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A B S T R A C T   

The shipping industry faces a large challenge as it needs to significantly lower the amounts of Green House Gas 
emissions. Traditionally, reducing the fuel consumption for ships has been achieved during the design stage and, 
after building a ship, through optimisation of ship operations. In recent years, ship efficiency improvements 
using Machine Learning (ML) methods are quickly progressing, facilitated by available data from remote sensing, 
experiments and high-fidelity simulations. The data have been successfully applied to extract intricate empirical 
rules that can reduce emissions thereby helping achieve green shipping. This article presents an overview of 
applying ML techniques to enhance ships’ sustainability. The work covers the ML fundamentals and applications 
in relevant areas: ship design, operational performance, and voyage planning. Suitable ML approaches are 
analysed and compared on a scenario basis, with their space for improvements also discussed. Meanwhile, a 
reminder is given that ML has many inherent uncertainties and hence should be used with caution.   

1. Introduction 

1.1. Background 

About 70% of the Earth’s surface is covered by water, and approxi
mately 90% of all transport is waterborne (Wu, 2020). However, as of 
the year 2012, global shipping emissions were approximately 938 
million tonnes of CO2 and 961 million tonnes of CO2e combining CO2, 
CH4 and N2O, signifying around 2.2% of global anthropogenic Green
house Gases (GHGs) (Smith et al., 2014). By 2050, the maritime trans
port segment needs to reduce its total annual GHG emissions by 50% 
compared to 2008 to limit the global temperature rise to no more than 
2 ◦C above the pre-industrial level (Cames et al., 2015). In this context, 
waterborne transport’s role becomes critical, revealing an urge to pro
mote sustainable shipping. 

Optimising maritime transport has a long history and has been an 
ongoing task for ship operators, designers, and builders. Since hundreds 
of years ago, naval architects started to seek better hull forms so the 
ships would feel less resistance when operating in water. Although those 
approaches are mainly empirical and based on simplified classic physics, 
they did establish the fundamental theories of naval architecture, 
significantly improving hull design and instigating several centuries of 
blossoming maritime transport. These improvements were then 
accompanied by the optimisation of marine engines, since the industrial 

revolution. 
More recently, the development of high-fidelity Computational Fluid 

Dynamics (CFD) techniques and High-Performance Computing (HPC) 
units have allowed the simulation of very complex maritime scenarios 
such as vessels going in rough seas (Jasak, 2017; Dashtimanesh et al., 
2020), vessels going in sea ice (Fig. 1) (Huang et al., 2020), water-entry 
processes (Huang et al., 2021a), and the flow control of hydrofoils (Pena 
et al., 2019). As a particular example, the work of Pena et al., 2020a, 
2020b demonstrated the turbulent intensity in the flow around a 
full-scale cargo ship for the first time (Fig. 2), which is facilitating the 
development of an energy-saving device that has been shown to signif
icantly reduce ship resistance (Pena, 2020). Another instance is that Ni 
et al. (2020) simulated the icebreaking process of a ship in level ice, 
which for the first time achieved a level of fidelity where the overall 
icebreaking process is coupled with the water underneath; such simu
lations are important for reducing the GHG, as the energy consumption 
of icebreakers is extremely high. These computational techniques have 
also been incorporated within ship design processes that have helped to 
find the optimal configuration without the necessity of conducting 
extensive experiments. 

1.2. The development of machine learning in shipping 

In the meantime, enhancement in satellite observation has allowed 
ships to plan their voyages based on weather observation and prediction, 
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improving maritime sustainability and safety by choosing the most 
optimal route (Li et al., 2020a). During the last decade, big data in this 
field has been established based on geospatial data systems such as the 
Copernicus Marine Environment Monitoring Service (CMEMS) (von 
Schuckmann et al., 2018). Those systems integrate historical weather 
data and provide future projections to support voyage planning. On top 
of that, ship fuel consumption corresponding to specific weather con
ditions can also be recorded. Traditional manual methods may no longer 
handle such data; instead, ML is used to ascertain efficient integrated 
operations that can reduce GHG emissions. As symbolised in Fig. 3 The 
concept of ML in the shipping industry relies on a data stream from and 
to the ships, which can be analysed directly through a ship bridge system 
or indirectly through separate computers (CIAOTECH Srl, 2020). This 
process can be further enhanced by incorporating data in real-time to 
inform dynamics and control, decision support, and performance opti
misation (Anderlini et al., 2018a; Rehman et al., 2021). Apart from 
real-world data, CFD can be a cost-effective alternative to provide 
valuable data for trainomg ML and other optimising algorithms (Garnier 
et al., 2021; Pena and Huang, 2021). Therefore, Advanced Computing 
techniques, including the combination of CFD, algorithm optimisation 
and ML, have stepped into the shipping industry and are transforming it 
in a way that has never been seen before. 

The reason for shipping to need ML in the future is that ship 

Nomenclature 

AI Artificial Intelligence 
AIS Automatic Identification System 
ADLM Automated Data Logging & Monitoring 
CFD Computational Fluid Dynamics 
CMEMS Copernicus Marine Environment Monitoring Service 
CNN Convolutional Neural Networks 
DNN Deep Neural Networks 
DRL Deep Reinforcement Learning 
ETR Extra Trees Regressors 
EM Expectation-Maximization 
FM Fast Marching 
HPC High-Performance Computing 
ITTC International Towing Tank Conference 
GA Genetic Algorithm 
GHG Greenhouse Gases 

GP Gaussian Process 
KNN K-Nearest Neighbours 
KMC K-Means Clustering 
LASSO Least Absolute Shrinkage and Selection Operator 
LDA Linear Discriminant Analysis 
ML Machine Learning 
MDP Markov Decision Process 
NN Neural Networks 
RF Random Forest 
RL Reinforcement Learning 
RLS Regularised Least Squares 
PCA Principal Component Analysis 
SVM Support Vector Machines 
SPM Ship Performance Model 
TRL Technology Readiness Level 
USV Unmanned Surface Vehicles 
VPT Voyage Planning Tool  

Fig. 1. Simulation of a ship advancing in a sea infested by ice floes (picture 
produced by Luofeng Huang using STAR-CCM+). 

Fig. 2. Simulation of the turbulent flow around a hull (picture produced by Blanca Pena using STAR-CCM+).  
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performance is influenced by numerous factors, such as trim, draft, pitch 
angles, winds, waves, currents, biofouling, engine efficiency, alongside 
extensive hull geometric parameters. The links between these parame
ters are not straightforward. This makes it hard to use traditional 
regression techniques to perform holistic design, prediction, analysis 
and optimisation. The main advantage of ML is the ability to decode 
complex patterns, which makes it suitable for advanced shipping 
applications. 

Compared with CFD and experiments in ship design, ML can be a 
complement. Industrial members (e.g. a classification organisation or a 
ship design company) conduct numerous projects per year which can 
provide quality CFD and measurement data to train ML models to have 
sufficient accuracy. It is envisioned that ML will have the independent 
ability to provide reliable assessment after sufficient training, and its 
capability can still be expanded through more and more projects over 
time. This means that a wide range of ship parameters will be included 
with confidence. The early design stages will see significant benefits by 
using ML, where vast configurations need to be tested that would be 
prohibitive to obtain using CFD or experiments. ML can provide rapid 
estimates with nonlinearities accounted for, overcoming inaccuracies in 
linear analytical methods that are currently used in early design stages. 

For ship operation, ship route optimisation can be achieved through 
ML models by connecting the ship parameters with real-time climate 
data. The rapidity of ML will enable route optimisation in real time. 
Operational strategies will be improved as ML can inform these based on 
the engine and sea conditions. Moreover, ML models will enable 
continuous monitoring of voyages, providing the ability to report risks, 
structural fatigue and engine faults, thus improving maintenance and 
repair strategies over the lifecycle. 

1.3. Scope and literature scan approach of this review 

To facilitate the sustainable development of shipping, this article 
reviews how ML and its combination with other Advanced Computing 
have been applied in this field. Three main areas that have been found 
particularly relevant will be discussed in detail: ship design, operational 
performance, and voyage planning. The work aims to demonstrate how 
these techniques can be used to inform the enhancement of waterborne 
efficiency and eventually help achieve a zero-emission future. 

The literature scan for this work was performed based on Web of 
Science using the words co-occurrence method, where the searching 

condition was “Machine Learning” occurring together with “Ship” in any 
paper. In total, 1050 papers were found and their distribution is shown 
in Fig. 4. 

Overall, it can be seen that this research field mostly started after 
2015, with a majority of papers published after 2020. The keywords 
were then used to guide the applications of different ML methods in the 
three research categories (design, operational performance and voyage 
planning). At least one paper is detailedly reviewed for each method 
used in each research category. For papers using a similar approach, the 
selection standard is sufficient training data, which is important for the 
comparative purpose of this review; this will be further discussed in the 
following sections. 

This paper is organised as follows: Section 2 covers the fundamentals 
of ML currently in use or with the potential to be used in the marine 
industry, as this is an emerging branch that is less well known than 
traditional methods. Section 3 reviews the marine industry’s ML ad
vancements with respect to ship design, operational performance, and 
route optimisation. Section 4 provides a discussion on ML’s achievement 
in sustainable shipping, and points out the aspects that require special 
attention and future work. Section 5 summarises this review with its key 
points. 

2. Machine learning fundamentals 

As introduced by Kretschmann (2020), ML consists of different al
gorithms that learn dependencies through pattern recognition in data 
sets and use the identified patterns to make predictions (Nelli, 2018). 
The basis for solving a task is a dataset in which ML methods identify 
underlying relationships to give generalising rules used for completing a 
given task (Chollet, 2018). ML methods thus are particularly useful in 
determining correlations and patterns in complex data sets. In com
parison to statistical methods, an advantage of ML is that it can represent 
both linear and nonlinear relationships without being bound by 
restrictive premises or assumptions of some statistical tests (Poh et al., 
2018); in comparison with high-order methods such as CFD, ML can 
overcome the limitation of computational speed and is incorporable 
with real-time applications (Anderlini et al., 2020a). However, a pre
requisite of any ML model is a sufficient and informative set of data to 
learn the inherent correlations from. In addition, a primary drawback of 
ML algorithms is a lack of physics-informed foundations, thus containing 
large uncertainty in the prediction – further discussion on this limitation 

Fig. 3. An conceptual illustration of big-data-oriented shipping (CIAOTECH Srl, 2020).  
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will be given in Section 4. 
Depending on how the learning task is achieved, ML algorithms can 

be classified into Supervised Learning, Unsupervised Learning, Semi- 
supervised Learning and Reinforcement Learning. A detailed tree dia
gram is given in Fig. 5 and more details about each technique are 
covered in the following sub-sections. 

2.1. Supervised learning 

Supervised learning consists of learning the mapping between input 
and output variables given sampled input-output pairs (Meijering, 
2002), see Fig. 6. As labelled data is required for the process to achieve 
the desired goal, supervised learning is considered a task-driven 
approach. This is useful when a certain pattern of the data is already 
known, and the prediction will be more specific as undesired relation
ships can be filtered. There can be two types of outcomes: numerical and 

Fig. 4. Literature distribution of ML applications in ships, based on Web of Science (data accessed in September 2022).  
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categorical. Numerical outputs are given as exact numbers, and cate
gorical outputs are given as a classification, e.g. whether a ship’s engine 
is faulty or not. 

Supervised learning methods date back to linear regression solutions 
proposed by Carl Friedrich Gauss (Meijering, 2002) and later logistic 
regression. Supervised learning algorithms can also be classified into 
two subcategories: parametric and non-parametric models. On the one 
hand, parametric models have a fixed number of parameters with clas
sical methods, including linear regression, logistic regression, Least 
Absolute Shrinkage and Selection Operator (LASSO) (Park and Casella, 
2008), Linear Discriminant Analysis (LDA) (Izenman, 2013) and en
sembles of boosted (Chen and Guestrin, 2016) and bagged trees (Biau 
and Scornet, 2016). On the other hand, in a non-parametric model, the 
parameters are not given beforehand, and the ML model may identify 
influencial parameters during the training process. Some 
non-parametric models include Gaussian Process (GP), k-Nearest 
Neighbours (KNN) and Support Vector Machines (SVM) (Hearst et al., 
1998). Parametric models are more flexible and typically present higher 
accuracy for small datasets, but their training cost becomes excessive as 
dataset size increases. 

Since 2012 when AlexNet was introduced (Krizhevsky et al., 2012), 
classical machine learning algorithms have been superseded by deep 
learning methods based on Neural Networks (NN) (LeCun et al., 2015). 
Artificial neural networks are inspired by the biological brain and 
comprise multiple artificial neurons which receive a signal, process it 
and send it to neurons connected to it. The signal, which is represented 
by a number, is computed by some nonlinear functions and is assigned a 
weight whose value is adjusted as learning takes place (Yegnanarayana, 
2009). Neurons are typically grouped into layers and the signals travel 
from the input layer to the output layer (a signal can pass layers multiple 
times). Networks with multiple hidden layers are called Deep Neural 
Networks (DNN) and the subject is known as deep learning. Stacking 
multiple layers with nonlinear activation functions enables different 
levels of abstraction to extract the hidden connections in the data to 
produce much higher prediction accuracy over classical machine 

learning algorithms. For instance, AlexNet provided a 9.4% improve
ment in prediction accuracy for image classification over the 2009 
ImageNet dataset comprising 1.5M sample points and 1000 categories 
(Krizhevsky et al., 2012). In 2015, ResNet further improved accuracy by 
12.8%–96.4% with 152 layers (He et al., 2016). Although deeper net
works learn better representations, they are much more complex, e.g. 
AlexNet has 60,954,656 weights and 612,432,416 connections. Hence, 
practical and theoretical improvements have been made over the years 
to improve the computational performance of DNN to keep training 
costs within acceptable limits even for the largest datasets. For example, 
Amazon’s reference dataset with 82M product reviews (i.e., samples) is 
a benchmark for natural language processing, which is a typical example 
of improving algorithms to handle a very large dataset with low training 
costs (He and McAuley, 2016). This has led to the introduction of 
different types of NN. The state-of-the-art methods and implementations 
can be found in (Zhang et al., 2021). 

Typical current classification tasks involve image recognition, object 
detection, text digitalisation, video captioning, sentiment analysis, 
recommendation systems and threat detection. Deep learning is 
commonly used in regression tasks for market forecasting, logistics and 
operations planning. The last layers of the classification or regression 
task are typically accomplished by simple feedforward neural networks, 
which comprise layers with feedforward connections (Goodfellow et al., 
2014). Computer vision tasks typically involve the use of Convolutional 
Neural Networks (CNN), with layers of incrementally decreasing size for 
all but the few last layers to pool resources and reduce the computa
tional effort by sharing weights, as images can have a large number of 
pixels and three colour channels leading to a very large input space 
(Krizhevsky et al., 2012). Time series data, which is of particular interest 
for engineering applications, can be modelled with recurrent neural 
networks, where the output of the neurons is fed back into the network 
to maintain a memory effect. Long short-term memory is particularly 
popular as it solves problems associated with vanishing gradients 
(Hochreiter and Schmidhuber, 1997). However, recently, they have 
been replaced by attention-based methods, or transformers, for natural 

Fig. 5. A tree diagram for the classification of Machine Learning, inspired by (Sarker, 2021).  

Fig. 6. Flowchart of supervised learning methods.  
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language processing whose training can be parallelised (Vaswani et al., 
2017). 

Supervised learning solutions typically present the highest predic
tion accuracy, but require correct data labelling, which can be extremely 
expensive for data-intensive applications. 

2.2. Unsupervised learning 

Unsupervised learning finds structures in non-labelled data with no 
human supervision required during the training, see Fig. 7. This fact 
makes unsupervised learning attractive in applications with a large 
amount of data or where data labels are simply not available (Barlow, 
1989). The most known unsupervised learning techniques are clustering 
and dimensionality reduction. 

2.2.1. Clustering 
Clustering or cluster analysis is a well-known unsupervised learning 

technique that can organise the data in clusters or groups by identifying 
similarities. This technique is particularly useful to identify underlying 
patterns which might not be visible or logical to humans. Clustering is 
mainly used for pattern recognition, market research, image analysis, 
information retrieval, robotics, or even crime analysis (Celebi and 
Aydin, 2016). The most known classical algorithms are k-Means Clus
tering (KMC) and KNN (Celebi and Aydin, 2016). KMC partitions data 
into k clusters; an observation belongs to the cluster with the nearest 
centroid, resulting in partitioning data space into Voronoi cells. On the 
other hand, KNN is a non-parametric model used as a classifier for 
clustering data; it looks at the points closest to the nearest centroid 
(Gareth et al., 2013). More options here can be the 
Expectation-Maximization (EM) method (Murray and Perera, 2021) and 
the DBSCAN method (Liu et al., 2021) which are increasingly active. 

2.2.2. Dimensionality reduction 
Dimensionality reduction is particularly useful in extracting the 

principal features in extremely large datasets with a complex input 
space. Principal Component Analysis (PCA) is a common classical 
method to identify the correlation between features and obtain lower- 
dimensional data while preserving as much of the data’s variation as 
possible (Celebi and Aydin, 2016). Popular deep learning solutions for 
dimensionality reduction comprise autoencoders, which includes an 
encoder DNN presenting layers of decreasing side to extract the funda
mental features in a latent space (Kingma and Welling, 2013). The latent 
space is then reconstructed into the original signals in a decoder that 
mirrors the encoder. Hence, the autoencoder is trained to reproduce the 
input signal in its output. Variational autoencoders, whose latent space 
is a probabilistic function, are particularly effective and represent the 
state of the art (Kingma and Welling, 2019). Autoencoders are extremely 
useful for anomaly detection and denoising the original signals. 

2.3. Semi-supervised learning 

Semi-supervised learning is an approach to machine learning that 
combines a small amount of labelled data with many unlabelled data 
used during training, see Fig. 8. Semi-supervised learning falls between 
unsupervised learning (with no labelled training data) and supervised 
learning (with only labelled training data). Unlabelled data, when used 
in conjunction with a small amount of labelled data, can produce 
considerable improvement in learning accuracy (Zhu and Goldberg, 
2009). The acquisition of labelled data for a learning problem often 

requires a skilled human agent (e.g. transcribing an audio segment) or a 
physical experiment (e.g. determining the 3D structure of a protein or 
determining whether there is oil at a particular location). Thus, the cost 
associated with the labelling process may render large, fully labelled 
training sets, whereas the acquisition of unlabelled data is relatively 
inexpensive. In such situations, semi-supervised learning can be of great 
practical value. Semi-supervised learning is also of theoretical interest in 
machine learning as a model for human learning. 

Generative models are the most known semi-supervised learning 
approaches and include generative adversarial networks (Goodfellow 
et al., 2014) and variational autoencoders (Kingma and Welling, 2019). 
Generative approaches to statistical learning first seek to estimate the 
distribution of data points belonging to each class. The probability that a 
given point has a label is then proportional to Bayes’ rule. 
Semi-supervised learning with generative models can be viewed either 
as an extension of supervised learning (classification plus information) 
or as an extension of unsupervised learning (clustering plus some la
bels). Common applications include fault diagnostics to include unseen 
failure modes and editing of images, videos and text. 

2.4. Reinforcement learning 

Reinforcement Learning (RL) implies goal-directed interactions of a 
software agent with its environment, as shown in Fig. 9. Unlike in su
pervised learning, reinforcement learning paradigms do not need 
labelled input/output pairs to be presented, and it does not need sub- 
optimal actions to be explicitly corrected. Instead, the focus is on 
finding a balance between exploration (of uncharted territory) and 
exploitation (of current knowledge) (Kaelbling et al., 1996). 

The RL environment can be formalised as a Markov Decision Process 
(MDP). The central elements of RL are the agent’s states, an environ
ment, a set of actions and a reward after the transition from the state to a 
new state. An RL agent interacts with its environment in discrete time 
steps. At each time, the agent receives the current state and reward. It 
then chooses an action from the set of available actions and then sends it 
to the environment. The environment moves to a new state and the 
reward associated with the transition is determined. The goal of a 
reinforcement learning agent is to learn a policy that maximises the 
expected cumulative reward. 

Deep learning has revolutionised RL research by enabling the treat
ment of continuous state and action spaces as well as the incorporation 
of computer vision (Levine et al., 2020). Hence, deep reinforcement 
learning (DRL) is actively being investigated for decision making and 
robotics applications, including autonomous driving, humanoid robot 
locomotion, robot manipulation and computer games. Offline DRL, 
where the agent learns from pre-sampled data similarly to supervised 
learning, is at present a topic of high interest to mitigate the risks 
associated with exploration. 

3. Current applications 

3.1. Ship design 

In terms of naval architecture, the design of a vessel constitutes an 
essential task to achieve superior hydrodynamic performance to mini
mise fuel consumption. Designing a ship relies on sophisticated experi
mental and computational techniques for hydrodynamic performance 
evaluation of multiple hull sizes and shapes. Traditionally, naval ar
chitects can perform regression analyses to predict a new ship’s 

Fig. 7. Flowchart of unsupervised learning methods.  
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hydrodynamic performance based on existing hull forms. This approach 
can provide an approximate estimate of the new ship’s performance, 
however, may become incapable at later stages of the design since such a 
regression approach normally only consider several primary parameters 
but does not consider advanced parameters such as highly-nonlinear 
hull surfaces. During a later optimisation process, which is a critical 
step in improving the performance of vessels, ship designers would have 
to rely on their personal experience to revise the hull plan. This largely 
depends on the designer’s skills and makes it hard to find the optimal 
configuration. 

Therefore, a strong impetus has aimed at turning a tedious ship 
design procedure into a much simpler process. Such efforts have been 
facilitated by the fast development of Artificial Intelligence (AI) and the 
availability of HPC, so that now an ML-assisted ship design process has 
become realistic. The first application of ML in this regard could be 
considered Holtrop and Mennen’s empirical algorithms that present a 
statistical method to approximate the ship resistance based on the re
sults of multiple model basin tests (Holtrop and Mennen, 1982; Holtrop, 
1984). This method is only applicable to hull forms resembling an 
average ship described by the main hull dimensions and form co
efficients used to build the regression. Because of the limitation of this 
method, it is essential to emphasise that the calculated resistance tends 
to deviate from the actual hull resistance significantly (Holtrop and 
Mennen, 1982; Holtrop, 1984). Therefore, this method is only recom
mended during the concept design stage. 

Other pioneers in the area of assisted ship design were Ray et al. 
(1995). They for the first time presented a global optimum strategy in 
ship design. Specifically, separate optimisations in resistance, weight, 
freeboard, building cost, and stability were integrated together by 
developing a system handler. Classic naval architecture equations were 
used in the calculation, and constraints were added according to the 
sailing requirements of a 136-TEU containership. Nonetheless, the 
optimisation objectives share equivalent weights in the decision-making 
process, and a more intelligent decision-making strategy was pointed 

out by the authors as future work. Another limitation of this work was 
that only one candidate hull was considered due to the technology status 
of that time. 

Yu and Wang (2018) revolutionised the ship design process by 
creating extensive hull geometries using a principal-component analysis 
approach. Extensive hull forms were evaluated for their hydrodynamic 
performance, and the results were then used to train a DNN to accurately 
establish the relation between different hull forms and their associated 
performances. Then, based on the fast, parallel DNN-based hull-form 
evaluation, an optimal hull form is searched for a given operation con
dition. Using this approach, the authors showed a novel application of 
ML in ship design and optimisation, which allows the creation of an 
extensive database and getting fast results through searching. Ao et al. 
(2021) advanced the state of the art by developing a DNN which uses a 
Fully Connected Neural Network technique to predict the total resis
tance of ship hulls in its initial design process based on control points of 
the CAD geometry. The flowchart of Ao et al.’s work is given in Fig. 10. 
The authors reported that the average error was lower than 4% when 
compared to CFD data. The high accuracy can be attributed to the fact 
that Ao et al. model relies on hundreds of control points on the CAD 
geometry as input whereas other models such as Yu and Wang (2018) 
only relied on principal parameters of the hull. Similarly, Abbas et al. 
(2022) developed a geometry-based DNN approach to link predict the 
wind resistance of ships, and the ML predicted results are highly close to 
CFD results. Nonetheless, in the three papers here, only resistance was 
considered. If this approach is coupled with other performance param
eters such as stability and structural integrity, it has the potential to 
become a popular automatic ship design approach. 

De Winter et al. (de Winter et al., 2021) used a database of existing 
vessels to establish performance indicators through RF, which is then 
used for designing new vessels. The RF helped identified some influen
tial indicators such as light ship weight, dead weight, and maximum 
continuous rating. They trained this ML-based model with 1219 known 
container ships and used the model to predict the performance of other 
1219 container ships. The comparison showed a pleasing deviation level 
of the highest at 2.6% and the average of 1.8%. However, the authors 
admitted two uncertainties: the quality of training data, and the 
dependence/independence between parameters. 

On the other hand, it is known that accurately modelling nonlinear 
hydrodynamic phenomena such as a propeller performance evaluation 
for ship design is a highly sophisticated task that requires looking into 
several design variants. NN could therefore be the solution to facilitate 
such a complicated process. For example, Xue et al. (2022) presented a 
NN approach for the design optimisation of propellers. They discretised 
the propeller surface into numerous small elements, which led to geo
metric parameters as input, including chord length, skew, rake, and 
thickness of blade. A simple hydrodynamic method is used to calculate 
the outputs, i.e. the propeller’s performance, which was then linked with 
the inputs through NN. The Genetic Algorithm (GA) is used to generate 
geometries and select the optimal ones. CFD was used to verify the NN 

Fig. 8. Flowchart of semi-supervised learning methods.  

Fig. 9. Flowchart of reinforcement learning methods.  
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prediction and showed a deviation of 3.2%. Lim and Kim (2022) pro
posed a CNN-based model to detect the vortex-induced vibration and 
structural resonance of propellers. Their results showed a success rate of 
82% when predicting vortex-induced vibration phenomena. This 
example demonstrates the possibility to predict the vortex-induced vi
bration in a fraction of time with respect to complex fluid-structure 
interaction simulations. 

Grech La Rosa et al. (2021) proposed a KNN model to design the 
bulbous bow for ships, which can help reduce drags thus saving energy. 
By collecting in-service ship data with bulbous bows, the authors 
developed a supervised ML algorithm (labelled based on design pa
rameters for bulbous bows) that can have the ability to recommend 
whether to install a bulbous bow for a new vessel and, if needed, provide 
an optimised bow geometry. Pena (2020) demonstrated that hydrofoils 
may be installed as a type of energy saving device for cargo ships, which 
has been widely applied in sailing (Souppez et al., 2019). Direct ML 

optimisation of hydrofoil for ships has not been found in the existing 
literature, but it can be inferred that the reviewed geometry optimisa
tion ML methods can be used for this. For example, Yeo et al. (2022) 
used a GA to optimise the blade geometry for tidal turbines, which is 
similar to the geometry of hydrofoils. 

Models based on human learning have been successfully introduced 
by Cui et al. (2012); they proposed a Q-learning RL optimisation 
approach to improve the search process that is typically followed during 
the concept design phase. This RL-based approach was successfully 
applied to improve the structural optimisation process of a bulk-carrier 
ship with two objectives of weight and fatigue and being integrated with 
JAVA and ABAQUS structural software. Their algorithm proved to show 
great potential to minimise a ship’s structural weight, which could be 
used to minimise the ship’s fuel consumption through improved ship 
efficiency. This method could then be integrated with other aspects of 
ship design, such as hydrodynamics and stability to automate the ship 

Fig. 10. Ship design and optimisation procedure of Ao et al. (2021).  
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design process further. 
In terms of stability, Turan and Cui (2012) presented a hybrid 

evolutionary algorithm that uses RL to guide the search for the most 
optimal ship design by using a multi-objective evolutionary algorithm. 
The authors analysed a Ropax damage stability problem demonstrating 
the effectiveness of their approach, which can be applied to other areas 
of naval architecture such as structures. 

Cepowski (2020) developed a NN model to estimate added resistance 
in regular head waves with training data obtained through model test 
experiments. The positive outcomes from the study showed that added 
wave resistance values calculated by NN could be correlated with the 
measured data, which could be particularly applicable during the first 
stages of the design to minimise ship hydrodynamic resistance in rough 
seas. More recently, Yang et al. (2022) developed an innovative 
Data-driven and Physics-based Symbiotic Model, which combines a 2D 
strip theory method algorithm with NN to predict added resistance in 
head waves. Their physics-based NN model showed an average error 
level of 8% for wave resistance, whilst the parallel pure ML model shows 
a level of 20% for the same prediction. The results from their work 
indicated that combining physics in ML models can improve the model’s 
reliability and minimise uncertainty, especially when the physics is 
relatively complicated. 

As the physics gets progressively complex, e.g. ships in calm water, in 
waves, in ice-infested seas, pure ML methods’ shortcoming of ignoring 
the underlying physics becomes more influential. In ship-ice in
teractions, ML does not inform how ships can break up sea ice and then 
how the broken ice can interact with the ship. Sun et al. (2022) and Zhou 
et al. (2022) used NN to predict intricate ship resistance and propulsion 
power in ice, showing some errors of >30%, which is significantly larger 
than the error level of NN applied for ships in calm water and waves. 
Therefore, It is recommended to combine certain physics in ML pre
diction of ship-ice interactions, such as the approach given by Yang et al. 
(2022). 

It should be noted that some of the above ML models are based on 
data in model scale, e.g. (Cepowski, 2020), and therefore, subject to 
scaling issues. Detailed discussion on the scale effect between model and 
real ships has been documented by Terziev et al. (2022), showing the 
inherent errors in model-scale prediction and extrapolation are an 
outstanding problem for various ship design purposes, as it causes 
incorrect reproduction of geometrical features, false prediction of flow 
properties such as turbulence/wave characteristics, as well as a result of 
disparities in force ratios acting on the model and full-scale structures 
(Terziev et al., 2019). Therefore, ML has the potential to be applied to 
address such complex relationships between model and full scales. 
Based on a thorough review, Terziev et al. (2022) demonstrated that 
direct full-scale CFD is a promising solution to gather data that are not 
subject to the scaling issue, which may then be used in combination with 
model-scale CFD to inform ML models in this regard. However, ITTC has 

only provided a CFD guideline in model scale (ITTC, 2014a), which 
intimates that the standard approach to performing full-scale ship CFD 
has yet to be established before ML can be widely and confidently 
applied to address ship scalability. 

3.2. Operational performance 

A ship’s performance can be expressed as mathematic relationships 
with relevant variables, such as operating speed, weather, and mainte
nance conditions. Such relationships can be built upon empirical equa
tions using extensive data from experiments or simulations, and ML can 
derive such equations. As shown in Fig. 11, apart from hull design and 
engine condition, the efficiency of a ship is also related to its current trim 
and fouling; also, choosing an optimised route is essential for time and 
fuel savings. Tillig (2020) proposed a Ship Performance Model (SPM), 
which is a generic ship energy systems model to predict fuel consump
tion under operational conditions. The model can be divided into two 
main parts: (i) a static part for calm water power prediction based on 
empirical methods and standard propeller and hull series as well as the 
estimation of all required ship dimensions and properties using empir
ical formulas, and (ii) a dynamic part for the analysis of the necessary 
power under realistic operational conditions, including effects from 
wind, waves, current, temperature differences, fouling and shallow 
water. 

Coraddu et al. (2017) used physics induced white-box models. as 
well as black box models including LASSO, RF and RLS. to predict fuel 
consumption for a handymax chemical tanker from high-frequency 
continuous monitoring data. By combining the white- and black-box 
models to form a hybrid grey-box model, the same performance was 
achieved as the black-box, but with less historical data required, 
yielding an effective system for optimising trim in real operational 
conditions. 

Previous studies have widely demonstrated the use of ML for pre
dicting fuel consumption, with a key point on identifying the most 
influential variables (known as features in ML). Such a procedure has 
been introduced in detail by Soner et al. (2019). In their work, 27 fea
tures were investigated by LASSO and the most influential ones were 
identified. They suggested that the variance of starboard level, trim, port 
pitch, and starboard pitch has considerable effects on the fuel con
sumption of ships. As another example, Coraddu et al. (2019) estab
lished a relationship between a ship’s speed loss and marine fouling. 
Their approach established an indicator to schedule cleaning of the hull 
and the propeller to mitigate fouling and provided better prediction than 
the current ISO guideline. The importance of features was further 
investigated by Laurie et al. (2021) to determine the optimal amount of 
variables for the propulsive power prediction for containerships to 
capture biofouling effects, with the addition of ‘Days Since Clean’ and 
‘Significant Wave Height’ increasing prediction accuracy by 0.07% and 

Fig. 11. Demonstration of variables for ML optimisation (GreenSteam, 2019).  

L. Huang et al.                                                                                                                                                                                                                                  



Ocean Engineering 266 (2022) 112907

10

0.12% respectively. The design flowchart of Laurie et al. (2021) is given 
in Fig. 12, where the authors demonstrated excellent practice from data 
pre-processing, feature selection, data training, model evaluation, to the 
final analysis model. In addition, Yu et al. (2019) applied RL to assist the 
decision support of ship mooring for varying sea environments. 

Another key point is to figure out the best ML strategies for pre
dicting ship fuel consumption. Earlier work of Pedersen and Larsen 
(2009) and Beşikçi et al. (2016) used NNs to predict the propulsive 
power using noon reports data, showing good accuracy with a predictive 
error of 7%. The accuracy level of NN in this regard was later demon
strated to be improved by Tarelko and Rudzki (2020), showing a 
0.8–2.8% deviation. Petersen et al. (2012) developed an improved NN to 
predict fuel consumption using open-source ferry data from continuous 
monitoring systems, yielding a model with an error of only 1.50% and 
outperforming GP and Gaussian Mixture Models (GMM). Petursson 
(2009) applied the KNN algorithm and SVM to Petersen’s data set to 
predict shaft power, with both algorithms exhibiting high predictive 
accuracy but difficult to compare to Petersen’s NN due to the change in 
the target variable; Chaal (2018) employed the KNN algorithm, decision 
tree regression and NN on continuous monitoring data, with the algo
rithms yielding very similar results. Tree-based methods were explored 
further by Soner et al. (2019) using the same ferry data set used by 
Petersen, in the form of bagging, boosting, and RF approaches. Direct 
comparison with Petersen’s NN showed RF obtained a reduced error of 
43.5 L/h compared to the 47.2 L/h achieved by the NN. Multiple linear 
regression, decision trees, KNN, NN and RF were further compared by 
Laurie et al. (2021) to predict power consumption for a class of seven 
containerships from high-frequency, continuous monitoring data 
augmented by sea-states information via satellite. The RF model was 
most effective in predicting shaft power, with an error of 1.17% which 
was low enough to capture fouling effects. Wang et al. (2018) proposed a 
LASSO regression predicting the fuel consumption for several container 
ships, with features on ship and weather data extracted from a fleet 
management system. In their case, the LASSO regression produced 
better results than SVM, NN and GP regression. Gkerekos et al. (2019) 
also performed a comparative study for predicting fuel consumption for 

two ships, where they evaluated SVM, RF, ETR and NN. Additionally, 
they introduced an Automated Data Logging & Monitoring (ADLM) 
system to improve efficiency and accuracy. In their results, ETR and RF 
performed best in investigated cases. Considering the work of Wang 
et al. (2018) and Gkerekos et al. (2019) together, a notable point is that 
the suitable ML technique can be different in different cases, but all of 
the methods perform similarly well in this application. 

As ships’ performance varies greatly, fuel consumption data 
collected from different ships can potentially depend on other variables 
to various degrees. Using such highly varying data as training and 
validation sets could generate subjective evaluations on the applica
bility. Despite that multiple ML methods have shown promising results 
in existing publications, these publications have so far been limited to 
data of a handful of ships. From the perspective of this review, previous 
work proved ML is a workable method for fuel consumption prediction 
and the prediction can be accurate. However, comparative studies 
cannot demonstrate that an ML method is superior to another, if the 
methods are compared purely based on data from one ship or a couple of 
ships. Therefore, to confidently evaluate which ML methods are suitable 
for ship fuel prediction, crucial future work is to establish a sufficiently 
large database of real ship data. Developing standard datasets as in other 
industries (e.g. ImageNet (Krizhevsky et al., 2012)) is highly recom
mended to provide an unbiased benchmark. 

Propulsion efficiency is crucial as it governs how much fuel con
sumption can be converted into ship movement. The efficiency is not 
static, and it is related to what condition the ship is operating in, 
including the ship’s speed and oceanic conditions. The problem might be 
more complex than establishing the relationship between propulsion 
efficiency and operating conditions, as the total energy consumption of a 
ship is also dependent on different support systems that produce elec
tricity, heating, ventilation and other auxiliary demands. As a solution, 
ML methods can be similarly applied here. For example, Yang et al. 
(2018) created NN for predicting waste heat recovery performance; 
Raptodimos and Lazakis (2018) applied ML to link monitoring data with 
situations where machinery failure could happen, thus enabling diag
nostic purposes. A condition-monitoring solution using ML for the 

Fig. 12. Flowchart from data mining to an ML analysis model, adapted from Laurie et al. Laurie et al. (2021).  
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complex propulsion plant of a frigate was developed by Cipollini et al. 
(2018) using virtual data and a wide range of unsupervised and super
vised ML methods. For a ship propulsion system that is influenced by 
many variables, the challenge is to select the most influential features for 
ML algorithms. To achieve sufficient accuracy with the least computa
tional complexity possible, it is recommended to apply a LASSO 
regression process (or L1 regularised regression) before establishing the 
model. This will implicitly perform feature selection and significantly 
improve the final algorithm’s efficiency by balancing fit and sparsity, 
similar to that introduced for fuel consumption prediction. 

ML can also help crews by providing controlling strategies for ships’ 
propulsion systems. Perera et al. (2016) designed an ML-based auto
mation system consisting of a power management architecture for en
gine and propulsion control systems with respect to various engine room 
operations. It achieved a coupling control of different engines’ power, 
ship speed, shaft speed and corresponding fuel consumptions. Mean
while, a marine engine centred data flow chart has been established to 
handle the large-scale data sets. Thereby, they forged a big data solution 
that can automatically improve the quality of engine strategies and 
advise the bridge crew on decisions such as speed selection. Nonetheless, 
a shortcoming here is that different ML approaches can provide notably 
different accuracies in engine performance prediction. In this context, 
Yuan and Wei (2018) compared the outcomes of NN and GP in this 
procedure and found out GP provides more accurate data; however, as 
Petersen et al. (2012) indicated, there is still a lack of benchmarking 
cases that can be used to verify different methods, thus the conclusion of 
Yuan and Wei can be one case but cannot generally mean GP is the best 
option here. Ongoing work within this area will focus on improving 
these models, also considering the possibility to combine multiple 
methods. 

Nikolopoulos and Boulougouris (2020) developed a holistic 
approach for ship operation performance, with lifecycle considerations, 
which integrated modules to be inputted geometrical variables and 
output indexes in stability, strength, safety and economics. These input 
signals are based on big data from onboard acquired measurements from 
the parent vessels, coupled with weather data implemented for model
ling the operating conditions. This work reveals a particularly good 
example of integrating different ship performance parameters. 

In terms of biofouling, Demirel et al. (2017) presented a high-fidelity 
CFD method that enables the prediction of the effect of biofouling (or 
marine coatings) on ship resistance. They considered the roughness ef
fects on the resistance and effective power of a full-scale ship. By 
contrast, fast and convenient approaches to predicting biofouling have 
been enabled through underwater cameras and image analyses 
(Bloomfield et al., 2021; First et al., 2021). 

On the other hand, marine diesel engines operating with heavy fuel 
oil or marine diesel oil are not a viable powering solution for the ship
ping industry to achieve the required reduction in GHGs and pollutants. 
There have been trends to develop green and renewable energies to 
alternatively power ships. Planakis et al. (2022) developed an energy 
management system for hybrid battery + diesel engine ship propulsion 
which incorporates a clustering ML technique to swap the powering 
methods based on operational scenarios. Based on their results, the 
ML-managing hybrid system can reduce around 8.5% of fuel consump
tion and emissions. 

Wu and Bucknall (2020) designed a hybrid fuel cell and Lithium-ion 
battery propulsion system for vessels. This system uses RL (Wu et al., 
2020) to control the complementation between the two powering 
methods: since the fuel cell has the shortcoming of slow response, 
Lithium-ion batteries can cover the ac/deceleration processes; whereas 
the Lithium-ion battery is very slow to refill, the fuel cell can be used as 
the primary energy source. The authors provided simulations to repeat 
previous voyages and demonstrated that a minimum 65% GHG emission 
reduction can be achieved by utilising the hybrid system. Subsequently, 
Wu et al. proposed a Double Deep Q-Network RL approach for (Wu et al., 
2021) energy management, achieving a further 5.5% cost reduction 

with a 93.8% decrease in training time. Their work is based on a recent 
type of hydrogen fuel cell, assuming hydrogen can be replenished 
overnight and does not need recharge during operation. Such a novel 
system is just applicable to coastal vessels committing short-distance 
voyages, limited by the total amount of energy carriage. Hydrogen is 
of great importance as one of the most promising green alternatives for 
maritime operations, and it can be produced offshore which shows the 
potential to develop hydrogen charging stations for ships. However, 
currently hydrogen’s application as a direct fuel for ships is still limited 
by its transportation and storage (Masoudi Soltani et al., 2021; Jenkins 
et al., 2022). For global cargo shipping, today’s batteries or hydrogen 
fuel cells still do not have the energy density to power long-distance 
trotting ships (Wittels, 2020), thus using ML methods to optimise the 
traditional engine efficiency and reduce waste will remain an important 
research area. 

3.3. Voyage planning 

With the benefits of reducing marine incidents and optimising en
ergy efficiency, there have been increasing deployments of automated 
route planning, which is currently supported by weather routing and 
radar systems. In this approach, environmental factors such as the wave 
height, direction, wind and currents as well as the densities and tem
peratures of air and water are considered. At the same time, radars are 
generally used to identify other vessels and obstacles to secure safety. 
Voyage Planning Tools (VPTs) based on weather systems are usually 
built upon SPM, where the response surface of ships is linked with 
various input conditions, as introduced in the last section. 

Based on SPM, VPT can map out the fuel consumption of all potential 
routes and choose the best one: like a “Google Map” for oceans. Yuan 
et al. (2021) developed a Long Short-Term Memory NN which was used 
for the prediction of real-time fuel consumption rate. The ML model was 
then used to re-plan a historical voyage with historical metocean data. 
Their research showed that the NN was able to revise the route and save 
approximately 30% fuel compared with the original route. A combina
tion of both energy saving and obstacle avoidance has been done by the 
VPT of Li et al. (2020a). In their applicaiton, an SPM has been linked 
with ice conditions to guide ship navigation in the Arctic. While the VPT 
can choose a route with the least fuel consumption, it also avoids 
encountering significant ice conditions such as icebergs and ice ridges. 
Hence, the calculated route might be sub-optimal from the perspective 
of fuel consumption. Following validation, the fuel consumption pre
dicted by their model has agreed well with full-scale measurement data 
(Li et al., 2021). The work of Li et al. has demonstrated the excellent 
potential to apply AI techniques in this area to handle the non-negligible 
ice data and risks, which is motivated mainly by the opening of Arctic 
shipping routes in recent years (Huang et al., 2019, 2021b). Another 
example of applying ML to predict ship speed in ice fields has been given 
by Milaković et al. (2019). 

Huang et al. (2021c) presented a coherent developing procedure 
from a low Technology Readiness Level (TRL) computational simulation 
to a high TRL VPT. As a computational simulation is fairly slow to run 
(such as the one presented in Fig. 1), it is impractical to run a simulation 
each time a ship performance prediction is requested; therefore, the 
simulation work was limited in low TRL applications. To overcome the 
speed limit, Huang et al. (2021c) regressed systematic computational 
simulations to reveal the relationships of the ship performance with 
different ships and environmental conditions, based on which an 
empirical equation is derived to swiftly predict ice-floe resistance for a 
given ship in a given condition. The rapid equation allows its incorpo
ration into a set of Arctic SPM and VPT that link with real-time weather 
systems to predict a ship’s fuel consumption in ice-infested seas and 
dynamically suggest a route with the least safety concern and fuel 
consumption. The design flowchart of their procedure is portrayed in 
Fig. 13. Overall, the work of Huang et al. (2021c) gives a good 
demonstration of leveraging Advance Computation to effectively assist 
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shipping sustainability. In addition, ML could also be used to facilitate a 
realistic match between the simulated ice layout and the realistic ice 
layout; In (Huang et al., 2022), a GA was used to optimise the shape, the 
size distribution, and the random locations of ice-floe fields; the opti
misation standard is for the generated floe fields to have the closest 
match with measurement data, and the generated floe fields can be 
imported into simulation tools to replace oversimplified floe fields (e.g. 
fixed sizes, regular locations). 

To conduct ship voyage planning, a prerequisite is that ship opera
tion data should be effectively collected and classified. In this context, a 
particular challenge is developing algorithms to efficiently classify a 
ship’s data into different movements, e.g. static, normal navigation and 
manoeuvring. To achieve this, Chen et al. (2020) developed a CNN 
method to forge an Automatic Identification System (AIS) for ships’ 
data. The underlying concept of this method is to train a CNN to learn 
from the labelled AIS data, and the unlabelled AIS data can be effectively 
classified by using this trained network. The results demonstrate that 
this efficient CNN method works very well in the classification of AIS 
data; The achieved accuracy level is 92.35%, which is higher than par
allel tests using KNN (70.2%), SVM (80.4%). 

ML applications in ship voyage planning have been beneficial for the 
antinomy of autonomous ships, especially for small boats in coastal re
gions. Because coastal regions typically have dense boat operations, the 
boat route is more sophisticated and their tasks change quickly. Liu and 
Bucknall (2015) designed an algorithm for planning routes for Un
manned Surface Vehicles (USV) that can achieve avoiding obstacles. 
They applied the Fast Marching (FM) method that can identify the 
corresponding safe shipping area and forbidden area in real-time to 
ensure that the planned trajectory do not encounter any obstacles. The 
method works in both static environments (with natural obstacles, 
offshore structures etc.) and dynamic environments (with other moving 
vessels). 

Chen et al. (2019) demonstrated the usage of RL to train USVs, in 
which the ships can be rewarded based on how rational the decisions 
are, and the route optimisation can be done by choosing the best reward 
value; however, their work only considered a static environment thus 

still need to incorporate a dynamic environment as Liu and Bucknall did 
(Liu and Bucknall, 2015). Similar examples can also be found using Deep 
Learning (Perera, 2020). A challenge for operating USVs is to operate 
multiple USVs simultaneously. This requires identifying the tasks and 
routes of all the vehicles in the operating area and making them consider 
each other, dramatically increasing the algorithm’s complexity and ac
curacy requirement. As an example of applying ML to multi-USV sys
tems, Ma et al. (2021) proposed an unsupervised learning method based 
on coordinated multi-task allocation for unmanned surface vehicles. In 
their work, unsupervised learning strategies were used with an 
improved KMC to assign different tasks for a multi-USV system; then, a 
self-organising map was implemented to deal with the task execution 
problem upon the assigned tasks for each USV. However, the model of 
Ma et al. (2021) assigns a specific region for each USV, assuming that a 
USV will not work in another one’s region. This limitation is due to 
lacking an advanced algorithm that can navigate multiple USVs in a 
crowded environment. Meng et al. (2022a) developed a GP-based 
navigator which uses an onboard camera for USV to identify obstacles 
and navigate in real time. The work showed promising results through a 
typical operating scenario of USV navigation in a wind farm, as shown in 
Fig. 14. This approach has the potential to address the operation of 
multiple USVs in one region, but more verification is required. For 
example, the image approach’s performance and risk level are unclear 
when vessels operate at a fast speed or when a structure’s sight is 
blocked by another. 

ML has also been applied to the weather routing of ships. Grifoll et al. 
(2022) developed a comprehensive A* path planning software to opti
mise the route as a function of the wind, wave and current data from the 
CMEMS service. They renavigated some previous intercontinental voy
ages and demonstrated an up to 9% time saving and 28% CO2 reduction. 
Ryan et al. (2021) performed similar research whereas also included sea 
ice data from Met Office. Meng et al. (2022b) developed a combined 
model of GP with the FM method to consider the influence of real-time 
ocean currents on the fuel consumption of autonomous ships, based on 
which they demonstrated energy saving through route optimisation. 

Fig. 13. Flowchart from high-fidelity computational simulation to real-time voyage planning, adapted from Huang et al. (2021c).  
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Fig. 14. GP-based real-time navigation for autonomous ships (Meng et al., 2022a, 2022b).  
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3.4. Summary 

The ML methods used to facilitate shipping sustainability are sum
marised in Table 1. It can be seen that relevant applications correspond 
to ML approaches, whilst one ML method may be suitable for multiple 
applications. A summarisation and comparison are given upon their 
required samples, computational cost, accuracy level, suitability, limi
tation and research gap. It is noteworthy that the sample size between 
different papers is not a comparable variable, because the required 
samples between different applications and different methods are too 
different to compare. To minimise the uncertainty of sample size, the 
literature selection in this paper is based on sufficient training data, as 
mentioned in Section 1.3. Therefore, the sample size of all reviewed 
papers is assumed to have converged. 

4. Discussion 

4.1. Proven applications of machine learning in shipping 

Based on the survey in recent work, the advancement of green 
shipping has highlighted successful implementations of ML in three 
main fields, which are ship design, operational performance and voyage 
planning:  

• In ship design, ML algorithms based on statistical regression have 
been traditionally used as part of the design process. New applica
tions which facilitate a semi-automatic ship design process from a 
hydrodynamic or structural perspective have been made possible. 
This includes data-driven optimisation of a hull form based on its 
CAD geometry.  

• Ship performance can be related to engine powers, ship speed, shaft 
speed, energy wastes and weather data, by which an optimal oper
ational setup can be advised in a given navigation condition; ML has 
been widely added for this purpose. Moreover, green engine options 
such as fuel cells and batteries have been developed as a hybrid 
system combined with traditional marine diesel, in which ML can be 
used to optimise the mode-selection strategy. 

• There have been increasing deployments of automated route plan
ning which consider factors such as weather forecasts as well as route 
obstacles that can be encountered by ships. ML techniques have been 
demonstrated abilities to achieve considerable fuel savings through 
VPTs. 

A summary of different types of ML versus their shipping applica
tions is given in Fig. 15. 

Apart from the three areas mentioned in this paper, there are several 
other areas in the marine field that have been facilitated by ML such as 
underwater vehicles (Anderlini et al., 2020b, 2021), wave energy con
verters (Anderlini et al., 2018b; Benites-Munoz et al., 2020), condition 
monitoring and maintenance (Adeli and Kim, 2004; Kim and Adeli, 
2005; Amezquita-Sanchez and Adeli, 2015; Amezquita-Sanchez et al., 
2017; Perez-Ramirez et al., 2016; Li et al., 2020b). 

4.2. Outlook of future developments 

Despite that ML algorithms have demonstrated their capabilities in 
ship efficiency, traditional knowledge still dominates the maritime in
dustry. One of the reasons could be that the algorithms firstly rely on big 
amounts of data while requiring high computational costs (Hastie et al., 
2009). The marine industry has been conservative and still reluctant to 

Table 1 
Summary of the reviewed applications of ML in ships.  

Application Method Samples required for 
training 

Computational cost Suitability or accuracy level (% of 
ground truth) 

Research gap and recommendation 

Ship design 
(including 
component design) 

NN, KNN Principal design 
parameters 

Low – use numerics Only suitable for well-understood 
geometries 

Most models only consider resistance as 
the optimisation standard. Other aspects 
such as stability and structural integrity 
should be included (Q-learning is 
recommended in this regard (Cui et al., 
2012)). 

DNN, RL Geometry analysis to 
identify the 
coordination of the 
geometry 

High – require the 
generation of CAD files 
(GA) (Xue et al., 2022) 

Can be applied to designing novel 
geometries 

Resistance prediction NN Model tests or CFD data 
of different hulls under 
different operating 
conditions 

Low – use numerics Highly accurate for calm water and 
wind resistance (>95%) (Ao et al., 
2021), less accurate for wave 
resistance (>80%) (Yang et al., 2022) 
and ice resistance (>60%) (Sun et al., 
2022) 

The scaling issue is not resolved. It is 
recommended to combine with physics 
for wave or ice resistance prediction ( 
Yang et al., 2022). 

Power/fuel 
consumption 
prediction, other 
operational 
performance 

RLS, LASSO, 
KNN, SVM, 
ETR, RF, NN, 
GP 

Ship&engine 
parameters, metocean 
conditions, and ship 
speed 

Low – use numerics These models perform similarly; 
comparative studies show that they all 
have high accuracies of >90%, mostly 
>95% (Laurie et al., 2021; Gkerekos 
et al., 2019). 

This application is relatively mature. 

Energy management 
system 

RL Operational data 
(continuous 
monitoring) 

Middle – iterative 
numeric training 

Can help improve the effectiveness of 
fuel/cost (Wu et al., 2020) 

New energy systems are expected due to 
the ongoing energy transition. The 
existing models will need to be updated 
accordingly. 

Automatic 
Identification 
System (AIS) 

CNN Ship trajectories Middle – image based >90% (Chen et al., 2020) In terms of AIS, the success identification 
should be approaching 100%. There is 
still space to improve the accuracy. 
Generative Adversarial Networks (GANs) 
could be helpful (Pena and Huang, 
2021). 

SVM, RF Classified ship 
movements (static, 
normal navigation and 
manoeuvring) 

Low - numerics >70% (Chen et al., 2020) 

Route planning A*, RF Based on metocean 
data and a predictive 
model of fuel 
consumption 

Low – use numerics Clear improvement in fuel 
consumption has been demonstrated 
against historical voyages (Grifoll 
et al., 2022) 

This application is relatively mature. 

Autonomous ships Q-learning Generate potential 
routes and learn from 
errors 

Middle – iterative 
numeric training 

Only work in a static environment (no 
moving obstacle) (Chen et al., 2019) 

A promising research area for ML. 
Relevant algorithms are still under 
development to assure operational 
safety. GP Onboard camera 

images 
High – iterative image 
training 

Can handle multiple vessels in one 
region (Meng et al., 2022a)  
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openly share data to support the training and validation process of ML. 
Creating, optimising and maintaining relevant algorithms will still 
require extensive human inputs and expertise, given the fact that errors 
in ship design calculations and marine operations could carry cata
strophic consequences. Therefore, human factors will need to be studied 
and well-balanced in the foreseeable AI future. 

Following ML replacing manual tasks, the shipping industry is ex
pected to be slowly transitioned into an automated process which will 
just require a set of inputs to find the most efficient solution with little 
human intervention. For example, ports can leverage ML for real-time 
operation of cargo containers. Once this happens, the industry should 
be prepared for such a scenario which would cause corresponding job 
cuts as large design teams will no longer be required. This will only be 
possible with the availability of powerful infrastructures. 

One of the key infrastructures is the sensors on ships, which is the 
precondition for sourcing relevant data, such as structural response and 
flow details. An advanced measurement network is also required to 
monitor and coordinate the measurement data. It is also expected that 
the development of HPC resources, as well as the availability of the 5th 
generation mobile network (5G), will facilitate the process, particularly 
during route planning that requires remote data transmission. The 
development of sensors may also enable the measurements of air 
emissions and underwater noise from ships and then provide direct 
strategies to improve environmental and ecologic sustainability. 

With large databases available to the scientific community, linear 
approaches and old-fashioned empirical functions in ship design will be 
slowly substituted by ML algorithms that consider the conventionally 
neglected nonlinearities. This is expected to happen for the currently-in- 
use guideline formulae such as the ITTC-57, ITTC-78, Katsui et al. and 
Grigson empirical friction lines (ITTC, 2014b; ITTC, 1978) which 
calculate resistance coefficients based on empirical results from model 
scale experiments and for old ship geometries. Considering the prohib
itive cost of obtaining large datasets from experiments for training ML, 
CFD can be particularly useful for data mining, with the support of 
validation against limited experimental data. It should be mentioned 
that the combination between ML and CFD requires CFD to be 
well-validated, as not-well-validated CFD models for ships could yield 
data that lacks quality. The resolutions and schemes of CFD that are 
constantly improving nowadays will be more and more significant 
support for ML. For example, Yu and Wang (2018) method could see 

further accuracy improvement when combined with the most advanced 
turbulence modelling approach for detailed and complex analyses of the 
flow around ships (Pena et al., 2020a, 2020b). 

4.3. The uncertainty and formal procedures 

Based on the above progress, there has arisen an excited scientific 
community and learners who believe that ML can resolve any kind of 
practical problem. However, this group of people should still be very 
careful, since the data-based solution may easily establish a model that 
does not link to classic physical and mathematical rules. ML efficiency 
and efficacy are dependent on the algorithm as well as the training that 
is used as part of the process. Factors such as the quality and quantity of 
data, the variation selection, and the algortithms must be reasonably 
accounted for through proper steps. 

ML users should avoid training an algorithm with insufficient data. 
For instance, Kretschmann (2020) tests different amounts of historical 
datasets to predict accidental risks of a ship: when 12-month data were 
used to train the ML model, the accident frequency is predicted to be 
21%, and in the case of 6-month data, the accident frequency falls to 
11%. Such an example shows that the validity of an ML model should go 
through a comprehensive verification process. A sensitivity study on 
training data amount is required to ensure that the model is well 
informed (similar to mesh sensitivity studies in CFD). In any case, the 
satisfactory standard of a dataset size sensitivity study should be the 
dataset is large enough that further increasing the dataset does not 
notably change the prediction. However, such a sensitivity test is 
missing in many of the reviewed works as they are normally based on a 
given/limited database. 

Once a user has a valid dataset, the next step is to select a suitable ML 
method. The purpose of Sections 2 and 3 is to help a user select a suitable 
method. In certain cases, multiple ML models may all be valid and yield 
alike results. For example, Gkerekos et al. (2019) compared ETR, RF, 
SVM and NN approaches to predict ship fuel consumption, and their 
accuracy levels are all similar. However, significant uncertainty exists in 
the procedure that the user uses to process the data, such as labelling 
data, building links, and setting inputs/outputs. For another group of 
researchers, such setups could be significantly different thus the results 
would be changed. This step is contemporary a “grey area” in ML, which 
makes it hard to evaluate and compare various ML studies, thus it 

Fig. 15. ML strategies for green shipping applications.  
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becomes unreliable to comment on what is the best ML method for a 
certain application. A way to improve this is for reputable associations to 
provide standard ML procedures, such as “ITTC Recommended Pro
cedures and Guidelines in Machine Learning”. It is recommended for ML 
studies to also carry out a formal procedure for estimation and reporting 
of uncertainty, e.g. (Celik et al., 2008). The procedure can quantify the 
uncertainties thereby providing an index for comparing different ML 
studies. 

5. Conclusions 

This paper gave an overview of how ML has been applied in assisting 
sustainable shipping, with respect to ship design, ship operational per
formance and voyage planning. These applications demonstrated that 
ML can process large datasets and extract connections between various 
elements. Extensive examples have shown ML can facilitate shipping 
sustainability through these applications, and it is also enabling complex 
functions that humans would unlikely perform. ML already demon
strated its very promising contribution to green shipping, and such ap
plications will grow enormously in the near future. 

On the other hand, there are also non-negligible concerns for current 
ML shipping technologies. Our maritime world will still rely on first- 
principle methods to govern the geometric design and secure opera
tional safety, and ML is no substitute for understanding physics and 
engineering. This means that, ML, as a highly variable and data- 
orienting method, will not be an all-in-one solution to seamlessly 
replace traditional empirical/computational/experimental methods. 
Properly combining physical methods with ML can help secure the 
reliability. 

In the ongoing digital revolution, the way forward is to appropriately 
distinguish the pros and cons of various ML methods and incorporate 
them as correct segments within the workflows. Meanwhile, un
certainties in datasets and model training processes need to be 
addressed. This requires related regulators and associations to develop 
formal standards and procedures for ML applications. 
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