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Abstract: The study presented here builds on previous synthetic aperture radar (SAR) burnt area 

estimation models and presents the first U-Net (a convolutional network architecture for fast and 

precise segmentation of images) combined with ResNet50 (Residual Networks used as a backbone 

for many computer vision tasks) encoder architecture used with SAR, Digital Elevation Model, and 

land cover data for burnt area mapping in near-real time. The Santa Cruz Mountains Lightning 

Complex (CZU) was one of the most destructive fires in state history. The results showed a maxi-

mum burnt area segmentation F1-Score of 0.671 in the CZU, which outperforms current models 

estimating burnt area with SAR data for the specific event studied models in the literature, with an 

F1-Score of 0.667. The framework presented here has the potential to be applied on a near real-time 

basis, which could allow land monitoring as the frequency of data capture improves. 
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1. Introduction 

Forest fires in the western United States have caused devastating economic, social, 

and environmental losses– and they are increasing in frequency. Additionally, under the 

climate crisis, favorable conditions for ignition and spread of wildfire are expected for the 

near future period. Despite the immediate ecological effects on natural ecosystems due to 

the damages of forest vegetation, in the aftermath of wildfires significant changes occur 

in ecosystem services [1,2]. Therefore, accurate spatial mapping of burned areas is neces-

sary for integrated wildfire management and recovery. Over the last 60 years, the western 

United States has seen a steady increase in wildfires, with over 61% occurring since the 

year 2000 [3]. The year 2020 produced California’s worst wildfire season on record. Fires 

burned over 3 million acres, damaged over 10,000 buildings and killed 31 people [4]. Pe-

riods of severe drought and high temperatures reinforce the trend that fires are likely to 

keep increasing in frequency and intensity. However, early detection and mapping inci-

dents can meaningfully decrease impact of these harmful blazes. To do so, increased at-

tention is being paid to technology with the ability to monitor terrain during natural dis-

aster conditions. Advanced sensors and techniques in earth observation (EO) aim to make 

this kind of monitoring possible. Distinct from older EO technologies that typically pro-

duce coarse images at low temporal frequency, recent launches of e.g., the European 

Space Agency’s Sentinel-1 and Sentinel-2 satellites, show important improvements. Syn-

thetic Aperture Radar (SAR) from Sentinel-1 and optical data from Sentinel-2 are now 

publicly available with global coverage, high resolution, and increased temporal fre-

quency. For wildfire detection and preliminary mapping, Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) are 
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often used [5–7]. They offer lower spatial resolution (~300m) than optical and radar sen-

sors in Sentinel-1 and Sentinel-2 (~10m). Burnt Area (hereafter referred to as BA) mapping 

is conducted with Sentinel-2 satellite sensors, though Sentinel-1 radar sensors offer 

marked advantages in terms of revisit time. Optical sensors are typically employed for 

post-fire BA perimeter mapping as well as burnt severity estimation. However, because 

optical images are dependent on cloud and smoke cover, they are often ineffective for 

real-time mapping even if the resolution is adequate [8]. SAR, an active sensing technol-

ogy, offers the advantages necessary for real-time or near real-time monitoring of forest 

fires. Namely, the ability to be used regardless of smoke and cloud cover, as well as during 

the day or night. SAR’s multiple polarizations, relatively high temporal frequency (three-

day coverage combining both ascending and descending orbits), and steep incidence an-

gles largely overcomes the drawbacks of older generation EO data products [9–11]. 

Concurrent with the increased EO capability is the increase in the development of 

sophisticated deep learning architectures used for multiscale context detection within a 

scene, called convolutional neural networks (CNNs). These advances have enabled re-

searchers to apply CNNs with success in land cover, water and built environment classi-

fication tasks [12]. Many of these studies are carried out with fine or medium resolution 

optical data, often achieving >90% accuracies [13–15]. With the launch of the ESA Sentinel-

1 satellites, a surge of SAR related research is being published in the context of land cover 

classification, environmental disturbance monitoring and change detection [16–18]. Exist-

ing studies using deep learning with SAR in the context of BA monitoring is limited at 

this point and tends to be located in homogenous biomes, limiting their generalizability 

to other studies [10,11,19–21]. With this, there is limited scope for comparison across deep 

learning architectures in this space, highlighting the need for additional research. 

1.1. Multispectral Remote Sensing for Burnt Area Monitoring  

Since the beginning of remote sensing, the capabilities of remote sensing satellites 

have dramatically increased; spatial resolution, quantity of spectral indices, and access 

have all seen a substantial increase in recent years. A recent paper of Szpakowski and 

Jensen 2019 [22] summarizes the satellites relevant for fire ecology today. Satellites are 

designed and their specifications are catered to their intended use. As evident in [22], there 

is a trade-off between a number of spectral indices, spatial resolution and temporal den-

sity. These specifications translate to being able to monitor fire and BA at a local, global 

or regional scale. For many local fire and BA-related analyses such as the one presented 

in this study, the Landsat and Sentinel-2 multispectral imagery (MSI) constellations pro-

vide an adequate combination of necessary factors. With these constellations, BA mapping 

is possible at medium to high resolutions (10-60 meters) with revisiting times of between 

four and eight days. The drawbacks of lack of canopy penetration are acceptable in this 

case due to BA monitoring being largely unaffected (it is more necessary when analyzing 

burnt severity). 

Together with the [22] inventory, methods of analysis are specific to scope, scale, and 

purpose. At a local level, the two most common and effective indices for detecting burned 

area are the Normalized Burn Ratio (NBR) and Normalized Difference Vegetation Index 

(NDVI), Equations (1) and (2) [23]. NBR is the most common method for BA detection in 

spectral remote sensing and has nearly replaced NDVI in measuring BA at a local level 

[22]. 

Equation 1: Normalized Burn Ratio for Sentinel-2 MSI bands 

𝑁𝐵𝑅 =
𝐵8 − 𝐵12

𝐵8 + 𝐵12
 (1) 

Equation 2: Normalized Difference Vegetation Index using Sentinel-2 MSI bands. 

𝑁𝐷𝑉𝐼 =
𝐵8 − 𝐵4

𝐵8 + 𝐵4
 (2) 
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NBR relies on sensing changes between live vegetation and moisture. Specifically, 

the Near Infra-Red (NIR) wavelength (0.76–0.90 μm) is sensitive to living vegetation, and 

Short Wave Infra-Red (SWIR) (2.08-2.35 μm) is sensitive to soil and vegetation water con-

tent. Together, these wavelengths are shown to be an effective way to measure soil mois-

ture, live vegetation, vegetation structure and soil condition after a fire. Using NBR, BA 

assessment is commonly performed by measuring NBR pre- and post-fire and calculating 

the difference, known as Differenced Normalized Burn Ratio (dNBR), Equation (3). A 

threshold method is applied to identify areas of significant change; in other cases in the 

literature, more classes are provided in the case of the identification of burnt severity clas-

ses as “low”, “moderate” or “high”. 

Equation 3: Differenced Normalized Burn Ratio 

𝑑𝑁𝐵𝑅 = 𝑁𝐵𝑅𝑝𝑟𝑒−𝑓𝑖𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡−𝑓𝑖𝑟𝑒 (3) 

Several factors can also limit the accessibility and success of multispectral remote 

sensing for BA mapping. Detection accuracy can be limited by topography and size of 

area of interest. Land cover changes such as floods, harvests and insects can impede accu-

racy of NBR and other BA mapping products [10]. The main limitation when considering 

multispectral imagery for burn area mapping (and in general) is the presence of clouds 

and physical obstructions (smoke, haze, etc.) [11,19]. 

1.2. Active Sensing for Burn Area Monitoring 

The SAR’s properties make it a very capable technology when it comes to burn area 

mapping. Firstly, SAR’s primary advantage over multispectral imagery is its effectiveness 

during a fire event. The sensor can penetrate clouds, smoke and smog, which are often 

present and impede monitoring by other means. Further, as wildfire’s result is significant 

land cover deformation (including loss of canopy, soil exposure and moisture changes), 

SAR’s ability to volumetrically scatter pronounces these differences. Stroppiana et al. 

(2015) [24] confirm SAR’s ability to penetrate thick smoke cover during wildfire, also not-

ing that backscatter increases in burn areas, likely due to a greater bounce off exposed 

terrain. 

Related to burn area backscatter, the literature suggests a variability in behavior in 

pre-fire backscatter conditions. Tanase et al. (2010) [25] find that SAR backscatter variation 

is locally specific, meaning the topography and land cover play a significant role in defin-

ing SAR backscatter. Local topography is specifically found to play a significant role due 

to SAR’s sensitivity to angle of incidence. Particularly, the authors note that given this 

variation, X band is unsuitable for burn area monitoring because of its small dynamic 

range in backscatter. 

Authors have found C-band to be effective in differentiating between burn and un-

burned areas. Many studies have confirmed SAR’s ability to detect removal of branches, 

leaves and exposed soil in a range of biomes [10,11,21,24]. However, several authors note 

significant difficulty in detecting BAs during periods of heavy rains or high soil moisture 

due to the more pronounced SAR backscatter during these periods. 

There is no consensus in the literature for an exact methodology for detecting changes 

in SAR backscatter due to high variation in pre-change event data, though the process 

resembles change detection in MSI. Typically, a baseline is established for pre-change im-

age and a difference is taken from the post-change image. The precise differencing method 

and threshold for defining change depends on environment, land cover, and polarization. 

In total, SAR burn area studies confirm that mapping BAs with Sentinel-1 C-band SAR is 

possible, and modern analysis techniques are being shown to be effective in tandem. 
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1.2.1. Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a subset of Artificial Neural Networks 

(ANNs) which exist for the purposes of image recognition, classification, and segmenta-

tion. CNNs distinguish themselves from ANNs by integrating contextual information by 

limiting connections to a receptive field [26]. This dramatically reduces the computational 

burden in order to handle larger images and avoid overfitting. Figure 1 depicts the struc-

ture of a 2D convolutional neural network consisting of three parts, a convolutional layer, 

pooling layer, and fully connected layer. 

 

Figure 1. Graphical depiction of a CNN. 

The convolutional layer performs the majority of the computation. In it, a kernel, or 

2D matrix of learnable parameters, moves across the image preforming the dot product 

on a receptive field. The kernel moves across the whole image, producing an activation 

map. An activation map is generated for each channel within an image which acts to de-

tect features within an image. Kernels can be tuned to increase or decrease their field of 

view, and more accurately fit the image with parameters of stride and padding. Stride 

defines how many pixels the kernel shifts by as it moves across the image. Increasing the 

stride decreases the resolution of the resulting activation map. Padding is used to retain 

borders of the image during the convolution, an unpadded convolution reduces the size 

of the feature map by the following function. Padding is often not used with large images, 

but with smaller images with important features at the borders. Lastly, a non-linear acti-

vation function is applied to introduce non-linearity to the linear convolution operation. 

This is carried out in order to preserve nonlinear features within the image. Popular acti-

vation functions are the sigmoid function, or the rectified linear unit (Relu). The pooling 

layer functions to reduce the number of parameters in the network, while retaining im-

portant feature information. A commonly used method for pooling is known as max pool-

ing wherein the highest value within a filter is used for the output map. Other operations 

can be performed during pooling such as sum and average. The fully connected layer 

operates to take the lower dimensional feature output by the pooling layer and computes 

a non-linear combination of them. This allows the data to be classified, essentially creating 

a representation between the input and output data. 

1.2.2. Image Segmentation and CNNs 

In classification tasks, CNNs are typically used to predict a class of a whole image. 

However, image segmentation takes this concept further by using CNNs to predict classes 

for a given image on a pixel-by-pixel level. This technique is extremely useful for classifi-

cation tasks in EO due to images rarely containing only one class, and where context 

within an image is important [12]. Figure 2 presents an example of multiclass image seg-

mentation in the context of land with several land cover classification [27]. 
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Figure 2. Example of multiclass image segmentation on a complex land cover area, left hand side, 

true color image from satellite, right hand side, classification using the classes in the legend, from 

Yao, et al. 2022 slightly modified. 

1.2.3. Encoder-Decoder Architecture 

An encoder-decoder architecture takes CNNs one step further by up-sampling the 

CNN output feature maps to input resolution to preform pixel by pixel classification. The 

encoder can be seen as a traditional CNN which serves to extract feature maps. The de-

coder makes use of these feature maps, along with spatial information from earlier stages 

in the model through what is known as skip connections, this process combines more 

spatially accurate information with up-sampled features extracted from the CNN back-

bone. The advantage of being able to connect precise spatial information with the ex-

tracted feature maps dramatically increased the ability of CNNs. This technique is used 

widely in nearly all domains of deep learning from segmenting medical imagery to earth 

observation data. U-Net was originally developed by [28], the original encoder-decoder 

architecture utilizing skip connections in conjunction with deconvolutions within the de-

coder. 

1.3. CNNs and SAR in Burnt Area Mapping 

CNNs have been successfully applied to BA mapping applications, though nearly all 

are applied to multispectral imagery alone. Although successful, these studies focus on 

retrospective BA analysis, not real time. Further, these analyses are conducted with data 

collected in optimum MSI condition (e.g., cloudless skies) to achieve their results, some-

thing that is impossible during a real time wildfire scenario. Segmentation results in these 

studies achieve high overall accuracy (>0.95) scores but are limited in their applicability 

to real time BA mapping. This study aims to focus on the burgeoning field of BA mapping 

with SAR data instead, in combination with modern deep learning frameworks. 

Only recently have studies begun combining SAR and modern deep learning archi-

tectures to attempt near real time segmentation of BAs during wildfires. Ban et al., 2020 

[11] utilize Sentinel-1 C band imagery with image labels derived from time series change 

detection and a traditional CNN architecture to show it is possible to approximate BAs 

using SAR change maps, topography, and historical SAR data. The study is unable to de-

termine accuracy over the whole study’s areas due to lack of accurate ground truth. How-

ever, they do propose a novel framework for anomaly detection in SAR time series data, 

which is implemented in this study. 

Several studies have combined SAR and MSI with success in BA assessment [10–19]. 

Verhegghen et al., 2016 [19] show that the combined use of Sentinel-2 MSI and Sentinel-1 

SAR can be utilized to detect and monitor fire outbreaks. The authors note the two tech-

nologies were able to compensate for the weakness of each other, but the study is limited 

in its geographic scope and specificity. They do not investigate the accuracy of their pro-

posed technique beyond intersection and agreement of BAs between the two sensors. 

Belenguer-Plomer et al., (2021) [29] utilize SAR and MSI images in a wall-to-wall 

mapping strategy to eliminate gaps caused by cloudy MSI imagery. They construct sev-

eral CNNs to determine optimum model performance by land cover type. They found 
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slightly higher accuracies when mapping BA with MSI data incorporated with SAR. The 

study notes marked differences in accurate results by land cover class, with heterogeneous 

land cover achieving the highest accuracies, and homogeneous land cover, such as 

cropland, achieving no addition benefit from the sensor combination. The study suffers 

from error sources stemming from steep topography, fire unrelated land changes in their 

study areas, and sparse fire events. The study does not investigate all land cover classes 

for a study area in a classification iteration. Zhang, Ban and Nascetti, (2021) [21] investi-

gate continuous learning with a U-Net architecture exploiting both Sentinel-1 SAR and 

Sentinel-2 MSI time series for increasing the frequency and accuracy of wildfire progres-

sion monitoring. The study implements a frozen pre-trained ResNet encoder and trained 

decoder to refine burned areas in a progression-wise manner. This study shows the po-

tential of deep learning as data becomes available at higher frequencies. The study fails to 

show the transferability of the method across land cover types and does not validate the 

models on BAs outside of their 3 case studies. This study aims to improve upon the ability 

of SAR-only based BA prediction models and investigate the potential of transfer learning 

in the subject. Specifically, it will address a gap left by other studies in incorporating other 

data into the deep learning process. Studies have largely ignored incorporating topogra-

phy characteristics and land cover data into the learning process. There is strong theoret-

ical ground for inclusion, yet many studies rely on SAR backscatter channels alone, due 

to lack of consistent data coverage. Another area neglected in the literature thus far is the 

area of transfer learning. The literature is sparse on the ability of any kind of machine 

learning model coupled with SAR to accurately predict BA once retrained on a new local-

ity. This ability would represent a crucial step forward in being able to track BA progres-

sion across varied terrain and geography, though research has not yet fully evaluated this 

capability. Belenguer-Plomer et al., (2021) [29] train land cover specific CNNs to detect 

BA, though do not test their effectiveness combining land cover. This study aims to inves-

tigate both of the above gaps in the literatur-inclusion of additional data channels, and 

effectiveness of transfer learning in burn area monitoring. This work aims to contribute to 

the deep learning applications to SAR imagery in the context of near real-time BA map-

ping. The main objective is to determine if a modern deep learning architecture is an ef-

fective option relative to existing SAR based BA monitoring studies, as well as whether 

implementing a semi-supervised, automatic labeling process is effective in producing ac-

curate predictions. 

The specific aims and objectives of this study are: (1) to understand existing methods 

for semantic segmentation with respect to land cover classification and disaster monitor-

ing; (2) to apply change detection technique to automatically label BA regions of Sentinel-

1 and Sentinel-2 for fire regions in California; (3) to collate existing similar BA prediction 

models for comparison; (4) to apply a deep learning architecture for training and testing 

on labeled Sentinel-1 imagery and to evaluate contributions of additional channels (i.e., 

DEM and land cover); and (5) to evaluate model performance against existing Sentinel-1 

based machine learning models for BA prediction, examining possible extensions with 

SAR and optical based fusion masks. 

2. Materials and Methods 

A summary of methodological steps is presented in Figure 3. After having identified 

a suitable study area with forest affected by wildfires, we cross checked Sentinel1 (S1) and 

Sentinel2 (S2) data availability for the time period using Google Earth Engine (GEE). Data 

Collection and Image Generation involved the download and clip S1 and S2 data for spe-

cific study area and time period. Generate CNN input data and pseudo label masks using 

S1 data automatic segmentation. After, we generated ground truth labels with S2 MSI data 

and CALFIRE reference outline. Model training has implied the CZU Lightning Complex 

model iterations on 11,600 fire event images and pseudo reference masks. Model testing 

was carried out using MSI ground truth reference. Additional transfer Learning was car-

ried out by retraining the CZU models on Creek Fire SAR input data and pseudo labels, 
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and test on MSI ground truth reference for the Creek Fire. Finally, a comparison of results 

of the three models to state-of-the-art SAR-based BA detection. We analyze the effect of 

the addition of ancillary non-SAR channels to the BA prediction accuracy. 

 

Figure 3. Flow chart overviewing the data collection and modeling presented in this study. 

2.1. Study Area 

Two recent wildfires, the CZU Lightning Complex (2020) and the Creek Fire (2020), 

were chosen as case studies for this research due to the availability of previous application 

of radar remote sensing and deep learning for the mapping soon after the events. Figure 

4 presents a map of each study area and Table 1 summarizes key characteristics about 

each. As the aim of this study is to investigate the transferability of a deep learning fire-

monitoring model, both BAs presented similarities such as the presence of highly variable 

terrain, characterized by steep slopes and varied elevation, and similar land cover domi-

nated by forest land (with a small fraction of forest class covered by shrubland/chaparral). 
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On the other hand, the extent of the BAs was substantially different, as the BA of CZU 

Lightning Complex in nearly four times smaller than that of the Creek Fire. Combined, 

they are representative of wildfire events that occur within fire prone areas of California 

and contain characteristics, which are typically involved in large fires in recent periods. 

 

Figure 4. Maps of each study area and CAL FIRE official burnt area perimeters. Both study areas in 

the context of California (Left), the Creek Fire (2020) (Upper Right), the CZU Lightning Complex 

(2020) (Lower Right). 

Table 1. Summary of Creek Fire and CZU Lightning Complex burnt area characteristics. 

Creek Fire 

Dates Active: 4 September 2020–24 December 2020 

Total Area: 379,882.25 Acres 

Location: 37.19147° N, 119.261175° W 

Buildings Destroyed: 856 

CZU Lightning Complex 

Dates Active: 16 August 2020–24 September 2020 

Total Area: 86,553.5 Acres 

Location: 37.17162°N 122.22275°\ W 

2.2. Data 

2.2.1. Copernicus Sentinel-1 SAR 

Copernicus’ Sentinel-1 satellite program consists of a constellation of two polar-or-

biting satellites launched in April 2014 and April 2015. They are both equipped with C-

band SAR (active day and night) operating on a 6-day revisit period to the equator when 

using both satellites [30]. With these satellites, the ESA’s mission is to increase revisit fre-

quency, spatial coverage, while providing additional SAR data for seas and oceans, natu-

ral hazards and disaster, and climate change monitoring [30]. Users can download SAR 

data as soon as one hour after acquisition in one of three levels. Relevant to this research 
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is the Ground Range Detected (GRD) segment of Level-2, which consists of focused SAR 

data that is multi-looked and projected to the ground using an earth ellipsoidal model. 

High-resolution imagery (10m) is available in the interferometric wide (IW) swath mode. 

The rise of cloud-processing systems, for instance Google Earth Engine (GEE), 

providing free of charge access to EO datasets worldwide [31], is promising. Therefore, it 

has been widely applied during the last decades [32,33]. 

From GEE, Sentinel-1 C band SAR data is downloaded for the period from four 

months preceding and two months after each fire event [31]. The GRD product in both 

VV and VH polarizations are downloaded in IW mode for the ascending or descending 

orbit, depending on swath coverage, aiming to prioritize as much of the study areas 

within a single swath as possible. Data for either an ascending or descending orbit is se-

lected due to concerns of differences in azimuth angle and the affect it would have on data 

consistency over the same area. 

The SAR data is processed according to the analysis ready processing guide provided 

by [34] for Sentinel-1 SAR data processed in GEE. Boarder noise removal, speckle filtering, 

and radiometric terrain normalization are implemented. Boarder noise removal is imple-

mented in accordance with Stasolla and Neyt (2018) [35] due to its ability to be applied to 

data acquired regardless of acquisition mode, polarization, or resolution. Multi-temporal 

speckle filtering is applied with a Refined Lee filter using nine images and a 3×3 kernel 

[36]. Consistent with the analysis ready processing guidelines only areas of the same ge-

ometry are considered, and post speckle filtered images are manually checked against 

pre-filtered images to check adequate preservation of features. Radiometric terrain cor-

rection is conducted using the 30m SRTM DEM from NASA [37]. Terrain correction is 

essential for SAR data due to pronounced layover and shadow effects in areas with steep 

incidence angles. In this study, pixels in active layover and shadow zones are masked out 

in each image, in accordance with Mullissa et al. (2021) [34]. 

2.2.2. Reference MSI Imagery 

Reference MSI imagery comes from the Sentinel-2 bottom of atmosphere product 

(2A) and is also downloaded from GEE. MSI images are downloaded for the same time 

period as the SAR and is used to define the final reference fire perimeters, described fur-

ther below. Sentinel-2 images are collated together to form a continuous time series. For 

each BA a pre-fire and post-fire MSI image is chosen to facilitate the dNBR calculation. 

Cloudless pre-fire images are manually selected for both study areas as close to the fire 

start date as possible. Post-fire reference images are selected by selecting cloud free images 

at dates on or as close as possible to the conclusion of the fire event. In the case where a 

SAR and MSI image is not available on the same day, the closest acquisition dates possible 

are used. This is viewed as acceptable because at the point of data acquisition, the fire has 

reached it maximal extent, therefore data quality is prioritized (i.e., ensuring the image is 

cloud free). The NIR and SWIR bands are extracted and used to compute the NBR, form-

ing the BA ground truth images for the U-Net model. 

2.2.3. DEM 

Topography data was obtained from the STRM 30m DEM in GEE, the same data as 

used in the radiometric terrain correction [37]. Separate slope, aspect and elevation layers 

were extracted for model input. 

2.2.4. Fire Perimeters 

The official CAL FIRE BA perimeter for each fire event has been obtained from the 

CAL FIRE data portal in conjunction with the MSI imagery to form the ground truth ref-

erence data (CALFIRE GIS Data, 2021) [38]. The perimeter is necessary to define the 

boundaries of the fire-affected areas, although it does not represent the heterogeneity 

within the burned area space, to do so, MSI imagery has been used to fill this gap. 
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2.2.5. Land Cover Data 

Land cover data used was originated from the USGS National Land Cover Database, 

which derived by the 30-m Landsat based imagery from 2016. It contains 20 cover classes 

and extends over both study areas completely. The data was downloaded via GEE. 

2.3. Methods 

The methodology for this analysis, builds upon the methodological framework pro-

posed by Ban. et al. (2019) [11]. It contains two primary aspects: automatic input data and 

label generation via SAR change detection, and a semi-supervised deep learning model. 

Figure 5 summarizes the data components, brief processing, and flow of data into the 

modelling framework. The following sections will detail steps necessary related to SAR 

image anomaly detection and image pseudo labeling, input data processing, MSI ground-

truth reference image generation, and the U-Net model specifications and modelling 

framework. 

2.3.1. Change Detection and Image Pseudo Labeling 

The method for anomaly detection and image labeling is described in Figure 5. Con-

sistent with the framework of Ban et al. (2020) [11], SAR change detection is implemented 

by comparison of a pre-fire time series and post-fire image. For a given fire event, four 

months of pre-fire SAR images are collected and processed according to the analysis ready 

data protocol laid out above. From these images, a historical pre-fire mean and standard 

deviation image are produced for each VV, VH, and VV/VH polarizations. These images 

define a pixel wise reference for what a normal backscatter range is for each study area. 

Change maps are derived from the pre-fire time series by calculating the log ratio between 

a post-fire image and the pre-fire mean. The formula for the log difference is presented in 

Equation (4) [39]. 

  

Figure 5. Graphical depiction of the methodology for SAR change detection and pseudo label gen-

eration. 

Equation 4: Formula for log ratio between two SAR images. 

𝑋𝐿𝑅 = 𝑙𝑜𝑔(𝑋𝑅) = 𝑙𝑜𝑔 (
𝑋2

𝑋1

) = 𝑙𝑜𝑔(𝑋2) − 𝑙𝑜𝑔(𝑋1) (4) 
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where 𝑋𝐿𝑅is the resulting loss ratio image, log 𝑋2 is the post-fire image, and log 𝑋1is the 

pre-fire mean. Here, the log difference can be seen as calculating the degree of difference 

between the two images. The time series of individual SAR polarization change maps is 

the primary component of the input data. From the change maps, the pseudo labels are 

generated by dividing the change maps by the pre-fire standard deviation image, pre-

sented in Equation (5) [11]. 

 Equation 5: Formula for degree of deviation from normal for a SAR image. 

𝐷𝑝𝑖𝑥 =
|𝑋𝐿𝑅|

𝐼𝑚𝑔𝑆𝑇𝐷

 (5) 

𝐷𝑣𝑎𝑙 represent the deviation from normality for each pixel in the change map image, 

|𝑋𝐿𝑅| is the absolute value of the change map, and 𝐼𝑚𝑔𝑆𝑇𝐷 is the pre-fire standard devia-

tion map. The larger the deviation value, the higher the probability of change. Due to 

speckle in the image, we found it difficult to distinguish a hard line between BA and noise 

in the data. However, through manual thresholding of the deviation value, we identified 

a balance between BA detection and noise in the data. 

The resulting threshold is equal to three. Using this threshold, the change maps are 

binarized and clipped to the final fire perimeter (provided by CAL FIRE). Clipping is car-

ried out to minimize false positive labels in the data. Though this step would be unsuitable 

in a real time detection situation, this study seeks to maximize BA detection with SAR. 

The resulting deviation maps are used as input pseudo labels for training the deep learn-

ing algorithm. An example of a derived image pseudo label is presented in Figure 6, for 

the CZU Lightning Complex study area. 

 

Figure 6. SAR based pseudo label for CZU Lightning Complex study area, image dated August 28, 

2020. 

2.3.2. MSI Reference Images 

Ground truth image labels are generated from MSI imagery derived from Sentinel-2 

imagery. NIR and SWIR bands are used to calculate the NBR for each pre-fire master im-

age and post fire burnt image for each study area. Only one burnt image each is used to 

serve as a ground truth reference because Sentinel-2 data is unavailable while the fires are 

active. 

Similarly to anomaly detection in SAR, a pre-fire NBR and post-fire NBR are differ-

enced to produce a differenced NBR image (dNBR), which, after thresholding, serves as 
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the ground truth reference for the final fire perimeter. Thresholding of the dNBR is carried 

out in accordance with the Monitoring Trends in Burn Severity (MTSB) program, in which 

a dNBR threshold of >.1 is used to identify all burnt severities above unburned levels [40]. 

This is a common practice in BA detection and has been shown to detect over 97% of BAs 

for boreal forests, which is viewed as sufficient for this study [11–42]. The binary BA ref-

erence map is presented below for the CZU Lightning Complex fire in Figure 7. This BA 

reference is not used to train the U-Net models, but solely used in assessing accuracy of 

the proposed U-Net for BA detection. 

 

Figure 7. Derived ground truth reference image for the CZU Lightning Complex study area. 

2.3.3. U-Net Input Data Summary 

The final input dataset used to train the U-Net consists of either three channels or ten 

channels. The three channel iterations consist of only the three SAR polarization change 

maps. The ten channel iterations consist of the three polarization difference map channels, 

three polarization pre-fire standard deviation channels, DEM components, and land cover 

classification. The change maps and standard deviation are included with three layers 

each, of VV, VH, and VV/VH. This is due to polarizations picking up different aspects of 

the Earth’s surface, with VH being most susceptible to volume scattering within a tree 

canopy. The DEM components include slope, aspect, and elevation. Land cover classifica-

tion is a raster of categorical values provided by the USGS national land cover database. 

Each input channel is stacked and exported into a single three or ten channel “.tiff” file at 

ten-meter resolution from GEE. 

2.3.4. Input Dataset Manipulation 

As the U-Net requires images of height and width of 128 X 128 pixels, a splicing al-

gorithm was used to split the tiff files into patches of the required size to retain resolution. 

In total, for the CZU study area, 725 images are available for each instance of data acqui-

sition. For the CZU fire event, 11,600 input and pseudo reference images are available for 

training during the fire period and 725 MSI generated images were used for testing. This 

equates to training on the first 16 instances of data acquisition during the fire period and 

testing on the final instance, i.e., when the fire reaches its full BA perimeter. Each channel 

within each input image is min-max scaled to be between 0–1 based on the global mini-

mums and maximums throughout each respective dataset. This process helps the U-Net 

converge more quickly by reducing volatility in the data. At the conclusion of testing the 
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predicted image, patches are reassembled for statistical and visual accuracy comparison 

with the reference imagery. Specific accuracy metrics are shown in Section 3.1. 

2.3.5. U-Net with ResNet 

Deep neural networks have demonstrated great successes in segmenting earth obser-

vation data. However, deep networks often suffer from the problem of being very unsta-

ble. This is known as the exploding or vanishing gradient phenomenon, where errors 

propagate into very large updates, rendering the network useless. Researchers solved this 

problem with implementation of so-called skip connections which are composed of a 

mapping of previous layers in the network [43,44]. For segmentation tasks, Ronneberger, 

et al., 2015 [28] propose a novel encoder-decoder framework applying some of the similar 

principles. The U-Net consists of a contracting path and expanding path with concatena-

tions at corresponding levels between the encoder and decoder. The advantage of this 

structure is that it retains contextual information while also including low-level detail. It 

has been shown to be very effective in segmentation tasks, including in EO. In this study, 

the U-Net and Resnet were combined to exploit the advantages of each framework. Spe-

cifically, a ResNet50 encoder was incorporated as the encoder of the U-Net. ResNet50 was 

chosen specifically based on its successes in BA mapping in previous studies together with 

other encoder-decoder architectures [21]. The architecture for this study is illustrated be-

low in Figure 8. 

 

Figure 8. U-Net architecture with ResNet50 encoder. 

2.3.6. Models 

This study presents three deep learning models that were trained for the evaluation 

of BA monitoring. The model specifications implemented here are listed below:  

U-Net CZU_10:  

• The U-Net model is loaded as an untrained model with randomly initialized weights 

for each of the 10 channels. The model is then trained on the 11,400 image patches 

specific to the CZU BA of interest. The model is tested on 725 images representing 

the final BA at the conclusion of the fire.  
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U-Net CZU_3: 

Take only the dVV, dVH, dVV/dVH SAR polarizations as channel inputs to a 3-chan-

nel U-Net using the ImageNet pre-trained weights. It is then trained on 11,400 image 

patches and tested on the 725 image patches of the final BA perimeter. 

U-Net Transfer: 

• Load the weights from U-Net CZU_10 and continue training the model on a subset 

of images from the Creek fire. This is intended to learn from the initial training and 

generalize it to an area of similar land cover and topography in California. Investigate 

effects of additional land cover and topography channels in transfer learning. 

2.3.7. Model Training 

Each model presented in the study has been trained with parameters specific to the 

input data. This section will detail the specific data treatments and hyperparameters uti-

lized during the training process for each model listed above. 

Data Augmentation 

During training of both U-Net CZU and U-Net Transfer models, data augmentation 

has been implemented to deliberately increase the diversity of characteristics within the 

dataset. This has been carried out to allow the network to generalize more readily with a 

relatively small amount of training data. Specifically, augmentations consist of Gaussian 

noise on one fifth of images and reorienting images half of the time. 

Hyperparameter Tuning 

In this study, hyperparameters considered for tuning are the learning rate, number 

of epochs, and loss function [45]. Hyperparameter tuning has been performed on a smaller 

subset of data. In this study, tuning has been limited to a subset of 1000 images (~9% of 

the total data) due to training time constraints. Table 2 summarizes the model hyperpa-

rameters. 

Table 2. Summary of model training hyperparameters. 

Model  Rate Epochs Loss Function 
Learning Opti-

miser 
Training set size Test set size 

U-Net CZU_3  0.001 240 Dice Loss Adam 11,600 725 

U-Net CZU_10  0.001 320 Dice Loss Adam 11,600 725 

U-Net Transfer  0.001 320 Dice Loss Adam 9,699 1,233 

Learning Rate 

The learning rate governs the size of the weight updates. If the weight updates are 

too small the model never converges, too large, the model will overshoot the minimum. 

The learning rate has been found to be optimized at 0.001. This determination has been 

made by looking at the training curves after the conclusion of each tuning training model 

run, making sure the curve is not too jagged, or not learning fast enough. 

Number of Epochs 

The number of epochs to train each model is determined based on the relationship 

between the training and validation loss curves. As training progresses both training and 

validation loss decrease. At a certain point, validation loss begins to increase relative to 

training loss. This point is understood as the point at which the model begins to overfit 

the training data. This epoch is identified, and the validation data is re-included in the 

training set. The model was trained for the found number of epochs. The training epoch 

with the lowest dice loss during the training period was the one chosen for the test. 

Loss Function 

The loss function determines how well a model fits input data based on the output 

of the prediction, compared against the ground truth. Different loss functions are used 

based on the type of data being analyzed. Data components such as class distribution, 
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skewness, and boundaries govern what kind of loss function is implemented. Popular loss 

functions are Cross Entropy loss and Dice Loss [45]. 

The loss function used in this study for all models is Dice Loss. Dice Loss was chosen 

because it is shown to handle class imbalance and outliers more smoothly than cross-en-

tropy, and also because it has been applied in BA estimation previously [10,29]. Further, 

it is based off this study’s evaluation metric, the F1-score, so minimizing the Dice Loss it 

maximizes model performance. 

2.3.8. Model Evaluation 

In the space of EO, segmentation models were evaluated by accuracy metrics. In ac-

cordance with the field, this study will compare accuracy metrics to other papers in the 

field of BA estimation with SAR. Additionally, this study will examine some qualitative 

aspects of the segmentation in an attempt to identify meaningful trends as to why predic-

tion succeeded or struggled. 

Evaluation Metrics 

Quantitative metrics were used to evaluate performance of both BA segmentation 

models consist of the Accuracy, Precision, Recall, and F1-score. The evaluation metrics are 

defined in Table 3. The metrics are consistent and correlated with each other and are reg-

ularly used in the literature. Since this study is comparing performance against studies in 

the field, it is necessary to use comparable statistics. Importantly, this study will only com-

pare to other studies using a consistent technique. 

Table 3. Evaluation metrics presented in this study. 

Metric Formula 

Sum of all burnt area pixels True Positive (TP) classified as burnt area 

Sum of all burnt area pixels False Positive (FP) classified as unburned area 

Sum of all unburned area True Negative (TN) pixels classified as unburned area 

Sum of all unburned area  False Negative (FN) pixels classified as burnt area 

Accuracy  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

Benchmark Studies 

As the field of SAR-only BA detection is relatively new, there does not exist any offi-

cial benchmark to assess this study’s findings against. There are a few recent studies, how-

ever, undertaking analysis of SAR-based BA prediction and deep learning that will be 

used to evaluate the findings in this study. The comparison studies are Belenguer-Plomer 

et al. (2021) [29] and Zhang, Ban and Nascetti (2021) [21] which both implement CNN 

based SAR only BA estimation models. Both studies utilize a similar approach of SAR 

change detection to generate change maps of affected areas, which are then used to train 

a machine learning model. In terms of study area, comparisons are made against similar 

geographic regions where possible. Belenguer-Plomer et al. (2021) [21] provide assess-

ment of a BA in Northern California, which is geographically close to those presented in 

this study and is chosen as the point of comparison. Zhang, Ban and Nascetti (2021) [21] 

provide a SAR-only based model for their Sydney, Australia BA, though land cover and 

topography are broadly consistent this study (70% evergreen forests, ~10% scrubland over 

hilly and mountainous terrain). Trained models are tested on ground truth reference gen-

erated with a methodology consistent with this study. Belenguer-Plomer et al. (2021) [29] 

utilize Landsat-8 surface reflectance and a random forest classifier trained on 1) NIR and 
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SWIR bands 2) the NBR of post-fire and 3) the pre- and post-fire NBR (dNBR). Consistent 

with this study Zhang, Ban and Nascetti (2021) [21] utilize a threshold dNBR approach to 

derive the reference perimeters from Sentinel-2 and Landsat-8 MSI imagery. The dNBR 

threshold used to define BA is the same as implemented here (>0.1). Both studies evaluate 

the ability of SAR-only based BA prediction models and SAR-MSI based BA prediction. 

This study only considers the former in the evaluation comparison but does address the 

latter in discussion. Table 4 summarizes the results for the two comparison studies 

Belenguer-Plomer et al. (2021) [29] only provide F1-score for comparison). 

Table 4. Summary of benchmark study results for SAR based burn area detection 1Based on the U-

Net with Learning without forgetting with SAR based reference for the Sydney Fire (2019-2020); 
2Based on North American study area S1 satellites only. 

Model Accuracy Precision Recall F1 

Zhang Ban and Nascetti 

(2021)1 
0.86 095 0.45 0.60 

Belenguer-Plomer (2021)2 - - - 0.46 

All models presented are evaluated against the comparison studies. This study as-

sumes that due to the relatively small amount of research into this specific area to-date, 

these comparison studies represent the state of the art in terms of SAR-only BA estimation. 

Qualitative Evaluation 

Together with the quantitative evaluation, a qualitative analysis is undertaken to de-

termine which models work well in what landscapes. Qualitative analysis aims to deter-

mine if aspects of the land cover or topography notably challenge the BA estimator. Of 

particular interest are the mountainous regions of the study sites as SAR traditionally 

struggles in mountainous terrain. Qualitative analysis is conducted by visually inspecting 

the error regions of each predicted BA for particularly dense regions of false negatives 

and false positives. 

3. Results 

The section presents results and evaluation of performance for each BA prediction 

models, presented by study area. The models were evaluated with traditional accuracy 

metrics for image segmentation listed in Table 3 and compared against the benchmark 

studies listed in Table 4. A brief analysis was conducted to assess successes and struggles 

of the models in the CZU study area regarding land cover and topography. 

3.1. CZU Lightning Complex 

Table 5 presents the results of the two models, U-Net_CZU_3 and U-Net_CZU_10, 

together with the literature studies and their performances. Figure 9 presents the visual 

segmentation result for the UNet_CZU_3 model. Errors, false positives, and false nega-

tives can be observed highlighted in yellow and red. Blue and green represent true posi-

tives and true negatives, respectively. 

Table 5. CZU Lightning Complex U-Net Segmentation Results.: 1Based on the U-Net with Learn-

ing without forgetting with SAR based reference mask for the Sydney Fire (2019-2020); 2 Based on 

North American study area S-1 satellites only. 

Model  Accuracy  Precision  Recall  
F1-

score 

Zhang, Ban and Nascetti (2021)1 0.862 0.947 0.448 0.604 

Belenguer-Plomer (2021)2 N/a N/a N/a 0.460 

U-Net_CZU_3 0.813 0.868 0.650 0.671 

U-Net_CZU_10 0.807 0.833 0.648 0.667 
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Figure 9. Segmentation result of U-Net_CZU_3. 

Both U-Net CZU models achieve higher accuracies with respect to the metric of in-

terest, F1score when compared to the two literature benchmarks. U-Net_CZU_3 records 

an F1 score of 0.671, U-Net_CZU_10 records an F1 score of 0.667, compared to 0.60, and 

0.46 from Zhang, Ban and Nascetti (2021) [21] and Belenguer-Plomer et al. (2021) [29], 

respectively. As expected, the work of Zhang, Ban and Nascetti (2021) is the closest in 

terms of accuracy as the methodology is very similar to this study. 

The U-Net was generally unsuccessful in categorizing much of the BA, though did a 

much better job at not categorizing unburned area as burned (Figure 9). The algorithm 

successfully categorizes BAs where the surrounding area is nearly completely burned, 

while it struggles to classify areas that go from burnt to unburned in succession over 

shorter distances. For example, a great portion of entire right edge of the figure was mis-

classified when it comes to the BA, though the lower left portions of the image are fairly 

better. While the two model’s classification performance metric is very similar there is 

noticeable difference in output image. Namely, U-Net_CZU_3 produced results with no-

ticeably lower false positives in the lower right tail than U-Net_CZU_10. Additionally, 

based on the pattern of the classification, land cover and topography appear to play a role 

in this discrepancy of BA classification. 

3.1.1. Land Cover Effects 

The predominant land cover types for the CZU Lightning Complex are evergreen 

forest and small amounts of scrubland (Figure 10). Notably, the U-Net CZU seems to have 

classified accurately the shrubland inside the fire perimeter, though there is not a clear 

pattern with respect to the evergreen classification. 
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Figure 10. Land cover classifications inside the CAL FIRE perimeter of the CZU Lightning Com-

plex. 

3.1.2. Topography Effects 

Table 6 summarizes the topography variation amount the different U-Net CZU clas-

sifications. It is evident that the true positive metrics noticeably diverge from the false 

positives and true negatives, as one might expect. This suggests that the characteristics of 

land cover that were unburnt after the fire could be substantively different from those that 

are in the fire. Examining the region of interest, together with the final fire perimeter, this 

seems plausible. However, more research is necessary to make a definitive conclusion. 

Notably true positive and false negative (burnt predicted as not burnt) consist of very 

similar metrics. This too is to be expected given the relative consistency of the BA in terms 

of the DEM components. It does suggest, however, that the U-Net was not taught that the 

attribute is an effective differentiator between areas burned and not burned. 

Table 6. Topography summary statistics by prediction class for U-Net_CZU_3. 

Metric True Positives Mean Min Max 

Elevation (ft) 369.80 −10.00 821.00 

Slope (degrees) 17.40 0.00 69.50 

Aspect (degrees from North) 

False Positives 
181.25 0.00 359.50 

Elevation (ft) 365.10 −6.00 918.00 

Slope (degrees) 14.60 0.00 56.00 

Aspect (degrees from North) 

True Negatives 
168.90 0.00 359.30 

Elevation (ft) 248.00 −12.00 996.00 

Slope (degrees) 11.80 0.00 69.50 
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Aspect (degrees from North) 

False Negatives 
164.20 0.00 359.70 

Elevation (ft) 382.00 −12.00 821.00 

Slope (degrees) 17.80 0.00 71.40 

Aspect (degrees from North) 166.40 0.00 359.50 

3.2. Transfer Learning of the Creek Fire 

This section presents results of transfer learning in context of the Creek Fire study 

area. To accomplish transfer learning, U-Net_CZU_10 is retrained on 9,699 ten channels 

tiff images together with pseudo labels from the Creek Fire progression. Table 7 presents 

the results of for U-Net_Transfer with previous study models and benchmark study re-

sults. Transfer learning resulted in F1-score lower than those previously noted. After re-

training the U-Net_CZU_10 model on the Creek Fire10-channel input data and pseudo 

labels, the resulting performance is an F1-Score of 0.41, compared to U-Net_CZU_3 F1-

Score of 0.671 and the comparison studies, 0.60 and 0.46. 

Table 7. Creek Fire Transfer Learning Segmentation Results: 1Based on the U-Net with Learning 

without forgetting with SAR based reference mask for the Sydney Fire (2019-2020). 2Based on 

North American study area S-1 satellites only. 

Model Accuracy Precision Recall F1-Score 

Zhang, Ban and Nascetti (2021)1 0.862 0.947 0.448 0.604 

Belenguer-Plomer (2021)2 N/a N/a N/a 0.460 

U-Net_CZU_3 0.813 0.868 0.650 0.671 

U-Net_CZU_10 0.807 0.833 0.648 0.667 

U-Net_Transfer 0.810 0.460 0.730 0.410 

In Figure 11 the labels of the Creek Fire predicted BA are shown as predicted by U-

Net_Transfer. The high-level shape is visually similar to the reference image. U-

Net_Transfer demonstrates ability to accurately classify dense BAs in the center of the 

image. U-Net_Transfer struggles with edge detection, in contrast with either U-Net_CZU. 

Water bodies, including rivers and lakes, are generally classified well with U-Net transfer. 
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Figure 11. U-Net_Transfer segmentation results on the Creek Fire study area. 

4. Discussion 

This section provides a summary of the strengths and weaknesses of this study’s ap-

proach to BA mapping the context of Sentinel-1 SAR data. Further, it discusses the merits 

and challenges faced by each model in the study. Finally, implications for the field are 

discussed. 

4.1. Data Labeling 

The primary challenge of this study is the generation of accurate labels for each deep 

learning model to utilize. This is exceedingly difficult in the context of Sentinel-1 SAR data 

for multiple reasons, including data processing, subjective thresholding, and lack of 

ground truth during fire events. In this work, we attempted to find the optimal speckle 

filter through trial and error based on techniques found in the literature relevant to SAR. 

However, a clean image cannot be achieved. This challenge is not unique to this study and 

further research is necessary to find a more viable solution in the case of BA monitoring 

with SAR. Improving speckle processing capability for Sentinel-1 imagery would greatly 

enhance the ability of a deep learning model to classify BA, as evidenced by the results 

presented here. In all results from each model exists a persistent problem of noise, and 

poorly defined burnt limits, which is likely due to the noise in label creation. An additional 

challenging part of the work is the label creation, which is by its nature subjective and can 

depend on the change detection threshold. This study follows the pseudo label implemen-

tation of (Ban et al., 2020) [11], wherein a subjective threshold for the derived change map 

and MSI imagery is implemented. In previous SAR studies, this has largely been a balanc-

ing act between retaining BA features while reducing noise in the image. The higher the 

threshold set for change, the less noisy the image, though the BA features become de-

graded (manifesting primarily in discontinuous feature areas). Variability in this thresh-
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olding exercise is likely responsible for the large omissions in continuous BAs. The pri-

mary driver of label uncertainty is the actual unknown of ground truth. As mentioned 

previously, one of SAR’s great advantages is its ability to sense in conditions where optical 

sensor cannot. This leads to a problem in SAR label generation, though. Since I did not 

have ground truth reference while fine tuning the change detection thresholding, it is not 

possible to know how accurate the labels truly are. The solution this study implements is 

to base thresholding parameters off a period when MSI and SAR comparison is possible 

on a post-fire event date. This is viewed as acceptable though not ideal due to the incon-

sistency in the generated labels. 

4.2. U-Net CZU Model Successes 

Both U-Net_CZU_3 and U-Net_CZU_10 achieved higher F1-score than previous 

studies undertaking BA monitoring with Sentinel-1 SAR imagery alone. This success was 

driven by choice of model architecture, U-Net with a ResNet encoder, and choice of data 

sources, fire event change maps with additional pre-fire standard deviation, DEM, and 

land cover channels. 

The area inside the CZU Lightning Complex fire perimeter was characterized by 

largely homogenous land cover of evergreen forest (>80%) prior to the fire event, this 

likely contributes to the success of more accurate classification with the U-Net_CZU_3. 

Although noisy, the SAR backscatter provides a uniform response during the fire event, 

which likely contributes to the model’s ability to distinguish more distinct edges and 

patches of contiguous BA. Given the homogenous nature of the land cover within the BA, 

it is likely other sources such as the variation in topography, i.e., slope and aspect, may 

play a larger role in influencing the inconsistency in the accuracy of the classification. 

4.3. U-Net Transfer Challenges 

The aim to show transferability between detection of fire events based on SAR change 

detection is largely unsuccessful in the context of this study. The model, U-Net_Transfer, 

delivered the lowest F1-scores seen in the study. The minor segmentation accuracy, how-

ever, does suggest that this approach has potential. The uncertainty and noise in the data 

and labels associated with both fire events likely contribute to the poor result. Retraining 

the model into U-Net Transfer does not generate results on par with the original U-Net 

CZU models, however. This could be due to the fact that the BAs of the two fires are 

markedly different. The CZU Lightning Complex is characterized by a smaller area of 

continuous BA, while the Creek fire is characterized by an area nearly four time greater 

with many tendril-like BAs. Given that the U-Net CZU models would have learned the 

context of densely burned areas initially, it is reasonable to think that it would struggle 

with a BA footprint that deviates from the pattern. This is supported by the dense area of 

correct categorization in the middle of the BA. 

4.4. U-Net Model Limitations and Implications for Future Works 

As with any deep learning model, the results can only be as accurate as the input 

data. This study is limited by inaccuracy and uncertainty in its input data as well as in the 

data labeling. U-Net and other deep learning models are known to be robust to noise in 

the data labels, though noise in the input data is notoriously challenging [46]. This study 

is limited by both imprecise input data, i.e., noise in backscatter change maps, and in the 

data label by the same method. The inconsistency in the BA result could have possibly 

been made worse by the introduced augmentations to data labels, though we chose to 

limit the potentially harmful augmentation, Gaussian blur, to a small (P=0.2) amount of 

the data labels, hoping to retain some of the advantages. In line with prior research, this 

study finds that deep learning can be applied to SAR for BA prediction. This supports a 

promising step forward for active remote sensing technology that has the potential for 

substantive application in resource management, biomass monitoring, and environmental 
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restoration. This study shows that additional factors such as land cover and topography 

have the ability to influence classification results, though not always positively, instead of 

just SAR backscatter data alone. This finding is important for future researchers to create 

robust segmentation model across similar regions. SAR for BA monitoring shows great 

promise in being able to complement its MSI counterpart in the near future, but speckle 

processing must be improved to achieve this performance. Even with current deep learn-

ing frameworks, improved speckle in images would dramatically improve pseudo label-

ing and improve prediction results. Due to the unavailability of the most detailed SAR 

data (largely from commercial providers such as ICEYE [47] and Capella Space), nearly 

all of the research in the field is limited to SAR with resolution of 10 meters at best. Com-

mercial data is now being acquired at levels <3 meters and even <1 meter in some appli-

cations. Research into how current analysis techniques pair with truly modern data is crit-

ical for a robust analysis framework once this high-resolution data becomes available. Ad-

ditionally, the generalization of deep learning framework for SAR change detection has 

the potential to be improved by training frameworks on a database of fire events, rather 

than just a handful. This kind of generalization would be at the center of an always-on fire 

progression-monitoring tool. 

5. Conclusions 

This study has presented a GEE and PyTorch enabled framework for SAR data pro-

cessing, automatic pseudo label and input data generation and an effective deep learning 

framework for Burnt Area (BA) classification.  

The main conclusions of this study area as follows:  

1. Automatically generated pseudo labels used in tandem with an encoder-decoder net-

work is an effective method to classify BAs during a fire event;  

2. Adding additional channels of topography and land cover affects the result of deep 

learning prediction using SAR imagery. In the case of this study, the effect was 

slightly negative;  

3. Transfer learning for BA monitoring is not as effective as first-time learning.  

This reinforces the view that SAR backscatter is highly particular to peaks and val-

leys.  

The results of this study contribute to the growing field of research in applications of 

SAR data for EO, and to an eventual improvement of the way resources managers respond 

to these devastating natural disasters. 
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