tested a to-

tal of 45 pipelines based on 9 embeddings and a fine-tuned language model460

to evaluate the different language models’ performance. These pipelines are

composed of the following deep learning models: CNN-LSTM, CNN, BiLSTM,

StaResGRU-CNN, DPCNN [65, 66, 67, 68]. The data analyzed include the
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Table 7: Results of the Clinical Named Entity Recognition Task

Embedding Model
CCKS 2019 SAHSU

Params P R F1 Time1 Loss2 Params P R F1 Time1 Loss2

Bare

Embedding

BiLSTM CRF 3.17M 0.6267 0.6601 0.6408 28 4.62/845 3.14M 0.7804 0.8483 0.8129 28 2.87/874

CNN LSTM 1.34M 0.4789 0.5876 0.5277 2 0.08/0.17 1.31M 0.5907 0.7382 0.6562 2 0.06/0.18

BiLSTM 2.66M 0.5559 0.6195 0.5849 3 0.08/0.14 14.7M 0.8181 0.8954 0.8543 3 0.06/0.13

BiGRU 2.03M 0.5557 0.6083 0.5801 3 0.08/0.15 2.00M 0.7658 0.8622 0.8111 3 0.02/0.12

StaResGRU-CNN CRF 3.54M 0.6547 0.6794 0.6645 37 17.97/741 2.51M 0.8137 0.8770 0.8442 37 8.30/822

BERT

(Original)
Fine-Tuning - 0.7084 0.7540 0.7256 - - - 0.8375 0.8290 0.8511 - -

BERT

(official)

BiLSTM CRF 15.2M 0.6897 0.7716 0.7282 54 1.80/736 15.2M 0.8297 0.8824 0.8549 54 2.01/955

CNN LSTM 17.8M 0.6033 0.6910 0.6421 24 0.08/0.10 1.78M 0.7518 0.8454 0.7953 15 0.03/0.07

BiLSTM 14.7M 0.6852 0.7640 0.7214 28 0.02/0.11 14.7M 0.8181 0.8954 0.8543 19 0.01/0.08

BiGRU 11.0M 0.7047 0.7437 0.7221 27 0.02/0.09 11.0M 0.8375 0.9037 0.8689 18 0.02/0.06

StaResGRU-CNN CRF 21.5M 0.7214 0.7820 0.7499 63 0.99/930 21.5M 0.8369 0.8944 0.8643 63 2.24/979

Word2Vec

(General)

BiLSTM CRF 3.45M 0.5582 0.6493 0.5981 28 11.37/793 3.45M 0.7912 0.8427 0.8159 28 2.09/969

CNN LSTM 1.22M 0.4588 0.5502 0.4984 2 0.09/0.19 1.23M 0.6145 0.7558 0.6772 2 0.04/0.16

BiLSTM 2.93M 0.4772 0.5290 0.5005 4 0.08/0.17 2.94M 0.6742 0.7345 0.7021 3 0.06/0.12

BiGRU 2.20M 0.5699 0.5777 0.5725 3 0.06/0.14 2.20M 0.7214 0.7872 0.7521 3 0.04/0.12

StaResGRU-CNN CRF 3.72M 0.6217 0.6929 0.6551 38 1.39/913 3.72M 0.8039 0.8659 0.8334 38 1.04/979

GloVe

(General)

BiLSTM CRF 3.04M 0.5740 0.6069 0.5886 28 5.68/711 3.04M 0.6906 0.7391 0.7116 28 5.02/811

CNN LSTM 1.20M 0.4432 0.4903 0.4641 2 0.10/0.23 1.21M 0.5598 0.6503 0.5984 2 0.07/0.14

BiLSTM 2.52M 0.4959 0.5038 0.4980 3 0.07/0.20 2.53M 0.5939 0.6568 0.6210 3 0.07/0.13

BiGRU 1.90M 0.5400 0.5840 0.5600 3 0.07/0.18 1.90M 0.6134 0.6688 0.6279 3 0.08/0.11

StaResGRU-CNN CRF 3.41M 0.6055 0.6087 0.6056 37 6.97/906 3.41M 0.7251 0.7586 0.7384 38 7.66/950

CMed-BERT

BiLSTM CRF 15.2M 0.7201 0.7874 0.7516 54 1.70/796 15.2M 0.8331 0.8935 0.8618 54 0.78/1050

CNN LSTM 17.8M 0.6481 0.7248 0.6839 18 0.06/0.11 1.78M 0.7546 0.8472 0.7975 15 0.01/0.09

BiLSTM 14.7M 0.7095 0.7536 0.7303 22 0.02/0.11 14.7M 0.8274 0.8991 0.8612 22 0.01/0.07

BiGRU 11.0M 0.7125 0.7635 0.7367 20 0.02/0.09 11.0M 0.8407 0.9056 0.8716 18 0.02/0.08

StaResGRU-CNN CRF 21.5M 0.7240 0.8072 0.7632 63 2.21/899 21.5M 0.8669 0.9074 0.8864 63 1.06/951

CMed-Word2Vec

(Char-Level)

BiLSTM CRF 3.04M 0.6646 0.7515 0.7043 28 1.97/930 3.04M 0.7909 0.8575 0.8227 28 1.05/969

CNN LSTM 1.21M 0.5390 0.6484 0.5869 2 0.09/0.16 1.22M 0.6775 0.7956 0.7284 2 0.04/0.13

BiLSTM 2.52M 0.6435 0.7060 0.6731 3 0.03/0.15 2.53M 0.7919 0.8566 0.8224 3 0.01/0.17

BiGRU 1.90M 0.6725 0.7609 0.7133 3 0.04/0.13 1.90M 0.8186 0.8760 0.8459 3 0.01/0.14

StaResGRU-CNN CRF 3.41M 0.6937 0.7555 0.7229 38 1.15/1036 3.41M 0.8116 0.8816 0.8448 38 3.42/1100

CMed-Word2Vec

(Word-Level)

BiLSTM CRF 3.04M 0.6549 0.7213 0.6859 28 1.04/843 3.04M 0.7939 0.8585 0.8248 28 2.68/912

CNN LSTM 1.21M 0.4877 0.5907 0.5340 2 0.07/0.16 1.21M 0.6633 0.7863 0.7182 2 0.04/0.12

BiLSTM 2.52M 0.6045 0.6664 0.6330 3 0.04/0.14 2.53M 0.7742 0.8464 0.8083 3 0.02/0.17

BiGRU 1.90M 0.6071 0.6686 0.6349 3 0.03/0.14 1.90M 0.7773 0.8529 0.8125 3 0.02/0.12

StaResGRU-CNN CRF 3.41M 0.6980 0.7636 0.7287 38 2.81/866 3.41M 0.8535 0.8881 0.8701 37 2.02/871

CMed-GloVe

(Char-Level)

BiLSTM CRF 2.84M 0.6223 0.6727 0.6462 28 0.88/941 2.84M 0.7786 0.8353 0.8057 28 3.08/987

CNN LSTM 1.20M 0.4193 0.5011 0.4554 2 0.11/0.17 1.20M 0.6470 0.7660 0.7004 2 0.04/0.14

BiLSTM 2.32M 0.4857 0.5259 0.5046 3 0.08/0.17 2.32M 0.6881 0.7660 0.7231 2 0.04/0.12

BiGRU 1.74M 0.5152 0.5727 0.5415 3 0.07/0.16 1.74M 0.7180 0.8076 0.7595 3 0.04/0.10

StaResGRU-CNN CRF 3.26M 0.6293 0.6907 0.6577 37 1.20/874 3.26M 0.8098 0.8631 0.8355 38 1.48/895

CMed-GloVe

(Word-Level)

BiLSTM CRF 2.84M 0.5965 0.6285 0.6113 28 2.08/730 2.84M 0.7885 0.8353 0.8111 28 1.62/990

CNN LSTM 1.20M 0.4151 0.4849 0.4465 2 0.10/0.18 1.20M 0.6375 0.7613 0.6925 2 0.04/0.19

BiLSTM 2.32M 0.4772 0.5290 0.5005 3 0.09/0.18 2.32M 0.6935 0.7539 0.7208 3 0.04/0.09

BiGRU 1.74M 0.5689 0.5849 0.5757 3 0.07/0.14 1.74M 0.7287 0.7937 0.7573 3 0.04/0.08

StaResGRU-CNN CRF 3.26M 0.6310 0.7001 0.6632 38 2.63/827 3.26M 0.8166 0.8603 0.8373 38 4.92/995

1 Time (s/epochs), 2 Loss/Valid Loss
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Figure 5: Performance of the top three pipelines under each type of embedding on the NER

task (SAHSU)

number of trainable parameters, the time spent for each epoch, the F1-Score,

and the final epoch’s loss and validation set loss (more details in Tab. 8).465

The experimental results show that the performance of the task-specific

model is ideal in multi-class classification tasks, reaching an F1-Score of more

than 90%. And the average of the F1-Scores of the models based on CMed-

BERT reached 95.42%, which is 0.23% higher than the average of the F1-Scores

of the BERT-based ones and also higher than fine-tuned BERT (95.28%). In ad-470

dition, it can be seen that the effect of the models based on CMed-Word2Vec and

CMed-GloVe on multi-class classification tasks is not much different than that

of the models based on CMed-BERT and BERT. However, both the quantity

of parameters and the epoch time is significantly lower than the BERT-based

pipelines. Therefore, CMed-Word2Vec and CMed-GloVe have higher compre-475

hensive competitiveness in classification tasks than CMed-BERT and BERT. At

the same time, CMed-Word2Vec (char & word levels) and CMed-GloVe (char &

word levels) show better performances than general Word2Vec and GloVe (with
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Table 8: The Performance of Chinese Biomedical Text Classification

Embedding Model
Performance

Embedding
Performance

Params P R F1 Time1 Loss2 Params P R F1 Time1 Loss2

GloVe

(General)

CNN-LSTM 0.06M 0.9387 0.9383 0.9383 12 0.11/0.20

Word2Vec

(General)

0.07M 0.9464 0.9461 0.9460 12 0.11/0.18

CNN 0.07M 0.9333 0.9306 0.9304 8 0.04/0.25 0.13M 0.9392 0.9390 0.9389 8 0.02/0.26

BiLSTM 2.52M 0.9272 0.9268 0.9265 89 0.20/0.23 2.93M 0.9472 0.9470 0.9469 95 0.06/0.20

StaResGRU-CNN 3.16M 0.9550 0.9541 0.9542 110 0.11/0.16 3.20M 0.9537 0.9528 0.9528 110 0.08/0.17

DPCNN 2.03M 0.8288 0.6830 0.6450 97 0.02/0.81 2.10M 0.8706 0.7267 0.7413 100 0.02/0.86

BERT

(official)

CNN-LSTM 0.35M 0.9575 0.9573 0.9572 587 0.10/0.14

CMed-BERT

0.35M 0.9603 0.9598 0.9599 573 0.10/0.14

CNN 1.97M 0.9513 0.9491 0.9494 512 0.05/0.16 1.97M 0.9520 0.9510 0.9509 660 0.04/0.30

BiLSTM 14.7M 0.9581 0.9579 0.9578 807 0.08/0.14 14.7M 0.9559 0.9555 0.9555 796 0.07/0.14

StaResGRU-CNN 17.31M 0.9615 0.9612 0.9612 1030 0.09/0.15 17.30M 0.9639 0.9616 0.9619 1118 0.09/0.15

DPCNN 4.26M 0.9408 0.9332 0.9339 1466 0.08/0.20 4.26M 0.9467 0.9431 0.9432 1522 0.09/0.24

CMed-Word2Vec

(Char-Level)

CNN-LSTM 0.06M 0.9398 0.9383 0.9386 13 0.06/0.24

CMed-Word2Vec

(Word-Level)

0.06M 0.9433 0.9431 0.9431 12 0.08/0.21

CNN 0.07M 0.9119 0.9107 0.9105 9 0.04/0.39 0.07M 0.9303 0.9299 0.9299 9 0.04/0.28

BiLSTM 2.52M 0.9431 0.9423 0.9424 80 0.02/0.27 2.52M 0.9391 0.9387 0.9385 81 0.01/0.29

StaResGRU-CNN 3.16M 0.9566 0.9561 0.9562 101 0.09/0.19 3.16M 0.9580 0.9580 0.9579 100 0.07/0.17

DPCNN 2.03M 0.9019 0.8814 0.8826 92 0.01/0.21 2.03M 0.9380 0.9339 0.9342 93 0.01/0.37

CMed-GloVe

(Char-Level)

CNN-LSTM 0.05M 0.9484 0.9477 0.9476 16 0.14/0.20

CMed-GloVe

(Word-Level)

0.06M 0.9425 0.9421 0.9421 18 0.12/0.19

CNN 0.04M 0.9321 0.9321 0.9320 16 0.04/0.26 0.04M 0.9297 0.9296 0.9296 16 0.05/0.23

BiLSTM 2.31M 0.9420 0.9420 0.9419 62 0.24/0.18 2.31M 0.9428 0.9422 0.9422 63 0.05/0.24

StaResGRU-CNN 3.14M 0.9545 0.9536 0.9538 82 0.14/0.17 3.14M 0.9542 0.9537 0.9537 82 0.13/0.16

DPCNN 1.99M 0.9279 0.9235 0.9232 64 0.06/0.44 1.99M 0.8889 0.8218 0.8248 60 0.02/0.51

Bare

Embedding

CNN-LSTM 0.47M 0.9229 0.9210 0.9211 13 0.08/0.29

BERT (Original)

Fine-Tuning

CNN 0.48M 0.9434 0.9430 0.9429 8 0.01/0.21

BiLSTM 2.93M 0.9430 0.9425 0.9425 88 0.07/0.25 - 0.9335 0.9728 0.9528 - -

StaResGRU-CNN 3.58M 0.9502 0.9496 0.9496 91 0.08/0.19

DPCNN 2.44M 0.9127 0.9084 0.9070 64 0.01/0.27

1 Time (s/epochs), 2 Loss/Valid Loss

an increase of 2.08%, 3.55% and 6.08%, 3.96%, respectively). These results also

prove that language models pre-trained based on domain knowledge can better480

solve NLP downstream tasks, including classification.

6.3. Free-form Text EMR-based Disease Diagnosis Prediction

In the experiments of the Free-form Text EMR-based Disease Diagnosis Pre-

diction task, EMR data provided by the Second Affiliated Hospital of Soochow

University and CCKS 2019 Task1 were both used for evaluation. We finally485

merged these two datasets into a new free-form text EMR-based Disease Di-

agnosis Prediction dataset named SAHSU-CCKS, which contains 2,808 records

with 44 types of disease diagnosis labels (Tab. 9).

Experiments assess the performance of 86 pipelines that are respectively

based on the permutation and combination of 1 language model fine-tuning, 1490

Bare Embedding, 8 language models, and 10 mainstream deep learning models
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with the same parameters (64 for batch size, 100 epochs, the sequence length of

512, 10 for early stopping and 0.4 dropout rate, see Tab. 5 & 6). The results

are shown in Tab. 9.

The performance of CMed-BERT on diagnosis prediction tasks is generally495

higher than that of BERT. However, there are two exceptions, namely BiGRU

and CNN-LSTM, based on CMed-BERT and yet perform slightly worse than

their BERT counterparts. CMed-BERT achieved an average of F1-Score of

62.77%, almost 4% higher than BERT’s 58.84%. In the diagnosis prediction

tasks, however, the best-performing models are not the same as for other tasks.500

In this latter case, the top 3 models are CMed-GloVe (Word-Level)-StaResGRU-

CNN (76.60%), CMed-GloVe (Char-Level)-StaResGRU-CNN (74.50%) and CMed-

Word2Vec (Char-Level)-StaResGRU-CNN (74.27%). For comparison, CMed-

BERT-StaResGRU-CNN (73.48%) and BERT-StaResGRU-CNN (70.28%) only

reached 73.48% and 70.28%, respectively. This shows how CMed-Word2Vec505

and CMed-GloVe are more performant in prediction tasks. From this densely

distributed figure (Fig. 6), it is clear that these models showed a smaller F1-

score gap during training in the prediction/classification task than in the NER

task. Additionally, the CMedLMs model (with an average of F1-score of 57.2

6% per model) has a higher competitive performance on this mixed task than510

general language models (with an average of the F1-scores of 52.52% per model)

and Bare Embedding (with an average of F1-score of 46.06% per model). This

also reflects the importance of Chinese Biomedical domain knowledge in related

Biomedical NLP tasks.

7. Analysis and Discussion515

7.1. Analysis

This study thoroughly evaluated the effect of pre-trained language mod-

els in various biomedical field tasks through sub-tasks such as Clinical NER,

Biomedical Text Classification, Free-form Text EMR-based Disease Diagnosis

Prediction. Upon analyzing the results, the best performing models in each520
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Table 9: Free-form Text EMR-based Disease Diagnosis Prediction Results of Comparison

Models

Embedding Model
Performance

Embedding
Performance

Params P R F1 Time1 Loss2 Params P R F1 Time1 Loss2

GloVe

(General)

CNN-LSTM 0.06M 0.2012 0.2412 0.2013 1 1.44/2.13

Word2Vec

(General)

0.07M 0.2247 0.2645 0.2315 1 1.26/2.07

CNN 0.07M 0.5540 0.5523 0.5293 1 0.22/1.43 0.13M 0.6319 0.6021 0.5950 1 0.07/1.03

BiGRU 1.93M 0.4818 0.4845 0.4648 5 0.10/1.93 2.23M 0.4260 0.4135 0.4002 5 0.08/2.17

CNN-GRU 0.05M 0.4419 0.4037 0.4040 1 0.45/1.95 0.06M 0.4941 0.4543 0.4407 1 0.59/1.75

BiLSTM 2.56M 0.3631 0.3592 0.3448 6 0.22/2.62 2.96M 0.3852 0.3908 0.3666 6 0.42/2.39

Dropout-BiGRU 0.16M 0.5619 0.5557 0.5309 3 0.87/1.54 0.2M 0.5996 0.6007 0.5792 3 0.75/1.33

Dropout-AVRNN 0.17M 0.4746 0.4963 0.4691 3 0.95/1.30 0.20M 0.6193 0.6101 0.5920 3 0.76/1.16

AVRNN 0.26M 0.6704 0.6803 0.6674 3 0.51/1.43 0.30M 0.5826 0.5966 0.5677 3 0.74/1.20

AVCNN 0.82M 0.6769 0.5995 0.6054 2 0.50/1.23 1.12M 0.6651 0.6361 0.6259 2 0.44/1.08

StaResGRU-CNN 3.14M 0.6316 0.6217 0.6113 7 0.80/1.20 3.18M 0.7174 0.6500 0.6457 7 0.82/1.19

BERT (official)

CNN-LSTM 0.35M 0.4287 0.3762 0.3823 38 0.48/1.80

CMed-BERT

0.35M 0.5731 0.5273 0.5285 39 0.30/1.69

CNN 1.97M 0.5544 0.5300 0.5103 37 0.09/1.26 1.97M 0.5921 0.5562 0.5448 37 0.06/2.26

BiGRU 11.0M 0.6091 0.5918 0.5741 49 0.03/1.31 11.0M 0.5971 0.5829 0.5631 47 0.04/1.38

CNN-GRU 0.33M 0.6296 0.5835 0.5791 43 0.13/1.21 0.33M 0.6073 0.5802 0.5745 41 0.14/1.68

BiLSTM 14.7M 0.6006 0.5696 0.5657 53 0.13/1.46 14.7M 0.6359 0.6259 0.6136 59 0.05/1.61

Dropout-BiGRU 1.31M 0.6561 0.6506 0.6310 39 0.32/1.56 1.31M 0.7063 0.6826 0.6730 41 0.20/1.35

Dropout-AVRNN 1.17M 0.6862 0.6585 0.6417 39 0.58/1.11 1.33M 0.6996 0.6861 0.6745 49 0.33/1.47

AVRNN 1.33M 0.6610 0.6701 0.6488 46 0.17/1.21 1.33M 0.6976 0.7158 0.6911 44 0.14/1.15

AVCNN 9.74M 0.6706 0.6605 0.6486 51 0.24/1.11 9.74M 0.6998 0.6971 0.6800 40 0.06/1.69

StaResGRU-CNN 16.28M 0.7389 0.7114 0.7028 68 0.23/1.24 16.42M 0.7577 0.7534 0.7348 68 0.28/1.20

CMed-Word2Vec

(Char-Level)

CNN-LSTM 0.55M 0.3164 0.3402 0.3159 1 0.54/1.77

CMed-Word2Vec

(Word-Level)

0.06M 0.3793 0.3989 0.3684 1 0.65/1.77

CNN 0.07M 0.5888 0.6029 0.5722 1 0.04/1.77 0.07M 0.6639 0.6298 0.6289 1 0.06/1.20

BiGRU 1.93M 0.4465 0.4673 0.4267 5 0.11/2.89 8.14M 0.4663 0.4835 0.4577 5 0.11/2.16

CNN-GRU 2.56M 0.4566 0.4420 0.4365 1 0.45/2.32 0.05M 0.5765 0.5212 0.5268 1 0.29/1.77

BiLSTM 2.56M 0.4685 0.4883 0.4568 5 0.15/2.07 2.56M 0.4186 0.4621 0.4236 5 0.15/2.17

Dropout-BiGRU 10.16M 0.6691 0.6649 0.6448 3 0.53/1.38 0.16M 0.6852 0.6789 0.6628 3 0.61/1.39

Dropout-AVRNN 0.17M 0.7132 0.6939 0.6903 3 0.78/1.01 0.17M 0.7629 0.7365 0.7278 3 0.60/1.02

AVRNN 0.26M 0.7457 0.7011 0.6989 4 0.38/1.42 0.26M 0.7187 0.7242 0.7040 4 0.16/1.52

AVCNN 0.82M 0.3787 0.5036 0.4077 2 1.46/1.72 0.82M 0.5989 0.6583 0.6147 2 1.11/1.32

StaResGRU-CNN 11.14M 0.7854 0.7473 0.7427 7 0.67/0.95 11.14M 0.7700 0.7280 0.7252 8 0.60/0.87

CMed-GloVe

(Char-Level)

CNN-LSTM 0.06M 0.2944 0.2923 0.2797 1 1.08/1.59

CMed-GloVe

(Word-Level)

0.06M 0.3564 0.3335 0.3197 1 1.01/1.62

CNN 0.04M 0.6278 0.6170 0.6052 1 0.14/1.08 0.04M 0.6423 0.6268 0.6174 1 0.05/1.62

BiGRU 1.77M 0.5138 0.5083 0.4883 5 0.04/1.88 3.10M 0.4520 0.4710 0.4432 5 0.04/3.03

CNN-GRU 0.04M 0.5240 0.5203 0.5017 1 0.29/1.26 0.05M 0.4512 0.4721 0.4369 1 0.22/1.55

BiLSTM 2.35M 0.4182 0.4007 0.3950 5 0.08/2.42 2.35M 0.3874 0.3845 0.3662 5 0.08/3.31

Dropout-BiGRU 0.14M 0.7091 0.7088 0.6896 3 0.37/1.35 0.16M 0.6852 0.6789 0.6628 3 0.36/1.27

Dropout-AVRNN 0.15M 0.5434 0.5496 0.5275 3 1.06/1.19 0.15M 0.6533 0.6396 0.6156 3 0.67/1.17

AVRNN 0.25M 0.6643 0.6639 0.6540 3 0.40/1.03 0.25M 0.6690 0.6491 0.6354 4 0.54/1.17

AVCNN 0.67M 0.7114 0.6942 0.6816 2 0.55/1.56 0.67M 0.7392 0.7014 0.6903 2 0.70/0.86

StaResGRU-CNN 3.12M 0.7809 0.7542 0.7450 7 0.40/1.08 3.14M 0.8019 0.7647 0.7660 7 0.88/1.29

Bare

Embedding

CNN-LSTM 0.21M 0.3260 0.3065 0.2931 1 1.129/1.89

BERT (Original)

Fine-Tuning

CNN 0.22M 0.5000 0.4979 0.4719 1 1.11/1.45

BiGRU 2.08M 0.5100 0.5247 0.5000 5 0.20/2.37

CNN-GRU 0.20M 0.1705 0.2049 0.1720 1 1.25/2.22

BiLSTM 2.70M 0.3334 0.3436 0.3205 6 0.76/2.41

Dropout-BiGRU 0.31M 0.4934 0.4947 0.4812 3 0.78/1.54 - 0.6429 0.6207 0.6316 - -

Dropout-AVRNN 0.32M 0.6251 0.6123 0.6019 3 0.49/1.76

AVRNN 0.41M 0.5405 0.5478 0.5347 3 0.52/2.13

AVCNN 0.97M 0.6940 0.6497 0.6463 2 0.49/1.05

StaResGRU-CNN 3.29M 0.5968 0.5924 0.5845 9 0.56/1.34

1 Time (s/epochs), 2 Loss/Valid Loss
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Figure 6: Performance of the top 2 models in each language model on the Free-form Text

EMR-based Disease Diagnosis Prediction task

task are as follows: CMed-BERT-ResGRU-CNN-CRF (NER task, with CCKS

2019 dataset: F1 of 76.32%; with SAHSU dataset: F1 of 88.64%), CMed- BERT-

StaResGRU-CNN (Classification task, F1: 96.19%), CMed-GloVe (Word-Level)-

StaResGRU-CNN (Disease Diagnosis Prediction task, F1: 76.60%). In these

parallel comparative experiments combining different language models, the ef-525

fectiveness of the proposed StaResGRU-CNN model has been verified.

Comparing the average of the F1-scores of CMed-BERT with other bare em-

bedding’s pipelines shows that CMed-BERT’s is consistently higher. Following

are the performance gains in comparison with average F1-scores of bare em-

bedding’s pipelines: NER (CCKS: +13.35%, SAHSU: +5.99%), Classification530

(+2.16%) and Disease Diagnosis Prediction (+16.71%). The pipelines based

on CMed-Word2Vec and CMed-GloVe have a similar performance with CMed-

BERT and BERT in the Biomedical Classification and Disease Diagnosis Pre-

diction tasks, but the number of parameters is smaller and each epoch takes a

shorter time, thus providing higher efficiency. Finally, these models do not rely535

heavily on powerful hardware (e.g., GPU, TPU), making them more easily de-

ployable than CMed-BERT and BERT. In addition, CMedLMs perform higher
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on average than general language models by 3.74% (2.84%, CCKS 2019 NER;

4.64%, SAHSU NER), 2.38% and 4.73% on the first three evaluation tasks, re-

spectively. These gaps can also be observed as “stratification” in the training540

process visualization (Fig. 4-6). These performance improvements for multi-

ple tasks help analyze large-scale datasets when deployed in online/streamed

biomedical NLP tasks processing systems.

7.2. The role of StaResGRU-CNN and CMedLMs in predictive intelligence tasks

The proposed method is used as a deep learning model for decision-making545

tasks with different granularities and can be used for various predictive tasks re-

lated to discrete variables (e.g., prediction/classification attribute labels). As an

integrated application based on the above tasks, predictive medical intelligence

can achieve greater practical goals (e.g., prediction and decision-making tasks in

the medical field) by integrating these complex prediction and decision-making550

tasks. According to the granularity level of decision/prediction/classification in

their tasks, these goals can be transformed into specific applications (e.g., token

boundary decision and type classification in clinical Named Entity Recognition)

according to the granularity level of decision/prediction/classification contained

in their tasks. Therefore, in different predictive intelligence tasks, the proposed555

model can exert different actual effects in different scenarios or domains accord-

ing to the characteristics of the inputted dataset.

In addition, simple learning of latent patterns in specific tasks from data-

driven models can gradually evolve into learning a large amount of prior expe-

rience to realize multiple complex prediction tasks. This exciting change will560

greatly promote the effective use of valuable but not yet annotated data. At

the same time, these language models that “absorb” the “wisdom” stored in

the large-scale corpus can be directly customized or combined with downstream

task models to achieve ideal performance in multi-type prediction and decision

tasks better. Therefore, the pre-trained language models also play an important565

role in predictive intelligence tasks.
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8. Conclusion

This study proposed a Stacked Residual Gated Recurrent Unit-Convolutional

Neural Networks (StaResGRU-CNN) combined with the pre-trained SOTA lan-

guage models for prediction tasks based on biomedical texts. Our proposed570

stacked model increases the depth of the network. This makes the model have

better nonlinear expression capabilities, can learn more complex transforma-

tions, and can fit more diverse feature inputs. At the same time, it makes the

model have more powerful expression ability and feature learning layer by layer.

And it can also perform long-term time series prediction and avoid overfitting.575

And the residual layer solves the degradation problem of the deep neural net-

work well and makes the model converge faster. All of these features contribute

to the model achieving the ideal results in the above-mentioned biomedical text-

related predictive tasks.

The work also explores some issues that have not yet been solved and580

presents practical difficulties in the field of Chinese biomedicine. It proposes

and validates the first pre-trained language model series in the Chinese biomed-

ical field in response to those unsolved issues. It also proposes a novel free-form

text EMRs-based Disease Diagnosis Prediction to support intelligent clinical

assistants’ design. These models are made according to 3 schemes (BERT,585

Word2Vec, Glove). Through transfer learning, a language model can assimilate

a large amount of biomedical knowledge in Chinese to generate word represen-

tations that are more suitable for the biomedical field and support downstream

prediction tasks. And extensive comparative experiments presented have also

proved their effectiveness.590

In conclusion, it was proved that bringing biomedical domain knowledge

into general language models improves their performance in biomedicine-related

tasks. Together with the tested medical tasks, the proposed StaResGRU-CNN

model and the presented set of language models provide a framework for building

smarter and more accurate automated clinical assistants and moving towards595

more efficient and humane HCI-oriented medical services.
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9. Limitation and Future Work

The models proposed in this study suffer from several resources and imple-

mentation issues, mainly: limited diversity of the medical data available, limi-

tations in computing power (hardware limitations), models’ inability to identify600

polysemy, and take advantage of abbreviations and implicit semantics. In the

future, we will solve the problems mentioned above accordingly.

We will also incorporate the Autoregressive-based language model, including

the GPT type (e.g., GPT-2, GPT-3), into a broader evaluation. A more de-

tailed investigation will also be conducted on the progress of embedding-based605

and transformer-based language models in the fields of biomedicine and medical

psychology. The relevant language models that have been pre-trained in biomed-

ical and medical psychology domain knowledge will be applied to more complex

or comprehensive tasks (e.g., Lifelong Machine Learning, dialogue system).

Besides, the variety and content of medical data are continuously updated610

as we expand our knowledge on emerging diseases (e.g., COVID-19). How to

continuously and efficiently enable Chinese biomedical language models to learn

comprehensively and deeply is the direction that future research needs to ex-

plore. Future explorative research needs to consider strategies to let Chinese

biomedical language models learn in a continuous, efficient, comprehensive and615

deep fashion. This will also provide greater contributions to human-computer

interaction-oriented medical predictive intelligence.
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