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Strategy-Proof Compromises∗

Peter Postl

Abstract

We study strategy-proof decision rules in the variant of the canonical public good model
proposed by Borgers and Postl (2009). In this setup, we fully characterize the set of budget-
balanced strategy-proof deterministic mechanisms, which are simple threshold rules. For smooth
probabilistic mechanisms, we provide a necessary and sufficient condition for dominant strategy
implementation. When allowing for discontinuities in the mechanism, our necessary condition
remains valid, but additional conditions must hold for sufficiency. We also show that, among ex
post efficient decision rules, only dictatorial ones are strategy-proof. While familiar in spirit, this
result is not the consequence of any known result in the literature.

KEYWORDS: compromise, public good provision, dominant strategy implementation, strategy-
proof, dictatorship
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1 Introduction
Since the “Wilson doctrine” (Wilson, 1987), much emphasis has been placed on the
design of “detail free” mechanisms that do not rely excessively on common knowl-
edge assumptions about the environment for which they are intended. In particular,
the main objective is to avoid the assumption that agents’ beliefs about each other
are common knowledge. As one way of responding to Wilson’s critique, the litera-
ture has revisited canonical mechanism design problems such as auctions, bilateral
trade, and the provision of a public good (see, e.g., Börgers, 2006, Chung and Ely,
2006, Mookherjee and Reichelstein, 1992), offering characterizations of either ex
post incentive compatible or dominant strategy incentive compatible mechanisms,
for which assumptions about the agents’ beliefs are superfluous.1

The present paper contributes to this literature by focusing on dominant
strategy implementation in the compromise model of Börgers and Postl (2009). The
question of what shape strategy-proof decision rules take in this model is of broader
interest because of its close formal connection with canonical models of mechanism
design for public good provision. While formally without transferable utility, the
compromise setting is essentially a public good model with two agents who “pay”
for a given probability of obtaining a compromise outcome (i.e. the public good) by
surrendering probability of their respective favorite alternatives. The fact that the
transferable resource is probability mass gives rise to individual liquidity constraints
that impose additional restrictions on the agents’ payments towards the public good
over and above those needed to ensure “budget balance”.2 A second difference
between the public good model and the compromise model is that in the latter,
agents cannot opt out of the mechanism.

In the literature, existing characterizations of strategy-proof budget-balanced
public good provision mechanisms with voluntary participation have so far been re-
stricted to deterministic mechanisms that specify, on the basis of the participants’
stated preferences, whether or not the public good will be provided (see Chung
and Ely, 2006, who allow for the possibility of interdependent valuations, and
Börgers, 2006, who provides a characterization for two agents with private valu-
ations). In the compromise setting, where a mechanism is a cardinal probabilistic
decision rule, a restriction to deterministic mechanisms seems less natural than in
the public good setup. By studying strategy-proof decision rules in the compromise

1There are alternative responses to the Wilson doctrine that do not involve a strengthening of the
implementation concept as a way of dispensing with the need for specifying agents’ beliefs about
each other. Examples include Bergemann and Morris (2005), Chung and Ely (2007), and Smith
(2010).

2Budget balance in the compromise model refers to the requirement that the probabilities as-
signed by the mechanism to the various possible outcomes must sum up to 1.
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model, we would like to make a first step towards a characterization of strategy-
proof budget-balanced and ex post individually rational probabilistic public good
provision mechanisms.

We make two main contributions in this paper. The first is a characterization
of the set of strategy-proof decision rules in the compromise model. While this char-
acterization builds on what are now standard methods in mechanism design theory
(such as the integral form envelope theorem of Milgrom and Segal, 2002), we go
beyond the established payoff equivalence result (see Holmstrom’s Lemma in Mil-
grom, 2004) by explicitly accounting for the fact that decision rules are probability
distributions over the set of social alternatives. In terms of the public good analogy,
this means that we incorporate the ex post budget balance constraints directly into
the characterization of strategy-proof public good provision mechanisms. What is
particularly interesting is that any strategy-proof mechanism involves “payments”
by the agents that automatically satisfy the individual liquidity constraints. In other
words, with dominant strategy implementation, the key distinguishing feature of
the compromise model (i.e. the agents’ liquidity constraints) ceases to play a role,
and consequently the set of strategy-proof decision rules is identical to the set of
budget-balanced provision mechanisms in the corresponding public good model.

The key component of any strategy-proof decision rule is the function which,
based on the agents’ stated preferences, determines the probability of the compro-
mise. The analogue of this function in the public good model is the so called public
good provision rule, which determines the probability of public good provision. Our
characterization of strategy-proof mechanisms in the compromise model implies re-
strictions on the shape of admissible public good provision rules in the public good
model. These restrictions go further than the monotonicity requirement that usually
characterizes strategy-proof mechanisms in the literature (see, e.g., Mookherjee and
Reichelstein, 1992). However, providing a sharp characterization of all admissible
provision rules remains a difficult problem in general. For the class of deterministic
mechanisms, we are able to provide a complete description of the set of strategy-
proof and budget-balanced provision rules. For probabilistic mechanisms, however,
it is decidedly more difficult to obtain such a characterization. For the class of twice
continuously differentiable provision rules, we show that a necessary and sufficient
condition for strategy-proofness is additivity. I.e. the provision rule is the sum of
two functions, each of which depends solely on the valuation of one agent.3 In
order to move beyond continuously differentiable provision rules, we consider a

3Our work in this part of the paper is related to the small literature on strategy-proof cardinal
probabilistic decision rules due to Gibbard (1977), Freixas (1984), and Barberà et al. (1998). I
am indebted to Arunava Sen for drawing my attention to this literature. Note that all these papers
predate the development of envelope theorems for functions that are not everywhere continuously
differentiable (Milgrom and Segal, 2002). The approach in Freixas (1984), when applied to our
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special class of piecewise differentiable rules. While (piecewise) additivity remains
necessary, we show that sufficiency requires any admissible provision rule to satisfy
additional conditions that restrict the rule’s behavior at points of discontinuity.

Our second main contribution in this paper is to show that an ex post effi-
cient decision rule (as defined by Holmström and Myerson, 1983) is strategy-proof
if and only if it always selects the favorite alternative of the same agent. Against the
backdrop of “dictatorship” results in the classical literature on dominant strategy
implementation of efficient decision rules (see, e.g., Gibbard, 1973, Satterthwaite,
1975, or Aswal et al., 2003), this result may not sound surprising. However, it
is important to emphasize that our result is neither a consequence of this litera-
ture (which considers only deterministic social choice rules), nor of the literature
on strategy-proof implementation of probabilistic social choice rules.4 Despite the
impossibility result in Börgers and Postl, which shows that no ex ante incentive ef-
ficient decision rules exist under Bayesian implementation, it is not clear a priori
that there are no strategy-proof ex post efficient decision rules here. The reason is
that while strategy-proofness on one hand is a more restrictive implementation con-
cept than Bayesian incentive compatibility, ex post efficiency on the other hand is a
much weaker efficiency notion than ex ante efficiency.5 It should therefore come as
no surprise that any given strategy-proof deterministic mechanism can be rendered
ex post constrained efficient, as we illustrate with examples at the end of the paper.

The remainder of this paper is structured as follows: In Section 2, we intro-
duce the model and basic definitions. Section 3 contains our characterization of the
set of strategy-proof decision rules. In Section 4, we characterize (in the terminol-
ogy of the public good model) all deterministic strategy-proof and budget-balanced
public good provision rules. Section 5 contains our results for dominant strategy
implementation of probabilistic mechanisms. In Section 6, we study ex post effi-
cient decision rules. Section 7 offers a brief conclusion. The appendix in Section 8
contains all longer proofs.

setup, rules out all but constant mechanisms. The focus in Barberà et al. (1998) is on continuous
and on twice continuously differentiable rules.

4In Gibbard (1977), preference intensities are not considered. While studying cardinal decision
rules that take account of preference intensities, Dutta et al. (2007) assume a universal preference
domain. The compromise model, in contrast, features a very restrictive preference domain with only
one ordinal ranking per agent.

5In fact, Wilson (1993) points out: “Ex post efficiency is rarely invoked because it is a very weak
criterion [...].”

3

Postl: Strategy-Proof Compromises

Published by De Gruyter, 2011

Brought to you by | University of Birmingham (University of Birmingham)
Authenticated | 172.16.1.226

Download Date | 6/15/12 1:30 PM



2 The Model

¨

Two agents i∈ I := {1,2}must choose one alternative from the set A := {a0,a1,a2}.
Each agent i prefers alternative ai over alternative a0, and alternative a0 over alter-
native a−i (subscript −i refers to the agent other than i). These ordinal preferences
are common knowledge. We refer to alternative a0 as the compromise because it
is the middle-ranked alternative of both agents. Agent i’s von Neumann Morgen-
stern utility function is ui : A→ R. Utilities are normalized so that ui(ai) = 1 and
ui(a−i) = 0 for all i ∈ I. These aspects of the von Neumann Morgenstern utility
functions are common knowledge. For each agent i ∈ I denote by ti the utility of
the compromise ui(a0). We refer to ti ∈ [0,1] as agent i’s type. Each agent ob-
serves his own type, but not that of the other agent. Define by t := (t1, t2) a generic
type-pair in T := [0,1]2.

Definition 1 A decision rule is a function f : T → ∆(A), where ∆(A) is the set of
all probability distributions over A.

Denote by fi(t) the probability that decision rule f assigns to agent i’s fa-
vorite alternative when the type-pair is t, and let f0(t) denote the probability that f
assigns to the compromise. For a decision rule f and type-pair t, agent i’s expected
utility is ui(t|ti) := fi(t)+ f0(t)ti. As the agents’ types are privately observed, only
incentive compatible decision rules can be implemented. We focus here on imple-
mentation of truth-telling in dominant strategies.

Definition 2 A decision rule f is strategy-proof if for all i ∈ I, all ti, t
′
i ∈ [0,1], and

all t−i ∈ [0,1]:

fi(ti, t−i)+ f0(ti, t−i)ti ≥ fi(t ′i , t−i)+ f0(t ′i , t−i)ti.

As shown in Borgers and Postl (2009), the above compromise model can
be re-interpreted as a model of mechanism design for the provision of a public
good. By introducing a default outcome in which agent i’s favorite alternative is
selected with probability δi ∈ [0,1] (for each i ∈ I, with δ1 +δ2 = 1), we can view
the difference δi− fi(t) as agent i’s “payment” towards a public good (i.e. the
compromise) when the type-pair is t. The definition of decision rules above implies
individual liquidity constraints for the agents, which arise because the probability of
each agent’s favorite alternative is a number between 0 and 1. Agent i’s “payment”
towards the public good must therefore be a number in [δi−1,δi] for all t ∈ T .
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It is customary in the public goods context to assume that agents are free
to opt out of any proposed mechanism. If we allow for this in the modified com-
promise setup, then the following individual rationality constraints have to be taken
into account:

Definition 3 A decision rule is ex post individually rational if:

fi(t)+ f0(t)ti ≥ δi for all t ∈ T and all i ∈ I.

3 Strategy-Proof Decision Rules
In this section, we investigate the structure of the set of strategy-proof decision
rules. Lemma 1 below adapts to our setting the characterization of strategy-proofness
that is familiar from the mechanism design literature on quasilinear environments
with transferable utility.6

Lemma 1 A decision rule f is strategy-proof if and only if:

(i) For all i ∈ I and all t ∈ T : f0(t) is nondecreasing in ti.

(ii) For every i ∈ I and every t ∈ T :

fi(t) = fi(1, t−i)+ f0(1, t−i)− f0(t)ti−
∫ 1

ti
f0(s, t−i)ds.

Lemma 1 highlights the central role played by the probability of the com-
promise in the characterization of strategy-proof decision rules. In particular, item
(ii) of Lemma 1 tells us that the probability of an agent’s favorite alternative (and
therefore his “payment”) is determined by the probability of the compromise, up to
an additive term fi(1, t−i)+ f0(1, t−i) that is independent of the agent’s own type
and therefore does not affect his incentives.

Observe that Lemma 1 is derived without making use of the fact that deci-
sion rules, as introduced in Definition 1, are probability distributions whose com-
ponents sum up to 1 for all type-pairs. Lemma 1 is therefore of limited use when it

6The proof of Lemma 1 is familiar from the literature and therefore omitted. Item (ii) of Lemma
1, for instance, follows directly from the integral form envelope theorem (see, e.g., Theorem 3.1
in Chapter 3.2 of Milgrom, 2004), which establishes that an agent’s utility under a strategy-proof
decision rule is differentiable almost everywhere with respect to the agent’s own type, and provides
furthermore an expression for this partial derivative. Taking as given the agent’s utility at the highest
type (rather than the lowest type, as is customary in the literature), we obtain the expression in item
(ii) of Lemma 1.
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comes to constructing strategy-proof decision rules because it does not sufficiently
restrict the class of functions f0 that can be part of a strategy-proof rule. The fol-
lowing example illustrates this point:

Example 1 Consider the function f0 with f0(t) = 1 if t1 + t2 > 1, and f0(t) = 0 if
t1 + t2 < 1. This function is nondecreasing as required by item (i) of Lemma 1, but
cannot be part of a strategy-proof decision rule. To see this, note that by item (ii) of
Lemma 1, the probability of each agent’s favorite alternative is:7

fi(t) = fi(1, t−i)+(1− f0(t))(1− t−i) ∀i ∈ I. (1)

¨

For any type-pair t such that (s.t.) t1 + t2 > 1 we have f0(t) = 1, and therefore
fi(t) = 0 for all i ∈ I. Thus, by equation (1): fi(1, t−i) = 0 for all t−i ∈ [0,1]. This,
however, leads to a contradiction: for any t s.t. t1+ t2 < 1 we obtain f0(t)+ f1(t)+
f2(t) = 2− t1− t2 > 1.8

Example 1 highlights the need for explicit restrictions on functions f0 that
can be part of a strategy-proof decision rule. In order to derive such restrictions,
we now account explicitly for the requirement that the functions f0, f1 and f2 that
together constitute a decision rule, must sum up to 1 for all type-pairs. This yields
the following characterization of strategy-proof decision rules that goes beyond ex-
isting characterizations of strategy-proof mechanisms in the literature (such as the
one for the canonical public good model in Borgers, 2006).

Proposition 1 Given a function f0 : T → [0,1] and constants f1(1,1), f2(1,1) ∈
[0,1] s.t. f1(1,1)+ f2(1,1)= 1− f0(1,1), there exist functions fi : T→ [0,1] (∀i∈ I)
s.t. ( f0, f1, f2) is a strategy-proof decision rule if and only if:

(i) For all i ∈ I and all t ∈ T : f0(t) is nondecreasing in ti.

(ii) For all i ∈ I and all t ∈ T :

fi(t) = fi(1,1)+ f0(1, t−i)t−i +
∫ 1

t−i

f0(1,s)ds− f0(t)ti−
∫ 1

ti
f

¨

0(s, t−i)ds,

7The two expressions for fi obtained from item (ii) in Lemma 1, one for type-pairs t such that
t1 + t2 < 1, and the other for type-pairs t such that t1 + t2 > 1, can easily be gathered into the single
expression in (1).

8The function f0 in Example 1, coupled with functions fi given by (1) with fi(1, t−i) = 0 for all
t−i ∈ [0,1] and all i ∈ I, constitutes the Vickrey-Clarke-Groves mechanism used in the proof of the
main impossibility result in Borgers and Postl (2009).
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(iii) For all t ∈ T :

[ f0(t1,1)− f0(t)]t1 +[ f0(1, t2)− f0(t)]t2− [ f0(1,1)− f0(t)]

+
∫ 1

t1
[ f0(s,1)− f0(s, t2)]ds+

∫ 1

t2
[ f0(1,s)− f0(t1,s)]ds = 0.

The proof of Proposition 1 is in the Appendix. If the compromise model
is given the public good interpretation mentioned in Section 2, then Proposition
1 provides a characterization of strategy-proof public good provision mechanisms
that are ex post budget-balanced and satisfy the agents’ individual liquidity con-
straints.

In order to convey some insight into the derivation of Proposition 1, observe
that the additive term fi(1, t−i)+ f0(1, t−i) in item (ii) of Lemma 1 not only rep-
resents agent i’s utility from the decision rule when he has the highest type 1, but
also represents the probability that agent i’s least preferred alternative is not cho-
sen. We can therefore equivalently write the additive term fi(1, t−i)+ f0(1, t−i) as
1− f−i(1, t−i). Noting that f−i(1, t−i) is itself determined by item (ii) of Lemma
1, we obtain the expressions for the probability of each agent’s favorite alternative
given in item (ii) of Proposition 1.9 The requirement that the functions f1 and f2 in
item (ii), together with the function f0, must sum up to one for all type-pairs then
yields item (iii) of Proposition 1. It is this item that furnishes the desired restriction
on functions f0 that can be part of a strategy-proof decision rule.

While item (iii) of Proposition 1 allows us to check if a given nondecreasing
function f0 can be part of a strategy-proof decision rule, it would be useful to know
the full class of functions f0 for which this is the case. More precisely, we would
like to have a characterization of all nondecreasing functions f0 that satisfy item
(iii) of Proposition 1. Henceforth, we shall call such functions admissible:

Definition 4 A nondecreasing function f0 : T → [0,1] is admissible if it satisfies
item (iii) of Proposition 1.

While it is difficult in general to obtain a full characterization of all admis-
sible functions f0, it is easy to see that the following condition is sufficient:

Proposition 2 If f0 is an additive function of the form f0(t) = f 1
0 (t1) + f 2

0 (t2),
where ∀i ∈ I, f i

0 : [0,1]→ [0,1] is a nondecreasing function, then f0 is admissible.

9The proof of Proposition 1 also shows that the probabilities of the agents’ favorite alternatives
in item (ii) of Proposition 1 always take values in [0,1].
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¨

Proof. The monotonicity of the functions f i
0 (∀i ∈ I) implies that f0 satis-

fies item (i) of Proposition 1. This, in turn, ensures that f0 is Riemann integrable,
and therefore the integrals in items (ii) and (iii) are well-defined. Additivity of f0
implies for all i ∈ I and all ti, t ′i , t−i ∈ [0,1]: f0(t ′i , t−i)− f0(ti, t−i) = f i

0(t
′
i)− f i

0(ti).
It is now straightforward to verify that item (iii) of Proposition 1 is satisfied. �

In order to explore which functions f0 are admissible when we move beyond
additivity, we study in the next section a specific class of functions that has received
particular attention in the literature on public good provision mechanisms (see, e.g.,
Chung and Ely, 2006, and Borgers, 2006).

4 Binary Decision Rules
In this section we focus on binary decision rules where, conditional on the agents’
types, the probability of the compromise is either 0 or 1. Binary decision rules in
our setting correspond to deterministic provision mechanisms in the public good
setting with quasilinear preferences and transferable utility.

Definition 5 A decision rule f is a binary decision rule if f0 : T →{0,1}.

In Proposition 3 below, we provide a full characterization of all admissible
binary functions f0. For each such function, we also state the probabilities f1 and
f2 of the agents’ favorite alternatives that render the binary decision rule ( f0, f1, f2)
strategy-proof.

Proposition 3 A binary decision rule is strategy-proof if and only if it belongs to
one of the following three categories:10

I. Binary decision rules that depend on neither agent’s type:

(i) f0(t) = 1 and f1(t) = 0 ∀t ∈ T .
(ii) f0(t) = 0 and f1(t) = a ∀t ∈ T and any a ∈ [0,1].

II. Binary decision rules that depend on one agent’s type:
There is an agent i ∈ I and a threshold τi ∈ [0,1] s.t. ∀t ∈ T :

f0(t) = 0 and fi(t) = τi if ti < τi,
f0(t) = 1 and fi(t) = 0 if ti ≥ τi.

10We list in each category, and for every t ∈ T , only the probabilities of two alternatives. The
probability of the omitted alternative can be computed by subtracting from 1 the probabilities given
in the proposition.
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III. Binary decision rules that depend on both agents’ types:

(i) There are thresholds τ1,τ2 ∈ [0,1] with τ1 + τ2 = 1 s.t. ∀t ∈ T :

f0(t) = 0 and f1(t) = τ1 if t1 < τ1∧ t2 < τ2,
f0(t) = 1 and f1(t) = 0 otherwise.

(ii) There are thresholds τ1,τ2 ∈ [0,1] with τ1 + τ2 = 1 s.t. ∀t ∈ T :

f0(t) = 1 and f1(t) = 0 if t1 ≥ τ1∧ t2 ≥ τ2,
f0(t) = 0 and f1(t) = τ1 otherwise.

The proof of Proposition 3 is in the Appendix. It uses item (iii) of Propo-
sition 1 extensively to characterize admissible binary functions f0. The key step in
the proof is to note that if there are thresholds τ ′i ,τ

′′
i ∈ (0,1) and types t ′−i and t ′′−i

such that f0(ti, t ′−i) = 0 if ti < τ ′i and f0(ti, t ′−i) = 1 if ti > τ ′i , and f0(ti, t ′′−i) = 0 if
ti < τ ′′i and f0(ti, t ′′−i) = 1 if ti > τ ′′i , then the thresholds must be the same: τ ′′i = τ ′i .
To see this, observe that for t ′−i (t ′′−i, resp.) the probability of i’s favorite alterna-
tive must be equal to the threshold τ ′i (τ ′′i , resp.) whenever the compromise is not
chosen. This is to ensure that agent i with a type below the threshold has no in-
centive to pretend his type is above the threshold, and vice versa. Now consider a
type t̂i < min{τ ′i ,τ ′′i }. We have f0(t̂i, t ′−i) = 0 and f−i(t̂i, t ′−i) = 1− τ ′i , as well as
f0(t̂i, t ′′−i) = 0 and f−i(t̂i, t ′′−i) = 1− τ ′′i . In order to ensure that both types t ′−i and t ′′−i
of the other agent report truthfully, it must hold that τ ′i = τ ′′i . Given this observa-
tion, it is intuitive that admissible binary functions f0 can only display the shapes
in Proposition 3.

To conclude this section, we re-interpret the compromise model as a public
good model and impose individual rationality constraints. It is easy to obtain from
Proposition 3 the following result:

Corollary 1 A binary decision rule is strategy-proof and ex post individually ra-
tional if and only if it belongs to one of the following categories in Proposition 3:
Category I.(ii) with fi(t) = δi for all i ∈ I, and Category III.(ii) with τi = δi for all
i ∈ I.

The proof is in the Appendix. The set of individually rational and strategy-
proof binary decision rules characterized in Corollary 1 corresponds to the set of
strategy-proof ex post individually rational and ex post budget balanced determin-
istic provision mechanisms characterized by Chung and Ely (2006), and by Börgers
(2006), for the canonical public good setup. The fact that these mechanisms are a

9

Postl: Strategy-Proof Compromises

Published by De Gruyter, 2011

Brought to you by | University of Birmingham (University of Birmingham)
Authenticated | 172.16.1.226

Download Date | 6/15/12 1:30 PM



strict subset of those in Proposition 3 illustrates, as pointed out in the introduction,
that individual liquidity constraints are not binding in the public good variant of
our model, where participation constraints must be respected. Note that this is the
case not just with deterministic mechanisms, but holds for all public good provision
rules when dominant strategy implementation is used.

5 Some Results for Non-Binary Decision Rules
We have shown in Proposition 2 that additivity is a sufficient condition for a func-
tion f0 to be admissible. However, it is obvious from the previous section on binary
decision rules that additivity is not necessary. The reason is that binary rules fea-
ture piecewise-constant functions f0 that cannot be described as the sum of two
univariate functions.

The task of characterizing all functions f0 : T → [0,1] that satisfy item (iii)
of Proposition 1 is a difficult problem in general. As a first step towards such a
characterization, we derive here a necessary condition for a function f0 to be ad-
missible by adopting a differential approach.11 If this appears restrictive, note that
monotonicity of f0 (as required by item (i) of Proposition 1) ensures the existence
almost everywhere (a.e.) of the first-order partial derivatives ∂ f0(t)/∂ ti of f0. How-
ever, it would be remiss not to emphasize that our necessary condition below relies
on an additional smoothness assumption. In particular, we assume that the partial
derivatives ∂ f0(ti, ·)/∂ ti of f0 are absolutely continuous. This assumption guaran-
tees the existence a.e. of the cross partial derivatives ∂ 2 f0(t)/∂ ti∂ t j of f0. Given
this assumption, we can show the following result:

Proposition 4 Suppose f0 is nondecreasing. Suppose also that for all i ∈ I the par-
tial derivative ∂ f0(ti, ·)/∂ ti is an absolutely continuous function for every ti where
it exists. If f0 satisfies item (iii) of Proposition 1, then for all i ∈ I and almost all ti,
t−i, t ′−i ∈ [0,1]:

∂ f0(ti, t−i)

∂ ti
=

∂ f0(ti, t ′−i)

∂ ti
. (2)

It is easy to show that any continuously differentiable function f0 that sat-
isfies condition (2) in Proposition 4 must be additive. To see this, assume that the
partial derivatives ∂ f0(t)/∂ ti exist everywhere and are continuous. Set t ′−i = 1 and

11See Laffont and Maskin (1980) for a differential approach to efficient public good provision
rules.
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integrate both sides of (2) from ti up to 1. This yields the following additive func-
tion:

f0(t) = f0(t1,1)+ f0(1, t2)− f0(1,1). (3)

It follows directly from Proposition 2 that the function f0 in (3) is admissible.12

Thus, for the class of continuously differentiable nondecreasing functions, condi-
tion (2) in Proposition 4 is both necessary and sufficient for f0 to be admissible.13

Obviously, limiting ourselves to continuously differentiable functions f0 is
too restrictive. However, it is difficult to establish in general a sufficient condition
for strategy-proofness once we move outside this class. To see why, note that while
a nondecreasing function f0(·, t−i) (for given t−i ∈ [0,1]) can display only countably
many jump-discontinuities, there may nevertheless be a large number of jumps in
the value of f0.14 We therefore consider a very limited departure from the class
of continuously differentiable functions in order to explore what conditions beyond
the one in Proposition 4 are needed to make a discontinuous function f0 admissible.
The particular class of functions we study now has been chosen because it includes
the piecewise constant step functions f0 that are associated with the strategy-proof
binary decision rules in Proposition 3.

Definition 6 Denote by F the class of nondecreasing functions f0 : T → [0,1]
where:

(i) For every agent i ∈ I, there is a type τi ∈ [0,1] s.t. if, for any t−i ∈ [0,1],
there exists some type t̂i ∈ [0,1] for which f−0 (t̂i, t−i)< f+0 (t̂i, t−i), then t̂i = τi.
Furthermore, f0(τi, t−i) ∈ { f−0 (τi, t−i), f+0 (τi, t−i)}.15

(ii) For all t−i ∈ [0,1], the partial derivative ∂ f0(·, t−i)/∂ ti of f0 is continuous at
every ti ∈ [0,1] where it exists.

Now consider a function f0 in F and suppose that it satisfies the necessary
condition (2) in Proposition 4. We can then show that f0 must be piecewise additive:

12Barberà et al. (1998), who study the design of cardinal probabilistic decision rules, have a result
which implies that twice continuously differentiable rules are additive. However, their results are
limited to either continuous or twice continuously differentiable decision rules.

13While we omit for the sake of brevity a formal statement and proof, it is possible to show that in
the presence of participation constraints, any additive public good provision rule f0 is “degenerate”:
It provides the public good with probability zero for all type-pairs t ∈ [0,1)2, and consists of the sum
of functions f i

0 (for every i ∈ I) such that f i
0(ti) = 0 if ti < 1, and f i

0(ti) = πi if ti = 1, where πi ∈
[0,δi− fi(1,1)]. This finding suggests that the focus on deterministic mechanisms in the literature
may not be overly restrictive.

14For a definition of jump discontinuity, see e.g. Definition 4.49 in Apostol (1974).
15We denote by f−0 (t̂i, t−i) ( f+0 (t̂i, t−i), resp.) the left-hand (right-hand, resp.) limit of f0 at t̂i. I.e.

f−0 (t̂i, t−i) = limti→t̂−i
f0(ti, t−i) and f+0 (t̂i, t−i) = limti→t̂+i

f0(ti, t−i).
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Lemma 2 If a function f0 in F satisfies condition (2) in Proposition 4 then:

f0(t) =
{

f0(t1,1)+ f0(1, t2)− f0(1,1)+ k if ti < τi ∀i ∈ I,
f0(t1,1)+ f0(1, t2)− f0(1,1) if ∃i ∈ I s.t. ti > τi,

(4)

where k ≡ [ f+0 (τi,1)− f−0 (τi,1)]− [ f+0 (τi, t−i)− f−0 (τi, t−i)] = const. ∀i ∈ I and
∀t−i < τ−i.

The proof is in the Appendix. The additive term k in Lemma 2 represents
the difference in the size of the jump in f0 at the boundary point (τi,1), and at an
interior point (τi, t−i). The fact that this difference in jump-size must be constant
for all t−i < τ−i restricts the types of functions in F that are admissible. Observe
that, in contrast to the continuously differentiable case, condition (2) in Proposition
4 is not sufficient for functions in F to be admissible. The reason is that item (iii)
of Proposition 1 implies further restrictions on admissible functions by limiting the
types τi at which jumps in f0 can occur.

Proposition 5 A function f0 in F is admissible if and only if it is a piecewise
additive function as given in Lemma 2, with k(1− τ1− τ2) = 0.

The proof is omitted as it is straightforward to verify that, for any type-pair
t s.t. ti < τi for all i ∈ I, the piecewise additive function f0 in (4) satisfies item (iii)
of Proposition 1 only if k(1− τ1− τ2) = 0. I.e. if the difference in jump size k is
strictly positive, then the types τ1 and τ2 at which discontinuities in f0 may arise
must form a point on the cross-diagonal in the unit-square T .

We conclude this section by highlighting the usefulness of Proposition 5 for
constructing admissible functions in F from given “boundary functions” f0(t1,1)
and f0(1, t2). For example, we can generate in this way any binary decision rule in
Category III.(ii) of Proposition 3.16 We can also generate strategy-proof rules that
are not piecewise constant, as the following example shows:

Example 2 For all i∈ I, let τi = 0.5 and fix boundary functions f0(ti,1) s.t. f0(ti,1)=
0.375 + 0.25ti if ti < 0.5, and f0(ti,1) = 0.5 + 0.5ti if ti > 0.5. This yields k =
0.25− [ f+0 (0.5, t−i)− f−0 (0.5, t−i)] for any i∈ I and all t−i < 0.5. It is easy to verify

16To see this, fix any pair (τ1,τ2) s.t. τ1+τ2 = 1. Define for each i∈ I a boundary function f0(ti,1)
s.t. f0(ti,1) = 0 if ti < τi, and f0(ti,1) = 1 if ti > τi. This implies k = 1− [ f+0 (τi, t−i)− f−0 (τi, t−i)] for
any i ∈ I and all t−i < τ−i. The function f0(t) in Category III.(ii) of Proposition 3 then corresponds
to the one we obtain from (4) for k = 1, which is required to ensure that f0(t) ∈ [0,1] ∀t ∈ T .
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that the function f0(t) given by (4) takes values in [0,1] for all t ∈ T , which is due
to the fact that f+0 (0.5, t−i) = f−0 (0.5, t−i), and therefore k = 0.25:

f0(t) =


0.25(t1 + t2) if t1, t2 ≤ 0.5,
0.375+0.25t−i−0.5(1− ti) if ti > 0.5, t−i ≤ 0.5,
0.5(t1 + t2) if t1, t2 > 0.5.

The associated probabilities f1(t) and f2(t) that render the decision rule ( f0, f1, f2)
strategy-proof are then obtained from item (ii) of Proposition 1:

f1(t) =


0.5−0.125(t2

1 + t2(2− t2)) if t1, t2 ≤ 0.5,
0.53125−0.125(2t2

1 + t2(2− t2)) if t1 > 0.5, t2 ≤ 0.5,
0.59375−0.125(t2

1 +2t2(2− t2)) if t1 ≤ 0.5, t2 > 0.5,
0.5−0.25(t2

1 + t2(2− t2)) if t1, t2 > 0.5.

6 Efficient Decision Rules
We have so far studied the characteristics of strategy-proof decision rules, leaving
aside the question of which rule should be selected for the purpose of reaching
a collective decision. To obtain a criterion for choosing between decision rules,
we make recourse to the efficiency notions defined in Holmström and Myerson
(1983).17 In the spirit of dominant strategy implementation, we want to keep our
model belief-free. Therefore, we focus here on ex post efficient decision rules.
A decision rule f is said to be ex post efficient if, for given welfare weights λi :
T → R+ (for every i ∈ I) that depend arbitrarily on t, the decision rule attains the
highest level of social welfare. Social welfare associated with a decision rule f is
the aggregate over all t ∈ T of the weighted sum of the agents’ ex post utilities:∫

T

(
∑i∈I λi(t) [ fi(t)+ f0(t)ti]

)
dt. (5)

As pointed out by Holmström and Myerson, ex post efficient decision rules are
those that maximize, for every type-pair t ∈ T , the weighted sum of the agents’ ex
post utilities in the integrand of (5). Using the fact that decision rules are probability
distributions over the set of alternatives A, we can write this sum as:

λ1(t) f1(t)+ [λ1(t)t1 +λ2(t)t2] f0(t)+λ2(t) f2(t).

This expression is additive in the probabilities f0, f1 and f2, making it is easy to
derive properties of decision rules that are welfare-maximizing among all decision

17Observe that in the compromise model, any decision (i.e. the alternative in A chosen by the
decision rule) is Pareto efficient, because for every type-pair t ∈ (0,1)2 it is impossible to make one
agent better off by switching to a different alternative without making the other agent worse off.
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¨rules. Adopting Holmstrom and Myerson’s terminology, we call such decision rules
ex post classically efficient.

Definition 7 A decision rule f is ex post classically efficient if and only if for every
t ∈ T :

λ1(t)t1 +λ2(t)t2 > max{λ1(t),λ2(t)} ⇒ fi(t) = 0 ∀i ∈ I,

λ1(t)t1 +λ2(t)t2 < max{λ1(t),λ2(t)} ⇒ f0(t) = 0,

λ j(t)< λi(t) (i, j ∈ I, j 6= i) ⇒ f j(t) = 0.

Definition 7 states, for each t ∈ T , which alternatives in A must not be im-
plemented by an ex post classically efficient decision rule. Observe that ex post
classical efficiency need not prescribe a unique choice in A, in which case Defi-
nition 7 does not constrain the probabilities of any alternatives that have not been
ruled out. Consequently, the set of ex post classically efficient decision rules con-
tains both binary rules and non-binary rules.

As the agents’ types are privately observed, any ex post classically efficient
decision rule can be implemented only if it is strategy-proof. Given the considerable
degrees of freedom in the choice of agents’ welfare weights, it is interesting to ask
if strategy-proof ex post classically efficient decision rules exist. A trivial example
is the rule that always selects agent 1’s favorite alternative: efficiency follows from
the fact that this rule maximizes ex post welfare for every type-pair t ∈ T if agent 2’s
weight λ2(t)= 0 for all t; strategy-proofness of this rule follows from Category I.(ii)
of Proposition 3. In order to exclude such cases, and to see if there exist strategy-
proof ex post classically efficient decision rules that are responsive to the agents’
types, we assume in the remainder of this section that agents’ welfare weights are
strictly positive: λi(t)> 0 for all t ∈ T and all i ∈ I. Given this assumption, we can
provide a sharper characterization of ex post classically efficient decision rules:
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Figure 1: Illustration of proof of Proposition 6

Lemma 3 Let f be an ex post classically efficient decision rule for some pair of
welfare weights λi : T → R++ (∀i ∈ I). Then:

For t1 + t2 < 1 : f1(t) ∈ [0,1], f2(t) = 1− f1(t).

For t1 + t2 = 1 : f0(t), f1(t) ∈ [0,1], f2(t) = 1− f0(t)− f1(t).

For t1 + t2 > 1 :

if t1 < 1, t2 < 1 : f0(t) ∈ [0,1], ∃i ∈ I : fi(t) = 1− f0(t),

if ti = 1, t j < 1 : f0(t) ∈ [0,1], f j(t) = 1− f0(t), i, j ∈ I, j 6= i,

if t1 = 1, t2 = 1 : f0(t) = 1.

The proof of Lemma 3 is in the Appendix. Lemma 3 states for each type-
pair the alternatives that can be assigned positive probability by an ex post classi-
cally efficient decision rule. It is obvious from Lemma 3 that none of the strategy-
proof binary decision rules in Proposition 3 are ex post classically efficient. We
now show that even among all non-binary decision rules there is none that is both
ex post classically efficient and strategy-proof:

Proposition 6 If both agents’ welfare weights λi(·) are strictly positive for all t ∈ T ,
then there exists no ex post classically efficient and strategy-proof decision rule.

The proof, together with a series of lemmas that it builds on, is in the Ap-
pendix. However, the key idea of the proof is conveyed by Fig. 1. We show that
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any ex post classically efficient strategy-proof decision rule must have the shape
displayed in Fig. 1. In particular, the compromise is never chosen for type-pairs t
s.t. t1 + t2 < 1. For any such type-pair, each agent i’s favorite alternative receives
constant and strictly positive probability f̄i, with f̄1+ f̄2 = 1. For all type-pairs t s.t.
ti > f̄i for all i, the compromise is selected with probability 1. Finally, for type-pairs
t s.t. ti > f̄i and 1− ti < t−i < f̄−i, the decision rule assigns positive probability to
alternatives a0 and a−i only. Now fix a type t̂2 < f̄2. In the proof of Proposition 6
we establish, for all t1 > 1− t̂2, that the probability of the compromise f0(t1, t̂2) is
a number in (0,1). Next, fix some type t̂1 > 1− t̂2 and consider agent 2 of type t̃2,
with f̄2 < t̃2 < 1. Truthful revelation of his type gives agent 2 a utility of t̃2 because
the compromise is selected with probability 1. A report of t̂2 < f̄2 will instead give
agent 2 a utility of f2(t̂1, t̂2) + f0(t̂1, t̂2)t̃2 = 1− f0(t̂1, t̂2)(1− t̃2). This follows from
the fact that at t̂, the decision rule assigns positive probability to a0 and a2 only. In-
centive compatibility therefore requires that f0(t̂1, t̂2) = 1. This, however, leads to a
contradiction because there are types t1 ∈ ( f̄1,1− t̂2) who would prefer to claim that
their type is t̂1 > 1− t̂2 in order to get the compromise for sure, rather than obtain
their favorite alternative with probability f̄1 when reporting their true type.

It is important to reiterate that Proposition 6 is not a special case of the
literature on the impossibility of implementing non-dictatorial cardinal and ex post
efficient social choice rules. Furthermore, despite the formal similarity between
the compromise model and canonical mechanism design models with transferable
utility and quasi-linear preferences (such as Green and Laffont, 1979), Proposition
6 cannot be established by arguing that Vickrey-Clarke-Groves (VCG) mechanisms
are the only ex post classically efficient and strategy-proof decision rules, but that
they cannot serve as decision rules here because their components f0, f1 and f2 do
not sum up to 1 for all type-pairs. The reason we cannot construct the proof of
Proposition 6 along these lines is that VCG mechanisms exist only in the special
case where the agents have the same weights in the social welfare function.18 In
all other cases, we cannot maximize social welfare by choosing the function f0
independently from the functions f1 and f2.

As there are no non-trivial ex post classically efficient decision rules that
are strategy-proof, one may ask which, among all strategy-proof decision rules,
maximize social welfare in (5) for some pair of weights (λ1(·),λ2(·)). We call such
decision rules ex post incentive efficient.19 In the absence of a full characterization

18See Example 1 in Section 3 above, esp. footnote 8.
19Clearly, the need to ensure incentive compatibility of the chosen rule will result in distortions

relative to ex post classical efficiency. I.e. there will be type-pairs t ∈ T for which the decision
rule fails to maximize the weighted sum of the agents’ utilities. An ex post incentive efficient
decision rule therefore is one which yields the smallest aggregate distortion across all type-pairs t,
in comparison with all other strategy-proof rules.
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of all functions f0 that can be part of a strategy-proof decision rule, we restrict
attention to binary rules. Given the vast degrees of freedom in the choice of welfare
weights λi(·) it is not surprising that there are many ex post incentive efficient binary
decision rules. In fact, as the following example shows, each category of non-trivial
strategy-proof binary rules in Proposition 3 (i.e. Categories II and III) contains at
least one rule that is ex post incentive efficient.

Example 3 For weights λ1(t) = λ2(t) = 4t1t2, the welfare-maximizing strategy-
proof binary decision rule is as shown in Category III.(i) of Proposition 3, with
τ1 = τ2 = 0.5.
For weights λ1(t)= λ2(t)= 4(1−t1)(1−t2), the welfare-maximizing strategy-proof
binary decision rule is as shown in Category III.(ii) of Proposition 3, with τ1 = τ2 =
0.5.
For weights λ1(t) = λ2(t) = 1 for all t ∈ T , the following strategy-proof binary
decision rules in Proposition 3 maximize social welfare: Category II with τi = 0.5
for any i ∈ I, III.(i) with τ1 = τ2 = 0.5, and Category III.(ii) with τ1 = τ2 = 0.5.

In order to obtain a stronger selection criterion, we could turn to the notion
of ex ante incentive efficiency (see Holmström and Myerson, 1983). This, however,
would require us to assume that the mechanism designer has a well-defined sub-
jective probability distribution that represents his beliefs about the agents’ types.
As pointed out by Chung and Ely (2007), such an assumption would introduce an
asymmetry into the model: By using strategy-proof (rather than Bayesian incentive
compatible) decision rules, the mechanism designer avoids completely the need to
make assumptions regarding the agents’ beliefs about each others’ types. How-
ever, a reluctance to formulate any view regarding the agents’ beliefs about each
other seems at odds with a precisely held subjective belief about the agents’ types
themselves.20 We therefore do not pursue this issue further here.21

7 Conclusion
Adopting strategy-proofness as our implementation concept, we have taken a uni-
fied approach to the compromise model of Börgers and Postl (2009) and the closely
related canonical public good model. We have shown that strategy-proof decision

20Chung and Ely (2007) provide a foundation for using strategy-proof mechanisms in the context
of optimal auction design.

21For a prior-free approach to efficient mechanisms in the closely related public good model, see
Smith (2010).
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rules that are smooth, and those that fall into a special class of discontinuous mech-
anisms (which includes the deterministic mechanisms widely studied in the litera-
ture), must be (piecewise) additive. However, for strategy-proofness, any piecewise
additive decision rule that displays jump-discontinuities must satisfy further con-
ditions that limit the location and magnitude of these jumps. In future work, it
would be interesting to see how many jump-discontinuities a strategy-proof deci-
sion rule can support, and to what extent such rules allow us to approximate more
closely ex post efficient rules. Regarding the question of which ex post efficient
rules are strategy-proof, we have proved a “dictatorship result” that, while familiar
in spirit, is not the consequence of any known dictatorship result in the literature.
An interesting open question is the extent to which universal preference domain
assumptions in this literature can be weakened while still sustaining dictatorship as
the only way of implementing an ex post efficient cardinal probabilistic decision
rule.

8 Appendix
Proof of Proposition 1. Item (i) is the same as item (i) in Lemma 1. As the proof is
familiar from the literature it is omitted here. In what follows, we explicitly derive
the expressions in items (ii) and (iii) of Proposition 1.

Item (ii). We show that the additive term fi(1, t−i)+ f0(1, t−i) in item (ii) of
Lemma 1 can be expressed solely in terms of the function f0 and constants fi(1,1).
To see this, suppose that f is an incentive compatible decision rule, so that the
probabilities f1(t1, t2) and f2(t1, t2) of alternatives a1 and a2, resp., are given by
item (ii) of Lemma 1. As the probabilities f1, f2 and f0 together sum up to 1 for
every type-pair we obtain:

f1(1, t2)+ f0(1, t2)−
∫ 1

t1
f0(s, t2)ds+ f2(t1,1)+ f0(t1,1)−

∫ 1

t2
f0(t1,s)ds

= 1+ f0(t1, t2)(t1 + t2−1). (6)

For t1 = 1 equation (6) reduces to:

f1(1, t2)+ f0(1, t2)+ f2(1,1)+ f0(1,1)−
∫ 1

t2
f0(1,s)ds = 1+ f0(1, t2)t2. (7)

Solving equation (7) for f1(1, t2) yields:

f1(1, t2) = 1− f0(1,1)− f2(1,1)+ f0(1, t2)t2− f0(1, t2)+
∫ 1

t2
f0(1,s)ds. (8)
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As the probabilities f0, f1 and f2 sum up to 1 at every (t1, t2) ∈ [0,1]2 we have
f1(1,1) = 1− f0(1,1)− f2(1,1). We can therefore write equation (8) as:

f1(1, t2) = f1(1,1)+ f0(1, t2)t2− f0(1, t2)+
∫ 1

t2
f0(1,s)ds. (9)

Substituting the expression for f1(1, t2) in (9) into the probability of agent 1’s fa-
vorite alternative in item (ii) of Lemma 1 we obtain:

f1(t1, t2) = f1(1,1)+ f0(1, t2)t2+
∫ 1

t2
f0(1,s)ds− f0(t1, t2)t1−

∫ 1

t1
f0(s, t2)ds. (10)

Equation (10) is the probability of agent 1’s favorite alternative in item (ii) of Propo-
sition 1. In the same way we can derive the probability of agent 2’s favorite alter-
native.

We now show that the functions fi in item (ii) of Proposition 1 only take
values in [0,1] for every (t1, t2) ∈ [0,1]2. For this purpose, consider the probability
of agent 1’s favorite alternative in (10). Fix a value of t2 and consider the behavior
of f1(t1, t2) as a function of t1. The partial derivative w.r.t. t1 is:

∂ f1(t1, t2)
∂ t1

=−∂ f0(t1, t2)
∂ t1

t1.

Monotonicity of f0 implies that f1(t1, t2) is nonincreasing for all t1 ∈ [0,1]. We
therefore only have to show that for any monotone function f0 and all t2 ∈ [0,1] it
holds that f1(1, t2) is nonnegative and that f1(0, t2) is no larger than 1. To show that
this is true, fix some value for f0(1, t2) and consider the term:

f1(1,1)+ f0(1, t2)t2 +
∫ 1

t2
f0(1,s)ds, (11)

which is part of the expression for the probability of agent 1’s favorite alternative
in (10). We now ask how the choice of function f0 affects the magnitude of (11).
First note that for a fixed value of t2, the minimum of (11) is attained by setting
f0(1,s) = f0(1, t2) for all s > t2. This yields:

f1(1,1)+ f0(1, t2)t2 +
∫ 1

t2
f0(1, t2)ds = f1(1,1)+ f0(1, t2). (12)

Now obtain from (10) the probability of agent 1’s favorite alternative at the point
(1, t2), making use of the expression in (12). Denoting the resulting function by
f min
1 (1, t2), we obtain:

f min
1 (1, t2) = f1(1,1)+ f0(1, t2)− f0(t1, t2) = f1(1,1). (13)

Equation (13) shows that, for all t2 ∈ [0,1], f min
1 (1, t2) is equal to the given constant

f1(1,1). This implies that f1(t1, t2)≥ f1(1,1)≥ 0 for all (t1, t2), as required.
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Observe that for a fixed value of t2, the maximum of (11) is attained by setting
f0(1,s) = f0(1,1) for all s > t2. This yields:

f1(1,1)+ f0(1, t2)t2 +
∫ 1

t2
f0(1,1)ds = 1− f2(1,1)− t2( f0(1,1)− f0(1, t2)). (14)

Now obtain from (10) the probability of agent 1’s favorite alternative at the point
(0, t2), making use of the expression in (14). Denoting the resulting function by
f max
1 (0, t2), we obtain:

f max
1 (0, t2) = 1− f2(1,1)− t2( f0(1,1)− f0(1, t2))−

∫ 1

0
f0(s, t2)ds. (15)

Equation (15) shows that f max
1 (0, t2) takes a value smaller than 1 for all t2 ∈ [0,1].

This implies f1(t1, t2)≤ 1 for all (t1, t2), as required.
Item (iii). The result is obtained by substituting the expressions for f1(1, t2)

in (9) and the corresponding expression for f2(t1,1) into equation (6). Noting that
f1(1,1)+ f2(1,1) = 1− f0(1,1) we obtain:

f0(t1,1)t1 + f0(1, t2)t2− f0(1,1)+
∫ 1

t1
f0(s1,1)ds1 +

∫ 1

t2
f0(1,s2)ds2

= f0(t1, t2)(t1 + t2−1)+
∫ 1

t1
f0(s1, t2)ds1 +

∫ 1

t2
f0(t1,s2)ds2,

which can easily be rearranged to yield item (iii) in Proposition 1. �

We now prepare the ground for the proof of Proposition 3. It is easy to verify
that the binary decision rules in Proposition 3 are strategy-proof. We therefore only
prove necessity here by deriving restrictions that item (iii) of Proposition 1 imposes
on admissible functions f0. A key building block in the proof of Proposition 3 is
presented in Lemma A.1 below:

Lemma A.1 If there are two type-pairs (t ′1, t
′
2) and (t ′′1 , t

′′
2 ) in the interior of the unit

square T with 0 < t ′1 < t ′′1 < 1 and 0 < t ′′2 < t ′2 < 1 s.t. f0(t ′1, t
′
2) = f0(t ′′1 , t

′′
2 ) = 1

then either (i) f0(t ′1, t
′′
2 ) = 1; or (ii) t ′′1 + t ′2 ≥ 1 > t ′1 + t ′′2 and ∃t∗1 ∈ (t ′1,1− t ′′2 ] s.t.

f0(t1, t2) = 0 if t1 < t∗1 ∧ t2 < 1− t∗1 and f0(t1, t2) = 1 if (t1 ≥ t∗1 ∧ t2 ≥ t ′′2 )∨ (t1 ≥
t ′1∧ t2 ≥ 1− t∗1).

The function f0 in case (i) of Lemma A.1 is illustrated in the left-hand panel
of Fig. 2, while the f0 in case (ii) is shown in the right-hand panel of Fig. 2.
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Figure 2: Illustration of Lemma A.1

Proof of Lemma A.1. Suppose there are two type-pairs (t ′1, t
′
2) and (t ′′1 , t

′′
2 )

with 0 < t ′1 < t ′′1 < 1 and 0 < t ′′2 < t ′2 < 1 s.t. f0(t ′1, t
′
2) = f0(t ′′1 , t

′′
2 ) = 1. Monotonicity

of f0 implies f0(t1, t2) = 1 if (t1 ≥ t ′′1 ∧ t2 ≥ t ′′2 )∨ (t1 ≥ t ′1∧ t2 ≥ t ′2). Then, at (t ′1, t
′′
2 )

item (iii) of Proposition 1 reduces to:

[1− f0(t ′1, t
′′
2 )](t

′
1 + t ′′2 −1)+

∫ t ′′1

t ′1
[1− f0(s, t ′′2 )]ds+

∫ t ′2

t ′′2
[1− f0(t ′1,s)]ds = 0. (16)

As f0 takes values in {0,1} we have either f0(t ′1, t
′′
2 ) = 0 or f0(t ′1, t

′′
2 ) = 1. If

f0(t ′1, t
′′
2 ) = 1, then equation (16) is satisfied, as claimed in Case (i) of Lemma A.1.

If, instead, f0(t ′1, t
′′
2 ) = 0, then (16) reduces to:

t ′′1 + t ′2−1−
∫ t ′′1

t ′1
f0(s, t ′′2 )ds−

∫ t ′2

t ′′2
f0(t ′1,s)ds = 0. (17)

A necessary condition for equation (17) to hold is that t ′′1 + t ′2 ≥ 1. Furthermore,
there exist types t∗1 ∈ (t ′1, t ′′1 ] and t∗2 ∈ (t ′′2 , t ′2] s.t. f0(s, t ′′2 ) = 0 if s < t∗1 and f0(s, t ′′2 ) =
1 if s ≥ t∗1 and f0(t ′1,s) = 0 if s < t∗2 and f0(t ′1,s) = 1 if s ≥ t∗2 . Thus, (17) reduces
to:

t ′′1 + t ′2−1−
∫ t ′′1

t∗1
ds−

∫ t ′2

t∗2
ds = 0⇔ t∗1 + t∗2 = 1.

Note that types t∗1 ∈ (t ′1, t ′′1 ] and t∗2 ∈ (t ′′2 , t ′2] s.t. t∗1 + t∗2 = 1 exist only if: t ′′2 < 1− t∗1 ≤
t ′2 ⇔ t∗1 + t ′′2 < 1 ≤ t∗1 + t ′2. The above necessary condition that t ′′1 + t ′2 ≥ 1 ensures
that there exists a value t∗1 s.t. t∗1 + t ′′2 < 1. In order to ensure that there also exists
a t∗2 = 1− t∗1 s.t. 1≤ t∗1 + t ′2 it must be that case that the lower bound on t∗1 (namely
t ′1) is s.t. t ′1 + t ′′2 < 1. This gives rise to Case (ii) in Lemma A.1. �

Proof of Proposition 3. The proof proceeds by checking separately what
values an admissible function f0 must take if it is of the form displayed in either the
left-hand panel of Fig. 2, or the right-hand panel of Fig. 2.
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Case 1. Consider types t ′1, t
∗
1 and t ′′2 with 0 < t ′1 < t∗1 < 1 and 0 < t ′′2 < 1.

Now suppose that f0 is of the form displayed in the right-hand panel of Fig. 2.
Suppose f0(t ′1, t

′′
2 ) = 0. Now pick any t̂1 with 0 ≤ t̂1 < t ′1. Monotonicity of f0

implies f0(t̂1, t ′′2 ) = 0. At (t̂1, t ′′2 ) item (iii) of Proposition 1 reduces to:

f0(t̂1,1)t̂1 + t ′′2 −1+
∫ t ′1

t̂1
f0(s,1)ds+

∫ t∗1

t ′1
ds+

∫ 1

t ′′2
[1− f0(t̂1,s)]ds = 0.

⇔
t∗1 − t ′1 =

∫ 1

t ′′2
f0(t̂1,s)ds− f0(t̂1,1)t̂1−

∫ t ′1

t̂1
f0(s,1)ds. (18)

The left-hand side of (18) is strictly positive. Thus, there must be a threshold s∗> t ′′2
s.t. f0(t̂1,s) = 0 if s < s∗ and f0(t̂1,s) = 1 if s≥ s∗. Therefore (18) implies:

t∗1 − t ′1 = 1− s∗ − t̂1− (t ′1− t̂1)⇔ s∗ = 1− t∗1 .

Employing the same logic we can show for any type-pair (t ′1, t̂2) with 0 ≤ t̂2 < t ′′2
that f0(s, t̂2) = 0 for all s < t∗1 and f0(s, t̂2) = 1 for all s ≥ t∗1 . Thus, if f0 is as
shown in the right-hand panel of Fig. 2 and f0(t ′1, t

′′
2 ) = 0, then f0 is as described in

Category III.(i) of Proposition 1 with τ1 = t∗1 .
Case 2. Consider a type-pair (t ′1, t

′′
2 ) and suppose that f0(t ′1, t

′′
2 ) = 1 (see

left-hand panel of Fig. 2 for an illustration, but note that we do not, at this point,
make any assumptions about whether t ′1 + t ′′2 < 1, t ′1 + t ′′2 = 1, or t ′1 + t ′′2 > 1). Now
suppose that f0(t1, t2) = 0 for all t1 < t ′1 (the case where f0(t1, t2) = 0 for all t2 < t ′′2
is analogous to what follows and is therefore omitted). Pick any type-pair (t̂1, t̂2)
with 0 ≤ t̂1 < t ′1 and 0 ≤ t̂2 < t ′′2 . At (t̂1, t̂2) it therefore holds that f0(t̂1, t̂2) = 0. At
(t̂1, t̂2) item (iii) of Proposition 1 reduces to:

f0(1, t̂2)t̂2−1+
∫ 1

t ′1
[1− f0(s, t̂2)]ds+

∫ t ′′2

t̂2
f0(1,s)ds+

∫ 1

t ′′2
ds = 0

⇔
1− t ′1− t ′′2 =

∫ 1

t ′1
f0(s, t̂2)ds− f0(1, t̂2)t̂2−

∫ t ′′2

t̂2
f0(1,s)ds. (19)

We now distinguish two subcases:
Case 2.i. First suppose that f0(s, t̂2) = 0 for all s ≥ t ′1, and that there exists

a type s∗ ∈ (t̂2, t ′′2 ] s.t. f0(1,s) = 0 if s < s∗ and f0(1,s) = 1 if s ≥ s∗. Then (19)
reduces to:

1− t ′1− t ′′2 =−
∫ t ′′2

s∗
f0(1,s)ds⇔ s∗ = 1− t ′1.

Such a type s∗ of agent 2 exists only if t̂2 < 1− t ′1 ≤ t ′′2 . In this case it follows that
f0(1,1− t ′1) = 1. As we also have f0(t ′1, t

′′
2 ) = 1 (by the opening assumption in Case
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2.), we can appeal to Lemma A.1 and thereby obtain that f0(t ′1,1− t ′′1 ) = 1. This
shows that f0 is as described in Category III.(ii) of Proposition 1 with τ1 = t ′1.

Case 2.ii. Now suppose there exists a type s∗ ∈ [t ′1,1) s.t. f0(s, t̂2) = 0 for
all s < s∗ and f0(s, t̂2) = 1 for all s≥ s∗. Then (19) reduces to:

1− t ′1− t ′′2 =
∫ 1

s∗
ds− t̂2−

∫ t ′′2

t̂2
ds⇔ s∗ = t ′1.

This shows that for types t ′1 and t ′′2 s.t. t ′1 + t ′′2 < 1 it follows that f0 must be as
described in Category II. of Proposition 1 with τ1 = t ′1. �

Proof of Corollary 1. It is easy to see that decision rules in Categories
I.(ii) and III.(ii) of Proposition 3 are individually rational for appropriately chosen
thresholds/probabilities of the agents’ favorite alternatives. However, decision rules
in Category I.(i) violate ex post rationality as for each i ∈ I, any type ti < δi has
strictly lower utility from the decision rule than in the default outcome. Next note
that decision rules in Category II violate ex post individual rationality: Consider a
decision rule where f0(t1, t2) = 1 for all (t1, t2) s.t. t1 > τ1. Then for any (t1, t2)
s.t. t1 > τ1 and t2 < δ2 it holds that agent 2’s utility is t2, which is strictly lower
than in the default outcome. Finally, decision rules in Category III.(i) violate ex
post individual rationality: Consider any (t1, t2) s.t. t1 < min{τ1,δ1} and t2 > τ2. In
this case, f0(t1, t2) = 1 and agent 1’s utility is t1, which is strictly lower than in the
default outcome. �

Proof of Proposition 4. Suppose f0 satisfies item (i) of Proposition 1. Sup-
pose also that the cross partial derivatives ∂ 2 f0(ti, t−i)/∂ ti∂ t−i exist for almost all
t−i ∈ [0,1] (for all i ∈ I). Now take any type-pair t ∈ (0,1)2 at which the partial
derivatives and cross partial derivatives of f0 exist. Suppose also that the partial
derivatives ∂ f0(t1,1)/∂ t1 and ∂ f0(1, t2)/∂ t2 exist. Differentiating both sides of the
equation in item (iii) of Proposition 1 with respect to t1 yields:

∂ f0(t1,1)
∂ t1

t1 +
∂ f0(t1, t2)

∂ t1
(1− t1− t2)−

∫ 1

t2

∂ f0(t1,s)
∂ t1

ds = 0.

Differentiating both sides of this equation with respect to t2 yields:

∂ 2 f0(t1, t2)
∂ t1∂ t2

(1− t1− t2)−
∂ f0(t1, t2)

∂ t1
+

∂ f0(t1, t2)
∂ t1

= 0

⇔
∂ 2 f0(t1, t2)

∂ t1∂ t2
(1− t1− t2) = 0.

This shows that for any given type t1, we must have ∂ 2 f0(t1,s2)/∂ t1∂ t2 = 0 for all
s2 s.t. t1 + s2 6= 1. Now pick any two types t ′2 < t ′′2 s.t. t1 + t ′2 6= 1 and t1 + t ′′2 6= 1.
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By integrating both sides of the equation ∂ 2 f0(t1, ·)/∂ t1∂ t2 = 0 from t ′2 to t ′′2 we
obtain:22 ∫ t ′′2

t ′2

∂ 2 f0(t1,s2)

∂ t1∂ t2
ds2 = 0

⇔ [
∂ f0(t1,s2)

∂ t1

]t ′′2

t ′2

= 0

⇔
∂ f0(t1, t ′′2 )

∂ t1
−

∂ f0(t1, t ′2)
∂ t1

= 0,

which establishes the result in Proposition 4. �

Proof of Lemma 2. Consider a function f0 in F and assume that it satisfies
the necessary condition (2) in Proposition 4. Now fix a ti < τi and integrate both
sides of (2) from ti up to 1, taking account of the singularity at τi. This yields:

f0(t) = f0(ti,1)+ f0(1, t−i)− f0(1,1)+ ki(t−i) ∀t s.t. ti < τi, (20)

where
ki(t−i) = [ f+0 (τi,1)− f−0 (τi,1)]− [ f+0 (τi, t−i)− f−0 (τi, t−i)].

Evaluating equation (20) for i = 1 and for i = 2 we obtain two expressions for
f0(t). These two expressions must be identical for all t s.t. t1 < τ1 and t2 < τ2. This
implies:

k1(t2) = k2(t1)≡ k ∀t s.t. t1 < τ1 and t2 < τ2.

Thus, f0(t) = f0(t1,1)+ f0(1, t2)− f0(1,1)+ k for all t s.t. t1 < τ1 and t2 < τ2.
Now fix a ti > τi. Integrating both sides of (2) from ti up to 1 yields:

f0(t) = f0(ti,1)+ f0(1, t−i)− f0(1,1) ∀t s.t. ti > τi. (21)

It follows immediately that for all t s.t. t1 > τ1 and t2 > τ2 the function f0(t) is given
by (21). For any t s.t. t1 < τ1 and t2 > τ2 the expression for f0(t) obtained from (20)
by setting i = 1 must be identical to the expression for f0(t) obtained from (21) by
setting i = 2. This implies that k1(t2) = 0 for all t2 > τ2. In the same manner, we
can establish that k2(t1) = 0 for all t1 > τ1. Thus, f0(t) is given by (21) for all t s.t.
ti < τi and t−i > τ−i. and ∀t s.t. t1 > τ1 and t2 > τ2. �

22Observe that the results follows even in the case where t ′2 < 1− t1 and t ′′2 > 1− t1. While
the function ∂ 2 f0(t1,s2)/∂ t1∂ t2 may display a discontinuity at s2 = 1− t1, the functional value
∂ 2 f0(t1,1− t1)/∂ t1∂ t2 does not affect the value of the integral from t ′2 up to t ′′2 .
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Proof of Lemma 3. The proof proceeds by considering an exhaustive list
of cases. In each case, we examine for a given a type-pair t ∈ T and non-empty
subset S ⊆ A, if a decision rule that assigns strictly positive probability to only the
elements of S is compatible with ex post welfare-maximization.

Case 1. S = A: f0(t) ∈ (0,1) and fi(t) ∈ (0,1) for all i ∈ I. Efficiency
requires that all three alternatives in A generate the same level of ex post welfare:

λ1(t) = λ1(t)t1 +λ2(t)t2 = λ2(t)⇔ t1 + t2 = 1.

I.e. an ex post classically efficient decision rule f can assign strictly positive prob-
ability to all three alternatives only for type-pairs t on the cross-diagonal in the unit
square T .

Case 2. S = {a0,ai} for some i ∈ I: f0(t) ∈ (0,1) and fi(t) = 1− f0(t).
Efficiency requires that the two alternatives in S generate the same level of ex post
welfare:

λi(t) = λi(t)ti +λ j(t)t j ≥ λ j(t) for i, j ∈ I, j 6= i. (22)

If ti < 1, then we can obtain from (22):

λi(t) = λ j(t)t j/(1− ti)≥ λ j(t)⇔ t1 + t2 ≥ 1.

If, instead, ti = 1, then (22) can be satisfied only if t j = 0. In summary, if an ex post
classically efficient decision rule f assigns positive probability to only the elements
of S = {a0,ai} then: either ti ∈ [0,1), t j ∈ [0,1] and t1 + t2 ≥ 1; or ti = 1 and t j = 0.

Case 3. S = {a1,a2}: f1(t) ∈ (0,1) and f2(t) = 1− f1(t). Efficiency re-
quires that the two alternatives in S generate the same level of ex post welfare:

λ1(t) = λ2(t)≥ λ1(t)t1 +λ2(t)t2⇔ t1 + t2 ≤ 1.

I.e. if, for some type-pair t, an ex post classically efficient decision rule f assigns
strictly positive probability to the agents’ favorite alternatives only, then t must be
on or below the cross-diagonal.

Case 4. S = {a0}: f0(t) = 1. Efficiency requires that ex post welfare under
the compromise exceeds welfare under each of the other two alternatives:

λ1(t)t1 +λ2(t)t2 ≥ λi(t) ∀i ∈ I. (23)

Suppose first that the type-pair t is below the cross-diagonal in T : t1+ t2 < 1, which
implies t1, t2 < 1 and t j/(1− ti)< 1 for all i, j ∈ I, j 6= i. We therefore obtain from
(23):

λi(t)≤ λ j(t)t j/(1− ti) ∀i, j ∈ I, j 6= i.
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Combining these two inequalities, we can write:

λ1(t)≤ λ2(t)t2/(1− t1)< λ2(t)≤ λ1(t)t1/(1− t2).

This, however, constitutes a contradiction. It is therefore not efficient to implement
the compromise for any type-pair below the cross-diagonal.
Now suppose that the type-pair t is on or above the cross-diagonal in T : t1+ t2 ≥ 1.
For any agent i with ti < 1 we obtain from (23) an upper bound on i’s welfare weight
λi(t):

λi(t)≤ λ j(t)t j/(1− ti).

For any agent i with ti = 1, there is no upper bound on the value of his welfare
weight λi(t). However, regardless of whether ti < 1 or ti = 1 (i ∈ I) we can always
find a pair of welfare weights λ1(t) and λ2(t) s.t. - where applicable - the upper
bounds implied by (23) are respected. In summary, an ex post classically efficient
decision rule f may implement the compromise with probability 1 for any type-pair
t on or above the cross-diagonal.

Case 5. S = {ai} for some i ∈ I: fi(t) = 1. Efficiency requires that ex post
welfare under agent i’s favorite alternative exceeds welfare under both the compro-
mise and agent j’s favorite alternative:

λi(t)≥ λ j(t) and λi(t)≥ λi(t)ti +λ j(t)t j for j ∈ I, j 6= i. (24)

It is easy to verify that there exist welfare weights λi(t) and λ j(t) that satisfy the in-
equalities in (24): If ti = 1 and t j = 0, any pair of weights with λi(t)≥ λ j(t) satisfies
(24). If, instead, ti < 1 then any pair of weights with λi(t)≥max{λ j(t),λ j(t)t j/(1−
ti)} satisfies (24). In summary, if an ex post classically efficient decision rule f im-
plements agent i’s favorite alternative with probability 1 then: either ti ∈ [0,1) and
t j ∈ [0,1]; or ti = 1 and t j = 0. �

We now prepare the grounds for the proof of Proposition 6. The proof em-
ploys the results of three lemmas, each stating a property that any strategy-proof
ex post classically efficient decision rule must display. The first lemma establishes
that if the decision rule f assigns the compromise strictly positive probability for
some interior type-pair above the cross-diagonal of the unit square T , then f must
assign strictly positive and constant probabilities to alternatives a1 and a2, resp., for
all type-pairs below the cross-diagonal.

Lemma A.2 Let f be an ex post classically efficient and strategy-proof decision
rule for some pair of strictly positive functions λ1(·) and λ2(·). If either f0(t ′)> 0
for some type-pair t ′ ∈ T , with t ′1 + t ′2 > 1 and t ′i < 1 for all i ∈ I, or f0(t ′) ∈ (0,1)
for some t ′ ∈ T , with t ′1 + t ′2 > 1 and t ′i < 1 for at least one i ∈ I, then there exist
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numbers f̄1 ∈ (0,1) and f̄2 = 1− f 1 s.t. f1(t) = f̄1 and f2(t) = f̄2 = 1− f̄1 for all
t ∈ T s.t. t1 + t2 < 1.

Proof of Lemma A.2. We distinguish the two cases listed in the lemma:
Case 1. Fix a type-pair (t ′1, t

′
2) s.t. t ′1 + t ′2 > 1 and t ′i < 1 for all i ∈ I. Sup-

pose that f0(t ′1, t
′
2) > 0. By Lemma 3 there exists an agent j s.t. f j(t ′1, t

′
2) = 0

and fi(t ′1, t
′
2) = 1− f0(t ′1, t

′
2) (i, j ∈ I, j 6= i). W.l.o.g. suppose that f2(t ′1, t

′
2) = 0

and f1(t ′1, t
′
2) = 1− f0(t ′1, t

′
2). Now consider the type-pairs (t ′1, t

′
2) and (t ′1, t

′′
2 ) with

0 < t ′′2 < 1− t ′1. By Lemma 3 we know that f assigns positive (but possibly zero)
probability to alternatives a1 and a2 only. As f is strategy-proof, agent 2 of type t ′′2
cannot benefit from misrepresenting his type as t ′2:

u2(t ′1, t
′′
2 |t ′′2 )≥ u2(t ′1, t

′
2|t ′′2 )⇔ f2(t ′1, t

′′
2 )≥ f0(t ′1, t

′
2)t
′′
2 . (25)

Similarly, agent 2 of type t ′2 cannot benefit from misrepresenting his type as t ′′2 :

u2(t ′1, t
′
2|t ′2)≥ u2(t ′1, t

′′
2 |t ′2)⇔ f0(t ′1, t

′
2)t
′
2 ≥ f2(t ′1, t

′′
2 ). (26)

By combining (25) and (26), it follows that, at type-pair (t ′1, t
′′
2 ), f assigns alternative

a2 a probability f2(t ′1, t
′′
2 ) that is strictly between 0 and 1: 0 < f0(t ′1, t

′
2)t
′′
2 ≤ f2(t ′1, t

′′
2 )

≤ f0(t ′1, t
′
2)t
′
2 < 1, where f0(t ′1, t

′
2)> 0. By Lemma 3, the remaining probability must

be assigned to alternative 1: f1(t ′1, t
′′
2 ) = 1− f2(t ′1, t

′′
2 ).

Case 2. Fix a type-pair (t ′1, t
′
2) s.t. t ′1 + t ′2 > 1 and t ′i < 1 for at least one

agent i ∈ I. The only aspect of this case that is not already covered by Case 1 is
where t ′i < 1 and t ′j = 1(i, j ∈ I, j 6= i). W.l.o.g. let t ′2 = 1 and t ′1 < 1. Suppose
that f0(t ′1, t

′
2) ∈ (0,1). By Lemma 3, we know that f2(t ′1, t

′
2) = 0 and f1(t ′1, t

′
2) =

1− f0(t ′1, t
′
2). Now consider the type-pairs (t ′1, t

′
2) and (t ′1, t

′′
2 ) with 0 < t ′′2 < 1− t ′1.

Following the same incentive compatibility argument as in (25) and (26) of Case 1,
it follows that, at type-pair (t ′1, t

′′
2 ), f assigns alternative a2 a probability f2(t ′1, t

′′
2 )

that is strictly between 0 and 1: 0 < f0(t ′1, t
′
2)t
′′
2 ≤ f2(t ′1, t

′′
2 ) ≤ f0(t ′1, t

′
2)t
′
2 < 1,

where t ′2 = 1 and f0(t ′1, t
′
2) ∈ (0,1). By Lemma 3, the remaining probability must

be assigned to alternative 1: f1(t ′1, t
′′
2 ) = 1− f2(t ′1, t

′′
2 ).

The remainder of the proof applies to both Cases 1 and 2 above. Consider
type-pairs (t ′1, t

′′
2 ) and (t ′′1 , t

′′
2 ), with t ′′1 + t ′2 < 1. At (t ′′1 , t

′′
2 ) f assigns positive proba-

bility only to alternatives a1 and a2. Strategy-proofness of f implies that agent 1 of
type t ′1 cannot benefit from misrepresenting his type as t ′′1 :

u1(t ′1, t
′′
2 |t ′1)≥ u1(t ′′1 , t

′′
2 |t ′1)⇔ f1(t ′1, t

′′
2 )≥ f1(t ′′1 , t

′′
2 ). (27)

Similarly, agent 1 of type t ′′1 cannot benefit from misrepresenting his type as t ′1:

u1(t ′′1 , t
′′
2 |t ′′1 )≥ u1(t ′1, t

′′
2 |t ′′1 )⇔ f1(t ′′1 , t

′′
2 )≥ f1(t ′1, t

′′
2 ). (28)

By combining (27) and (28), we obtain: f1(t ′′1 , t
′′
2 ) = f1(t ′1, t

′′
2 ) = 1− f2(t ′1, t

′′
2 ) and

f2(t ′′1 , t
′′
2 ) = f2(t ′1, t

′′
2 ). Using the same logic, we can establish that f1(t ′′1 , t2) =
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f1(t ′1, t
′′
2 ) = 1− f2(t ′1, t

′′
2 ) and f2(t ′′1 , t2) = f2(t ′1, t

′′
2 ) for any t2 ∈ (t ′′2 ,1− t ′′1 ). Conse-

quently f must assign the same probabilities f1(t1, t2)= f1(t ′1, t
′′
2 )=: f̄1 and f2(t1, t2)=

f2(t ′1, t
′′
2 )=: f̄2 to alternatives a1 and a2, resp., for every type-pair (t1, t2) s.t. t1+t2 <

1. �

The next lemma shows that if there is a type-pair (t ′i , t
′
j) above the cross-

diagonal and in the interior of the unit square T for which the decision rule f assigns
positive probability to alternatives a0 and ai only, then f must assign the same
probabilities to a0 and ai for all type-pairs (t ′i , t j) with t j > t ′j.

Lemma A.3 Let f be an ex post classically efficient and strategy-proof decision
rule for some pair of strictly positive functions λ1(·) and λ2(·). If there exists a
type-pair (t ′i , t

′
j) with t ′i , t

′
j < 1 and t ′i + t ′j > 1 (i, j ∈ I and j 6= i), s.t. fi(t ′i , t

′
j) =

1− f0(t ′i , t
′
j), then f0(t ′i , t j) = f0(t ′i , t

′
j) and fi(t ′i , t j) = 1− f0(t ′i , t

′
j) for all t j > t ′j.

Proof of Lemma A.3. Suppose there is a type-pair (t ′i , t
′
j) with t ′i , t

′
j < 1

and t ′i + t ′j > 1, for which decision rule f assigns positive probability to alternatives
a0 and ai only: f0(t ′i , t

′
j) ∈ [0,1], fi(t ′i , t

′
j) = 1− f0(t ′i , t

′
j). Assume that for some

type-pair (t ′i , t j) with t j > t ′j, decision rule f assigns probability f0(t ′i , t j) to the com-
promise and the remaining probability f j(t ′i , t j) = 1− f0(t ′i , t j) to agent j’s favorite
alternative a j. Now consider agent j of type t ′j. His utility from truthful revelation
of his type is u j(t ′i , t

′
j|t ′j) = f0(t ′i , t

′
j)t
′
j. Suppose agent j reports instead some type

t j > t ′j. This generates a utility of u j(t ′i , t j|t ′j) = f j(t ′i , t j)+ f0(t ′i , t j)t ′j. The difference
in agent j’s utility between misrepresenting his type and truthful revelation of his
type is:

u j(t ′i , t j|t ′j)−u j(t ′i , t
′
j|t ′j)

= f j(t ′i , t j)+ [ f0(t ′i , t j)− f0(t ′i , t
′
j)]t
′
j

= 1− f0(t ′i , t j)+ [ f0(t ′i , t j)− f0(t ′i , t
′
j)]t
′
j. (29)

Strategy-proofness of f requires that the utility difference in (29) be non-positive.
Item (i) of Proposition 1 strategy-proofness implies that f0(t ′i , ·) is non-decreasing:
f0(t ′i , t j)≥ f0(t ′i , t

′
j) for all t j > t ′j. We now distinguish three cases:

Case 1. f0(t ′i , t
′
j) = 0. In this case, the utility difference in (29) reduces to

u j(t ′i , t j|t ′j)− u j(t ′i , t
′
j|t ′j) = 1− f0(t ′i , t j)(1−t ′j). Due to the premise that t ′j > 1−t ′i >

0, it is easy to verify that the utility difference is strictly positive for all values
f0(t ′i , t j) ∈ [0,1]. This constitutes a contradiction to the premise that f is strategy-
proof. Therefore, f must prescribe a probability distribution over {a0,ai} for all
type-pairs (t ′i , t j) with t j > t ′j: f0(t ′i , t j) ∈ [ f0(t ′i , t

′
j),1] and fi(t ′i , t j) = 1− f0(t ′i , t j).
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Strategy-proofness requires furthermore that agent j of type t ′j cannot gain from
pretending to be any type t j > t ′j, and vice versa:

u j(t ′i , t
′
j|t ′j)≥ u j(t ′i , t j|t ′j)⇔ f0(t ′i , t

′
j)≥ f0(t ′i , t j) for all t j > t ′j,

and
u j(t ′i , t j|t j)≥ u j(t ′i , t

′
j|t j)⇔ f0(t ′i , t j)≥ f0(t ′i , t

′
j) for all t j > t ′j.

Together, these two incentive compatibility conditions imply: f0(t ′i , t j) = f0(t ′i , t
′
j)

for all t j > t ′j. Therefore, f prescribes the same probability distribution over {a0,ai}
for all type-pairs (t ′i , t j) with t j ≥ t ′j.

Case 2. f0(t ′i , t
′
j) ∈ (0,1). Therefore, we have either f0(t ′i , t j) = f0(t ′i , t

′
j) and

f j(t ′i , t j) = 1− f0(t ′i , t j)> 0, or f0(t ′i , t j)> f0(t ′i , t
′
j) and f j(t ′i , t j) = 1− f0(t ′i , t j)≥ 0.

In both of these sub-cases, the utility difference in (29) is strictly positive. This con-
stitutes a contradiction to the premise that f is strategy-proof. Employing the same
argument as in Case 1, we can conclude that f must prescribe the same probability
distribution over {a0,ai} for all type-pairs (t ′i , t j) with t j ≥ t ′j.

Case 3. f0(t ′i , t
′
j) = 1. In this case, by monotonicity in item (i) of Proposition

1, f0(t ′i , t j) = f0(t ′i , t
′
j) = 1 and f j(t ′i , t j) = 1− f0(t ′i , t j) = 0. This implies immedi-

ately that f prescribes the same degenerate probability distribution over A for all
type-pairs (t ′i , t j) with t j ≥ t ′j. �

Lemma A.4 Let f be an ex post classically efficient and strategy-proof decision
rule for some pair of strictly positive functions λ1(·) and λ2(·). If there exists a type-
pair (t ′i , t

′
j), with t ′i , t

′
j < 1 and t ′i + t ′j > 1 (i, j ∈ I, j 6= i), s.t. fi(t ′i , t

′
j) = 1− f0(t ′i , t

′
j),

then f j(ti, t ′j) = 0 for all ti ∈ (1− t ′j, t
′
i).

Proof of Lemma A.4. By contradiction. Suppose there is a type-pair (t ′i , t
′
j)

with t ′i , t
′
j < 1 and t ′i + t ′j > 1, for which decision rule f assigns positive probability

to alternatives a0 and ai only: f0(t ′i , t
′
j) ∈ [0,1], fi(t ′i , t

′
j) = 1− f0(t ′i , t

′
j). Assume

now that at some type-pair (ti, t ′j), with ti ∈ (1− t ′j, t
′
i), the decision rule f assigns

strictly positive probability to alternative a j: f j(ti, t ′j) > 0. By Lemma 3 it must
hold that f0(ti, t ′j)+ f j(ti, t ′j) = 1. Now consider agent i of type ti. His utility from
truthful revelation of his type is ui(ti, t ′j|ti) = f0(ti, t ′j)ti. Suppose that agent i reports
instead the type t ′i . This generates a utility of ui(t ′i , t

′
j|ti) = fi(t ′i , t

′
j) + f0(t ′i , t

′
j)ti.
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The difference in agent i’s utility between misrepresenting his type and truthful
revelation of his type is:

ui(t ′i , t
′
j|ti)−ui(ti, t ′j|ti)

= fi(t ′i , t
′
j)+ [ f0(t ′i , t

′
j)− f0(ti, t ′j)]ti

= 1− f0(t ′i , t
′
j)+ [ f0(t ′i , t

′
j)− f0(ti, t ′j)]ti. (30)

Strategy-proofness requires that the utility difference in (30) be non-positive. By
item (i) of Proposition 1, monotonicity of f0 implies that f0(t ′i , t

′
j) ≥ f0(ti, t ′j). We

now distinguish three cases:
Case 1. f0(t ′i , t

′
j) = 0. Monotonicity of f0 implies that f0(ti, t ′j) = 0, and

therefore the utility difference in (30) is strictly positive. This is a contradiction to
the premise that f is strategy-proof.

Case 2. f0(t ′i , t
′
j) ∈ (0,1). In this case, fi(t ′i , t j) = 1− f0(ti, t ′j) > 0 and

therefore the utility difference in (30) is strictly positive. This is a contradiction to
the premise that f is strategy-proof.

Case 3. f0(t ′i , t
′
j) = 1. In this case, the utility difference in (30) reduces to:

ui(t ′i , t
′
j|ti)−ui(ti, t ′j|ti) = [1− f0(ti, t ′j)]ti = f j(ti, t ′j)ti > 0,

where the last equality follows from the opening assumption that f0(ti, t ′j)+ f j(ti, t ′j)=
1 and f j(ti, t ′j)> 0. This, however, constitutes a contradiction to the premise that f
is strategy-proof.
As each of the three cases above leads to a contradiction we can conclude that f
must prescribe a probability distribution over {a0,ai} for all type-pairs (ti, t ′j) with
ti ∈ (1− t ′j, t

′
i). �

Proof of Proposition 6. We start from the premise that f is an ex post clas-
sically efficient decision rule. Assume furthermore that f is strategy-proof. Lemma
3 in conjunction with Proposition 3 implies that f cannot be a binary decision rule.
Therefore, there exists a type-pair (t̂1, t̂2) ∈ T s.t. f0(t̂1, t̂2) ∈ (0,1). By Lemma 3 it
must hold that t̂1 + t̂2 ≥ 1 and t̂i < 1 for at least one agent i ∈ I (as f0(t̂1, t̂2)< 1 we
cannot have t̂1 = t̂2 = 1). Due to the monotonicity of f0 by item (i) of Proposition
1, we have f0(t1, t2)> 0 for all type-pairs (t1, t2) with t1 ≥ t̂1 and t2 ≥ t̂2.

Step 1. Observe that regardless of whether the type-pair (t̂1, t̂2) is a point on
the cross-diagonal (where t̂1+ t̂2 = 1), a point in the interior of T (where t̂1+ t̂2 > 1
and t̂i < 1 for all i ∈ I), or a boundary point (where t̂i < 1 and t̂ j = 1 for i, j ∈ I,
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j 6= i), Lemma A.2 applies and guarantees that there are numbers f̄1 ∈ (0,1) and
f̄2 = 1− f̄1 s.t. for all (t1, t2) ∈ T with t1 + t2 < 1:

f1(t1, t2) = f̄1 and f2(t1, t2) = f̄2. (31)

This, in turn, implies that the probability of the compromise is strictly positive for
all type-pairs above the cross-diagonal of the unit-square T :

f0(t1, t2)> 0 for all (t1, t2) ∈ T s.t. t1 + t2 > 1. (32)

To see this, consider any type-pair (t ′1, t
′
2) with t ′1 + t ′2 > 1. Suppose that, con-

trary to (32), we have f0(t ′1, t
′
2) = 0. By Lemma 3 there must then be an agent

i ∈ I whose favorite alternative is chosen with probability 1. W.l.o.g. suppose that
f1(t ′1, t

′
2) = 1− f0(t ′1, t

′
2) = 1. Now consider agent 2 of type t ′2. His utility from

truthful revelation of his type is u2(t ′1, t
′
2, |t ′2) = 0. If agent 2 reports instead a type

t2 < 1− t ′1, his utility is u2(t ′1, t2, |t ′2) = f̄2 > 0. This is a profitable deviation and
constitutes a contradiction to the assumption that f is strategy-proof. Therefore, we
must have f0(t ′1, t

′
2)> 0 as claimed in (32).

Step 2. Fix a type-pair (t ′1, t
′
2) s.t. f̄i < t ′i < 1 for all i ∈ I. Assume w.l.o.g.

that f assigns positive probability to alternatives a0 and a1: f0(t ′1, t
′
2) ∈ [0,1] and

f1(t ′1, t
′
2) = 1− f0(t ′1, t

′
2). Lemma A.3 implies for all (t ′1, t2) with t2 > t ′2: f0(t ′1, t2) =

f0(t ′1, t
′
2) and f1(t ′1, t2) = f1(t ′1, t

′
2) = 1− f0(t ′1, t

′
2). Furthermore, Lemma A.4 implies

for all (t1, t2) with t2≥ t ′2 and t1 ∈ (1−t2, t ′1): f1(t1, t2)= 1− f0(t1, t2), where f0(·, t2)
is a nondecreasing function that takes values in [0, f0(t ′1, t2)] for every t2 ∈ [t ′2,1].

Step 3. Fix agent 1’s type at some t ′′1 = 1− t ′2. Having assumed that t ′2 > f̄2,
it follows that t ′′1 < f̄1. We know from (31) that f2(t ′′1 , t2) = f̄2 for all t2 < t ′2 = 1−t ′′1 .
Also (by Lemma A.3), we have f0(t ′′1 , t2) = f0(t ′′1 ,1) and f1(t ′′1 , t2) = 1− f0(t ′′1 ,1)
for all t2 > t ′2 = 1− t ′′1 . Strategy-proofness of f requires that agent 2 with a type
above 1− t ′′1 cannot gain by pretending to be any type t2 < 1− t ′′1 . In particular, for
all ε ∈ (0, t ′′1 ]:

u2(t ′′1 ,1− t ′′1 + ε|1− t ′′1 + ε)≥ u2(t ′′1 , t2
∣∣1− t ′′1 + ε )

⇔ f0(t ′′1 ,1)(1− t ′′1 + ε)≥ f̄2. (33)

Similarly, agent 2 with a type below 1− t ′′1 cannot gain from pretending to be any
type t2 > 1− t ′′1 . In particular, for all δ ∈ (0,1− t ′′1 ]:

u2(t ′′1 ,1− t ′′1 −δ |1− t ′′1 −δ )≥ u2(t ′′1 , t2|1− t ′′1 −δ )

⇔ f̄2 ≥ f0(t ′′1 ,1)(1− t ′′1 −δ ). (34)
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In the limit as both ε ↓ 0 and δ ↓ 0 we obtain from (33) and (34):

f̄2 = f0(t ′′1 ,1)(1− t ′′1 )⇔ f0(t ′′1 ,1) =
f̄2

1− t ′′1
. (35)

As t ′′1 < f̄1 the probability of the compromise f0(t ′′1 ,1) in (35) is well-defined. To
see this, note that:

f0(t ′′1 ,1)≤ 1 ⇔ f̄2 ≤ 1− t ′′1

⇔ t ′′1 ≤ 1− f̄2

⇔ t ′′1 ≤ f̄1.

Employing the same logic as above, we can conclude that f0(t1, t2)= f̄2/(1−t1) and
f1(t1, t2) = 1− f0(t1, t2) for all (t1, t2) with t1 < t ′′1 and t2 > 1− t ′′1 . Note also that the
incentive compatibility argument used here can be replicated to establish that deci-
sion rule f must assign to all type-pairs (t1, t2) with t1 ∈ ( f̄1, t ′1] and t2 ∈ (1− t1, f̄2)
a probability distribution over alternatives a0 and a2.23 Given this observation, we
can employ Lemmas 5 and 6 to show furthermore that f must also prescribe a prob-
ability distribution over alternatives a0 and a2 for all type-pairs (t1, t2) with t1 > t ′1
and t2 ∈ (1− t1, f̄2).

Step 4. Fix agent 2’s type at t̃2, with t̃2 < f̄2. We know from (31) that
f1(t1, t̃2) = f̄1 for all t1 < 1− t̃2. Also (by Lemma A.3), we have f0(t1, t̃2) = f0(1, t̃2)
and f2(t1, t̃2) = 1− f0(1, t̃2) for all t1 > 1− t̃2. Strategy-proofness of f requires that
agent 1 with a type above 1− t̃2 cannot gain by pretending to be any type t1 < 1− t̃2.
In particular, for all ε ∈ (0, t̃2]:

u1(1− t̃2 + ε, t̃2|1− t̃2 + ε)≥ u1(t1, t̃2|1− t̃2 + ε)

⇔ f0(1, t̃2)(1− t̃2 + ε)≥ f̄1. (36)

Similarly, agent 1 with a type below 1− t̃2 cannot gain from pretending to be any
type t1 > 1− t̃2. In particular, for all δ ∈ (0,1− t̃2]:

u1(1− t̃2−δ , t̃2|1− t̃2−δ )≥ u1(t1, t̃2|1− t̃2−δ )

⇔ f̄1 ≥ f0(1, t̃2)(1− t̃2−δ ). (37)

23To see this, consider some type-pair (t̃1, t̃2) with f̄1 < t̃1 < t ′1 and 1− t̃1 < t̃2 < f̄2. Suppose at
(t̃1, t̃2) decision rule f assigns positive probability to a0 and a1. Then there exists a type t1 ∈ ( f̄1, t̃1)
such that f prescribes the same probability distribution over alternatives a0 and a1 for all t2 > 1− t1:
f0(t1, t2) = f0(t1,1) and f1(t1, t2) = 1− f0(t1,1). An analogous incentive compatibility argument
as in Step 1 yields the requirement that f0(t1,1) = f̄2/(1− t1). This, however, cannot hold as the
probability f0(t1,1) is at most 1, while the ratio f̄2/(1− t1) is a number strictly greater than 1 for
any t1 > f̄1.
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In the limit, as both ε ↓ 0 and δ ↓ 0, we obtain from (36) and (37):

f̄1 = f0(1, t̃2)(1− t̃2)⇔ f0(1, t̃2) =
f̄1

1− t̃2
. (38)

As t̃2 < f̄2, the expression in (38) is well-defined. By the same logic, we obtain that
for all (t1, t2) s.t. t2 < f̄2 and t1 > 1− t2:

f0(t1, t2) =
f̄1

1− t2
and f2(t1, t2) = 1− f0(t1, t2). (39)

Taking the limit of the probability of the compromise f0(t1, t2) in (39) as t2 ap-
proaches f̄2 from below, we obtain for any given t1 > f̄1:

lim
t2↑ f̄2

f0(t1, t2) =
f̄1

1− f̄2
= 1.

Monotonicity of the function f0(t1, ·), together with the fact that f0(t1, t2) ≤ 1 for
all (t1, t2) ∈ T , implies that f0(t1, f̄2) = 1 for all t1 > f̄1. Consequently, we have
f0(t1, t2) = 1 for all type-pairs with t1 > f̄1 and t2 ≥ f̄2 (see Fig. 1 in Section 6).

Step 5. Now fix agent 1’s type at t ′1 > f̄1. Strategy-proofness of f requires
that agent 2 with type t ′2 > f̄2 cannot gain by pretending to be some type t̃2, with
1−t ′1 < t̃2 < f̄2, for which decision rule f assigns positive probability to alternatives
a0 and a2 only:

u2(t ′1, t
′
2|t ′2)≥ u2(t ′1, t̃2|t ′2)

⇔ t ′2 ≥ f2(t ′1, t̃2)+ f0(t ′1, t̃2)t
′
2

⇔ t ′2 ≥ 1− f0(t ′1, t̃2)(1− t ′2)

⇔ f0(t ′1, t̃2)≥ 1.

As the probability of the compromise f0(t ′1, t̃2) cannot exceed 1 it must be the case
that f0(t ′1, t̃2) = 1. This, however, contradicts (39) whereby f0(t ′1, t̃2) = f̄1/(1− t̃2)<
1. From this contradiction we can conclude that there exists no ex post classically
efficient and strategy-proof non-binary decision rule. �
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