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Abstract

We study procurement procedures that simultaneously determine the specification
and price of a good. Suppliers can offer and produce the good in either of two
possible specifications, both of which are equally good for the buyer. Production
costs are interdependent and unknown at the time of bidding. Each supplier re-
ceives two signals about production cost, one per specification. Our model is a
special case of the interdependent-value settings with multi-dimensional types in
Jehiel and Moldovanu (2001) where an efficient and incentive compatible mecha-
nism exists. We characterize equilibrium bidding behavior if the winning supplier is
selected purely on the basis of price, regardless of the specification offered. While
there is a positive chance of obtaining an inefficient specification, this procurement
mechanism involves lower information rents than efficient mechanisms, suggesting
that there is a trade-off between minimizing expected expenditure for the good, and
ensuring that the efficient specification is chosen.
Keywords: Procurement · interdependent valuations · multi-dimensional informa-
tion · efficient mechanisms · optimal mechanisms.
JEL classification: C72 · D44 · D82.



1 Introduction
In the procurement of complex projects (such as construction work, or defence
equipment) the exact quality or specification of the project is rarely fully deter-
mined by the buyer at the outset. Instead, the purpose of the procurement process
is to determine the project specification, along with the price and the identity of
the supplier. Such procurement processes (known as two-stage “design-bid-build”
tenders) are commonly used by purchasers of construction work.1 The first stage
tender serves to elicit information about the available or technically feasible design
specifications from expert contractors (e.g. architects, engineering consultancies,
or defence companies). Thereafter, any contractor who has participated in the first
stage has the opportunity to tender the second stage, where the exact specification
and the price of the project will be determined alongside the identity of the sup-
plier.2

Our focus in this paper is on the second stage of the procurement process.
In particular, we consider situations where the buyer, following the first stage, has
drawn up a list of available project specifications that are deemed close substi-
tutes.3 As an example, note that in the procurement of certain types of military
equipment, the UK Ministry of Defence assesses available equipment specifica-
tions against minimum criteria, considering all that meet or exceed these criteria as
“operationally equivalent”.4 While the buyer and the contractors are aware of the
available project specifications prior to the second stage tender, there typically re-
main considerable cost uncertainties surrounding each of the design specifications
in which contractors can deliver the project.5 Contractors participating in the sec-
ond stage tender therefore have to carefully account for the cost uncertainties when

1See “Procurement” factsheet published by “Constructing Excellence” available at
www.constructingexcellence.co.uk

2Similar multi-stage procedures are used in the procurement of an innovation, as studied by Che
and Gale (2003), and Schöttner (2008).

3We thereby abstract from the question whether participants in the first stage tender have an
incentive to withhold or bias their information about feasible project specifications in order to in-
fluence the list of those that are considered substitutes by the buyer. The literature comprises some
contributions where sellers choose strategically the information they provide to buyers, albeit in set-
tings different from ours: Bergemann and Pesendorfer (2007) consider optimal revelation of relevant
product information by a seller to bidders in a standard one-shot auction, while Ivanov (2011) does
so in an oligopolistic market setting with competing sellers and a single buyer.

4See “Cost Effectiveness in UK Defence Procurement: The CO-
EIA” available from NATO Research & Technology Organisation at
http://ftp.rta.nato.int/public//PubFulltext/AGARD/CP/AGARD-CP-602///18CHAP15.pdf

5E.g. contractor cost uncertainties arise if the project is a custom-designed piece of military
equipment, along with full contractor support and maintenance throughout the service life of the
equipment. Similar cost uncertainties also arise in “TotalCare” contracts between UK power systems



preparing bids and committing to a design specification. Equally, a well-designed
second-stage tender must take into account how participating firms deal with the
cost uncertainties in terms of the design specification and the price that they choose
to offer.

In this paper, we investigate how the buyer, who cares about the price and
the design specification of the project, should structure the second stage procure-
ment process when participating firms are subject to cost uncertainty at the time
of tender. We model cost uncertainties by studying a common value environment
where firms have only partial information about the cost of providing each of the
available design specifications. While the ex post cost of producing a given specifi-
cation are assumed to be identical across firms, they are unknown to the firms at the
time of tender. The assumption of common values can be viewed as capturing sup-
plier uncertainty about buyer characteristics, which affect the cost of customizing
each design specification to the buyer’s particular requirements.6

Our common value information structure represents a departure from what
has been assumed in the procurement literature to date (Laffont and Tirole, 1987,
Che, 1993, Branco, 1997, Asker and Cantillon 2008, 2010, and Rezende, 2009).
There, the focus is on “private value” environments where firms have heterogeneous
cost structures, but do not face uncertainty about their own cost of providing each
of the available design specifications. While it is likely that firms in real-world
procurement situations face cost uncertainties as well as being heterogeneous in
their cost structure, we abstract here from the latter issue in order to concentrate on
the question to which extent a “good” procurement procedure is able to select the
“right” (or efficient) product specification.

We pursue this question in a stylized environment with two possible prod-
uct specifications where each participating firm has multi-dimensional private in-
formation.7 This information consists of a pair of cost-signals, one for each project
specification. In line with our focus on the second stage of a two-stage tender, we
assume here that the two specifications of the project generate the same benefit to
the buyer. Therefore, the question of which specification is efficient reduces to the
question of which specification has the lower ex post production cost. We ask if it
is advisable for the buyer to insist on an efficient specification choice if he wants

company Rolls-Royce and commercial airlines for the provision of, and lifetime maintenance for,
aircraft engines.

6The assumption that the cost of the suppliers depend on the buyer’s characteristics are also made
in Lauermann and Wolinsky (2009), albeit in a different setting.

7It is important to emphasize that with multi-dimensional private information, efficient mech-
anisms can be implemented only in private value environments, or in very special interdependent
value environments (see Dasgupta and Maskin, 2000, and Jehiel and Moldovanu, 2001). The com-
mon value model we study here falls into the latter category.



to minimize his expenditure for the project. In other words, is the efficient specifi-
cation also the cheapest from the buyer’s point of view? Or should the buyer focus
solely on price and disregard differences in specification? In order to address these
questions, we start our investigation into procurement mechanisms with a study
of a specific benchmark procedure. Under this procedure, each participating firm
submits a two-dimensional bid that consists of a specification and a price for the
project. The two-dimensional bids are then evaluated according to the net benefit
that they generate for the buyer, and the winning bid is the one with the highest net
benefit. As both specifications generate the same (gross) benefit, the prices alone
determine the identity of the supplier and the chosen design specification. We refer
to this procurement procedure as minimum price mechanism (henceforth MPM).

The main applied contribution of this paper is the equilibrium analysis of
the MPM. An interesting result that emerges from this analysis is that the MPM
- a very natural procurement procedure given that the available specifications are
substitutes - will not always result in the efficient specification choice (i.e. the
specification whose ex post production cost are lowest).8 However, a rationale for
using the MPM despite its inefficiency emerges when one compares the expected
expenditure for the project under the MPM to a procurement procedure that guar-
antees delivery of the efficient specification. In this efficient procedure, all firms
participating in the tender receive lump-sum payments in exchange for their ex-
pert information about the cost of the alternative specifications. By selecting at
random a supplier of the efficient specification, this procedure aligns the firms’ in-
centives with that of the buyer (because misrepresentation of a firm’s information
does not pay, as it may result in the firm being chosen to supply the more costly
specification). The MPM delivers lower expected expenditure for the project than
this efficient procedure in many settings. This suggests there is a trade-off between
efficiency and expenditure-minimization. In order to explore this trade-off more
formally, we subsequently adopt a mechanism design approach. One key insight
that emerges is that, in symmetric settings, the MPM displays a feature that all
expenditure-minimizing procurement processes necessarily share. The other key
insight is that an optimal procurement process will not be efficient. It is interest-
ing to note that this inefficiency property of expenditure-minimizing mechanisms
arises in the absence of any a priori bias that the buyer may have in favor of a par-
ticular supplier (as in Rezende, 2009), and in the absence of any “price ceilings”
that the buyer may wish to impose. This contrasts with optimal procurement pro-

8In this respect, we come to a similar conclusion as Ewerhart and Fieseler (2003). They study
procurement auctions involving unit-price contracts (albeit in a private value setting with one-
dimensional private information). They find that such auctions perform better in terms of ex ante
expenditure than an auction which guarantees ex post efficient outcomes (even if a characterization
of the optimal auction in their setting remains elusive).



cedures for a fully specified project when participating firms have one-dimensional
private information (e.g. Myerson, 1981, or Che, 1993). There, in the absence of
a “price ceiling”, the contract is always allocated to the most efficient firm. The
tension between efficiency and expenditure-minimization in our model arises from
the multi-dimensional nature of the firms’ information, and the added scope for ma-
nipulation that this offers: As the buyer will purchase just one unit of the good, and
in only one specification, firms can boost the chances of being selected to supply
their chosen specification by strategically misrepresenting their information about
the other specification. In order to deter such behavior, it is important that any firm
be selected only to supply the specification associated with its minimum signal. But
by making a commitment to use only information about firms’ minimum signals,
the buyer foregoes the opportunity of securing an efficient specification.

The main technical contribution of this paper is to suggest a way for dealing
with the considerable technical difficulties that are inherent in any study of opti-
mal mechanisms in settings with multi-dimensional private information. With the
exception of the single-agent monopoly screening models studied by Armstrong
(1996) and Rochet and Choné (1998), there are, to date, no general characteriza-
tions of optimal mechanisms for such settings - be that with private or with interde-
pendent values.9 However, there exist in the literature characterizations of incentive
compatible mechanisms for environments with multi-dimensional signals, extend-
ing the well-known “payoff equivalence” result for settings with single-dimensional
private information due to Myerson (1981) (see, e.g., Jehiel et al., 1999, Krishna and
Perry, 2000, Jehiel and Moldovanu, 2001, and Krishna and Maenner, 2001). In our
setting, these payoff equivalence results establish a formal connection between the
allocation rule by which a specification and a supplier are chosen, and the payments
received by the firms participating in the mechanism. In particular, a firm’s interim
expected payment must be a path-independent path integral of a vector-valued func-
tion. This function, which is the interim expectation of the allocation rule, contains,
for each specification, the probability that a given firm is chosen as supplier of that
specification. Path-independence means that each firm’s interim expected payment
in an incentive compatible mechanism is the same regardless of the path of integra-
tion that has been chosen to compute the interim payment. In other words, the value
of a firm’s expected payment for a given signal-vector must be unaffected by the
chosen path of integration. It is this incentive compatibility condition that distin-
guishes settings with multi-dimensional signals from those with one-dimensional

9Exceptions are Asker and Cantillon (2010) and Armstrong and Rochet (1999), who circum-
vent the technical difficulties by modeling the components of agents’ multi-dimensional signals as
discrete random variables, rather than continuous random variables as is typically the case in the
literature.



signals. The requirement of path-independence as a condition for incentive com-
patibility is awkward to handle as a constraint in any characterization of optimal
mechanisms. The main technical innovation of this paper is our approach for tak-
ing into account the path-independence requirement. To the best of our knowledge,
this approach is novel in the mechanism design literature. It allows us to derive
an expression for the ex ante expected payments received by firms participating
in an incentive compatible mechanism. The great advantage of this expression is
that it can be readily contrasted with the expected payments in a benchmark com-
mon value procurement model with a single product specification (where suppliers’
private information is one-dimensional), thereby shedding light on the sources of
firms’ information rents.

Related Literature. Our model contributes to the literature on procurement when
price and quality matter (Laffont and Tirole, 1987, Che, 1993, Branco, 1997, and
Asker and Cantillon, 2008, 2010). In this literature, the “design specifications”
are different quality levels, measured by a continuous variable. All papers apart
from Asker and Cantillon (2008, 2010) study models in which firms have one-
dimensional private information about their cost of providing the various quality-
levels. Asker and Cantillon (2010) consider a private value model in which firms
have two-dimensional private information about their fixed cost, as well as their
marginal cost of producing different quality-levels. In order to overcome the tech-
nical difficulties associated with the characterization of optimal procurement mech-
anisms, they assume that the components of firms’ private information (fixed and
marginal cost) are discrete random variables, each with two possible realizations.
This simplification allows them to fully characterize the optimal procurement mech-
anism for their setting. The optimal mechanism is not efficient, even in the absence
of a reserve price (unlike the optimal procurement mechanism characterized by
Laffont and Tirole, 1987 for the case of one-dimensional signals). This tension be-
tween ex post efficiency and ex ante expenditure minimization is a feature shared
with our model.

This paper also makes a contribution to the literature on mechanism design
for settings where agents have multi-dimensional private information (see Dasgupta
and Maskin, 2000, Krishna and Perry, 2000, and Jehiel and Moldovanu, 2001).
Within this literature, the main focus to date has been on the existence and charac-
teristics of efficient mechanisms. For the case of private multi-dimensional values,
Krishna and Perry (2000) show that within the class of efficient mechanisms, gener-
alized Vickrey-Clarke-Groves mechanisms are optimal (in the sense of maximizing
revenue), even if Bayes Nash implementation (rather than dominant strategy imple-
mentation) is used. We make a contribution to this literature by showing a way in



which the path-independence property of incentive compatible mechanisms can be
explicitly taken into account in the optimization problem that forms the basis for
the characterization of optimal mechanisms.

The remainder of this paper is organized as follows: Section 2 contains the
basics of our model. Section 3 describes the MPM and provides a characteriza-
tion of firms’ equilibrium strategies. In Section 4 we introduce direct revelation
mechanism, as well as the notation and concepts required for our mechanism de-
sign analysis of procurement procedures. Section 5 contains our main characteriza-
tion results regarding the ex ante expenditure of incentive compatible procurement
mechanisms, as well as the derivation of necessary conditions that any expenditure-
minimizing mechanism must display. In Section 6 we build on these results to argue
that expenditure-minimizing mechanisms will not be efficient. Section 7 concludes,
and the Appendix in Section 8 contains all proofs.

2 Model

2.1 Model basics

Setting. A buyer wishes to purchase a single unit of an indivisible good that can
be produced in two different design specifications. Let K ≡ {A,B} denote the set
of available design specifications. We assume that the buyer considers the two
specifications perfect substitutes, and derives the same benefit b > 0 from each of
them. The buyer’s von Neumann Morgenstern utility is b− p if he pays a price of
p for the good, regardless of its specification. There are n firms from whom this
good can be sourced. Let I ≡ {1, . . . ,n} be the set of firms. The production cost
Ck of each specification k ∈ K are common to the suppliers. Firm i’s von Neumann
Morgenstern utility is p−Ck if the good is purchased from firm i in specification
k at price p. If the good is not sourced from firm i, then firm i incurs no cost.
The production cost Ck of each specification k ∈ K are unknown to the buyer and
to the firms at the time of competing for the buyer’s custom. However, the firms
have an informational advantage over the buyer, in that each firm has some private
information about the cost Ck of each specification.

Information Structure. We assume that firm i’s private information consists of
two cost-signals: si

A and si
B. Signal si

k is firm i’s private information about the pro-
duction cost of specification k. We refer to the signal-vector si ≡ (si

A,s
i
B) as firm

i’s type, and denote by S ≡ [0,1]2 the set of possible types. We assume that si is
a random variable which is only observed by firm i. The firms’ types are stochas-
tically independent, and they are identically distributed according to a continuous



joint density f such that (s.t.) f (sA,sB) > 0 for all (sA,sB) in the interior of S. Re-
garding the connection between the firms’ types and the production cost of each
specification, we assume that the cost of specification k is given by the average of
the firms’ signals about specification k:

Ck ≡
1
n ∑

i∈I
si

k ∀k ∈ K (1)

Notation. We denote by s ≡ (s1, . . . ,sn) the vector of all firms’ types, with s ∈
S× . . .×S ≡ Sn. Let s−i ≡ (s1, . . . ,si−1,si+1, . . . ,sn) ∈ Sn−1 be the vector of all but
firm i’s types. Likewise, let sk ≡ (s1

k , . . . ,s
n
k) be the vector of all firms’ k-signals,

and let s−i
k ≡ (s1

k , . . . ,s
i−1
k ,si+1

k , . . . ,sn
k) be the vector of all but firm i’s k-signals.

We write g(s)≡∏i∈I f (si) and g(s−i)≡∏ j 6=i f (s j). For ease of notation, let mi ≡
argmink∈K si

k be the specification associated with firm i’s minimum signal, and Mi≡
argmaxk∈K si

k the specification associated with firm i’s maximum signal.

2.2 Symmetry

Given the independent nature of the firms’ information, and the symmetry of the
cost functions Ck, we say that our setting is symmetric with respect to (w.r.t.) firms.10

In addition to this form of symmetry, our model admits a second form of symmetry:

Definition 1. We say the setting is symmetric w.r.t. specifications if the joint density
f is symmetric around the 45◦-line: f (sB,sA) = f (sA,sB) for all (sA,sB) ∈ S.11

In what follows, we shall focus on two types of settings, depending on
whether the model displays symmetry w.r.t. specifications, or not:

Symmetric correlated settings. The setting displays symmetry w.r.t. firms and
w.r.t. specifications.

Independent asymmetric settings. In such settings, the cost signals sk are inde-
pendently but non-identically distributed, with cumulative distribution function Hk
on [0,1] for all k ∈K. We write Hk f.o.s.d. Hl (l ∈K, l 6= k) if Hk first-order stochas-
tically dominates Hl . Each Hk has a continuous derivative hk, with hk(sk) > 0 for

10For each specification k, the cost function Ck(sk) is symmetric in the following sense: Ck(sk) =
(1/n)(si

k + s−i
k ) ∀i ∈ I.

11If f is symmetric around the 45◦-line then Pr{sA < sB}= 1/2.



all sk ∈ (0,1), so that f (sA,sB) = hA(sA)hB(sB)> 0 for all (sA,sB) in the interior of
S.12

2.3 Efficiency

Given our assumption that the buyer derives the same benefit from each design
specification, it follows that for all type-vectors s ∈ Sn, the ex post efficient design
specification is determined by the production cost alone:

Definition 2. Specification A is efficient if CA(sA) < CB(sB)⇔ ∑i∈I si
A < ∑i∈I si

B;
otherwise, specification B is efficient.

Because of the common value nature of the production cost, efficiency per-
tains solely to the specification of the object, not to the identity of the supplier. We
adopt the particular common value cost structure in (1) so as to address the question
whether an efficient procurement process can ever be expenditure-minimizing. For
this purpose, we need an environment where efficient and implementable procure-
ment procedures exist. As Jehiel and Moldovanu (2001) show, efficient procedures
can be implemented only in special settings, which is why we assume the cost
structure in (1).13

3 Minimum price mechanism
In this section, we start our investigation of procurement procedures available to
the buyer with a simple and intuitive benchmark mechanism. In this mechanism,
the buyer selects a supplier on the basis of price alone, disregarding any differences
in the firms’ design specifications. We refer to this procedure as “minimum price
mechanism” (MPM).

12If the assumption of independent cost-signals appears restrictive, note that the same qualitative
results obtain when sA and sB are non-independent random variables with a joint density of the form
f (sA,sB) = asA +(2−a)sB, where a ∈ (0,2) and a 6= 1.

13The existence of implementable efficient procedures in our setting follows from Theorem 4.3
in Jehiel and Moldovanu (2001). To see that the theorem applies, note that our setting is a special
case of the environment studied by Jehiel and Moldovanu. Our setting can be thought of as having
2n different “social alternatives”, with generic social alternative (k, i) ∈ K× I. For every alternative
(k, i), each firm j ∈ I has a one-dimensional signal s j

(k,i) = s j
k that affects (in different ways) the

cost functions of the n firms: in alternative (k, i), the cost function C i
(k,i)(s

1
(k,i), . . . ,s

n
(k,i)) of firm i

takes the value Ck(sk) given in (1), and the cost function C j
(k,i)(s

1
(k,i), . . . ,s

n
(k,i)) of any firm j ( j 6= i)

takes the value zero. It is straightforward to verify that the conditions of Theorem 4.3 in Jehiel and
Moldovanu (2001) hold in this setting.



3.1 Mechanism basics

Rules. The buyer asks each firm to submit a two-dimensional bid consisting of
a specification and a price. Let ki ∈ K be the specification chosen by firm i, and
denote by pi

ki
the price that firm i demands in return for delivery of the good in

specification ki. Under the MPM, the buyer commits to sourcing the good at the
lowest price, irrespective of the specifications proposed by the firms. I.e. given
prices (p1

k1
, . . . , pn

kn
), the buyer sources the good from firm j ∈ argmini∈I pi

ki
. Firm

j is paid an amount equal to its price p j
k j

in return for producing the good in speci-
fication k j. All firms other than the chosen supplier j receive no payment.

Strategies. In the Bayesian game induced by the MPM, a strategy for any firm
i ∈ I consists of three functions: A specification choice rule δi : S→ K,si 7→ δi(si),
and a pricing function pi

k : S→ R+,si 7→ pi
k(s

i) for each specification k ∈ K. The
interpretation is as follows: each firm i commits to producing the good in specifica-
tion δi(si) = ki in return for a payment of pi

ki
(si). To facilitate the characterization

of equilibrium strategies (δi, pi
A, pi

B), we restrict attention those that satisfy the fol-
lowing properties P1-P3:

P1 The specification choice δi rule takes the following form: Given an increasing
and continuous function Xi : R→ R, si

A 7→ Xi(si
A), with inverse X−1

i s.t. either
X−1

i (0)≥ 0, or X−1
i (1)≤ 1, or neither:

δi(si) =

{
A if si

B > Xi(si
A)

B if si
B < Xi(si

A)

P2 The price of any specification depends only on the signal pertaining to that
specification. I.e. for all i ∈ I, all si ∈ S, and all k ∈ K: pi

k(s
i) = pi

k(s
i
k).

P3 If a firm is indifferent between specification A and specification B, it quotes the
same price regardless of the specification it chooses. I.e. for all i ∈ I, and all si ∈ S
s.t. si

B = Xi(si
A): pi

A(s
i
A) = pi

B(Xi(si
A)).

Fig. 1 illustrates two specification choice rules of the form in P1. While
there are four types of functions Xi that are compatible with P1, the two types shown
in Fig. 1 are representative. This is because the remaining two types of Xi can be
generated from those in Fig.1 by interchanging the specification labels A and B, and
then defining a new function X̂i s.t. X̂i(si

A)≡ X−1
i (si

A) for all si
A ∈ [0,min{1,Xi(1)}].

For a specification choice rule δi with X−1
i (0) ≥ 0 (as illustrated in both panels

of Fig. 1), properties P2 and P3 together imply that a single pricing function pi
A

suffices to generate the prices of both specifications A and B:
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Figure 1: Two specification choice rules δi that satisfy property P1

Lemma 1. If a strategy (δi, pi
A, pi

B) in the MPM satisfies properties P1-P3, then the
pricing function pi

B for specification B is the composition of pi
A : [0,min{X−1

i (1),1}]→
R+ and Xi. I.e. pi

B(x) = pi
A(X

−1
i (x)) for all x ∈ [0,min{1,Xi(1)}].

In the following, we look for symmetric equilibria of the MPM where the
strategy (δ , pA, pB) used by all firms satisfies properties P1-P3 above.14 Building
on Lemma 1 we can establish:

Lemma 2. Any symmetric equilibrium (δ , pA, pB) of the MPM that satisfies prop-
erties P1-P3 features a pricing function pA that is increasing and differentiable
everywhere, with the exception of x = X−1(0).

3.2 Equilibrium specification choice rule

Properties P1-P3 in Section 3.1 play an important role in the equilibrium charac-
terization. They allow us to pin down, independently of the pricing functions pA
and pB, the function X that determines the equilibrium specification choice rule δ .
To see this, consider a firm with type si who is indifferent between offering speci-
fication A or B: si

B = X(si
A). P3 requires firm i to quote the same price regardless

of the specification it chooses: pA(si
A) = pB(X(si

A))≡ p. For this to be compatible

14There may of course be other equilibria.



with equilibrium behavior, the expected production cost (conditional on winning
the contract with a price of p) must be identical for the two specifications. This
observation gives rise to the following characterization of the equilibrium specifi-
cation choice rule:

Lemma 3. Any symmetric equilibrium (δ , pA, pB) of the MPM that satisfies prop-
erties P1-P3 features a specification choice rule δ where, for every x ∈ [0,1], the
function X(x) is defined implicitly by:

Pr{sA > x,sB > X(x)}n−1 (x−X(x)+(n−1)E[sA− sB |sA > x,sB > X(x)]) = 0

The next result shows which form the equilibrium function X takes if the
model is symmetric w.r.t. firms and w.r.t. specifications:

Lemma 4. In correlated symmetric settings, if the equilibrium strategy (δ , pA, pB)
satisfies properties P1-P3, the unique specification choice rule δ is characterized
by the function X(x) = x for all x ∈ [0,1].

I.e. in fully symmetric settings, each firm chooses the specification asso-
ciated with its minimum signal. This is no longer the case in settings that are not
symmetric w.r.t. specifications.

Lemma 5. In independent asymmetric settings where HB f.o.s.d. HA (resp. HA
f.o.s.d. HB), if the equilibrium strategy (δ , pA, pB) satisfies properties P1-P3, the
unique specification choice rule δ is characterized by an increasing and differen-
tiable function X s.t. X(x)≤ x (resp. X(x)≥ x) for all x ∈ [0,1), and X(1) = 1.

The left-hand (resp. right-hand) panel of Fig. 2 illustrates the specification
choice rule δ by depicting the function X that arises if HB f.o.s.d. HA (resp. HA
f.o.s.d. HB).15 Types si above the solid black curve in both panels of Fig. 2 (which
represents the graph of X) choose specification A, while types si below the solid
black curve choose specification B.

3.3 Equilibrium pricing functions

In correlated symmetric settings, where the specification choice rule is character-
ized by the function X(x) = x, the pricing functions for the two specifications are

15Given a joint density f (sA,sB) = asA+(2−a)sB, a function X of the form in the left-hand panel
of Fig. 2 arises if a < 1, while a function X of the form in the right-hand panel arises if a > 1. Our
characterization of the equilibrium pricing functions pA and pB in Section 3.3 therefore also applies
to this class of non-independent asymmetric settings.
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Figure 2: Representative equilibrium specification choice rules in independent
asymmetric settings

identical: pA(x) = pB(x) ≡ p(x) for all x ∈ [0,1]. This means that in a symmetric
equilibrium (δ , p) each firm i offers the specification associated with its minimum
signal at the price p(si

mi
). The following result completes our equilibrium charac-

terization for correlated symmetric settings:

Proposition 1. In correlated symmetric settings, the unique symmetric equilibrium
(δ , p) that satisfies properties P1-P3 features the following pricing function:

p(x) =
n−1

nω(x)n−1

∫ 1

x
ω(r)n−2 (r+E[sk |sk > r,sl = r ]+ (n−2)E[sk |sk,sl > r ])dr

+
n−1

nω(x)n−1 (n−1)
∫ 1

x
ω(r)n−2 (2r+(n−2)E[sk |sk,sl > r ])dr (2)

where ω(x)≡ Pr{sA,sB > x}.

Appearances notwithstanding, the pricing function p in Proposition 1 has a
neat interpretation. To see this, suppose that firm i’s minimum signal takes the value
r, and pertains to specification k. Suppose also that firm i is the chosen supplier. In
the symmetric equilibrium, where all firms use the same increasing pricing function,
this implies that firm i’s minimum signal r is lower than the minimum signals of



all other firms. Now consider the second term of (2), where the expression 2r +
(n−2)E[sk |sk,sl > r ] captures firm i’s expected production cost of specification k
if the minimum signal of one other firm is r and pertains to specification k, while
the minimum signals of the remaining n− 2 firms are all greater than r. Next,
consider the first term of (2), where the expression r + E[sk |sk > r,sl = r ] + (n−
2)E[sk |sk,sl > r ] captures firm i’s expected production cost of specification k if
the minimum signal of one other firm is r and pertains to specification l, while the
minimum signals of the remaining n−2 firms are all greater than r. This reveals that
the equilibrium price of any firm i equals the expected production cost of its chosen
specification when its own minimum signal is equal to the lowest minimum signal
amongst its n− 1 competitors. In computing these expected production cost, firm
i must account for the fact that the lowest minimum signal among its competitors
can pertain either to the same specification as its own minimum signal (see second
term of (2)), or to the other specification (see first term of (2)).

We now turn to independent asymmetric settings, in which it is no longer the
case that a single function p suffices to generate the price for both specifications.16

The reason is that in any setting where the specification choice rule is as shown in
the left-hand panel of Fig. 2, the pricing function for specification A must be defined
piecewise: one function p̆ for types si s.t. si

A < X−1(0), and another function p̄ for
types si s.t. si

A≥X−1(0). The pricing functions pA and pB are then given as follows:

pA(x) =

{
p̆(x) if 0≤ x < X−1(0)
p̄(x) if X−1(0)≤ x≤ 1

(3)

and
pB(x) = p̄(X−1(x)), where X−1(0)< x≤ 1 (4)

The next proposition completes the equilibrium characterization for inde-
pendent asymmetric settings by stating the functions p̄ and p̆ if HB f.o.s.d. HA.17

16Recall that “asymmetry” here refers to the shape of the joint density f from which each firm’s
type is drawn, rather than different type-distributions across the n firms. We therefore do not en-
counter here the challenges associated with the analytical characterization of equilibrium strategies
in the first-price auction when bidders’ types are drawn from different distributions, as e.g. studied
by Kaplan and Zamir (2010) for private-value settings, or Cheng and Tan (2010) for common-value
settings.

17Observe that once we know the equilibrium pricing functions for this case, we automatically
know the pricing functions for settings where HA f.o.s.d. HB. The reason is that for any joint
density f (sA,sB) s.t. X is as shown in the right-hand panel of Fig. 2, we can define a new density
f̂ (sA,sB) = f (sB,sA), for which the associated function X̂ is as shown in the left-hand panel of Fig.
2, with X(sA) = X̂−1(sA) for all sA ∈ [0,1].



Proposition 2. In independent asymmetric settings where HB f.o.s.d. HA, the unique
symmetric equilibrium (δ , pA, pB) that satisfies properties P1-P3 features the fol-
lowing pricing functions: for all x ∈ [X−1(0),1],

p̄(x) =
n−1

nω(x)n−1

∫ 1

x
ω(r)n−2 (r+(n−1)EA[sA |sA > r ])X ′(r)(1−HA(r))hB(X(r))dr

+
n−1

nω(x)n−1

∫ 1

x
ω(r)n−2 (2r+(n−2)EA[sA |sA > r ]) (1−HB(X(r)))hA(r)dr

(5)

where ω(x)≡ Pr{sA > x,sB > X(x)}; and for all x ∈ [0,X−1(0)],

p̆(x) =
n−1

n(1−HA(x))
n−1

∫ X−1(0)

x
(1−HA(r))

n−2 (2r+(n−2)EA[sA |sA > r ])hA(r)dr

+

(
1−HA(X−1(0))

)n−1 p̄(X−1(0))

(1−HA(x))
n−1 (6)

In the Appendix we provide a unified proof of Propositions 1 and 2 by as-
suming that X is an increasing and differentiable function with X−1(0) ≥ 0 and
X(1) = 1. This assumption covers specification choice rules of the form in the
left-hand panel of Fig. 2, as well as the specification choice rule for correlated sym-
metric settings in Lemma 3. Given the functions p̆ and p̄, the pricing function p for
correlated symmetric settings (where X−1(0) = 0) is given by p(x) = p̄(x) for all
x ∈ [0,1].18

4 Direct revelation mechanisms
In this section, we adopt a mechanism design approach to the study of procurement
procedures at the buyer’s disposal. By the revelation principle, we can restrict our
study of procurement procedures to the class of direct revelation mechanisms.

Definition 3. A social choice rule (SCR) is a function Q : Sn→ ∆(K× I), assigning
to each s∈ Sn probabilities {Qi

k(s)}(k,i)∈K×I , where ∀s∈ Sn: 0≤Qi
k(s)≤ 1 ∀(k, i)∈

K× I and ∑(k,i)∈K×I Qi
k(s) = 1.

18To account for the fact that the fully symmetric version of our model allows for correlated cost-
signals, while the asymmetric case assumes signal independence, the proof derives the functions p̄
and p̆ in terms of general conditional distributions Fk|l and marginal densities fk (where k, l ∈ K,
l 6= k).



Definition 4. A direct revelation mechanism (DRM) is a pair (Q,T ), where T :
Sn→R|I| is a payment scheme, with s 7→ T (s) = (T1(s), . . . ,Tn(s)).

For a given DRM (Q,T ), define for every i ∈ I and every report ri ∈ S
a conditional expected payment function ti(ri) ≡ E

[
Ti(ri,s−i)

]
and a conditional

expected probability assignment function qi(ri) ≡ (qi
A(r

i),qi
B(r

i)), with qi
k(r

i) ≡
E
[
Qi

k(r
i,s−i)

]
for all k ∈ K. If all other firms report truthfully their types s−i and

firm i reports a type ri instead of its true type si, we write i’s expected profit as
ui(ri,si) ≡ ti(ri)−E

[
∑k∈K Qi

k(r
i,s−i)Ck(sk)

]
. Denote by µi(si) ≡ ui(si,si) firm i’s

expected profit from truthful revelation of its type, and let ci(si)≡E
[
∑k∈K Qi

k(s)Ck(sk)
]

be firm i’s expected production cost when it reports truthfully its type. We can then
express i’s expected payment in a DRM as ti(si) = µi(si) + ci(si). As the firms’
types are privately observed, in practice we can only implement incentive compati-
ble DRMs.

Definition 5. (Q,T ) is incentive compatible if ∀i ∈ I, ∀si,ri ∈ S: µi(si)≥ ui(ri,si).

We assume that participation in any DRM is voluntary for the firms, and
that each firm can guarantee itself a profit of zero by opting out of any proposed
DRM.

Definition 6. (Q,T ) is individually rational if ∀i∈ I, ∀si ∈ S: µi(si) = ui(si,si)≥ 0.

We evaluate DRMs according to the level of expenditure that the buyer ex-
pects to commit ex ante to the purchase of the good.

Definition 7. Ex ante expenditure associated with (Q,T ) is E [∑i∈I Ti(s)].

Definition 8. (Q,T ) is optimal if it minimizes ex ante expenditure among all incen-
tive compatible and individually rational DRMs.19

5 Expenditure minimization
Implementable DRMs. We now translate into our setting the standard character-
ization of incentive compatible DRMs when agents have multidimensional types.
Because the proof of this result is familiar from the literature, we omit it.20

19We have in mind a setting in which the buyer must purchase the good, and therefore does not
have the option of setting a price-ceiling for the good.

20For a proof see, e.g., Theorem 3.1 in Jehiel and Moldovanu (2001). Alternative sources include
Jehiel et al. (1999), Krishna and Perry (2000) and Rochet (1987).



Proposition 3. For given SCR Q and interim expected payments τi ∈ R to the
boundary types si = (1,1) ≡ 1, there exist payments Ti for all i ∈ I s.t. (Q,T ) is
incentive compatible, individually rational, and ti(1) = τi, if and only if:

(i) qi is monotone and conservative for all i ∈ I,
(ii) τi ≥ ci(1) for all i ∈ I.

Moreover, firm i’s interim expected payment ti associated with Ti is given by:

ti(si) = ti(1)− ci(1)+ ci(si)+
∫

Γ(si,1)
qi ·dα (7)

for all i ∈ I and all si ∈ S, and for any continuous, piecewise smooth path Γ in S
joining si and the boundary type 1.

Ex ante expenditure. In the spirit of Myerson (1981)’s approach to optimal auc-
tion design, we now derive a manageable expression for ex ante expenditure by
incorporating binding feasibility constraints into the buyer’s objective function. In
classic mechanism design settings with one-dimensional private information, the
only binding constraint is that interim payments ti be determined by the SCR, up to
an additive constant. For settings with multi-dimensional private information such
as ours, Jehiel and Moldovanu (2001) show that an additional constraint is bind-
ing, namely that the conditional expected probability assignment functions qi be
conservative (see item (i) of Proposition 3). In order to mimic Myerson (1981)’s
approach, we therefore have to find a way of explicitly incorporating this awkward
constraint into the buyer’s objective function. To do this, we exploit an equivalent
property: The statement that qi is conservative is equivalent to saying that, for any
type si, the value of the path integral of qi in (7) is the same for any continuous,
piecewise smooth path joining types si and 1. This property is called path indepen-
dence. It implies, in particular, that we obtain the same value for firm i’s interim
expected payment ti(si) regardless of whether we calculate the path integral in (7)
along path Γ1 or along path Γ2, both shown in Fig. 3. Using this implication of path
independence, we obtain as a corollary to Proposition 3 the following result:

Corollary 1. For every si ∈ S the interim expected payment ti associated with an
incentive compatible DRM (Q,T ) can be expressed equivalently by evaluating the
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Figure 3: Two paths of integration

path integral of qi between si and 1 along path Γ1 (cf. (8)) or along path Γ2 (cf.
(9)):

ti(si) = ti(1)− ci(1)+ ci(si)+
∫ 1

si
A

qi
A(x,s

i
B)dx+

∫ 1

si
B

qi
B(1,x)dx (8)

= ti(1)− ci(1)+ ci(si)+
∫ 1

si
B

qi
B(s

i
A,x)dx+

∫ 1

si
A

qi
A(x,1)dx. (9)

We can now state a manageable expression for ex ante expenditure when
the buyer uses a DRM that generates interim payments ti that satisfy the equality in
Corollary 1. To obtain this expression, we have computed the ex ante expected
payment E[ti(si)] to any firm i by making use of both equations (8) and (9) in
Corollary 1.21 In particular, for types si s.t. si

B < si
A, we have used the expression

for ti(si) in (8), and for types si s.t. si
A < si

B, we have used the expression for ti(si)
in (9). By adding up the individual firms’ ex ante payments, we can then write ex
ante expenditure solely in terms of the probabilities Qi

k that constitute the SCR Q.

21Note that our approach here differs form the one taken by Armstrong (1996) in a monopoly
screening setting. When translated to our setting, his approach means computing ex ante expenditure
under an incentive compatible DRM along a single path (the straight line from type si to the boundary
type 1). However, in our setting it is not clear how to then derive conditions on the signal-density
f s.t. a DRM which minimizes pointwise ex ante expenditure satisfies the binding requirement that
the conditional expected probability assignment functions qi are conservative.



Proposition 4. For any incentive compatible DRM (Q,T ) the buyer’s ex ante ex-
penditure ∑i∈IE[ti(si)] is:22

∫
Sn

∑
i∈I

∑
k,l∈K
l 6=k

(
Qi

k(s)

[
Ck(sk)+

F(si
k

∣∣si
l )

f (si
k

∣∣si
l )

]
+
[
Qi

k((s
i
k,1),s

−i)−Qi
k(s)
] F(si

mi

∣∣si
l )

f (si
k

∣∣si
l )

)
g(s)ds

+∑
i∈I

(ti(1)− ci(1))

With exception of the constants ti(1)− ci(1), all terms in the expression for
ex ante expenditure in Proposition 4 are fully determined by the SCR Q. The key
advantage of expressing ex ante expenditure in this way is that we can gain a bet-
ter understanding for the sources of firms’ information rents in our setting. For
this purpose, it is instructive to compare ex ante expenditure in Proposition 4 with
ex ante expenditure in a benchmark model with one-dimensional private informa-
tion: Consider a procurement setting with n firms and a single product specification.
The firms’ production cost are common and given by C(σ1, . . . ,σn)≡ (1/n)∑i∈I σi,
where the cost-signals σi ∈ [0,1] are i.i.d. random variables with distribution H, ob-
served privately by each firm i (i ∈ I). In this setting, a SCR assigns to each signal-
vector σ ≡ (σ1, . . . ,σn) probabilities Qi(σ) (one for each firm i), where Qi(σ) is
the probability that the good is purchased from firm i when the firms’ signals are σ .
Using standard steps from the mechanism design literature with one-dimensional
private information, we obtain the following expression for the buyer’s ex ante ex-
penditure in this benchmark setting:∫
[0,1]n

∑
i∈I

(
Qi(σ)

[
C(σ)+

H(σi)

h(σi)

])
h(σ1) · . . . ·h(σn)dσ +∑

i∈I
(ti(1)− ci(1)) (10)

Now compare this benchmark expression for ex ante expenditure with the
one in Proposition 4 (with i.i.d. cost signals si

k for comparability). There, if a firm
is chosen to produce specification k, it receives information rents of H(si

k)/h(si
k)

which are needed to ensure truthful revelation of the signal pertaining to specifica-
tion k. This source of information rents is present also in the benchmark setting (see

22We write Qi
k((s

i
k,1),s

−i) for the probability that supplier i is chosen to supply specification k
when his k-signal is si

k, and the cost-signal for the other specification is 1. I.e. for k = A we have
Qi

A((s
i
A,1),s

−i) and for k = B we have Qi
B((1,s

i
B),s−i). Also, when there is no risk of confusion,

we ease notation by writing F(si
k

∣∣si
l ) for the conditional distribution Fk|l (si

k

∣∣si
l ), f (si

k

∣∣si
l ) for the

conditional density fk|l (si
k

∣∣si
l ), and f (si

k) for the marginal density fk(si
k).



equation (10)). However, ex ante expenditure in Proposition 4 features an additional
term that influences a firm’s level of information rents:[

Qi
k((s

i
k,1),s

−i)−Qi
k(s)
]

H(si
mi
)/h(si

k)

This term awards additional rents to firm i if the probability of being chosen to pro-
duce specification k increases in firm i’s l-signal. Intuitively, this term recognizes
that any firm can always make any one of its two signals look relatively more at-
tractive by exaggerating the realization of the other signal. Thereby, the firm can
reveal truthfully one of its signals, while manipulating the relative cost of the two
specifications. In order to deter manipulations of this kind, extra information rents
may be necessary.

Properties of optimal DRMs. We now investigate properties of optimal DRMs
in our setting by looking for SCRs that minimize ex ante expenditure in Proposition
4. For this purpose, we propose the following optimization problem of the buyer:

Choose a SCR Q and interim payments ti(1) to the boundary type 1 of each firm
i so as to minimize ex ante expenditure:∫

Sn

∑
i∈I

∑
k,l∈K
l 6=k

Qi
k((s

i
k,1),s

−i)
F(si

mi

∣∣si
l )

f (si
k

∣∣si
l )

g(s)ds

+
∫
Sn

∑
i∈I

Qi
Mi
(s)

(
CMi(sMi)+

F(si
Mi

∣∣si
mi
)−F(si

mi

∣∣si
mi
)

f (si
Mi

∣∣si
mi
)

)
g(s)ds

+
∫
Sn

∑
i∈I

Qi
mi
(s)Cmi(smi)g(s)ds+∑

i∈I
(ti(1)− ci(1)) (11)

subject to the constraints that for every firm i ∈ I:
(i) the function qi be monotone,

(ii) ti(1)≥ ci(1).

In this optimization problem, the objective function is given by ex ante ex-
penditure in Proposition 4, however expressed equivalently in terms of the firms’
minimum and maximum signals si

mi
and si

Mi
, resp. Recall that this objective func-

tion explicitly incorporates the constraint that for every firm i, the expressions for
interim payments ti in equations (8) and (9) must be equal for all si ∈ S. While
this is only one manifestation of the path independence requirement of incentive



compatible DRMs, we show below that it is sufficient to ensure that the functions
qi are conservative, as required by item (i) of Proposition 3. To see this, note first
that any DRM that solves the buyer’s optimization problem above must involve
ti(1) = ci(1). This implies that the individual rationality constraint is binding only
for the boundary type 1. We can therefore characterize optimal DRMs solely in
terms of the SCR Q. While we are unable to fully characterize SCRs that minimize
the objective function above, we can derive the following necessary feature that any
solution to the above optimization problem must display: A firm is only ever se-
lected to produce the specification associated with its minimum signal. This result
is established by looking for SCRs that contribute to pointwise minimization of the
components of ex ante expenditure in lines two and three of (11) when the mono-
tonicity constraints are disregarded. Note that pointwise minimization of the full
objective function in (11) appears intractable because, in addition to determining
probabilities Qi

k at any given type-vector s in the interior of Sn, one has to simul-
taneously determine the probabilities Qi

k for types ((si
k,1),s

−i) on the boundary of
Sn.

Proposition 5. If Q minimizes ex ante expenditure, then Qi
Mi
(s) = 0 for all s in the

interior of Sn and all i ∈ I.

It is important to note that monotonicity of the functions qi (as required by
item (i) of Proposition 3) is not compromised by the use of SCRs that satisfy the
property in Proposition 5. In other words, any SCR that solves the buyer’s opti-
mization problem inclusive of monotonicity constraint (i) must have the property in
Proposition 5.23 We can show furthermore:

Proposition 6. If a SCR Q satisfies the necessary condition for optimality in Propo-
sition 5 and features conditional expected probability assignment functions qi s.t.
(8) and (9) in Corollary 1 are equal, there exists ρi : [0,1]→ [0,1] s.t. ∀i∈ I, ∀si ∈ S:

qi
A(s

i) =

{
ρi(si

A) if si
A < si

B
0 if si

A > si
B

and qi
B(s

i) =

{
0 if si

A < si
B

ρi(si
B) if si

A > si
B.

(12)

Recall from item (i) of Proposition 3 that incentive compatible DRMs fea-
ture monotone conditional expected probability assignment functions. By Propo-
sition 6, any optimal incentive compatible DRM therefore features monotonically

23Intuitively, monotonicity does not conflict with the property in Proposition 5, because for any
type-vector s ∈ Sn s.t. specification k ∈ K is chosen, there is at least one firm s.t. mi = k. I.e.
when minimizing information rents required for the purchase of specification k, there exists always
a firm i which, if chosen as supplier of specification k, will not need to be paid the rent component
(F(si

Mi

∣∣si
mi
)−F(si

mi

∣∣si
mi
))/ f (si

Mi

∣∣si
mi
) in (11). This component is positive for all si regardless of

the distribution F , and it is therefore immaterial how it behaves as a function of si.



decreasing functions ρi. I.e. we can restrict our search for expenditure-minimizing
DRMs to SCRs that display these characteristics:

Proposition 7. Any SCR Q with conditional expected probability assignment func-
tions qi in Proposition 6 and decreasing functions ρi can be part of an incentive
compatible DRM.

Proposition 7 confirms that our approach of taking into account a single im-
plication of the path-independence property of incentive compatible DRMs (in the
form of Corollary 1) sufficiently restricts the class of admissible DRMs so that the
associated conditional expected probability assignment functions qi are conserva-
tive, as required by item (i) of Proposition 3. The MPM of Section 3 is an example
of a SCR that satisfies the necessary condition for optimality in Proposition 5. The
conditional expected probability assignment functions qi associated with the MPM
are given by (12), with ρi(x) =

∫ 1
x (1−F(x |r )) f (r)dr for all x∈ [0,1]. Fig. 4 shows

the SCR associated with the MPM when there are n = 2 firms. The left-hand panel
displays the chosen specification-firm-pair for a given type s1 s.t. s1

A < s1
B and all

possible types s2 of firm 2. The right-hand panel shows the chosen specification-
firm-pair for given s1 s.t. s1

A > s1
B and all s2 ∈ S. The shaded grey areas in both

panels of Fig. 4 highlight all types s2 s.t. the MPM, for given s1, fails to select the
efficient specification. This raises the question if there exist implementable DRMs
that select the efficient specification for all type-vectors s ∈ Sn, and if so, whether
such a DRM may, in fact, be optimal. We address this question in the next section.

6 Optimality vs efficiency
While a full characterization of optimal (i.e. expenditure-minimal) DRMs has
proved difficult to obtain, we can show that no optimal DRM will deliver an ef-
ficient specification choice for every type-vectors s ∈ Sn. This means that the buyer
will have to decide at the outset whether to forego efficiency in order to reduce his
expected payment for the good, or to accept the inevitability of higher expenditure
in return for a guaranteed efficient specification choice. Before exploring more for-
mally this trade-off between efficiency and optimality, we start by defining efficient
SCRs:

Definition 9. A SCR Q is efficient if ∀s ∈ Sn: ∑i∈I si
A < ∑i∈I si

B⇒ ∑i∈I Qi
A(s) = 1,

and ∑i∈I si
A > ∑i∈I si

B⇒ ∑i∈I Qi
B(s) = 1.
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Figure 4: SCR associated with MPM in correlated symmetric setting with n = 2
firms

In order to show that efficient and implementable DRMs exist in our setup,
consider the following SCR Q̂ that selects by means of a random device a supplier
to produce the efficient specification. I.e. for all i ∈ I and all k, l ∈ K, l 6= k:

Q̂i
k(s)≡

{
λi if ∑i∈I si

k < ∑i∈I si
l

0 if ∑i∈I si
k > ∑i∈I si

l

where λi denotes the probability that firm i is chosen to produce the efficient spec-
ification, with 0≤ λi ≤ 1, ∑i∈I λi = 1. Now consider the payment scheme T̂ under
which each firm i receives a constant amount T̂i equal to the expected production
cost of the boundary type si = 1 under SCR Q̂ : T̂i(s)≡ λiĉi(1) for all s ∈ Sn, where
ci(1) = E

[
∑k∈K Qi

k(1,s
−i)Ck(1,s−i

k )
]
. We can show:

Proposition 8. The efficient DRM (Q̂, T̂ ) is incentive compatible and individually
rational.

The proof is omitted as the result follows immediately from the fact that
if all other firms report truthfully their types s−i, then firm i minimizes expected
production cost by reporting truthfully its own type. This is because each firm
has a positive chance of being chosen to produce the efficient specification. By
misrepresenting its type, firm i faces a positive chance of having to produce the
more costly specification. This is not profitable as each firm’s payment is constant.
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Figure 5: Efficient SCR Q̄ in correlated symmetric setting with n = 2 firms

Observe that the efficient DRM (Q̂, T̂ ) does not satisfy the necessary condition for
expenditure-minimization in Proposition 5, as each firm has a positive chance of
being chosen to supply the efficient specification regardless of whether its minimum
signal pertains to the efficient specification or not.

We now address the question whether an optimal DRM can ever be efficient
in the sense of Definition 9. From Section 5 on expenditure minimization we know
that, within the class of all implementable DRMs, an expenditure-minimal DRM
must display the property in Proposition 5, by which no firm is chosen to supply the
specification associated with its maximum signal. Therefore, if an optimal DRM is
efficient, the SCR associated with it must be both efficient and display the necessary
property for expenditure-minimization in Proposition 5. However, as we show now,
such SCRs exist only in correlated symmetric settings with n = 2 firms. It follows
immediately that in all other settings, no optimal DRM will be efficient. To see that
efficiency and the necessary condition in Proposition 5 are compatible only in very
special cases, consider the SCR Q̄ in Fig. 5. It is obvious that Q̄ is efficient and
satisfies the condition in Proposition 5. To see that Q̄ is also incentive compatible,
note that it gives rise to expected probability assignment functions q̄i of the form in
Proposition 6, with ρ̄i(x) = 1/2 for all x ∈ [0,1]. We can show furthermore:

Proposition 9. In correlated symmetric settings with n = 2 firms, the only efficient
SCR that satisfies the necessary condition for expenditure-minimization in Proposi-
tion 5 is Q̄ in Fig. 5.



Observe that incentive compatibility of the efficient SCR Q̄ relies crucially
on symmetry w.r.t. specifications. If the type-distribution is not symmetric around
the 45◦-line, the two events in the left-hand panel of Fig. 5 where firm 1 is chosen
to produce specification A (labeled by “A1”) will no longer generate an expected
probability assignment function q1

A(s
1) that is constant for all s1 s.t. s1

A < s1
B. In

particular, it will hold that ∂ q̄1
A(s

1)/∂ s1
B 6= ∂ q̄1

B(s
1)/∂ si

A = 0, which constitutes a
violation of incentive compatibility.24 Note furthermore that the construction in
Fig. 5 does not generalize to settings with three or more firms, even if the type-
distribution is symmetric. To see this, let n = 3. Suppose that s1

A < s1
B and define

s̄A ≡ s2
A + s3

A and s̄B ≡ s2
B + s3

B. Specification A is efficient if s̄B > (s1
A− s1

B)+ s̄A.
Otherwise, specification B is efficient. In this case, the necessary condition for
expenditure-minimization in Proposition 5 requires that firm 1 not be chosen as
s1

A < s1
B. Now adapt as follows the construction of Q̄ in Fig. 5: Apart from events

Σ ≡
{
(s̄A, s̄B) : (s1

A− s1
B)+ s̄A < s̄B < s̄A

}
and Σ̂ ≡

{
(s̄A, s̄B) : s̄B > (s1

B− s1
A)+ s̄A

}
,

firm 1’s probability of being chosen is zero. In events Σ and Σ̂, choose with equal
probability among all firms whose minimum signals pertains to specification A.
This means that firm 1 is chosen with positive probability, but the precise magni-
tude of this probability depends on the realizations of types s2 and s3 of the other
firms. In particular, in event Σ there can be at most one other firm whose minimum
signal pertains to A, so that firm 1 is chosen to supply specification A either with
probability 1 or with probability 1/2. In event Σ̂ there is at least one other firm
whose minimum signal pertains to A, so that firm 1 is chosen to supply specifica-
tion A either with probability 1/2 or with probability 1/3. Consequently, firm 1’s
expected probability of being chosen differs across the events Σ and Σ̂. It is not hard
to verify that q1

A(s
1), given by Pr{(s̄A, s̄B) ∈ Σ∪ Σ̂}, violates the necessary condi-

tion for incentive compatibility in footnote 24. In summary, apart from correlated
symmetric settings with two firms, there exists no incentive compatible SCR that is
both efficient and satisfies the necessary condition for expenditure-minimization in
Proposition 5.

We now turn to correlated symmetric settings with two firms. Here, we need
to address the question if the efficient SCR Q̄ in Fig. 5 can ever be optimal overall,
i.e. minimize expenditure within the class of all implementable SCRs. To show that
the answer to this question is No, observe that if Q̄ is expenditure-minimal overall,
it also has to be expenditure-minimal within the restricted class of efficient SCRs.
However, it is not hard to show that Q̄ is not expenditure-minimal in this restricted
class, because the efficient DRM (Q̂, T̂ ) (with λ1 = λ2 = 1/2) generates lower ex

24By item (i) of Proposition 3, incentive compatibility requires q̄i to be conservative. A necessary
condition for qi to be conservative is that ∂ q̄i

A(s
i)/∂ si

B = ∂ q̄i
B(s

i)/∂ si
A = 0 ∀i∈ I and ∀si ∈ S at which

q̄i is differentiable (see Theorem 1.2 in chapter VII,§1, of Lang, 1987).



ante expenditure than the efficient DRM featuring SCR Q̄ in Fig. 5. This can be
seen from a comparison of ex ante expenditure under these two efficient DRMs,
which amounts to a comparison of the firms’ information rents under Q̂ and Q̄.25

Under Q̂ (with λ1 = λ2 = 1/2), the conditional expected probability assignment
functions q̂i are:

q̂i
A(s

i) =

{ 1
2(1−πB(si)) if si

A < si
B

1
2πA(si) if si

A > si
B

and q̂i
B(s

i) =

{ 1
2πB(si) if si

A < si
B

1
2(1−πA(si)) if si

A > si
B

where πA(si) denotes the probability that specification A is efficient when firm i’s
type is s.t. si

A > si
B, and πB(si) denotes the probability that specification B is efficient

when firm i’s type is s.t. si
A < si

B. Now fix any type si with si
k < si

l (k, l ∈ K, l 6= k)
and compute firm i’s information rents under Q̄ and Q̂, resp:26

∫
Γ(si,1)

q̄idα =
1
2
(1− si

k)>
∫

Γ(si,1)

q̂idα =
1
2
(1− si

k)−
1
2

πl(si)(si
l− si

k)

This comparison shows that for any given type si, SCR Q̄ awards each firm higher
information rents than Q̂. Consequently, ex ante expenditure is lower under (Q̂, T̂ )
(with λ1 = λ2 = 1/2) than under an efficient DRM featuring SCR Q̄. We can there-
fore conclude that any DRM that is optimal among all implementable DRMs (and
therefore generates ex ante expenditure at least as low as an expenditure-minimal
efficient DRM) cannot involve SCR Q̄ in Fig. 5. But since Q̄, as stated in Proposi-
tion 9, is the only efficient SCR to satisfy the necessary condition for expenditure-
minimization in Proposition 5, it follows that even in correlated symmetric settings
with two firms an optimal DRM will not be efficient.

At this point, it may be helpful to offer an intuition for why the condition in
Proposition 5 is necessary for expenditure-minimization among all implementable
DRMs, but is not necessary when attention is restricted to the class of efficient
DRMs. Recall that Proposition 5 was established by partially minimizing point-
wise ex ante expenditure in (11) in the absence of any constraints on the SCRs
considered. However, when looking for an expenditure-minimal efficient SCR, ex
ante expenditure in (11) must be minimized subject to the ex post constraint of

25Recall that in an implementable DRM, the buyer’s expenditure consists of two components.
The first is a reimbursement of (expected) production cost, and the second is the firms’ information
rents. The information rents under Q̂ and Q̄ can be computed as path-integrals of the conditional
expected probability assignment functions q̂i and q̄i, resp. The reimbursement of production cost
is, of course, the same under any two efficient DRMs, so that any difference in ex ante expenditure
between two efficient DRMs is driven solely by the different levels of information rents.

26If k = A and l = B, we use integration-path Γ2 in Fig. 3 to compute firm i’s information rents
under Q̂ and Q̄, while for k = B and l = A we use Γ1.



MPM

Q
`

Q

Β15 Β14 Β13 Β25 Β24 Β12 Β35 Β23 Β34 Β45 Β55 Β44 Β33 Β22 Β11 Β54 Β43 Β32 Β53 Β42 Β21 Β52 Β31 Β41 Β51

0.5

1.0

1.5

E@Úi=1
2 TiHsLD

Figure 6: Ex ante expenditure under MPM and the SCRs Q̂ and Q̄ for 25 Beta-
distributions

efficient specification choice. Fig. 5 shows that within this restricted class, the de-
cision to select at every type-pair (s1,s2) in the interior of S2 the supplier whose
minimum signal pertains to the efficient specification (as required by the condition
in Proposition 5) determines fully the choice of supplier at all associated type-pairs
((si

k,1),s
−i) on the boundary of S2 (for all k ∈ K and i = 1,2). Therefore, when

minimizing (11) subject to efficiency constraints, the values of the SCR Q at in-
terior type-pairs cannot be chosen independently of the values of Q at boundary
type-pairs. This contrasts with the partial pointwise minimization of (11) in the ab-
sence of a restriction to efficient SCRs (as in the proof of Proposition 5). There, any
decision as to which firm supplies each specification at interior type-pairs does not
restrict the choice of supplier for type-pairs on the boundary. Consequently, while
the condition in Proposition 5 is necessary for pointwise minimization of (11) in the
absence of ex post constraints on Q, it is not necessary for expenditure-minimization
within the class of efficient SCRs.

To conclude this section, we provide a numerical comparison of ex ante ex-
penditure under the MPM (which satisfies the necessary condition for expenditure
minimization in Proposition 5) and the efficient SCRs Q̂ (with λ1 = λ2 = 1/2) and
Q̄. For our simulations, the results of which are displayed in Fig. 6, we restrict
ourselves to the independent symmetric case (i.e. f (sA,sB) = h(sA)h(sB)) where



the distribution H is given by 25 different Beta-distributions.27 While we do not
know if the MPM is an optimal DRM, our numerical comparisons reveal that the
MPM performs better than the efficient DRM (Q̂, T̂ ) for all 25 Beta-distributions,
and does particularly well for those distributions that concentrate probability mass
on low cost signals (such as the Beta-distribution β15 with parameters a = 1 and
b = 5), where the MPM generates a level of ex ante expenditure that is less than
50% of expenditure associated with efficient DRM (Q̂, T̂ ). The advantage of the
MPM over (Q̂, T̂ ) becomes less pronounced for Beta-distributions that concentrate
probability mass on high cost-signals (e.g. under the Beta-distribution β51, where
ex ante expenditure in the MPM reaches approx. 98% of ex ante expenditure under
Q̂).

7 Conclusion
We have introduced a simple common-value procurement model in which both the
specification and the price of the good matter. We have shown that the minimum
price mechanism, which is a very natural procurement procedure, is both ineffi-
cient and involves lower (expected) expenditure than efficient mechanisms in many
settings. The main technical contribution of this paper was to suggest a pragmatic
approach for taking account of incentive compatibility constraints in mechanism de-
sign settings with multi-dimensional private information. In future work, we plan
to explore if the techniques developed here can also be useful in other mechanism
design settings with multi-dimensional private information.

8 Appendix

8.1 Proof of Lemma 1.

We have to show that if a strategy (δi, pi
A, pi

B) in the MPM satisfies properties P1-
P3, then the pricing function pi

A fully determines the pricing function pi
B. Assume

(w.l.o.g.) that the specification choice rule δi is as shown in either panel of Fig.
1. Now consider any type ŝi s.t. δi(ŝi

A, ŝ
i
B) = B. By P2, this type quotes the price

pi
B(ŝ

i
B). Now note that there exists a type s̃i, with s̃i

A = X−1
i (ŝi

B) and s̃i
B = ŝi

B, who
is indifferent between offering specification A or B. Property P2 implies that if
specification A is offered by type s̃i, the quoted price will be pi

A(s̃
i
A) = pA(X−1

i (ŝi
B)).

27We have generated these 25 distributions by letting each of the two parameters that characterize
the Beta-distribution take all integer values between 1 and 5.



If, instead, specification B is offered, the quoted price will be pi
B(ŝ

i
B). By P3, these

two prices must be the same. Therefore, pi
B(ŝ

i
B) = pi

A(X
−1(ŝi

B)).

8.2 Proof of Lemma 2.

The proof consists of three steps. In Step 1, we show that there exist symmetric
equilibria that feature a nondecreasing pricing function pA. In Step 2, we show that
a symmetric equilibrium pricing function pA must, in fact, be increasing. In Step 3,
we finally show that pA(x) is differentiable at every x ∈ [0,min{X−1(1),1}], with
the exception of x = X−1(0).

Step 1. We show here that the game induced by the MPM in Section 3.1 satisfies
the single crossing condition for games of incomplete information (SCC). The SCC
(see Definition 3 in Athey, 2001) ensures that if each firm j uses a nondecreasing
function to generate the price for its chosen specification, then there exists a best
response where firm i (i 6= j) also uses a nondecreasing function to generate its price
quote. We may then look for a symmetric equilibrium of the MPM in which all
firms use the same nondecreasing pricing functions. To show that SCC is satisfied,
we have to prove that firm i’s expected profit Πi(pi;si

k) from offering the good in
specification δi(si) = k at price pi satisfies the single crossing differences property
(SCD) when the strategy (δ , pA, pB) used by all other firms features nondecreasing
pricing functions pA and pB.28 Assuming that (δ , pA, pB) satisfies properties P1-P3,
and (w.l.o.g.) that δ is based on a function X s.t. X−1(0)≥ 0 (as illustrated in Fig.
1), each firm j uses a nondecreasing function pA to generate its price if δ (s j) = A,
and the nondecreasing function pA(X−1(·)) to generate its price if δ (s j) = B. To
obtain an expression for firm i’s expected profit Πi(pi;si

k) we need to identify, for
each competitor j, the events in which the price quoted by j is no lower than pi:

(i) Firm j offers the good in specification A: δ (s j
A,s

j
B) = A⇔ s j

B > X(s j
A). The

price pA(s
j
A) quoted by firm j is no lower than firm i’s price pi: pA(s

j
A)≥ pi.

(ii) Firm j offers the good in specification B: δ (s j
A,s

j
B) = B⇔ s j

A > X−1(s j
B). The

price pB(s
j
B) quoted by firm j is no lower than firm i’s price pi: pB(s

j
B)≥ pi.

Now define for each specification k ∈ K a function šk : R+ → R+, p 7→
šk(p), with šk(p)≡ inf{si

k ∈ [0,1] : pk(si
k)≥ p}. The value šk represents the lowest

k-signal s.t. firm j’s price for specification k is no lower than some given price p.
Note that each šk is nondecreasing, with šk(p) = 0 for all p ≤ pk(0). Assuming

28For a definition of SCD, see chapter 4.1 of Milgrom (2004).



that each pricing function pk is bounded, we also have šk(p) = ∞ for all p above
the upper bound of pk.29 Formally, the event that firm j’s price is no lower than
firm i’s price pi is: Ω(pi) ≡ {s j ∈ S : s j

A > šA(pi),s j
B > X(s j

A)} ∪ {s j ∈ S : s j
B >

šB(pi),s j
A > X−1(s j

B)}. Firm i has positive probability of winning the contract iff
all competitors j 6= i quote prices no lower than pi. This event can be described
by the Cartesian product Ω(pi)× . . .×Ω(pi) across the n−1 competitors. To ease

notation, let Ω(pi)n−1≡Ω(pi)× . . .×Ω(pi). Having identified the events where all

competitors charge a price no lower than pi, we need to account for the possibility
that, rather than winning outright, firm i’s price pi ties with the prices of one or
more competitors. For this purpose, define for every i ∈ I a tie-breaking function
Θi :Rn

+→ [0,1] s.t. Θi(p1, . . . , pn) = 1 if pi <min j 6=i p j, and Θi(p1, . . . , pn)∈ (0,1)
if pi ties with the price of at least one competitor. Otherwise, Θi(p1, . . . , pn) = 0.
We can now write as follows firm i’s expected profit from offering specification k
at price pi:30

Πi(pi;si
k)≡

∫
Ω(pi)n−1

Θi(pi,p−i(s−i))(pi−Ck(si
k,s
−i
k ))g(s−i)ds−i (A.1)

Now define Ψ(si
k)≡Πi(p̂i;si

k)−Πi(p̃i;si
k) for any two prices p̂i > p̃i quoted

by firm i for its chosen specification k. We say that Πi(pi;si
k) satisfies SCD if for

all ŝi
k > s̃i

k: Ψ(s̃i
k) > 0⇒ Ψ(ŝi

k) > 0 and Ψ(s̃i
k) ≥ 0⇒ Ψ(ŝi

k) ≥ 0. Suppose that
Ψ(s̃i

k) ≥ 0. Then, if Πi(pi;si
k) satisfies SCD, it must hold that Ψ(ŝi

k)−Ψ(s̃i
k) ≥ 0

for any ŝi
k > s̃i

k. We can express the difference Ψ(ŝi
k)−Ψ(s̃i

k) as follows:∫
Ω(p̃i)n−1

Θi(p̃i,p−i(s−i))(ŝi
k− s̃i

k)g(s
−i)ds−i

−
∫

Ω(p̂i)n−1
Θi(p̂i,p−i(s−i))(ŝi

k− s̃i
k)g(s

−i)ds−i

As šk(p̃i) ≤ š(p̂i) for all k ∈ K, it holds that Ω(p̂i) ⊆ Ω(p̃i). We can therefore
partition the set Ω(p̃i) into the disjoint subsets Ω(p̂i) and Ω(p̃i)\Ω(p̂i).31 We can

29This follows from the fact that inf∅= ∞.
30We write p−i(s−i)≡ (p1

k1
, . . . , pi−1

ki−1
, pi+1

ki+1
, . . . , pn

kn
) for the vector of prices quoted by firms j 6= i

for their respective specifications, chosen according to the specification choice rule δ . I.e. k j =
δ (s j).

31This set is {s j ∈ S : šA(p̃i) < s j
A < šA(p̂i),s j

B > X(s j
A)}∪ {s j ∈ S : šB(p̃i) < s j

B < šB(p̂i),s j
A >

X−1(s j
B)}.



now write the difference Ψ(ŝi
k)−Ψ(s̃i

k) as:∫
Ω(p̃i)n−1\Ω(p̂i)n−1

Θi(p̃i,p−i(s−i))(ŝi
k− s̃i

k)g(s
−i)ds−i

+
∫

Ω(p̂i)n−1

[
Θi(p̃i,p−i(s−i))−Θi(p̂i,p−i(s−i))

]
(ŝi

k− s̃i
k)g(s

−i)ds−i (A.2)

It is easy to see that the first term in (A.2) is nonnegative: while the integrand
is always positive, the set Ω(p̃i)n−1\Ω(p̂i)n−1 may be empty.32 To see that the
second term in (A.2) is nonnegative, observe that we are integrating over all type-
vectors s−i s.t. each competitor’s price is no lower than p̂i. For p̃i < p̂i we have
Θi(p̃i,p−i(s−i)) = 1, and therefore Θi(p̃i,p−i(s−i))−Θi(p̂i,p−i(s−i)) ≥ 0 for all
s−i ∈Ω(p̂i)n−1. We can conclude that Ψ(s̃i

k)≥ 0⇒Ψ(ŝi
k)≥ 0, which implies that

Πi(pi;si
k) satisfies SCD, as required.

Step 2. We show by contradiction that a symmetric equilibrium (δ , pA, pB) in
the space of nondecreasing strategies must feature an increasing pricing function
pA. Suppose, instead, that there exist x̃, x̂ with 0 ≤ x̃ < x̂ ≤ min{X−1(1),1} s.t.
pA(x) = p̂A for all x ∈ (x̃, x̂), pA(x) < p̂A if x < x̃, and pA(x) > p̂A if x > x̂. Note
that šA(p̂A) = x̃, that limε↓0 šA(p̂A− ε) = x̃, and that limε↓0 šA(p̂A + ε) = x̂. Now
consider firm i with A-signal si

A = x ∈ (x̃, x̂). Denoting by p̂+A the price for which
š(p̂+A ) = x̂, we can write firm i’s expected profit Πi(p̂A;x) as follows:∫

Ω(p̂A)n−1\Ω(p̂+A )
n−1

Θi(p̂A,p−i(s−i))(p̂A−CA(x,s−i
A ))g(s−i)ds−i

+
∫

Ω(p̂+A )
n−1

(p̂A−CA(x,s−i
A ))g(s−i)ds−i (A.3)

The first integral in (A.3) is over type-vectors s−i s.t. at least one firm j 6= i has a
type s j in Ω(p̂A)\Ω(p̂+A ).

33 This means that at least one competitor quotes the same
price p̂A as firm i, and therefore Θi(p̂A,p−i(s−i))< 1 for all s−i ∈Ω(p̂A)

n−1\Ω(p̂+A )
n−1.

The second integral in (A.3) is over type-vectors s−i s.t. every competitor’s price
exceeds p̂+A , which means that firm i wins outright. Now suppose that firm i deviates
to some price p̂A− ε , which yields expected profit:

Πi(p̂A− ε;x) =
∫

Ω(šA(p̂A−ε))n−1
(p̂A− ε−CA(x,s−i

A ))g(s−i)ds−i

32This happens if the pricing function pA displays a jump discontinuity, in which case šA(p̃i) =
šA(p̂i).

33This set is given by {s j ∈ S : x̃ < s j
A < x̂,s j

B > X(s j
A)}∪{s j ∈ S : šB(p̂A) < s j

B < šB(p̂+A ),s
j
A >

X−1(s j
B)}.



In the limit as ε ↓ 0:

lim
ε↓0

Πi(p̂A− ε;x) =
∫

Ω(p̂A)n−1\Ω(p̂+A )
n−1

(p̂A−CA(x,s−i
A ))g(s−i)ds−i (13)

+
∫

Ω(p̂+A )
n−1

(p̂A−CA(x,s−i
A ))g(s−i)ds−i

The profit-gain limε↓0 Πi(p̂A− ε;x)−Πi(p̂A;x) from this deviation is:∫
Ω(p̂A)n−1\Ω(p̂+A )

n−1
[1−Θi(p̂A,p−i(s−i))](p̂A−CA(x,s−i

A ))g(s−i)ds−i

which is positive as Θi(p̂A,p−i(s−i)) < 1 for all s−i ∈ Ω(p̂A)
n−1\Ω(p̂+A )

n−1. This
establishes the desired contradiction. We can therefore conclude that the equilib-
rium pricing function pA must be increasing.

We can show furthermore that the equilibrium pricing function pA must
be continuous everywhere in its domain [0,min{X−1(1),1}]. To see this, note
first that an increasing function pA can only display jump discontinuities. Sup-
pose now that pA is continuous everywhere, with the exception of a point s̄A ∈
(X−1(0),min{X−1(1),1}). At s̄A let p−A (s̄A) < p+A (s̄A), where p−A (s̄A) and p+A (s̄A)
denote the right-hand and left-hand limit of pA as sA ↑ s̄A and sA ↓ s̄A, resp. We
now ask: at which value s̄B does the pricing function pB(·) = pA(X−1(·)) fea-
ture a jump discontinuity, and what size is the jump? To answer this question,
note that pB is defined on the interval [0,min{1,X(1)}]. At sB = 0 it holds that
pB(0) = pA(X−1(0)), while at sB = min{1,X(1)} it holds that pB(min{1,X(1)}) =
pA(min{X−1(1),1}). Finally, observe that in the limit as sB ↑ X(s̄A), we have
p−B (X(s̄A)) = p−A (s̄A), and in the limit as sB ↓ X(s̄A), we have p+B (X(s̄A)) = p+A (s̄A).
We can therefore conclude that pB is continuous everywhere in [0,min{1,X(1)}],
with the exception of the point s̄B = X(s̄A), and that the size of the jump at this point
is p+B (X(s̄A))− p−B (X(s̄A)) = p+A (s̄A)− p−A (s̄A). Therefore, the size in the jump of
pB at X(s̄A) is equal to the size of the jump in pA at s̄A.

We now show by contradiction that the equilibrium pricing function pA
cannot display a jump discontinuity at s̄A. To see this, consider firm i who of-
fers specification A, and suppose its A-signal is si

A = s̄A− ε . In the limit as ε ↓ 0,
the pricing function pA prescribes a price of p−A (s̄A). With this price, we obtain
thresholds šA(p−A (s̄A)) = s̄A and šB(p−A (s̄A)) = X(s̄A). The set Ω(p−A (s̄A))

n−1 cap-
tures all type-vectors s−i s.t. firm i wins the contract. Now suppose firm i deviates
to the price p+A (s̄A). Due to the identical right-hand and left-hand limits of pA and
pB at their respective points of discontinuity, it follows that šA(p+A (s̄A)) = s̄A and
šB(p+A (s̄A)) = X(s̄A), and therefore Ω(p+A (s̄A))

n−1 = Ω(p−A (s̄A))
n−1. Consequently,

when quoting p+A (s̄A), firm i still wins against the same competitor-types s−i as with



the lower price p−A (s̄A). However, with price p+A (s̄A), firm i has strictly higher ex-
pected profit than with p−A (s̄A), which makes this a profitable deviation. Therefore,
pA is continuous everywhere in [X−1(0),min{X−1(1),1}]. It is easy to argue that
pA must also be continuous in the remainder of its domain.

Step 3. In this final step of the proof of Lemma 2, we show that an increasing
equilibrium pricing function pA is a.e. differentiable on [0,1). Suppose firm i’s of-
fers specification is A, and that its A-signal si

A is in (X−1(0),1). Due to the additive
nature of the cost function CA in (1), we can write Πi(pA(si

A);si
A) as

∫
Ω(si

A)
n−1

(
pA(si

A)−
si

A
n
−∑

j 6=i

s j
k

n

)
g(s−i)ds−i

= ω(si
A)

n−1
(

pA(si
A)−

si
A
n
+

n−1
n
E[sA

∣∣sA > si
A,sB > X(si

A)]

)
(A.4)

where Ω(si
A)≡{(sA,sB)∈ S : sA > si

A,sB >X(si
A)} and ω(si

A)=
∫ 1

si
A

∫ 1
X(si

A)
f (sA,sB)dsAdsB.

The term ω(si
A) represents the probability that any given competitor charges a price

higher than pA(si
A). Now take x,y s.t. X−1(0)< x < y < 1. In a symmetric equilib-

rium, type y must prefer the price pA(y) to the price pA(x):

Πi(p(y);y)−Πi(p(x);y)≥ 0 (A.5)

Similarly, type x must prefer the price p(x) to the price p(y):

Πi(p(x);x)−Πi(p(y);x)≥ 0 (A.6)

Setting P(si
A)≡ pA(si

A)ω(si
A)

n−1, the profit difference in (A.5) can be written as:

n(P(y)−P(x))
n−1

≥ y
n−1

(
ω(y)n−1−ω(x)n−1)

+ω(y)n−1E[sA |sA > y,sB > X(y)]

−ω(x)n−1E[sA |sA > x,sB > X(x)] (A.7)

The right-hand side of (A.7) is a lower bound on n
n−1 (P(y)−P(x)). Now note that

the terms in the second and third line of (A.7) can be written as:

E[sA |sA > y,sB > X(y)]
(
ω(y)n−1−ω(x)n−1)

+ω(x)n−1 (E[sA |sA > y,sB > X(y)]−E[sA |sA > x,sB > X(x)])



After dividing both sides of (A.7) by y− x, the lower bound on the right-hand side
of (A.7) becomes:(

y
n−1

+E[sA |sA > y,sB > X(y)]
)

ω(y)n−1−ω(x)n−1

y− x

+ω(x)n−1E[sA |sA > y,sB > X(y)]−E[sA |sA > x,sB > X(x)]
y− x

(A.8)

As ω(si
A)

n−1 and E[sA
∣∣sA > si

A,sB > X(si
A)] are integrals, they are both differen-

tiable. Therefore, in the limit as y ↓ x the expression in (A.8) converges to:

d
dy

(
x

n−1
ω(y)n−1 +E[sA |sA > y,sB > X(y)]ω(y)n−1

)∣∣∣∣
y=x

(A.9)

Using similar steps, we can show that the upper bound on n
n−1 (P(y)−P(x)) im-

plied by (A.6) also converges to the limit in (A.9) as y ↓ x. Therefore, the term
n

n−1 (P(y)−P(x)) converges to n
n−1P(x)′, which implies that the derivative p′A(x)

exists. While the above argument pertains to x ∈ (X−1(0),1), it is straightfor-
ward to show that pA(x) is differentiable also for all x ∈ [0,X−1(0)). However,
for such values x the probability that any given competitor charges a price higher
than pA(x) is given by ω(x) = 1−FA(x), which will result in a derivative p′A(x) for
x<X−1(0) that is different from the derivative p′A(x) derived above for x>X−1(0).
Therefore, while continuous everywhere, the function pA is not differentiable at
x = X−1(0).

8.3 Proof of Lemma 3.

Suppose all n firms use a strategy (δ , pA, pB) that satisfies properties P1-P3. Now
consider a firm i with type si s.t. si

A = x < 1 and si
B = X(x). By P3, firm i’s equi-

librium price quote is pA(x) = pB(X(x)), regardless of the specification it chooses.
Therefore, the event that any given competitor charges a price higher than the price
of firm i is Ω(x) ≡ {(sA,sB) ∈ S : sA > x,sB > X(x)}. The probability that firm i
wins the contract is then given by ω(x) =

∫
Ω(x) f (sA,sB)d(sA,sB), regardless of the

specification it chooses. Given the additive nature of the cost functions Ck in (1),
and the fact that the firms’ types are independent random vectors, firm i’s expected
cost of producing any specification k ∈ K are:

si
k

n
ω(x)n−1 +(n−1)ω(x)n−1

∫
Ω(x)

sk

n
f (sA,sB)

ω(x)
d(sA,sB)

As we are looking to characterize the function X s.t. the expected production cost
of the two specifications are the same, we now subtract the expected cost of B from



the expected cost of A. This yields the following equation, which defines implicitly
the function X :

(x−X(x))ω(x)n−1

+(n−1)ω(x)n−2
(∫

Ω(x)
sA f (sA,sB)d(sA,sB)−

∫
Ω(x)

sB f (sA,sB)d(sA,sB)

)
= 0

(A.10)

It is easy to rewrite this equation in the form given in Lemma 3.

8.4 Proof of Lemma 4.

Suppose the density f is symmetric around the 45◦-line: f (sB,sA) = f (sA,sB) for
all (sA,sB) ∈ S. We first show that X(x) = x is a sufficient condition for equation
(A.10) in the proof of Lemma 3 to hold. Now fix some x < 1. If X(x) = x, then
(A.10) reduces to:∫ 1

x

∫ 1

x
sA f (sA,sB)dsBdsA−

∫ 1

x

∫ 1

x
sB f (sA,sB)dsBdsA = 0

First consider the first double integral on the left-hand side. Note that we can change
the order of integration. Next, consider the second double integral, and note that we
can arbitrarily re-label the integration indices. In particular, re-label sA as sB, and
vice versa. We can therefore equivalently write the left-hand side as:∫ 1

x

∫ 1

x
sA[ f (sA,sB)− f (sB,sA)]dsAdsB

Symmetry of f ensures that this expression is zero for every (sA,sB). The next step
is to show that the condition X(x) = x is also necessary for equation (A.10) to hold.
We show this by contradiction. Fix some x < 1, and suppose that (A.10) holds.
Suppose also that x < X(x). In this case, the first term of (A.10) is negative. Now
consider the second term of (A.10). In particular, note that, due to the additivity of
the double integral, we can write:∫

Ω(x)
sA f (sA,sB)d(sA,sB)−

∫
Ω(x)

sB f (sA,sB)d(sA,sB)

=
∫ X(x)

x

∫ 1

X(x)
(sA− sB) f (sA,sB)dsBdsA

+
∫ 1

X(x)

∫ 1

X(x)
sA f (sA,sB)dsBdsA−

∫ 1

X(x)

∫ 1

X(x)
sB f (sA,sB)dsBdsA



We can change the order of integration in the second double integral. Also, in the
third double integral, we can re-label sA as sB, and vice versa. This yields:∫ X(x)

x

∫ 1

X(x)
(sA− sB) f (sA,sB)dsBdsA

+
∫ 1

X(x)

∫ 1

X(x)
sA[ f (sA,sB)− f (sB,sA)]dsAdsB

By symmetry of f this expression reduces to:34∫ X(x)

x

∫ 1

X(x)
(sA− sB) f (sA,sB)dsBdsA < 0

We can conclude that if x < X(x), then the expected cost difference in (A.10) is neg-
ative, which yields the desired contradiction. An analogous argument establishes
that the expected cost difference in (A.10) is positive if x > X(x). Therefore, it must
be the case that X(x) = x for all x ∈ [0,1). By continuity, X(1) = 1.

8.5 Proof of Lemma 5.

The proof proceeds in three steps. In Step 1 we show that X(x) ≤ x. In Step 2, we
prove that X(1) = 1, and in Step 3 we show that the derivative of X is positive.

Step 1. Assume that HB f.o.s.d. HA, which implies thatEB[sB |sB ≥ x ]≥EA[sA |sA ≥ x ]
for all x ∈ [0,1). We now show by contradiction that X(x)≤ x for all x ∈ [0,1). We
start from the premise that equation (A.10) in the proof of Lemma 3 is satisfied for
si

A = x < 1. Suppose now that X(x) > x, which implies that the first term on the
left-hand side of (A.10) is negative. Now consider the second term, noting that:∫

Ω(x)
sA f (sA,sB)d(sA,sB)−

∫
Ω(x)

sB f (sA,sB)d(sA,sB)

=
∫ x

X(x)

(∫ 1

x
sAhA(sA)dsA

)
hB(sB)dsB +

∫ 1

x

(∫ 1

x
sAhA(sA)dsA

)
hB(sB)dsB

−
∫ 1

x

(∫ 1

x
sBhB(sB)dsB

)
hA(sA)dsA−

∫ 1

x

(∫ x

X(x)
sBhB(sB)dsB

)
hA(sA)dsA

This term can be expressed equivalently as:

(1−HA(x))(HB(x)−HB(X(x)))(EA[sA |sA ≥ x ]−EB[sB |X(x)≤ sB ≤ x ])
+(1−HA(x))(1−HB(x))(EA[sA |sA ≥ x ]−EB[sB |sB ≥ x ]) (A.11)

34It is straightforward to see that this expression is negative: With sA ∈ (s,X(s)) and sB ∈ (X(s),1),
it is obvious that sA− sB < 0 for every (sA,sB).



As HB f.o.s.d. HA, it follows that the second line of (A.11) is non-positive. In
the first line of (A.11), the term EA[sA |sA ≥ x ]−EB[sB |X(x)≤ sB ≤ x ] is positive
given the assumption that X(x)> x, and therefore the first line of (A.11) is negative.
This, however, implies that both terms on the left-hand side of equation (A.10)
are negative, which establishes a contradiction to our premise that equation (A.10)
holds. An analogue argument establishes that if HA f.o.s.d. HB, then X(x) ≥ x for
all x ∈ [0,1).

Step 2. We now show that X(1) = 1. To see this, re-write equation (A.10) using
the fact that in independent asymmetric settings: ω(x)= (1−HA(x))(1−HB(X(x)).
Then substitute in the expression given in (A.11) above, and divide both sides of
the resulting equation by (1−HA(x))n−1. Easing notation by writing X instead of
X(x), we obtain:

(x−X)(1−HB(X))n−1

+(n−1)(1−HB(X))n−2 (1−HB(x))(EA[sA |sA ≥ x ]−EB[sB |sB ≥ x ])

+(n−1)(1−HB(X))n−2 (HB(x)−HB(X))(EA[sA |sA ≥ x ]−EB[sB |X ≤ sB ≤ x ]) = 0

When evaluated at x = 1, this expression reduces to:

(1−X)(1−HB(X))n−1 +(n−1)(1−HB(X))n−1 (1−EB[sB |sB ≥ X ]) = 0

It is obvious that this equation holds iff X = 1, which establishes that X(1) = 1.

Step 3. We show that X ′(x) > 0. To see this, note that equation (A.10) can also
be expressed as follows (again writing X instead of X(x) to ease notation):

x−X +(n−1)
∫ 1

x
sA

hA(sA)

1−HA(sA)
dsA− (n−1)

∫ 1

X
sB

hB(sB)

1−HB(sB)
dsB = 0

Using Leibniz’s rule to differentiate both sides of this equation w.r.t x, we obtain:

1+
(n−1)hA(sA)

1−HA(sA)
(EA[sA |sA ≥ x ]− x)

−X ′(x)
(

1+
(n−1)hB(sB)

1−HB(sB)
(EB[sB |sB ≥ X ]−X)

)
= 0

It is straightforward to solve for X ′(x), which shows that X ′(x)> 0 ∀x ∈ [0,1].



8.6 Proof of Propositions 1 and 2.

The proof proceeds in three Steps. In Steps 1 and 2, we derive the equilibrium
pricing functions in Prop. 2 from the first-order condition (f.o.c.) for a maximum
of the expected profit of an arbitrary firm i. In Step 3, we then establish formally that
the pricing functions obtained from the f.o.c. (and appropriate boundary conditions)
together constitute a symmetric equilibrium of the MPM.

Step 1. Suppose all n firms use the equilibrium specification choice rule δ . Con-
sider firm i with type si s.t. si

A = x ≥ X−1(0) and si
B > X(x). I.e. firm i offers the

good in specification A. Now consider firm i’s problem of which price to quote
for specification A, when all other firms use the equilibrium pricing functions pA
and pB in (3) and (4), resp. Suppose that firm i, instead of submitting the price
pA(x) = p̄(x), quotes some other price p̂≥ p̄(X−1(0)) for specification A. Note that
it does not pay for firm i to quote a price p̂> p̄(1), because this means that firm i will
never be chosen, resulting in a profit of zero. The same outcome can be achieved by
setting p̂ = p̄(1). Therefore, we only need to consider prices p̂∈ [p̄(X−1(0)), p̄(1)],
which is equivalent to choosing a signal-value x̂ ∈ [X−1(0)),1] (where x̂ need not
be equal to firm i’s A-signal x) and quoting the corresponding candidate equilibrium
price p̄(x̂) for specification A. The expected profit of firm i when its A-signal is x
and it quotes the price p̄(x̂) for specification A is:

Π̄i(x̂;x)≡ ω(x̂)n−1
(

p̄(x̂)− x
n
− (n−1)

∫ 1

X(x̂)

∫ 1

x̂

sA

n
f (sA,sB)

ω(x̂)
dsAdsB

)
(A.12)

where ω(x̂) = Pr{(sA,sB) ∈ Ω(x̂)}, and Ω(x̂) = {(sA,sB) ∈ S : sA > x̂,sB > X(x̂)}.
Firm i solves maxx̂ Π̄i(x̂;x), which yields the following f.o.c.:

0 = p̄′(x̂)ω(x̂)n−1 +(n−1)p̄(x̂)(ω(x̂))n−2
ω
′(x̂)

+
n−1

n
ω(x̂)n−2 (x+ x̂+(n−2)E[sA |(sA,sB) ∈Ω(x̂)])

(
1−FB|A (X(x̂) |x̂)

)
fA(x̂)+

+
n−1

n
ω(x̂)n−2 (x+E[sA |sA > x̂,sB = X(x̂)])X ′(x̂)

(
1−FA|B (x̂ |X(x̂))

)
fB(X(x̂))

+
n−1

n
ω(x̂)n−2(n−2)E[sA |(sA,sB) ∈Ω(x̂)]X ′(x̂)

(
1−FA|B (x̂ |X(x̂))

)
fB(X(x̂))

(A.13)

In a symmetric equilibrium, the optimal value of x̂ = x, so setting x̂ = x in the f.o.c.,



we obtain the differential equation:

− d
ds

p̄(x)ω(x)n−1

=
n−1

n
ω(x)n−2 (2x+(n−2)E[sA |(sA,sB) ∈Ω(x)])

(
1−FB|A (X(x) |x)

)
fA(x)+

+
n−1

n
ω(x)n−2 (x+E[sA |sA > x,sB = X(x)])X ′(x)

(
1−FA|B (x |X(x))

)
fB(X(x))

+
n−1

n
ω(x)n−2(n−2)E[sA |(sA,sB) ∈Ω(x)]X ′(x)

(
1−FA|B (x |X(x))

)
fB(X(x))

(A.14)

We now derive a boundary condition associated with this differential equa-
tion. Suppose firm i’s type si is s.t. si

A = 1 and si
B = X(1). Conditional on winning

(which occurs in the event that s j
A = s j

B = 1 for all j 6= i), the production cost of
each specification is 1. Suppose first that the equilibrium pricing function p̄ is s.t.
p̄(1)> 1. In the event that firm i is awarded the contract, it has positive profit. How-
ever, the probability that firm i is chosen with a price of p̄(1) is zero, and so firm i’s
expected profit is zero. Now consider the following deviation: firm i offers spec-
ification A at a price p̂, with 1 < p̂ < p̄(1), which corresponds to the equilibrium
price submitted by a type with A-signal p̄−1(p̂)) < 1. Therefore, firm i’s expected
profit from quoting the price p̂ is:

ω(p̄−1(p̂))n−1
(

p̂− 1
n
− (n−1)

n
E[sA

∣∣(sA,sB) ∈Ω(p̄−1(p̂))]
)

As p̂ > 1 > ((1/n) + ((n− 1)/n)E[sA
∣∣(sA,sB) ∈Ω(p̄−1(p̂))]), this constitutes a

profitable deviation, and therefore establishes a contradiction to the premise that p̄
is the equilibrium pricing function for all types s.t. si

A > X−1(0) and si
B > X(si

A).
Next, suppose that the equilibrium pricing function p̄ is such that p̄(1)< 1.

Consider firm i and suppose si
A = 1−ε , with ε > 0 but small. In the event that firm

i wins the contract (which occurs with probability (ω(1− ε))n−1), its profit is neg-
ative. Therefore, it is profitable for firm i to deviate to p̂ = 1. In the limit as ε ↓ 0,
firm i’s expected profit from quoting the price p̂ = 1 is zero. We can therefore con-
clude that the boundary condition associated with the above differential equation
is p̄(1) = 1. Given this boundary condition, the unique solution to the differential
equation (A.14) is obtained by integrating both sides of (A.14) from x to 1. How-
ever, as ω(1)= 0, the function p̄ is not defined at x= 1. To verify that p̄ nevertheless
satisfies the boundary condition p(1) = 1, we can show that limx↑1 p̄(x) = 1.35

35To show this, repeated use of L’Hôpital’s rule is required. For the sake of brevity, we omit the
details.



Step 2. Derivation of pricing function p̆. As before, suppose all n firms use the
equilibrium specification choice rule δ . Consider firm i with type si s.t. si

A = x ≤
X−1(0). I.e. firm i offers the good in specification A, irrespective of the value
of its B-signal. We again consider firm i’s problem of which price to quote for
specification A, given that other firms use the equilibrium pricing functions pA and
pB in (3) and (4), resp. Suppose that firm i, instead of submitting the price pA(x) =
p̆(x), quotes some other price p̂≤ p(X−1(0)) for specification A. Note that it does
not pay for firm i to quote a price p̂ < p̆(0), because this means that firm i will be
chosen with probability 1, but can do better by increasing its price slightly so that it
is still chosen but has a higher profit. Therefore, we only need to consider prices p̂∈
[p̆(0), p̆(X−1(0))], which is equivalent to choosing a signal-value x̂ ∈ [0,X−1(0))]
and quoting the corresponding candidate equilibrium price p̆(x̂) for specification A.
This yields expected profit:

Π̆i(x̂;x)≡ (1−FA(x̂))
n−1
(

p̆(x̂)− x
n
− (n−1)

∫ 1

0

∫ 1

x̂

sA

n
f (sA,sB)

(1−FA(x̂))
dsAdsB

)
(A.15)

where FA(x̂) =
∫ 1

x̂
∫ 1

0 f (sA,sB)dsBdsA. Firm i solves maxx̂ Π̆i(x̂;x), which yields the
following f.o.c.:

0 = p̆′(x̂)(1−FA(x̂))
n−1− (n−1)p̆(x̂)(1−FA(x̂))

n−2 fA(x̂)

+
n−1

n
(1−FA(x̂))

n−2 (x+ x̂+(n−2)E[sA |sA ≥ x̂ ]) fA(x̂) (A.16)

In a symmetric equilibrium, the optimal value of x̂ = x, so setting x̂ = x in the f.o.c.,
we obtain the differential equation:

− d
ds

p̆(x)(1−FA(x))
n−1

=
n−1

n
(1−FA(x))

n−2 (2x+(n−2)E[sA |sA ≥ x ]) fA(x) (A.17)

To obtain a boundary condition for the differential equation (A.17), recall
from Lemma 2 that the equilibrium pricing function pA is continuous. This implies
that p̆(X−1(0)) = p(X−1(0)). Given this boundary condition, the unique solution
to the differential equation (A.17), given by the function p̆(x) in Prop. 2, is obtained
by integrating both sides of (A.17) from x to X−1(0).

Step 3. We now prove sufficiency by verifying that the solutions to the differential
equations in (A.14) and (A.17), together with the associated boundary conditions



p̄(1) = 1 and p̆(X−1(0)) = p̄(X−1(0)), constitute an equilibrium. I.e. we need to
show that if the n− 1 competitors of firm i use the pricing functions pA and pB in
(3) and (4), then it is optimal for firm i to do so. To show this, we derive in Steps
3.1 and 3.2 below properties of the expected profit functions Π̄i(x̂;x) and Π̆i(x̂;x),
given by (A.12) and (A.15), resp. These properties are then used in Step 3.3 to
conclude that the functions p̆ and p̄ constitute an equilibrium.

Step 3.1. We begin by considering a firm i whose chosen specification is A, and
whose A-signal is x. If firm i submits the price p̄(X−1(0)), its expected profit is
Π̄i(X−1(0);x). If, instead, firm i submits the price p̆(X−1(0)), its expected profit is
Π̆i(X−1(0);x). While we omit the details here, it is not difficult to verify that:

Π̄i(X−1(0);x)− Π̆i(X−1(0);x) =
[
p̄(X−1(0))− p̆(X−1(0))

][
1−FA(X−1(0))

]
= 0

This shows that for any given x, the two profit functions Π̄i(x̂;x) and Π̆i(x̂;x) inter-
sect at x̂ = X−1(0).

Step 3.2. Next, we study the behavior of the functions Π̄i(x̂;x) and Π̆i(x̂;x), resp.,
as we vary x̂, while treating x as a fixed “location parameter”. To this end, we
compute the first and second derivatives of the functions Π̄i(x̂;x) and Π̆i(x̂;x) w.r.t.
x̂. Observe first that ∂ Π̆i(x̂;x)/∂ x̂ is given by the right-hand side of the f.o.c. in
(A.16). Now add and subtract x̂(1−FA(x̂))n−2 fA(x̂)(n− 1)/n from the expression
for ∂ Π̆i(x̂;x)/∂ x̂. This yields:

∂ Π̆i(x̂;x)
∂ x̂

=
∂ Π̆i(x̂; x̂)

∂ x̂
− (x̂− x)

n−1
n

(1−FA(x̂))n−2 fA(x̂)

=−(x̂− x)
n−1

n
(1−FA(x̂))n−2 fA(x̂)

where the second line follows from the fact that ∂ Π̆i(x̂; x̂)/∂ x̂= ∂ Π̆i(x̂;x)/∂ x̂
∣∣
x̂=x =

0. This shows that ∂ Π̆i(x̂;x)/∂ x̂ > 0 if x̂ < x, that ∂ Π̆i(x̂;x)/∂ x̂ < 0 if x̂ > x, and
that ∂ Π̆i(x̂;x)/∂ x̂ = 0 if x̂ = x. It is straightforward to verify that:

∂ 2Π̆i(x̂;x)
∂ x̂2

∣∣∣∣
x̂=x

=−n−1
n

(1−FA(x̂))n−2 fA(x̂)< 0

which establishes that Π̆i(x̂;x) has an interior global maximum at x̂ = x if x <
X−1(0), and that Π̆i(x̂;x) reaches its global maximum at the upper boundary of
its domain (i.e. at x̂ = X−1(0)) if x > X−1(0).



Now observe that ∂ Π̄i(x̂;x)/∂ x̂ is given by the right-hand side of the f.o.c.
in (A.13). Now add and subtract x̂ω(x̂)n−2 (1−FB|A (X(x̂) |x̂)

)
fA(x̂)(n−1)/n from

the expression for ∂ Π̄i(x̂;x)/∂ x̂. This yields:

∂ Π̄i(x̂;x)
∂ x̂

=
∂ Π̄i(x̂; x̂)

∂ x̂
− (x̂− x)

(n−1)
n

ω(x̂)n−2 (1−FB|A (X(x̂) |x̂)
)

fA(x̂)

=−(x̂− x)
(n−1)

n
ω(x̂)n−2 (1−FB|A (X(x̂) |x̂)

)
fA(x̂)

This establishes that ∂ Π̄i(x̂;x)/∂ x̂ > 0 if x̂ < x, that ∂ Π̄i(x̂;x)/∂ x̂ < 0 if x̂ > x, and
that ∂ Π̄i(x̂;x)/∂ x̂ = 0 if x̂ = x. As before, it is easy to verify that:

∂ 2Π̄i(x̂; x̂)
∂ x̂2

∣∣∣∣
x̂=x

=−(n−1)
n

ω(x̂)n−2 (1−FB|A (X(x̂) |x̂)
)

fA(x̂)< 0

We can therefore conclude that Π̄i(x̂;x) has an interior global maximum at x̂ = x if
x > X−1(0), and that Π̄i(x̂;x) reaches its global maximum at the lower boundary of
its domain (i.e. at x̂ = X−1(0)) if x < X−1(0).

Step 3.3. To conclude the sufficiency argument, consider first a firm i with type
si s.t. si

A = x̄ > X−1(0) and si
B > X(x̄). If the functions p̆ and p̄ constitute an

equilibrium, then firm i must prefer the price p̄(x̄) to any price p̄(x̂), where x̂ is any
other A-signal in [X−1(0),1]. Likewise, firm i must prefer p̄(x̄) to any price p̆(x̃),
where x̃∈ [0,X−1(0)]. Our results in Steps 3.1 and 3.2 regarding the behavior of the
functions Π̄i(x̂;x) and Π̆i(x̂;x) imply that for any x̄∈ (X−1(0),1]: Π̄i(x̄; x̄)> Π̄i(x̂; x̄)
for all x̂ ∈ [X−1(0),1] s.t. x̂ 6= x̄; and Π̄i(x̄; x̄) > Π̄i(X−1(0); x̄) = Π̆i(X−1(0); x̄) >
Π̆i(x̃; x̄) for all x̃ ∈ [0,X−1(0)]. I.e. it is optimal for firm i to submit the price p̄(x̄).
Now consider a firm i with type si s.t. si

A = x̆ < X−1(0). If the functions p̆ and p̄
constitute an equilibrium, firm i must prefer the price p̆(x̆) to any price p̆(x̃), where x̃
is any other A-signal in ∈ [0,X−1(0)]. Likewise, firm i must prefer p̆(x̆) to any price
p̄(x̂), where x̂ ∈ [X−1(0),1]. Our results regarding the behavior of the functions
Π̄i(x̂;x) and Π̆i(x̂;x) imply that for any x̆ ∈ [0,X−1(0)): Π̆i(x̆; x̆)> Π̆i(x̃; x̆) for all x̃
in [0,X−1(0)] s.t. x̃ 6= x̆; and Π̆i(x̆; x̆) > Π̆i(X−1(0); x̆) = Π̄i(X−1(0); x̆) > Π̄i(x̂; x̆)
for all x̂ ∈ [X−1(0),1]. I.e. it is optimal for firm i to submit the price p̆(x̆).



8.7 Proof of Corollary 1

We can compute the path integral along the piecewise smooth path Γ1 (see left-hand
diagram in Fig. 3) as follows:∫

Γ1(si,1)
qi ·dα

1 =
∫ 1

0
qi

A(y+(1− y)si
A,s

i
B)(1− si

A)dy

+
∫ 2

1
qi

B(1,y−1+(2− y)si
B)(1− si

B)dy. (A.18)

This expression can be simplified by appropriate integration by substitution. Con-
sider the first integral term on the right-hand side of (A.18) and let x = y+(1−y)si

A.
I.e. dx/dy = 1− si

A. For y = 0 we have x = si
A, and for y = 1 we have x = 1. We

can therefore rewrite the first integral term in (A.18) as follows:∫ 1

0
qi

A(y+(1− y)si
A,s

i
B)(1− si

A)dy =
∫ 1

si
A

qi
A(x,s

i
B)dx

Now consider the second integral term on the right-hand side of (A.18) and define
x = y−1+(2− y)si

B. I.e. dx/dy = 1− si
B. For y = 1 we have x = si

B, and for y = 2
we have x = 1. We can therefore rewrite the second integral term in (A.18) as:∫ 2

1
qi

B(1,y−1+(2− y)si
B)(1− si

B)dy =
∫ 1

si
B

qi
B(1,x)dx

The sum of these two integrals yields the expression for the path integral along Γ1

featured in expression (8) in Corollary 1. Steps similar to those used above for
computing the path integral along Γ1 show that the path integral along Γ2 is given
by the expression in (9) in Corollary 1.

8.8 Proof of Proposition 4.

The proof requires us to compute the expected profit E[µi(si)] of any firm i, using
the expression for profit µi(si) implicit in (7) in Prop. 4:

µi(si)−µi(1) =
∫

Γ(si,1)
qi ·dα (A.19)

Due to path-independence, the path integral in (A.19) can be evaluated along any
piecewise smooth path Γ. Here, we compute the expectation in (A.19) by using the
equivalent expressions for the path integral in equations (8) and (9) of Corollary 1:∫

Γ1(si,1)
qi ·dα =

∫ 1

si
A

qi
A(x,s

i
B)dx+

∫ 1

si
B

qi
B(1,x)dx (A.20)



and ∫
Γ2(si,1)

qi ·dα =
∫ 1

si
B

qi
B(s

i
A,x)dx+

∫ 1

si
A

qi
A(x,1)dx (A.21)

We can write:36

∫
S

(∫
Γ(si,1)

qi ·dα

)
f (si)dsi =

∫ 1

0

∫ si
A

0

(∫
Γ1(si,1)

qi ·dα

)
f (si)dsi

Bdsi
A

+
∫ 1

0

∫ 1

si
A

(∫
Γ2(si,1)

qi ·dα

)
f (si)dsi

Bdsi
A (A.22)

Label the first term on the right-hand side of equation (A.22) as T1, and label the
second term (in the second line) as T2. Replacing the path integral with the expres-
sion in (A.20), we can split T1 into two additive terms:

T1 =
∫ 1

0

∫ si
A

0

(∫ 1

si
A

qi
A(x,s

i
B)dx

)
f (si)dsi

Bdsi
A+

∫ 1

0

∫ si
A

0

(∫ 1

si
B

qi
B(1,x)dx

)
f (si)dsi

Bdsi
A

(A.23)
Similarly, by replacing the path integral in T2 with the expression in (A.21), we can
split T2 into two additive terms.

T2 =
∫ 1

0

∫ 1

si
A

(∫ 1

si
B

qi
B(s

i
A,x)dx

)
f (si)dsi

Bdsi
A+

∫ 1

0

∫ 1

si
A

(∫ 1

si
A

qi
A(x,1)dx

)
f (si)dsi

Bdsi
A

(A.24)
Label the first term in (A.23) as T11, and label the second term in (A.24) as T22.
Note that T11 and T22 can be expressed equivalently by changing the order of
integration:

T11 =
∫ 1

0

∫ 1

si
B

(∫ 1

si
A

qi
A(x,s

i
B)dx

)
f (si)dsi

Adsi
B

T22 =
∫ 1

0

∫ si
B

0

(∫ 1

si
A

qi
A(x,1)dx

)
f (si)dsi

Adsi
B

It is then easy to see that T2 can be obtained from T1 by interchanging the specification-
subscripts A and B, and vice versa.37 In the remainder of the proof, we therefore
focus on T1 as the representative expression. We start by simplifying T11 using
integration by parts on the inner double integral:

36See Theorem 10-25 on p. 267 in Apostol (1957), which shows that the multiple integral is
additive.

37Note that when the specification-subscripts A and B are interchanged, the expression qi
A(x,s

i
B),

for instance, becomes qi
B(s

i
A,x), and vice versa.



∫ 1

si
B

(∫ 1

si
A

qi
A(x,s

i
B)dx

)
f (si

A,s
i
B)dsi

A

= −
(∫ 1

si
B

qi
A(x,s

i
B)dx

)(∫ si
B

0
f (y,si

B)dy

)
+
∫ 1

si
B

qi
A(s

i)

(∫ si
A

0
f (y,si

B)dy

)
dsi

A

Relabeling the integration index x as si
A simplifies this expression further:

−
∫ 1

si
B

qi
A(s

i)

(∫ si
B

0
f (y,si

B)dy

)
dsi

A +
∫ 1

si
B

qi
A(s

i)

(∫ si
A

0
f (y,si

B)dy

)
dsi

A

=
∫ 1

si
B

qi
A(s

i)
F(si

A

∣∣si
B )−F(si

B

∣∣si
B )

f (si
A

∣∣si
B )

f (si)dsi
A

We can therefore write:

T11 =
∫ 1

0

∫ 1

si
B

qi
A(s

i)
F(si

A

∣∣si
B )−F(si

B

∣∣si
B )

f (si
A

∣∣si
B )

f (si)dsi
Adsi

B (A.25)

Now turn to term T12, which can be simplified using integration by parts on the
inner double integral:∫ si

A

0

(∫ 1

si
B

qi
B(1,x)dx

)
g(si

B)dsi
B

=

(∫ 1

si
A

qi
B(1,x)dx

)(∫ si
A

0
f (si

A,y)dy

)
+
∫ si

A

0
qi

B(1,s
i
B)

(∫ si
B

0
f (si

A,y)dy

)
dsi

B

Relabeling the integration index x as si
B simplifies this expression further:∫ 1

si
A

qi
B(1,s

i
B)

(∫ si
A

0
f (si

A,y)dy

)
dsi

B +
∫ si

A

0
qi

B(1,s
i
B)

(∫ si
B

0
f (si

A,y)dy

)
dsi

B

=
∫ 1

0
qi

B(1,s
i
B)

F(si
mi

∣∣si
A )

f (si
B

∣∣si
A )

f (si)dsi
B

We can therefore write:

T12 =
∫ 1

0

∫ 1

0
qi

B(1,s
i
B)

F(si
mi

∣∣si
A )

f (si
B

∣∣si
A )

f (si)dsi
Bdsi

A (A.26)

The full expression for T1 is the sum of T11 in (A.25) and T12 (A.26). The ex-
pressions T21 and T22 that constitute T2 can now be obtained by interchanging the



specification-subscripts A and B in (A.25) and (A.26), resp. The full expression for
T2 is then the sum of T21 and T22, and the expectation of the path integral in (A.19)
is the sum of T1 and T2:

∫
S

[
qi

A(s
i
A,1)

F(si
mi

∣∣si
B )

f (si
A

∣∣si
B )

+qi
B(1,s

i
B)

F(si
mi

∣∣si
A )

f (si
B

∣∣si
A )

]
f (si)dsi

+
∫ 1

0

∫ 1

si
B

qi
A(s

i)
F(si

A

∣∣si
B )−F(si

B

∣∣si
B )

f (si
A

∣∣si
B )

f (si)dsi
Adsi

B

+
∫ 1

0

∫ 1

si
A

qi
B(s

i)
F(si

B

∣∣si
A )−F(si

A

∣∣si
A )

f (si
B

∣∣si
A )

f (si)dsi
Bdsi

A

In the integrand in the second line, add and subtract qi
B(s

i)
(
F(si

B

∣∣si
A ) f (si)/ f (si

B

∣∣si
A )
)
,

and in the integrand in the third line, add and subtract qi
A(s

i)
(
F(si

A

∣∣si
B ) f (si)/ f (si

A

∣∣si
B )
)
.

Then, using the notation si
mi

for firm i’s minimum signal, we can collect terms and
write E[µi(si)]−µi(1) as:

∫
S

∑
k,l∈K
l 6=k

(
qi

k(s
i)

F(si
k

∣∣si
l )

f (si
k

∣∣si
l )

+
[
qi

k(s
i
k,1)−qi

k(s
i)
] F(si

mi

∣∣si
l )

f (si
k

∣∣si
l )

)
f (si)dsi

We can now write E[µi(si)]−µi(1) in terms of Qi
k:

∫
Sn

∑
k,l∈K
l 6=k

Qi
k(s)

F(si
k

∣∣si
l )

f (si
k

∣∣si
l )

g(s)ds+
∫

Sn
∑

k,l∈K
l 6=k

Qi
k((s

i
k,1),s

−i)
F(si

mi

∣∣si
l )

f (si
k

∣∣si
l )

g(s)ds

−
∫

Sn
∑

k,l∈K
l 6=k

Qi
k(s)

F(si
mi

∣∣si
l )

f (si
k

∣∣si
l )

g(s)ds (A.27)

Adding firm i’s ex ante expected production costE
[
∑k∈K Qi

k(s)Ck(sk)
]

toE[µi(si)]−
µi(1) in (A.27), we obtain the following expression for E[ti(si)]− (ti(1)− ci(1)):∫

Sn
∑

k,l∈K
l 6=k

(
Qi

k(s)

(
Ck(sk)+

F(si
k

∣∣si
l )

f (si
k

∣∣si
l )

)
+
[
Qi

k((s
i
k,1),s

−i)−Qi
k(s)
] F(si

mi

∣∣si
l )

f (si
k

∣∣si
l )

)
g(s)ds

(A.28)
Summing (A.28) over all firms we finally obtain the buyer’s expected expenditure
in Prop. 4.



8.9 Proof of Proposition 5.

We have to establish that Qi
Mi
(s) = 0 for all s in the interior of Sn and all i ∈ I.

To see this, consider the sum of the integrands in the second and third lines of the
expression for ex ante expenditure in (11):

∑
i∈I

(
Qi

mi
(s)Cmi(smi)+Qi

Mi
(s)

(
CMi(sMi)+

F(si
Mi

∣∣si
mi
)−F(si

mi

∣∣si
mi
)

f (si
Mi

∣∣si
mi
)

))
(A.29)

A SCR Q that minimizes (11) must minimize (A.29) for every s ∈ Sn, subject
to ∑i∈I(Qi

mi
(s) + Qi

Mi
(s)) = 1. Now consider a type-vector s in the interior of

Sn s.t. mi = k ∀i ∈ I. In this case, the coefficient associated with any Qi
k(s)

in (A.29) is Ck(sk), while that associated with any Qi
l(s) is Cl(sl) + (F(si

l

∣∣si
k )−

F(si
k

∣∣si
k )/ f (si

l

∣∣si
k )) > Cl(sl) > Ck(sk). It is therefore optimal to set Qi

l(s) = 0 ∀i.
Next consider a type-vector s in the interior of Sn s.t. mi = l and ∃ j ∈ I, j 6= i, s.t.
m j = k. In this case, the coefficient associated with Q j

k(s) in (A.29) is Ck(sk), while
the coefficient associated with Qi

k(s) is Ck(sk)+ (F(si
k

∣∣si
l )−F(si

l

∣∣si
l ))/ f (si

k

∣∣si
l ) >

Ck(sk). It is therefore optimal to set Q j
k(s) = 0. By the same logic, Q j

l (s) = 0.

8.10 Proof of Proposition 6.

We have to establish that any Q that minimizes ex ante expenditure in (11), and
which generates functions qi s.t. (8) and (9) in Corollary 1 are equal, must be s.t. qi

A
and qi

B are of the form shown in (12) in Prop. 6. By Corollary 1, ∀i ∈ I and ∀si ∈ S:∫ 1
si

A
qi

A(x,s
i
B)dx+

∫ 1
si

B
qi

B(1,x)dx =
∫ 1

si
B

qi
B(s

i
A,x)dx+

∫ 1
si

A
qi

A(x,1)dx. As Q minimizes

expenditure in (11) (which, by Prop. 5, implies Qi
Mi
(s) = 0 ∀s ∈ Sn), we can write:

(i)
∫ si

A
si

B

[
qi

B(1,x)−qi
B(s

i
A,x)

]
dx =

∫ 1
si

A

[
qi

A(x,1)−qi
B(1,x)

]
dx if si

A > si
B

(ii)
∫ si

B
si

A

[
qi

A(x,1)−qi
A(x,s

i
B)
]

dx =
∫ 1

si
B

[
qi

B(1,x)−qi
A(x,1)

]
dx if si

A < si
B.

For any si s.t. si
A = si

B = s ∈ [0,1), (i) and (ii) hold iff qi
A(s,1) = qi

B(1,s) ∀s ∈ [0,1).
Thus:

(i)
∫ si

A
si

B

[
qi

B(1,x)−qi
B(s

i
A,x)

]
dx = 0⇔ qi

B(s
i
A,s

i
B) = qi

B(1,s
i
B) ∀si s.t. si

A > si
B

(ii)
∫ si

B
si

A

[
qi

A(x,1)−qi
A(x,s

i
B)
]

dx = 0⇔ qi
A(s

i
A,s

i
B) = qi

A(s
i
A,1) ∀si s.t. si

A < si
B.

Setting qi
B(1,s) = qi

A(s,1)≡ ρi(s), we obtain qi
A(s

i) and qi
B(s

i) in Prop. 6.



8.11 Proof of Proposition 7.

We need to show that any qi in (12) with decreasing function ρi is monotone and
conservative. It is straightforward to verify that if ρi is decreasing, then qi in (12) is
monotone. We now show in two steps that qi is conservative. For this purpose, we
draw on a result in Jehiel et al. (1999) that provides necessary and sufficient condi-
tions for any piecewise continuous function qi to be conservative. For convenience,
we re-state this result in the notation of our paper:

Proposition 10. (Jehiel et al., 1999) Assume qi : S→ [0,1]|K| is piecewise contin-
uous. That is, assume there exists a partition {M1, ...,Mϑ} of the unit square S
such that qi restricted to the interior of Mζ is continuous for each ζ = 1, . . . ,ϑ .
Suppose each Mζ has a piecewise smooth boundary. Then, qi is conservative iff
(i) qi restricted to Mζ is conservative for each ζ = 1, . . . ,ϑ ; and (ii) whenever
Mζ and Mη are two adjacent regions, the jump in qi(si) as si crosses from Mζ

to Mη is perpendicular to the common boundary between Mζ and Mη . That is,
if si is in the common boundary between Mζ and Mη , and n is the unitary nor-
mal vector of the boundary between Mζ and Mη at si, then the vector ∆qi(si) ≡
limε→0+ qi(si− εn)− limε→0+ qi(si + εn) is parallel to n.

Step 1. We verify that any qi in (12) with monotonically decreasing function ρi
satisfies item (ii) of Prop. 10. As ρi is decreasing on [0,1], the left-hand limit ρ

−
i (s)

≡ limx→s− ρi(x) and the right-hand limit ρ
+
i (s) ≡ limx→s+ ρi(x) are both finite at

every s ∈ (0,1), with ρ
−
i (s)≥ ρ

+
i (s), and ρi can only display countably many jump

discontinuities, if any.

Step 1 (a). Suppose first that ρi is continuous everywhere in (0,1). Partition S
into two convex subsets M0

k ≡ {s
i : si

k ≤ si
l} (k, l ∈ K, l 6= k). Fix a type si = (s,s) in

the common boundary between M0
A and M0

B, which is the 45◦-line in the unit square
S. A normal vector of the boundary between M0

A and M0
B at si is n = (−1,1). The

jump in qi(si) as si crosses from M0
B to M0

A is:

∆qi(s,s) = lim
ε→0+

(
qi

A(s+ ε,s− ε)
qi

B(s+ ε,s− ε)

)
− lim

ε→0+

(
qi

A(s− ε,s+ ε)
qi

B(s− ε,s+ ε)

)
=

(
−ρ
−
i (s)

ρ
−
i (s)

)



It is easy to see that n and ∆qi(s,s) are parallel vectors because their cross product
is zero:38 (−1) ·ρ−i (s)−1 · (−ρ

−
i (s)) = 0.39

Step 1 (b). We now consider the case where ρi is not continuous at every s ∈
(0,1). Let {s1,s2, . . . ,sϑ} be the set of discontinuities of ρi, where ϑ ∈ N and
0 < s1 < .. . < sϑ < 1.40 At each point sη (η = 1, ...,ϑ ) we have ρ

−
i (sη)> ρ

+
i (sη)

and ρi(sη) ∈ [ρ+
i (sη),ρ

−
i (sη)]. Now define the following subsets of S: ∀k, l ∈ K,

l 6= k, let M1
k ≡ {si : 0 ≤ si

k ≤ s1,si
l ≥ si

k}, Mζ

k ≡ {s
i : sζ−1 ≤ si

k ≤ sζ ,si
l ≥ si

k} for
ζ = 2, ...,ϑ , and Mϑ+1

k ≡{si : sϑ ≤ si
k ≤ 1,si

l ≥ si
k}. If the number of discontinuities

of ρi is ϑ = 1 we shall partition S into {M1
k ,M

ϑ+1
k }k∈K . If, instead, ϑ ≥ 2 we shall

partition S into {M1
k ,M

ζ

k ,M
ϑ+1
k }k∈K,ζ∈{2,...,ϑ}. For given ϑ ≥ 1, fix si = (sη ,si

B)

(with si
B > sη ) in the common boundary between Mη

A and Mη+1
A (η = 1, . . . ,ϑ ).

This boundary is a vertical line. The unitary normal vector of the boundary between
Mη

A and Mη+1
A at si is ñ = (−1,0). The jump in qi(si) as si crosses from Mη+1

A to
Mη

A is:

∆qi(sη ,si
B) = lim

ε→0+

(
qi

A(sη + ε,si
B)

qi
B(sη + ε,si

B)

)
− lim

ε→0+

(
qi

A(sη − ε,si
B)

qi
B(sη + ε,si

B)

)
=

(
−[ρ−i (sη)−ρ

+
i (sη)]

0

)
It is easy to see that the vectors ñ and ∆qi(sη ,si

B) are parallel because their cross
product is zero: (−1) · 0− 0 · (−[ρ−i (sη)−ρ

+
i (sη)]) = 0. An analogous argument

can be made for any si = (si
A,sη) (with si

A > sη ) in the common boundary between
Mη

B and Mη+1
B (where η = 1, . . . ,ϑ ). Furthermore, the argument in Step 1(a) can be

replicated to establish that if si = (s,s) is a point in the common boundary between
Mη

A and Mη

B for any η = 1, . . . ,ϑ , then the jump in qi(si) as si crosses from Mη

B to
Mη

A is perpendicular to the common boundary between Mη

A and Mη

B . Therefore, any
qi given by (12), with decreasing ρi, satisfies item (ii) of Prop. 10.

Step 2. We now verify that any function qi in (12) with decreasing ρi satisfies
item (i) of Prop. 10. Observe that qi is continuous when restricted to the interior

38In two dimensions, the cross product of two vectors v1 = (v11,v12) and v2 = (v21,v22) is v1×
v2 = det(v1,v2) = v11v22− v12v21.

39The unitary normal vector of the boundary between M0
A and M0

B at si is (1/
√

2)n, with corre-
sponding jump ∆qi(s,s) given in the text. As ∆qi(s,s) is parallel to n, it is obvious that ∆qi(s,s) is
also parallel to the unitary normal vector (1/

√
2)n, as required by Prop. 10.

40Note that there could, in fact, be a countable infinity of discontinuities. While necessitating
minor changes in notation, the proof would be otherwise unaffected.



int(Mη

k ) of any Mη

k in the partition of S (k ∈ K, η = 1, . . . ,ϑ + 1). Each int(Mη

k )

is an open set in R2, and any two points in int(Mη

k ) can be connected by a path in
int(Mη

k ). Given these properties of qi and int(Mη

k ), we can appeal to Theorem 6
in chapter V, §5, of Lang (1973), which establishes that the existence of a potential
function φi for qi is equivalent to path-independence of the integral of qi from one
point in int(Mη

k ) to another. Therefore, all we have to show is that the continuous
function qi on any int(Mη

k ) has a potential function. It is easy to verify that, for all
k ∈ K and all η = 1, . . . ,ϑ + 1, the function φ

η

k (s
i) =

∫ sη+1

si
k

ρi(x)dx is a potential
function for (12).

8.12 Proof of Proposition 9.

Take an efficient and incentive compatible SCR Q that satisfies the necessary con-
dition for expenditure-minimization in Proposition 5. Fix a type-pair (s̄1, s̄2) with
s̄i

A < s̄i
B for all i = 1,2. For fixed s̄i, we can depict Q in a (s−i

A ,s−i
B )-diagram (see ei-

ther panel of Fig. 7). Efficiency and optimality fully determine which specification-
firm-pair is chosen for types s−i below the 45◦-line in the (s−i

A ,s−i
B )-diagram. Now

consider the left-hand panel of Fig. 7. As Q is efficient and satisfies the condition
in Proposition 5, it must choose firm 1 to supply specification A for all types s2

below the 45◦-line for which specification A is efficient. This event is highlighted
in the left-hand panel of Fig. 7 by the dark grey area below the 45◦-line. To ensure
incentive compatibility, the efficient SCR Q must generate conditional expected
probability assignment functions qi that satisfy the necessary condition in footnote
24. This implies that each qi

A must be independent of firm i’s maximum signal si
B.

In particular, to ensure that this requirement holds for firm 1, Q must also choose
firm 1 to supply specification A for all types s2 in the dark grey area above the 45◦-
line in the left-hand panel of Fig. 7. It is easy to verify (given the fact that f is
symmetric around the 45◦-line) that the two dark grey areas together give rise to a
conditional expected probability assignment function q1

A(s̄
1) that is independent of

s̄1
B:

q1
A(s̄

1) =
1
2
−
∫ s̄1

A

0

∫ 1

s2
A+(1−s̄1

A)
f (s2

A,s
2
B)ds2

Bs2
A (A.30)

We now argue by contradiction that firm 1 with type s̄1 s.t. s̄1
A < s̄1

B must
also be chosen to supply specification A for all types s2 in the light grey area in the
top left corner of the left-hand panel of Fig. 7. Suppose instead that firm 2 is chosen
to produce specification A in the light grey area in the left-hand panel of Fig. 7. In
particular, consider the type (s̄2

A, s̄
2
B) shown in the left-hand panel of Fig. 7, and

suppose that firm 2 is chosen to supply specification A. Note that for each type s2 in
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Figure 7: Elements of efficient SCR that satisfies the property in Proposition 5

the light grey area, it holds that s2
B > (1− s̄1

A)+s2
A, or equivalently s̄1

A > 1−(s2
B−s2

A).
Now turn to the right-hand panel of Fig. 7, where the type s̄1 highlighted there
corresponds to the same type-pair (s̄1, s̄2) as the type s̄2 highlighted in the left-hand
panel of Fig. 7. Therefore, if firm 2 is chosen to supply specification A at type s̄2

in the left-hand panel, firm 2 is obviously also chosen to produce specification A
at the type s̄1 in the right-hand panel. This implies that if firm 2 is chosen for all
types s2 in the light grey area of the left-hand panel, then firm 2 is chosen to supply
specification A for all types s1 in the light grey area of the right-hand panel (i.e.
for all types s1 above the 45◦-line s.t. s1

A > 1− (s̄2
B− s̄2

A). This, however, implies
that firm 2’s conditional expected probability assignment function q2

A(s̄
2) depends

explicitly on s̄2
B, in violation of the necessary condition for incentive compatibility

in footnote 24. We can therefore conclude that firm 1 must be chosen to supply
specification A for all types s2 s.t. s2

B > (s̄1
B− s̄1

A)+ s2
A in the left-hand panel of Fig.

7. This, however, means that the only efficient and incentive compatible SCR Q
that satisfies the necessary condition in Proposition 5 is Q̄ in Fig. 5.
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