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Abstract—The use of large antenna arrays poses great diffi-
culties in obtaining perfect channel state information (CSI) in
a multi-antenna communication system, which is essential for
precoding optimization. To tackle this issue, in this paper we
propose a probabilistic-learning based approach (PLA), aiming
at alleviating the requirement of perfect CSI. The rationale is that
the existing precoding algorithms that output a single precoder
are often overconfident in their abilities and estimated CSI. To
avoid overconfidence, we incorporate the idea of regularization
in machine learning into precoding models, so as to limit the
representative abilities of the precoder models. Compared to the
state-of-the-art robust precoding designs, an important advantage
of PLA is that CSI uncertainty models are not required. As a
specific application of PLA, we design an efficient symbol-level
hybrid precoding algorithm for the millimeter wave (mmwave)
communication system. Comprehensive simulation results confir-
m that PLA can achieve a better performance.

Index Terms—Probabilistic precoding, probabilistic-learning,
robust symbol-level precoding, millimeter wave communication.

I. INTRODUCTION

Operating in the band of 30-300 GHz, mmwave communi-
cations have attracted considerable attention and stimulated
surging studies [1]. Since mmwave channels suffer severe
path-loss and are more likely to be sparse in the beam/angle
domain, it brings new technical challenges for mmwave com-
munication designs. To combat the large path-loss, large-scale
antenna array becomes an indispensable component to obtain
a large array gain. As a result, CSI is often acquired via
beam training or tracking. However, the use of pencil-like
beams raises the difficulty of obtaining high-precision CSI
[2]–[4]. Moreover, the high cost and energy consumption of
mmwave RF chains necessitate the use of the hybrid analog-
digital architecture with much reduced number of RF chains,
rather than the fully-digital counterpart, which motivates new
approaches to design mmwave hybrid precoding [5]–[7].

Precoding, as an effective means of mitigating or exploiting
the interference, is an active research area in mmwave commu-
nications. Under the assumption that perfect CSI is available,
a variety of mmwave hybrid precoding algorithms have been
proposed in the past ten years, so as to mitigate interferences
and improve system performances [5]–[9]. In classical ap-
proaches, interferences are often regarded as a limitation and
should be suppressed as much as possible. Such approaches
ignore the fact that interference, seen from an instantaneous
point of view, can be constructive and can be exploited, e.g.,
on a symbol-level. In [10]–[12], the concept of constructive

interference (CI) was exploited to improve the system per-
formance. In particular, a low-complexity vector precoding
scheme that incorporates CI was proposed in [13] for downlink
multi-user MISO systems. Instead of suppressing interference,
CI is also exploited as green signal power to improve energy
efficiency in [14]. The significant gains in performance and
energy efficiency, achieved by CI via SL precoding, is very
appealing for mmwave communications, due to the poor power
efficiency of mmwave hardware devices.

Note that in most precoding schemes, perfect CSI is often
required, which is, however, never available in practice. In fact,
it is particularly difficult to accurately estimate mmwave CSI,
due to the large dimension of mmwave channels and the large
path-loss. Moreover, limited feedback operations, quantization
errors, and other non-idealities (e.g., hardware constraints) fur-
ther exacerbate the problem of acquiring perfect CSI. There-
fore, precoding algorithms that are robust to CSI errors become
crucial. To tackle this issue, robust precoding algorithms have
been proposed in [14]–[16], particularly, the robust precoding
with CI exploitation in [14]. However, these robust precoding
algorithms are based on specific CSI uncertainty models (e.g.,
the spherical bounded or Gaussian distribution model), which
limits their applications, because the CSI uncertainty models
in practice change with time and are often unavailable.

To overcome the shortcomings that CSI patterns (typically,
the change or uncertainty models of CSI) have to be defined in
advance, machine learning (ML) theory and algorithms have
been introduced into wireless communications [17]–[19]. For
example, a deep learning based hybrid precoding design was
proposed in [19] with the aim of maximizing the sum-rate.
A coordinated beamforming algorithm was developed in [20]
for highly-mobile mmwave systems. Recently, a SL precoding
design has been proposed in [18], which, however, focuses on
the fully-digital precoding architecture and thus is unfriendly
for mmwave hardware implementation. As for general precod-
ing problems, robust solutions are still unavailable.

To address the issue of general robust precoding designs, in
this paper we propose PLA based on Bayesian philosophy, by
designing a probabilistic neural network and designing a novel
loss function, where a probabilistic regularization term (PRT)
is incorporated. Thanks to the PRT, in contrast to most robust
precoding algorithms that only generate a single precoder, a
probability distribution of the desired precoder can be learned.
To exploit the interferences and facilitate mmwave hardware



implementation, in this paper we formulate the problem of
mmwave multi-user SL hybrid precoding as an optimization
problem, where CSI acquisition is also taken into account. We
further employ PLA to design an efficient robust precoding
algorithm for the formulated optimization problem. Finally,
comprehensive simulation results are provided to demonstrate
the effectiveness and superiority of the proposed algorithm. It
is shown that the proposed algorithm can effectively mitigate
the impact due to CSI uncertainty.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a mmwave multi-user communication system,
which consists of one base station (BS) and U single-antenna
mobile users (MUs) collected into set U = {1, 2, · · · , U}.
The BS is equipped with NT transmit antennas controlled
by NF (NF < NT) RF chains. To facilitate practical system
implementation, the hybrid analog and digital precoding is
considered in this paper [4]. In particular, all analog beams
are chosen within a predefined analog codebook of size NC,
i.e., C = {f1, f2, · · · , fNC}.

To model the sparsity of mmwave channels, an extended
Saleh-Valenzuela channel model is adopted in this paper. The
channel vector between the BS and MU u is given by

h̄u =
√
N/β

Lu∑
l=1

gu,la(φu,l), (1)

where a(·) is the array response vector, β is the average path-
loss, Lu is the number of channel paths of MU u, and gu,l
is the complex small-scale fading of the l-th path of MU u.
Note that in Eq.(1), φu,l = cos(θu,l), where θu,l is the physical
angle of departure (AoD) of the l-th path of MU u.

Without loss of generality, the PSK modulation (with con-
stellation Au of size Ku for MU u) is considered in this paper.
Nevertheless the developed approach can also be applicable to
other modulations [21]. Let su = ejξu ∈ Au be the intended
information symbol for MU u and x be the transmitted signal.
Then, the signal received at each MU u can be written as

yu = h̄H
ux + nu,

where nu ∼ CN (0, σ2
N) denotes the random noise. The idea

of CI is exploited, so as to improve the energy efficiency. For
the PSK modulation, the key of the CI design principle can
be captured by the following constraint (∀u ∈ U) [14]∣∣Im(h̄H

uxe−jξu)
∣∣ ≤ (Re(h̄H

uxe−jξu)− γu
)

tan(π/Ku), (2)

where γu measures the quality of received signal of MU u.
The above design constraint enforces that the CI pushes the
received signal away from the decision boundaries of the PSK
constellation, therefore improving the received SNR without
the need to increase the transmitted power [14].

Let s = [s1, · · · , sU ]T. For the hybrid analog and digital
precoding, the transmitted signal x can be written as

x = ADs,

where A ∈ CNT×NF and D ∈ CNF×U represent the analog
and digital precoding matrices, respectively. For the codebook-
based precoding, each column of A is chosen within C, i.e.,
A(:, j) ∈ C (∀ j = 1, · · · , NF), with C defined above. As an
example, the design goal is to maximize the worst performance
among the U MUs. Then, by letting d = Ds, the SL hybrid
precoding problem can be formulated as

max
A,d,{γu}

min
u∈U
{γu}

s.t.
∣∣Im(h̄H

uAde−jξu)
∣∣ ≤

Cu
(
Re(h̄H

uAde−jξu)− γu
)
, (∀u ∈ U)

A(:, j) ∈ C, (∀ j = 1, · · · , NF)

‖Ad‖2 ≤ p0,

(3)

where p0 represents the transmit power budget and {Cu =
tan(π/Ku)} are introduced for notation simplicity.

Note that the problem in (3) is a combinatorial optimiza-
tion problem with non-convex equality constraints, which is
difficult to tackle. Moreover, the coupling between the analog
precoding matrix A and the digital precoding vector d further
exacerbates the problem. Therefore, problem (3) is difficult to
solve even if accurate CSI (i.e., {h̄u}) is available. However,
what is more challenging is that accurate CSI is almost never
available in practice, which implies that even if the optimal
solution could be obtained, the resulting performance may be
still far from satisfactory. In fact, due to the large dimension of
the channels, it is difficult (and even impossible) to accurately
estimate the CSI. Therefore, a robust precoding approach that
takes CSI acquisition and uncertainties into account is desired,
which is the focus of the remaining part of this paper.

III. A PROBABILISTIC LEARNING FRAMEWORK FOR
ROBUST PRECODING

For practical wireless communication systems (not limited
to mmwave communication systems), only imperfect CSI is
available. To address this issue, we propose a general robust
precoding approach in this section. As an example, in the next
section we will design an efficient robust precoding algorithm
for the considered SL hybrid precoding problem.

Let Ht represent CSI at time-slot t and Ĥt be the (inaccu-
rate) estimation. Given Ĥt, the general system design goal or
optimization problem can be formulated as

min
x

f(x | Ĥt)

s.t. hi(x | Ĥt) = 0, (i = 1, · · · , I)

gj(x | Ĥt) ≤ 0, (j = 1, · · · , J),

(4)

where x ∈ Rn is the system design (or optimization) variable,
and {hi(· | ·) = 0} and {gj(· | ·) ≤ 0} are equality constraints
and inequality constraints, respectively. Without loss of gen-
erality, x is referred to as a precoder.

To alleviate the impact due to imperfect CSI, we propose
the PLA. In contrast to most existing precoding algorithms that
generate only a single precoder, PLA generates a probability
distribution of the promising precoder. A specific precoder



(e.g., when used for data transmission) is obtained by sam-
pling the distribution. The motivation or rationale behind the
design philosophy is that the algorithms that generate a single
precoder are overconfident in their abilities or obtained CSI.
To avoid overconfidence, from the perspective of ML, the idea
of regularization should be incorporated to limit the represen-
tative abilities of the precoder models or algorithms.

Note that the probability distribution of a precoding model
is often very complex and changes over time. Hence, the form
of the probability distribution has to be sufficiently flexible,
so as to efficiently represent a complex distribution. The NN
models, whose representation abilities are very powerful, are
adopted in this paper to tackle this issue. However, the output
of a conventional NN is a deterministic function of its input.
To tackle this issue, as shown in Fig. 1, all weights of the NN,
denoted by w, are represented by probability distributions over
possible values [22], 1 rather than having a single fixed value
as usual. As a result, instead of training a single network, an
ensemble of networks are trained, where each network has its
weights drawn from a shared learnt probability distribution.
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Neural Network
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Fig. 1. All weights of the NN are assigned with probability distributions.
A represents other possible input information (e.g., transmit symbol in SL
precoding). For simplicity, A is absorbed in H and is omitted in the text.

PLA implemented via a NN can be viewed as a probabilistic
model P(x|Ĥ,w), i.e., given an input Ĥ the NN assigns a
probability to each possible precoder x, using the parameters
w (i.e., weights including biases). To incorporate possible
prior knowledge, Bayesian modeling approach is considered
and a prior P (w) is placed on w. Let D = {(Ĥt,xt)} denote
the training dataset. Then, the prior P (w) can be updated
into a posterior P (w|D). However, an exact inference of the
posterior is intractable, due to the large number of parameters
and the functional form of the NN.

Fortunately, in practice it is sufficient to find an approxi-
mate solution to P (w|D) via variational inference (VI). Let
{Q(w|λ)} be a family of variational distributions parameter-
ized by λ. VI finds the optimal parameters λ? of a variational
distribution Q(w|λ) which minimizes the Kullback-Leibler
(KL) divergence with the true Bayesian posterior on w, i.e.,

λ? = arg min
λ

KL(Q(w|λ)‖P (w|D))

= arg min
λ

KL(Q(w|λ)‖P (w))− EQ(w|λ)[logP (D|w)].

1Note however that the amount of perturbation each weight exhibits is learnt
in a way that coherently explains variability in the training data.

The remaining problem is to attach the optimization/update
of the parameters λ and w to the original design goal, i.e.,
min f(x | Ĥt). This can be achieved by designing a novel loss
function, which is defined as

L = f(x | Ĥ) + ρ0L0(w,λ) + ρ1

I∑
i=1

E(hi(x | Ĥ))

+ ρ2

J∑
j=1

E(gj(x | Ĥ)), (5)

where L0(w,λ) is given by

L0(w,λ) = KL(Q(w|λ)‖P (w))− EQ(w|λ)[logP (D|w)].

Note that E(·) in (5) penalizes possible constraint violations,
and ρ1 and ρ2 represent the penalty parameters of the corre-
sponding constraints. Typically, for the equality constraints,
E(·) takes the form of quadratic penalty, i.e., E(hi(x | Ĥt)) =
|hi(x | Ĥt)|2, while for the inequality constraints, E can take
the form of exponential function, i.e.,

E(gj(x | Ĥt)) = exp
(
ηj(x | Ĥt)

)
,

where constants{ηj > 0} control the degree of penalty.
Remark 3.1 The term L0(w,λ), which is referred to as

PRT, plays a key role in PLA. From the view of optimization,
L0(w,λ) enables the designed algorithm to generate a proba-
bilistic robust precoder, rather than a single precoder. From the
view of ML, L0(w,λ), along with ρ0 > 0, plays the role of
regularization. As a regularization term, L0(w,λ) and ρ0 > 0
balance the original design goal (i.e., to minimize f ) and
uncertainty measure or robustness. The rationale behind PLA
is that the well-designed PRT limits the representative ability
and DoF of the underlying precoder models, which, from the
view of machine learning, avoids overconfident presentation.

The prior P (w) plays an important role in designing a
probabilistic precoding algorithm (e.g., it affects the number
of required iterations or convergence rate), which should be
carefully designed. However, due to space limitation, P (w) is
simply set to N (0, I) in this paper. To obtain a more efficient
prior (e.g., an environment-dependent prior), in [**] an eff-
icient algorithm is proposed. Next, we take the SL hybrid
precoding problem in (3) as an example to show how to use
the PLA to develop a robust precoding algorithm.

IV. PLA BASED SYMBOL-LEVEL HYBRID PRECODING
FOR MILLIMETER WAVE COMMUNICATIONS

Building on the above framework, in this section we design
an efficient robust SL precoding algorithm by employing PLA,
along with the technique of beam training.

A. CSI Acquisition and Hybrid Precoding

Before proceeding to details of the hybrid precoding design,
we first outline its basic principle. As shown in Fig. 2, the
BS first finds out the main beam directions {φ̂u,l} of strong
channel paths, based on which the analog precoding matrix A
can be determined at the same time. Then, given the transmit



symbols and the analog precoding matrix A, the BS further
designs a robust digital precoding vector d. With both A and
d available, data transmission can be performed. Finally, each
MU recovers the intended information symbol based on the
received signal via simple decision operations.
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Fig. 2. The principle of the symbol-level hybrid precoding design.

To tackle the challenge of CSI acquisition, beam training
(i.e., beam sweeping along with beam tracking) is utilized to
circumvent the need for CSI. Let hu = AHh̄u, which is often
referred to as equivalent channel vector [1]. The key is that,
instead of estimating {h̄u}, an estimation of {AHh̄u}, denoted
by {ĥu}, can be obtained. A simple method is as follows. The
BS sends training signal s = 1 from each direction defined in
C. For each fi ∈ C, the signal received by MU u can be written
as yu,i = h̄H

ufi+nu,i with nu,i denoting noise variable. Then,
each MU u simply processes {yu,i | i = 1, · · · , NC} (e.g.,
quantization) and feeds back the processed signals, denoted
by {ŷu,i | i = 1, · · · , NC}, to the BS. Since mmwave channels
are sparse, there is no need to sweep the entire beam space
and feed back all {ŷu,i} to the BS [23].

Based on {ŷu,i}, the BS can determine the analog precoder
A as follows. The number of RF chains allocated for MU
u is assumed to Nu, which should satisfy Lu ≥ Nu (∀u =
1, · · · , U) and

∑U
u=1Nu = NF. The analog beams of each

MU u are chosen as the beams that align the most strongest
Nu channel paths. Specifically, the Nu analog beams of MU
u, denoted by C′u = {fi1 , fi2 , · · · , fiNu

} ⊂ C, should satisfy

|ŷu,i| ≈ |h̄H
ufi| > |h̄H

ufj | ≈ |ŷu,j |, (∀ fi ∈ C′u and fj ∈ C\C′u).

The analog precoding matrix A can be obtained by collecting
all beams in C′u of all U MUs. Then, the SL hybrid precoding
problem in (3) can be rewritten as

max
d,{γu}

min
u∈U
{γu}

s.t.
∣∣Im(ĥH

ude−jξu)
∣∣ ≤ Cu(Re(ĥH

ude−jξu)− γu
)
,

(∀u ∈ U), ‖Ad‖2 ≤ p0.

(6)

Problem (6) is convex and can be solved efficiently. The SL
hybrid precoding algorithm is summarized in Algorithm 2.

Note that although a good performance can be achieved by
Algorithm 1 in some cases (e.g., the CSI is relatively accurate),
the use of inaccurate CSI inevitably causes a large performance
degradation. In fact, the CSI is not only contaminated by the
received noise, the use of an analog codebook also leads to
extra quantization error. To further improve the performance,
we next propose a more robust algorithm based on PLA.

Algorithm 1: Hybrid Precoding with estimated CSI
1: input: analog codebook C = {f1, f2, · · · , fNC}
2: repeat for each time-slot

(a) find out Nu most strongest channel paths
via beam training

(b) determine analog precoding matrix A

(c) solve problem (6) =⇒ digital precoder d

(d) perform data transmission with A and d

end

B. Learning-Based Symbol-Level Precoding

The estimation of equivalent channel vectors and the design
of analog precoder are similar to Algorithm 1, which is mainly
based on beam training. The remaining task is to use PLA to
design a robust digital precoder, which essentially constructs a
mapping based on NN that can generate a distribution of the
digital precoder when given inaccurate CSI and transmitted
symbols. To facilitate the use of existing deep learning libraries
(e.g., Tensorflow or Pytorch) which only support real-value
operations, all complex-value input and output are transformed
into their real-value counterparts. The network structure, input,
output and loss function are designed as follows:

1) Network Structure: The commonly used fully-connected
NN is adopted as an example. Moreover, to maximize system
design goal minu∈U {γu}, the inequality constraint ‖Ad‖2 ≤
p0 in (3) is, in fact, active, i.e., ‖Ad‖2 = p0. To simplify
the loss function, this constraint can be absorbed into the NN
[18]. Specifically, an extra layer (i.e., the normalization layer)
is appended to the NN with activation function given by

σ(z) = min
(√
p0, ‖z‖

)
z/‖z‖.

2) Input: The input of the NN consists of transmitted sym-
bols s, estimated beam directions {φ̂u,l} (via beam training)
and estimated equivalent channel vectors {ĥu}. Note that both
{ĥu} and s should be first transformed into their real-value
counterparts and then fed into the NN.

3) Output: Similarly, the real part and imaginary part of the
digital precoder d are tackled separately, i.e., d̄ = [dT

R,d
T
I ]T

with dR = Re(d) and dI = Im(d). The output of the NN is d̄,
which is further transformed into the complex-value counter-
part for the subsequent data transmission.

4) Loss Function: According to the principle of PLA, the
loss function is given in (7) (the top of the next page),

L = −min
u∈U
{γu}+ ρ0L0(w,λ)+

ρ1

U∑
u=1

[
exp

(
Im(ĥH

ude−jξu)− Cu
(
Re(ĥH

ude−jξu)− γu
))

+ exp

(
Cu
(
Re(ĥH

ude−jξu)− γu
)
− Im(ĥH

ude−jξu)

)]
. (7)

where exp(·) is the exponential function. Note that the penalty
term corresponding to ‖Ad‖2 ≤ p0 in (3) is absent since it
has been absorbed into the normalization layer of the NN.

Before proceeding to details of the robust precoding algo-
rithm, we shall point out how to compute the loss in (5). The



difficulty of computing the loss is mainly caused by the PRT
L0(w,λ). The first term in the PRT, i.e., KL

(
Q(Φ|λ)‖P (Φ)

)
,

can often be analytically calculated. As an example, still the
diagonal Gaussian distribution is chosen as the variational
posterior, i.e., Q(Φ|λ) = N (ζ,Λ), where ζ is the mean vector
and Λ is the covariance matrix (a diagonal matrix). Then,
KL
(
Q(Φ|λ)‖P (Φ)

)
can be calculated as

KL
(
Q(Φ|λ)‖P (Φ)

)
=0.5 ·

(
tr(Λ) + ζTζ − log det(Λ)− d

)
,

(8)

where d denotes the dimension of Φ. As for the second term
in the PRT, i.e., EQ(Φ|λ)[logP (D|Φ)], it is estimated via the
Monte-Carlo sampling.

Algorithm 2: Robust Hybrid Precoding based on PLA
1: input: analog codebook C = {f1, f2, · · · , fNC};

K - frequency that each sample is used;
M - sampling frequency of weights w;
Q - update frequency of digital precoder

2: repeat for each time-slot
(a) determine analog precoder A and equivalent

channel vectors {ĥu} via beam training
(b) initialize variational distribution Q(w|λ)

(c) for k = 1, · · · ,K
(1) sample w M times

=⇒ W = {w1, · · · ,wM}
(2) forward propagation =⇒ {d̄1 · · · , d̄M}
(3) compute average loss according to (7)
(4) update prior into posterior via BP

end
(d) as per frequency Q (or with period 1/Q):

(1) sample w and perform forward
propagation to obtain precoder x0

(2) perform data transmission with x0

end

For clarity, the designed robust SL precoding algorithm is
summarized in Algorithm 2. Before starting the algorithm, the
hyper-parameters ρ0 and ρ1 should be provided. In each time-
slot, beam training is invoked to determine the analog precoder
A and equivalent channel vectors. Then, PLA is employed to
design a robust digital precoder, which consists of 4 main
steps. In step (1), we sample the prior to generate the weights
w. 2 In step (2), we perform forward propagation to obtain
the digital precoder d̄ (or equivalently d). The average loss
can be calculated according to (7) in step (3), and the prior
is updated into a posterior via back-propagation (BP) in step
(4). Via K iterations, a better distribution is available, and a
specific precoder can be obtained by sampling the distribution.
Data transmission can be performed between the BS and MUs
with the obtained analog and digital precoders.

2For the diagonal Gaussian distribution, samples of w are obtained by first
sampling a unit Gaussian distribution, then scaling it by a standard deviation
Λ1/2 and shifting it by a mean µ, i.e., a sample of w is represented by

w = Λ1/2 ◦ ε+ µ with ε ∼ N (0, I). (9)

V. NUMERICAL RESULTS

In this section, simulation results are provided to demon-
strate the performance of the proposed algorithms. For com-
parison, the fully-digital SL precoding (FD-SLP) solution of
[14] (with some modifications) is chosen as the benchmark.
Note that FD-SLP requires physical CSI (pCSI), i.e., h̄u =√
N/β

∑Lu

l=1 gu,la(φu,l), to design a precoder. For conve-
nience, the optimization-based hybrid SL precoding without
learning (in Algorithm 1) and the hybrid precoding based on
PLA (in Algorithm 2) are named as HSLP-Opt and HSLP-
PLA, respectively. The symbol error rate (SER) is chosen as
performance metric to evaluate different algorithms.

Without loss of generality, the uniform linear array with
NF = 3 RF chains is adopted. For all simulation experiments,
the channel model in (1) consists of LS = 2 channel paths
whose path gains are strong (i.e., strong channel paths) and
three channel paths whose path gains are weak (i.e., weak
channel paths). The AoDs of all weak paths are uniformly
distributed in [−1, 1]. The average power ratio between the
gain of strong channel paths and the gain of weak channel
paths is 10dB. The path gain of each weak path is distributed
as CN (0, σ2

W) with σ2
W calculated as per the power ratio.

For the analog precoding codebook design, the widely used
DFT codebook is adopted, which can be obtained by uniformly
sampling [−1, 1]. Accordingly, the range of quantization error
is (−1/N, 1/N). For simplicity, the quantization error is
assumed to be uniformly distributed in (−1/N, 1/N). Let ĥu
denote the estimation of accurate equivalent channel vector
hu, which, similar to [14], is assumed to satisfy

hu = ĥu + ∆hu, (10)

where ∆hu is distributed as ∆hu ∼ CN (0, σ2
hI).
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Fig. 3. The SER performance of different precoding algorithms: N = 64,
U = 2 and QPSK modulation.

Firstly, we confirm the effectiveness and superiority of the
proposed algorithms. Fig. 3 shows the SER performance of the
three precoding algorithms. It is not surprising that FD-SLP
with perfect pCSI achieves the best performance. However,
HSLP-PLA performs better than FD-SLP or HSLP-Opt for
inaccurate CSI. The reason for this is that FD-SLP and HSLP-
Opt are overconfident to their abilities and obtained CSI. In



contrast, HSLP-PLA generates a probability distribution, and
then multiple digital precoders can be obtained via sampling,
which makes HSLP-PLA not act too confidently.

It is amazing that even if “accurate” equivalent CSI (i.e.,
σh = 0) is fed to HSLP-Opt, HSLP-PLA can still achieve a
much better performance than HSLP-Opt in some cases (e.g.,
when SNR ≥ 0dB and σh = 0.5). The reason for this is as
follows. For the codebook-training-based analog beamform-
ing, even if σh = 0 is assumed, the beam directions cannot
be aligned accurately (because of the quantization error of the
codebook) and the array gains cannot be obtained completely
(due to multi-path interferences), which implies that accurate
CSI is always unavailable. As a result, performance loss due
to inaccurate CSI is inevitable. Nevertheless, since HSLP-PLA
is designed based on PLA, randomly generated precoders can
compensate for the performance loss due to inaccurate CSI.
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Fig. 4. The SER performance of different precoding algorithms under various
degrees of CSI uncertainties: N = 64, U = 2 and QPSK modulation.

Fig. 4 shows the SER performance of different algorithms
under various degrees of CSI uncertainties. Not surprisingly,
HSLP-PLA achieves the best performance among the three
algorithms. It is observed from Fig. 4 that as the degree of
CSI uncertainties decreases, the SER performance of HSLP-
Opt and HSLP-PLA both become better and better. However,
HSLP-PLA achieves a better perfermance than HSLP-Opt in
the entire interval (from σh = 0.1 to σh = 1.0), and the gap in
terms of SER performance (in the logarithmic scale) between
the two precoding algorithms becomes larger and larger as
the degree of CSI uncertainties decreases. It is observed from
Fig. 3 and Fig. 4 that HSLP-PLA and FD-SLP achieve a
similar SER performance. However, HSLP-PLA is training-
and feedback-efficient.

VI. CONCLUSION

To exploit interferences and facilitate hardware implemen-
tation, in this paper we formulated the problem of mmwave
multi-user SL hybrid precoding as an optimization problem.
To tackle imperfect CSI, we proposed a probabilistic precod-
ing methodology for a general robust precoding problem by
designing a NN with a novel loss function. Based on the robust
precoding methodology, we proposed a learning-based robust

precoding algorithm for the formulated SL precoding problem.
Simulations confirm the superiority and effectiveness.
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