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“It is often the case in committee that the collective choice for chairman is X , even
though a majority prefer Y , simply because a substantial minority strongly object to
Y . Any theory of voting which does not allow for intensity of preference is certainly
incomplete, and any voting system which does not permit its expression cannot be
wholly satisfactory.” (Meek, 1975)

1 Introduction
The opening quote raises the question whether a ‘good’ voting system should allow for, and be
responsive to voters’ expressions of how much they like the available candidates. It is this ques-
tion that we aim to shed some light on with this paper. Early attempts to design voting systems
that allow voters to express preference intensity can be found in the computer science and op-
erations research literatures (see Meek, 1975, Nurmi, 1981, Cook and Kress, 1985, and Nurmi,
1993). Absent from many of these early contributions is a concern about strategic behavior by
voters: they can be expected to overstate their preference intensity if that allows them to bias the
collective decision in their favor. Therefore, attempts to answer the question of what constitutes
a ‘good’ voting procedure when individuals have private information about their preferences must
explore the extent to which voting rules can be responsive to individuals’ expressions of preference
intensity.

A general way of addressing this question would be to adopt a mechanism design approach in a
setting where voters’ preference intensity is captured by their privately observed Bernoulli utilities
of the candidates. However, there are formidable technical challenges involved in designing mech-
anisms for environments where monetary transfers are not available as a tool for eliciting voters’
private information.1 To circumnavigate these problems, we study equilibrium voting behavior in
a specific class of voting rules. The equilibria of the different rules are then compared according
their effectiveness in representing the overall preferences of the electorate.

By asking which voting systems best represent voters’ desires, we reprise a theme that origi-
nates with Weber (1978).2 He addressed this question (albeit asymptotically in a setting with an
arbitrarily large electorate) by proposing a measure of how effective a voting system is in rep-
resenting the overall preferences of the electorate. In this paper, we propose a modification of
Weber’s effectiveness-measure to compare a wide range of voting rules (including many that allow
the expression of preference intensity) in our setting with a finite number of voters who have pri-
vate information about their preferences over candidates. They key difference with Weber (1978)
is that there are instances of our setting where the game induced by each voting system features
a unique symmetric voting equilibrium. This means that we can meaningfully compare the effec-
tiveness of any two voting systems without having to worry that there might be other equilibria
under which the relative ranking of their effectiveness-levels is reversed.3

The voting systems that we study in this paper are two-parameter scoring rules which include,
as special cases, well-known voting procedures such as the plurality rule, the Borda count, and
approval voting, among others.4 Under a two-parameter scoring rule, each voter submits a vector
whose components specify the scores that the voter assigns to the available alternatives. More
specifically, each voter must assign a score of 1 to one alternative, a score of 0 to another, and a
score of either x or y (where 0 ≤ x ≤ y ≤ 1) to the remaining alternative. After component-wise

1See e.g. Section 6 of Börgers and Postl (2009), and note the added difficulty that arises in voting environments
from the multidimensional nature of voters’ private information.

2We are grateful to Michel Le Breton for drawing our attention to this paper.
3The potential issue of equilibrium multiplicity is not addressed in Weber (1978).
4The notion of a two-parameter scoring rules for settings with three alternatives goes back to Myerson (2002).
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summation of the score-vectors across all voters, the alternative with the highest score is chosen,
and any ties are broken randomly and with equal probability.

For our study of two-parameter scoring rules, we adopt a Bayesian setting: each voter is char-
acterized by a privately observed vector of three Bernoulli utilities, one for each alternative. The
state of the world consists of the collection of all voters’ utility vectors and is, from an ex ante per-
spective, modeled as a random variable with commonly known prior probability distribution. As is
customary in the mechanism design literature, we assume that this utility distribution is symmetric
with respect to voters, and neutral with respect to the alternatives (see e.g. Schmitz and Tröger,
2012). This latter property implies that, for a given voter, all ordinal rankings over the three al-
ternatives are equally likely.5 At the interim stage at which voting takes place, each voter is fully
aware of her own utility vector, but not those of the other voters. The effectiveness of a scoring rule
will be calculated at the ex ante stage. Following Weber (1978), effectiveness is defined, loosely
speaking, as a ratio of the expected utilitarian welfare generated by the candidate actually elected
under the scoring rule, and the expected utilitarian welfare of the socially optimal candidate. Both
these expectations are taken with respect to the ex ante unknown state of the world. As there are
two-parameter scoring rules that permit the expression of preference intensity (namely those with
x < y), we can address the opening question whether the most effective voting systems will give
voters the opportunity to express their intensity of preference.

To capture voting behavior in our setting, we characterize symmetric Bayes Nash equilibria
of the game induced by two-parameter scoring rules. Our first main contribution is to show that
the symmetric equilibrium strategy used by voters under each scoring rule involves sincere voting.
That is, the score-vector submitted by a voter always reflects his true preference ordering of the
candidates. Thus, it follows immediately that all scoring rules where voters do not have the option
of expressing their preference intensity have a unique sincere Bayes Nash equilibrium.6 This
finding echoes the main result in Carmona (2012). He finds that all symmetric equilibria of ordinal
scoring rules in his setting (which differs from ours) are generically sincere. The fact that all
equilibria in our model feature sincere voting contrasts with the strategic voting equilibria found
in some of the seminal contributions to the voting literature (such as Myerson and Weber, 1993).
This contrast is noteworthy because empirical evidence for strategic voting appears scant (see e.g.
Blais, 2002).

Our second contribution is to show that for all two-parameter scoring rules with x < y, an
equilibrium strategy for any voter implies a threshold criterion for deciding whether to assign the
lower score of x, or the higher score of y to his middle-ranked alternative. The threshold, given by
a weighted average of the Bernoulli utilities associated with the voter’s most and least preferred
alternatives, may be degenerate (i.e. equal to the utility of the voter’s favorite alternative). In
this case, the voter will not use the opportunity to convey his preference intensity. We show in our
second main result that in settings with three voters, and those with five or more voters (irrespective
of whether this number is odd or even), the symmetric equilibrium voting strategy for every scoring
rule with x < y involves the expression of preference intensity.

It is important to emphasize that whenever preference intensity is conveyed in equilibrium,
the precise value of the threshold that characterizes the equilibrium voting strategy depends on
the parameters x and y of the scoring rule, and on the utility distribution. Obtaining an analytical
expression for the equilibrium threshold as a function of these model parameters will, in general,
be impossible. As a result, the value of the equilibrium threshold will have to be obtained by

5In our setting, in fact, symmetry and neutrality follow from the stronger assumption that the three components of
a voter’s utility vector are independently and identically distributed random variables. This assumption is also made
in Kim (2012).

6Adopting the terminology in Apesteguia et al, 2011, we refer to scoring rules with x = y as ‘ordinal scoring rules’.
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computational methods.7 This is the reason why we report computational results regarding the
effectiveness-levels generated by the different scoring rules. To obtain these results, we focus on
the case of three voters, as this is the smallest number for which preference intensity is conveyed
in equilibrium for all two-parameter scoring rules that permit its expression.

Our computational results indicate that the plurality rule and negative voting are the least effec-
tive two-parameter scoring rules. The most effective rules tend to be those that feature a relatively
small x-value and a large y-value. Such rules allow voters to convey both their full ordinal rank-
ing, as well as some degree of preference intensity. Whilst approval voting is significantly more
effective than the plurality rule and negative voting, it is dominated by the best ordinal rule.8 This
is not surprising, because approval voting, while allowing the expression of preference intensity,
does not give voters the opportunity to express unambiguously their respective ordinal rankings.
In line with the opening quote by Meek (1975), we find that there is a gain in moving from the
most effective ordinal rule to the most effective two-parameter scoring rule, albeit a rather small
one. Therefore, and in light of the added complexity for voters in real-world elections, it may
not actually be worthwhile introducing voting systems that permit the expression of preference
intensity.9

Our work in this paper is related to two strands of the literature. The first focuses directly
on two-parameter scoring rules in settings with three alternatives. For these rules, Buenrostro
et al (2013) study voting behavior under weak informational assumptions, focusing on equilibrium
in undominated strategies. We, in contrast, explore voting behavior under stronger informational
assumptions which are, however, common in other areas of incentive theory. Myerson (2002) char-
acterizes and compares equilibria under two-parameter scoring rules in a setting where the number
of voters participating in the election is unknown. Our setting, in contrast, assumes a fixed and
known number of voters, and considers a continuum of possible utility vectors per voter. Finally,
Ahn and Oliveros (2010) explore how well two-parameter scoring rules aggregate information in
a common value setting. The problem of efficient information aggregation is absent in our setting
with private values.

The second branch of related literature focuses on mechanism design approaches to collective
decision-making in the absence of transferable utility (see e.g. Börgers and Postl, 2009, Jackson
and Sonnenschein, 2007, Kim, 2012, Miralles, 2012, and Schmitz and Tröger, 2012). In a setting
similar to the one studied here, Apesteguia et al (2011) show that among deterministic mechanisms
which consider only the ordinal aspects of voters’ utility vectors, scoring rules are optimal when
voters are assumed to report their preferences truthfully. Once strategic behavior and incentive
compatibility constraints have to be accounted for, the problem of designing an optimal voting rule
becomes significantly harder. Schmitz and Tröger (2012) address this problem by characterizing
optimal strategy-proof voting rules for settings with two alternatives. However, analogue results
for settings with three alternatives (be that under Bayesian or dominant strategy implementation)
are so far absent from literature.10 In independent work, Kim (2012) provides partial insights into
this problem. Using the same information structure as the one employed here, he shows that if
the Bernoulli utilities of three or more voters are distributed according to the uniform distribution,
there exists a direct revelation mechanism that uses voters’ full utility vectors (i.e. not just the or-

7While our second main result does not establish in general a unique equilibrium weight strictly between zero
and one, we find that the equilibrium weight of every two-parameter scoring rule is unique for each of the utility
distributions used in our computational results.

8For example, in the case where the utility distribution is uniform, the best ordinal rule is the Borda count.
9Note, however, that this finding may be driven by the fact that we have restricted our computational study to just

three voters. A study of a larger number of voters would be needed to assess the robustness of this intuition.
10To get a sense of the difficulties involved in designing optimal strategy-proof voting rules with three alternatives,

see Postl (2011) who analyzes a related, but simpler setting.
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dinal rankings embodied therein) and which generates higher ex ante expected welfare than any
mechanism that bases the collective choice on the voters’ ordinal rankings alone.11 This result
tallies with our computational findings for the uniform distribution. However, our work differs
from his in three important ways: first, we provide a characterization of symmetric Bayes Nash
voting equilibria of all two-parameter scoring rules, and for any utility distribution; second, we
compare, albeit computationally, the effectiveness of all two-parameter scoring rules for distribu-
tions other than the uniform; and third, we offer some insights into the connection between optimal
two-parameter scoring rules and so called ‘second best voting rules’ (i.e. rules that maximize ex
ante welfare among all incentive compatible direct revelation mechanisms).12

The remainder of this paper is structured as follows: In Section 2, we introduce the model and
basic definitions. Section 3 contains our characterization of symmetric Bayes Nash equilibria for
all two-parameter scoring rules and any number of voters. In Section 4, we present our computa-
tional results comparing the effectiveness-levels of two-parameter scoring rules. Section 5 offers a
brief conclusion. The Appendix in Section 6 contains all longer proofs.

2 The Model

2.1 Basic set-up
Preferences. There are n+ 1 (n ∈ N) voters who must choose collectively one alternative from
the set K≡{A,B,C}. Each voter i ∈ I ≡ {1,2, . . . ,n+ 1} has a von Neumann Morgenstern utility
function that represents his preferences over lotteries on K. We denote by uuui ≡ (ui

A,u
i
B,u

i
C) the

vector of Bernoulli utilities that voter i assigns to alternatives A, B and C, resp. We refer to uuui as
voter i’s type, and normalize utilities so that uuui ∈ [0,1]3 for all i ∈ I.13 Each voter’s type implies a
preference ordering of the three alternatives in K, and there are six possible preference orderings
here. For example, if voter i’s type uuui is such that (s.t.) ui

B > ui
A > ui

C, then B�i A �i C, where �i
denotes i’s ordinal preference relation on K. In what follows, it will be convenient to denote by ui

1
voter i’s utility from his highest-ranked alternative. Similarly, denote by ui

2 voter i’s utility from
his middle-ranked alternative, and by ui

3 the utility from his lowest-ranked alternative.

Information structure. We assume that each type uuui is a random variable whose realization is ob-
served only by voter i. The types of the n+1 voters are stochastically independent and identically
distributed (i.i.d.). We assume furthermore that for each voter i, the three Bernoulli utilities ui

A, ui
B

and ui
C are drawn independently from the unit interval [0,1] according to a distribution G with con-

tinuous and strictly positive density g on (0,1). As a consequence, the probability that a voter has
a particular ordinal ranking is the same for all six possible ordinal rankings. The above features of
the von Neumann Morgenstern utility functions, and the joint distribution of types (uuu1, . . . ,uuun+1),
are common knowledge among the voters. Observe that the information structure assumed here
makes our setting symmetric in the following two ways:

11The proof is constructive and builds on the direct mechanism equivalent of the Bayes Nash equilibrium voting
rule that we characterize in this paper.

12Our tentative exploration of second best voting rules is related to Hortala-Vallve (2009) who, albeit in a differ-
ent setting, characterizes the class of strategy-proof social choice rules which satisfy an appropriate differentiability
condition.

13Our normalization of utilities is without loss of generality. This is because our model features state-dependent
expected utility functions with a continuum of states of the world that determine the voters’ utilities. With state-
dependent expected utility, each voter’s von Neumann Morgenstern utility function is unique up to a positive affine
transformation with state-dependent intercept and state-independent slope (see Ritzberger, 2002 for details). As a
result, we can find, for each voter i ∈ I, an appropriate intercept and slope parameter so that the utilities ui

A, ui
B and ui

C
are in [0,1] in every state of the world.
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Figure 1: The set of all (x,y)-scoring rules

Symmetry with respect to (w.r.t.) voters, because each type uuui (with i ∈ I) is drawn from the
same distribution on [0,1]3.

Symmetry w.r.t. alternatives, because each component ui
k of uuui (with k ∈ K) is drawn indepen-

dently from the same distribution G on [0,1].

2.2 Two-parameter scoring rules
In the setup described in Section 2.1, we study and compare voting mechanisms that are scoring
rules. Under a scoring rule, each voter is asked to assign a score to every alternative k ∈ K.
The scores assigned to each alternative are then added up, and the alternative with the highest
aggregate score is chosen. In case of a tie for the highest score, an alternative is chosen randomly
from amongst those with the highest score, each with equal probability. As in Myerson (2002), we
consider specifically the family of (x,y)-scoring rules, which is characterized by two parameters
x and y s.t. 0 ≤ x ≤ y ≤ 1. Given an (x,y)-scoring rule, each voter must choose a three-vector of
scores that is a permutation of either (1,x,0) or (1,y,0). That is, each voter must give a score of
1 to one of the three alternatives in K, a score of 0 to one of the other two alternatives in K, and a
score of either x or y to the remaining alternative. Many well-known voting rules are special cases
of (x,y)-scoring rules. The gray shaded area in Fig. 1 below illustrates the set of all (x,y)-scoring
rules, and highlights well-known special cases. For example:

1. Plurality Rule: x = y = 0. Each voter must choose between three different score-vectors,
given by the permutations of (1,0,0).

2. Negative Voting: x = y = 1. Each voter must choose between three different score-vectors,
given by the permutations of (1,1,0).

3. Borda Rule: x = y = 0.5. Each voter must choose between six different score-vectors, given
by the permutations of (1,0.5,0).

4. Approval Voting: x = 0 and y = 1. Each voter must choose between twelve different score-
vectors, given by the permutations of (1,0,0) and (1,1,0).
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In order to describe (x,y)-scoring rules more formally, we denote by Σx,y the set of all score-
vectors that a voter can choose from under a given (x,y)-scoring rule. A generic score-vector
submitted by voter i ∈ I is denoted by σσσ i ≡ (σ i

A,σ
i
B,σ

i
C), where σ i

k is the score that voter i assigns
to alternative k. As (x,y)-scoring rules implement a collective choice on the basis of the highest
aggregate score, we define the aggregate score-vector as follows:

Definition 1. Given any subset I⊆ I of m≡ |I| voters, the aggregate score-vector sssm across voters
in I is the sum of their individual score-vectors σσσ j: sssm≡ (sA

m,s
B
m,s

C
m) = (∑ j∈Iσ

j
A,∑ j∈Iσ

j
B,∑ j∈Iσ

j
C).

We denote by Sm
x,y the set of all aggregate score-vectors sssm that can arise for the subset I of voters.

The set Sm
x,y is obtained by adding up, for every profile of m individual score-vectors in Σm

x,y, the
scores associated with each alternative k.14

Using the notion of aggregate score-vectors, we can introduce formal notation for the proba-
bility distribution over outcomes induced by an (x,y)-scoring rule due to the possibility of ties for
the highest aggregate score. We use this notation extensively in the remainder of the paper:

Definition 2. For every subset I⊆ I of m≡ |I| voters, and every aggregate score-vector sssm ∈ Sm
x,y,

an (x,y)-scoring rule induces a probability distribution over the set of alternatives K: δδδ (sssm) ≡
(δA(sssm),δB(sssm),δC(sssm)). In particular, the probability δA(sssm) associated with alternative A is:

δA(sssm) =


1 if sA

m > sB
m and sA

m > sC
m

1
2 if sA

m = sB
m > sC

m or sA
m = sC

m > sB
m

1
3 if sA

m = sB
m = sC

m

0 if sA
m < sB

m or sA
m < sC

m

The probabilities δB(sssm) and δC(sssm) of alternatives B and C (resp.) are defined analogously, with
δA(sssm)+δB(sssm)+δC(sssm) = 1 for all sssm ∈ Sm

x,y.

3 Equilibrium voting strategies
Every (x,y)-scoring rule gives rise to a Bayesian game with n+ 1 players. In this game, a pure
strategy for voter i is a vector-valued function vvvi : [0,1]3→ Σx,y, uuui 7→ vvvi(uuui). That is, vvvi specifies
for every type uuui the score-vector in Σx,y to be submitted by voter i. We denote by vi

k(uuu
i) the score

assigned to alternative k ∈ K under strategy vvvi when voter i’s type is uuui. Given the two types of
symmetry inherent in our setting, it is natural to focus on Bayes Nash equilibria (vvv1, . . . ,vvvn+1) that
are symmetric in the sense of the following two properties:

(S1) Each voter uses the same function vvv to select a score-vector on the basis of his type: vvvi(uuui) =
vvv(uuui) for all uuui ∈ [0,1]3 and all i ∈ I. I.e. two voters with the same type submit the same
score-vector.15

(S2) For all voters i, and any uuui and ũuui, where ũuui is obtained from uuui by a permutation of its
components, vvv maps ũuui to σ̃σσ

i, which is obtained from σσσ i === vvv(uuui) by applying the same
permutation to the components of σσσ i. For example, let uuui =(ui

A,u
i
B,u

i
C) and ũuui =(ui

B,u
i
A,u

i
C).

If vvv(uuui) = (1,x,0) then vvv(ũuui) = (x,1,0).

14The set Σm
x,y ≡ Σx,y× . . .×Σx,y denotes the m-times Cartesian product of Σx,y.

15The reverse is obviously not true: As there is only a finite number of score vectors in Σx,y, if two voters submit
the same score-vector, they need not have the same type.
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We refer to a strategy vvv that satisfies property S2 as a symmetric strategy, and to a symmetric
Bayes Nash Equilibrium (cf. S1) in symmetric strategies (cf. S2) as a fully symmetric Bayes Nash
Equilibrium (FSE). To show that such an equilibrium exists, we have to consider the decision
of any voter i as to which one of the available score-vectors in Σx,y he wishes to submit when
all other voters use the same symmetric strategy vvv. For this purpose, we need to quantify voter
i’s beliefs about the score-vectors submitted by the other voters. Consider a voter j 6= i whose
submitted score-vector is vvv(uuu j). As voter i does not know j’s type, he views the score-vector
vvv(uuu j) as a random variable with sample space Σx,y. As both vvv and our setting are symmetric,
voter i believes that every permutation of the score-vector vvv(uuu j) = (vA(uuu j),vB(uuu j),vC(uuu j)) arises
with the same probability as vvv(uuu j). In particular, if the (x,y)-scoring rule features x < y, then all
permutations of the score-vector (1,x,0) arise with probability Pr[vvv(uuu j) = (1,x,0)]≡ p ∈ [0,1/6],
and all permutations of (1,y,0) arise with probability Pr[vvv(uuu j) = (1,y,0)] = (1/6)− p. Building
on this observation, we can establish our first main result:

Proposition 1. Any FSE of an (x,y)-scoring rule features a sincere voting strategy vvv. That is,
v1(uuui) = 1 and v3(uuui) = 0 for all i ∈ I and all uuui ∈ [0,1]3, where v1(uuui) and v3(uuui), resp., denote
the scores that vvv assigns to i’s highest- and lowest-ranked alternatives when his type is uuui.

The proof of Proposition 1 can be found in the Appendix (see Section 6.1). To gain some in-
tuition for this result, note that we can exploit the symmetry of our information structure to show
that, from voter i’s perspective, alternatives A, B and C are equally likely to be the ‘collective
choice’ of the n other voters who use the same symmetric voting-strategy vvv.16 Put differently, in
expected terms, the voting behavior of the other voters results in a uniform distribution over the
set of alternatives K: E[δA(∑ j 6=i vvv(uuu j))] = E[δB(∑ j 6=i vvv(uuu j))] = E[δC(∑ j 6=i vvv(uuu j))] = 1/3. By sub-
mitting a score-vector σσσ i that assigns a score of 1 to his favorite alternative, a score of either x or
y to his middle-ranked alternative, and a score of 0 to his least preferred alternative, voter i gen-
erates an expected probability distribution E[δδδ (∑ j 6=i vvv(uuu j)+σσσ i)] over K that first-order stochasti-
cally dominates any distribution E[δδδ (∑ j 6=i vvv(uuu j)+ σ̃σσ

i)] that prevails if he submits any non-sincere
score-vector σ̃σσ

i.
Proposition 1 characterizes the unique FSE of (x,y)-scoring with x = y (so called ‘ordinal’

scoring rules, as they give voters no scope to express any intensity of preference). It also echoes
the main result in Carmona (2012) for a setting where only ordinal scoring rules are considered,
and where voters’ preferences depend not only on the alternative chosen from K, but also on the
aggregate scores received by all the alternatives. He shows that symmetric BNE are sincere for
almost all probability distributions from which voters’ types (i.e. their ordinal rankings) are drawn.
Proposition 1 implies furthermore that for (x,y)-scoring rules with x < y, a voter’s only remaining
decision is whether to assign the lower score of x, or the higher score of y to his middle-ranked
alternative. As a corollary to Proposition 1, it is straightforward to establish the following result:

Corollary 1. Any FSE of an (x,y)-scoring rule with x < y features a sincere voting strategy vvv that
assigns a score of v2(uuui) ∈ {x,y} to the middle-ranked alternative of each voter i according to the
following threshold criterion: for some α ∈ [0,1],

v2(uuui) =

{
x if ui

2 < αui
1 +(1−α)ui

3

y if ui
2 > αui

1 +(1−α)ui
3

(1)

16It is important to emphasize here that the symmetric strategy vvv used by the other voters need not be sincere. To
see this, suppose each voter j 6= i assigns a score of 1 to his middle-ranked alternative, and a score of y to his favorite
alternative. In this case, all permutations of (1,x,0) arise with Pr[vvv(uuu j) = (1,x,0)] = 0, and all permutations of (1,y,0)
arise with Pr[vvv(uuu j) = (1,y,0)] = 1/6.
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As a result of Corollary 1, voter i expects any other voter j 6= i to submit the score-vector
(1,x,0) (and any permutation of it) with the following probability:

Pr
[
vvv(uuu j) = (1,x,0)

]
=
∫ 1

0

∫ u j
1

0

∫
αu j

1+(1−α)u j
3

u j
3

g(u j
2)du j

2g(u j
3)du j

3g(u j
1)du j

1 ≡ p(α) (2)

Similarly, voter i expects j to submit each permutation of (1,y,0) with the complementary prob-
ability Pr

[
vvv(uuu j) = (1,y,0)

]
= (1/6)− p(α). Note that p(α) defined in (2) is a monotonically

increasing and differentiable function (i.e. p′(α)> 0 for all α), with p(0) = 0 and p(1) = 1/6.
We now present the proof of Corollary 1, because it forms the basis on which we determine the

equilibrium weight α in the threshold criterion in (1). The weight α is the final missing piece in
the characterization of the FSE of (x,y)-scoring rules with x < y.

Proof. Consider voter i and suppose w.l.o.g. that his type uuui is s.t. ui
A > ui

B > ui
C. His expected

utility from submitting a score-vector σσσ i = (1,σ i
B,0) (with σ i

B ∈ {x,y}) is:17

Ui(σσσ
i,uuui)≡ ∑

k∈K
E[δk(sssn +σσσ

i)]ui
k, (3)

where E[δk(sssn +σσσ i)] = ∑
sssn∈Sn

x,y

Pr[sssn]δk(sssn +σσσ i), and δk is as given in Definition 2.

It is optimal for voter i to submit the score-vector σσσ i = (1,y,0) if Ui((1,y,0),uuui)>Ui((1,x,0),uuui).
Using (3), this inequality can be rearranged as follows:

ui
B >

(
E[δA(sssn +(1,x,0))]−E[δA(sssn +(1,y,0))]
E[δB(sssn +(1,y,0))]−E[δB(sssn +(1,x,0))]

)
ui

A

+

(
1− E[δA(sssn +(1,x,0))]−E[δA(sssn +(1,y,0))]

E[δB(sssn +(1,y,0))]−E[δB(sssn +(1,x,0))]

)
ui

C (4)

The condition in (4) states that voter i’s best response to the symmetric strategy vvv used by all
other voters is to assign the higher score of y to his middle-ranked alternative B if his utility ui

B
from it exceeds a weighted average of the utilities associated with his favorite and least-preferred
alternatives. If the converse holds, a best response involves assigning the lower score of x to his
middle-ranked alternative. Observe that the weight used in the average on the right-hand side of (4)
is a number in [0,1]. This follows immediately from the fact that assigning the higher score of y to
the middle-ranked alternative B shifts probability mass from alternative(s) A and/or C to B, relative
to a situation where the lower score of x is assigned to B: δB(sssn +(1,y,0))− δB(sssn +(1,x,0)) ≥
δA(sssn +(1,x,0))−δA(sssn +(1,y,0))≥ 0 for all sssn ∈ Sn

x,y.

In order to pin down the specific value(s) of the weight α for which the symmetric voting
strategy in Corollary 1 constitutes an equilibrium, we focus on equation (4) above. In particular,
our interest centers on the weight attached to the utility of voter i’s favorite alternative, which we
refer to as the ‘loss-gain-ratio’:

17To ease notation in what follows, we write sssn for the aggregate score-vector ∑ j 6=i vvv(uuu j) across the n voters other
than i.
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Definition 3. The loss-gain-ratio is given by the following expression:

L(p(α)) ≡ E[δA(sssn +(1,x,0))]−E[δA(sssn +(1,y,0))]
E[δB(sssn +(1,y,0))]−E[δB(sssn +(1,x,0))]

=
∑sssn∈Sn

x,y
Pr[sssn] (δA(sssn +(1,x,0))−δA(sssn +(1,y,0)))

∑sssn∈Sn
x,y

Pr[sssn] (δB(sssn +(1,y,0))−δB(sssn +(1,x,0)))
(5)

Note that L is a differentiable function of α because each individual score-vector of the other
voters occurs either with probability p(α) or probability (1/6)− p(α).

The numerator of the loss-gain-ratio captures the expected loss in the probability of voter i’s fa-
vorite alternative when he assigns the higher score of y to his middle-ranked alternative, as opposed
to the lower score of x. The denominator of the loss-gain-ratio, in turn, represents the expected
gain in the probability of the middle-ranked alternative when i assigns it a score of y (rather than
x). Before we use the loss-gain ratio in Definition 5 to characterize the value of the weight α in a
FSE, it is instructive to consider an example of a sincere symmetric voting strategy of the form in
Corollary 1 that does not constitute a FSE in our setting.

Example 1. Consider the symmetric voting strategy presented in Weber (1978) (who studies
asymptotic equilibria of approval voting (i.e. (x,y) = (0,1)) in a setting that includes our in-
formation structure as a special case but, unlike ours, features a large number of voters). Un-
der Weber’s strategy, each voter i chooses from Σ0,1 the score-vector (σ i

A,σ
i
B,σ

i
C) that maximizes

σ i
A(u

i
A− ūi)+σ i

B(u
i
B− ūi)+σ i

C(u
i
C− ūi), where ūi denotes the average of voter i’s Bernoulli util-

ities. This implies that each voter votes sincerely and assigns the lower score of 0 to his middle-
ranked alternative if ui

2 < (ui
1 + ui

3)/2, and the higher score of 1 if ui
2 > (ui

1 + ui
3)/2. That is,

under Weber’s strategy each voter’s middle-ranked alternative is awarded a score according to the
threshold criterion in Corollary 1 with weight α = 0.5.
To see that Weber’s strategy does not constitute a FSE of approval voting in our setting with a
finite number of voters, suppose there are two voters i and j. If j uses Weber’s strategy, then i
expects every permutation of the score-vector (1,0,0) to arise with probability p(0.5) ∈ (0,1/6)
(where p(0.5) is computed according to (2)), and every permutation of (1,1,0) with probability
(1/6)− p(0.5). It is easy to verify that there are types of voter i for whom it is not a best response
to vote according to Weber’s strategy. In particular, we have Ui((1,y,0),uuui) < Ui((1,x,0),uuui) for
all uuui ∈ [0,1]3 s.t.:

ui
1 +ui

3
2

< ui
2 <

5−6p(0.5)
7−12p(0.5)

ui
1 +

6p(0.5)
1+12p(0.5)

ui
3

This inequality highlights that the weight α = 0.5 associated with Weber’s strategy differs from
voter i’s loss-gain-ratio: L(p(0.5)) = (5−6p(0.5))/(7−12p(0.5))> 0.5 for any distribution G.
It is this discrepancy between α and L(p(α)) that disqualifies Weber’s strategy as FSE of approval
voting.

Example 1 highlights the central role played by the loss-gain-ratio in the characterization of
the weights α associated with FSE voting strategies of (x,y)-scoring rules with x < y. In fact, in
equilibrium the value of the weight α must be equal to the loss-gain-ratio of every voter. More for-
mally, a FSE voting strategy must feature a weight α∗ ∈ [0,1] s.t. L(p(α∗)) = α∗. In other words,
the equilibrium weight α∗ is a fixed point of the loss-gain-ratio. The equilibrium characterization
therefore boils down to finding fixed points of the function L(p(α)). Of particular interest in this
context is the question whether there exists a fixed point α∗ in the interior of the interval [0,1]. The
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reason is that only for α∗ ∈ (0,1) do voters express in equilibrium their intensity of preference to
the extent possible under an (x,y)-scoring rule with x < y.

A sufficient condition for the loss-gain-ratio to have interior fixed points for given model pa-
rameters x, y, n, and G is that L(p(0))> 0 and L(p(1))< 1. This is because whenever both these
inequalities hold, we can appeal to the Intermediate Value Theorem to establish the existence of a
value α∗ ∈ (0,1) s.t. L(p(α∗))−α∗ = 0. The following result shows that the first inequality holds
for all model parameters:

Lemma 1. The loss-gain-ratio is positive at α = 0: L(p(0))> 0 for all x < y, all n, and all G.

To give the reader a sense of how this result is established, we present here the proof for the
cases of two, three, and four voters, referring the reader to the Appendix (Section 6.2) for details
of the proof with five or more voters.

Proof. Consider voter i and suppose w.l.o.g. that his type uuui is s.t. ui
A > ui

B > ui
C. Given the

definition of the loss-gain-ratio in (5), it suffices to show that there exists an aggregate score-
vector sssn ∈ Sn

x,y which occurs with positive probability at α = 0 (i.e. Pr[sssn] = (1
6 − p(0))n = 1/6n)

s.t. the probability of voter i’s favorite alternative being chosen is strictly lower when he submits
the individual score-vector σσσ i = (1,y,0) than when he submits the score-vector σσσ i = (1,x,0). In
this case, the sum in the numerator of the loss-gain-ratio features at least one positive element:
Pr[sssn] (δA(sssn +(1,x,0))−δA(sssn +(1,y,0)))> 0 for at least one sssn ∈ Sn

x,y.

(i) For two voters (n = 1), the table below shows the (individual and aggregate) score-vector
sss1 = (y,1,0) which occurs with probability Pr[sss1] = 1/6 at α = 0:

sss1 σσσ i sss1 +σσσ i δδδ (sss1 +σσσ i)

(y,1,0) (1,x,0) (1+ y,1+ x,0) (1,0,0)

(y,1,0) (1,y,0) (1+ y,1+ y,0) (1
2 ,

1
2 ,0)

Submission of the individual score-vector σσσ i = (1,y,0) by voter i generates a shift in proba-
bility mass from alternative A to B, relative to submission of σσσ i =(1,x,0): δA(sss1+(1,x,0))−
δA(sss1 +(1,y,0)) = 1

2 .

(ii) For three voters (n = 2), the table below shows the aggregate score-vector sss2 = (y,1,1+ y)
which occurs with probability Pr[sss2] = 1/36 at α = 0:

sss2 σσσ i sss2 +σσσ i δδδ (sss2 +σσσ i)

(y,1,1+ y) (1,x,0) (1+ y,1+ x,1+ y) (1
2 ,0,

1
2)

(y,1,1+ y) (1,y,0) (1+ y,1+ y,1+ y) (1
3 ,

1
3 ,

1
3)

Submission of the individual score-vector σσσ i = (1,y,0) by voter i generates a shift in proba-
bility mass from alternative A to B, relative to submission of σσσ i =(1,x,0): δA(sss1+(1,x,0))−
δA(sss1 +(1,y,0)) = 1

6 .

(iii) For four voters (n = 3), the table below shows the aggregate score-vector sss3 = (1+ 2y,2+

11



y,0) which occurs with probability Pr[sss3] = 1/216 at α = 0:

sss3 σσσ i sss3 +σσσ i δδδ (sss3 +σσσ i)

(1+2y,2+ y,0) (1,x,0) (2+2y,2+ x+ y,0) (1,0,0)

(1+2y,2+ y,0) (1,y,0) (2+2y,2+2y,0) (1
2 ,

1
2 ,0)

Submission of the individual score-vector σσσ i = (1,y,0) by voter i generates a shift in proba-
bility mass from alternative A to B, relative to submission of σσσ i =(1,x,0): δA(sss1+(1,x,0))−
δA(sss1 +(1,y,0)) = 1

2 .

In the Appendix (see Section 6.2) we show that a similar argument establishes the result in Lemma 1
for five or more voters.

We now show for which model parameters the second part of the sufficient condition for equi-
librium existence holds (i.e. L(p(1))< 1). This gives rise to our second main result:

Proposition 2. For three voters, and for five or more voters (odd or even), any FSE of an (x,y)-
scoring rule with x < y features a voting strategy of the form in Corollary 1 with weight α∗ ∈ (0,1)
regardless of the distribution G from which voters’ utilities are drawn.

The implication of Proposition 2 is that voters express in equilibrium their intensity of pref-
erence to the extent allowed by scoring rules with x < y. To give the reader a sense of how this
result is established, we state here the proof for three voters, referring the reader to the Appendix
(Section 6.3) for details of the proof with five or more voters.

Proof. Consider voter i and suppose w.l.o.g. that his type uuui is s.t. ui
A > ui

B > ui
C. We now establish

that L(p(1)) < 1. Given the definition of the loss-gain-ratio in (5), it suffices to show that there
exists an aggregate score-vector sss2 ∈ S2

x,y which occurs with positive probability at α = 1 (i.e.
Pr[sssn] = (p(1))2 = 1/(6)n) s.t. voter i’s middle-ranked alternative gains probability mass from his
lowest-ranked alternative (and not just from his favorite alternative) when he submits the individual
score-vector σσσ i = (1,y,0) as opposed to the score-vector σσσ i = (1,x,0). In this case, the numer-
ator of the loss-gain-ratio is strictly smaller than the denominator: δB(sssn + (1,y,0))− δB(sssn +
(1,x,0))> δA(sssn+(1,x,0))−δA(sssn+(1,y,0)). Now consider the aggregate score-vector sss2 ∈ S2

x,y
in the table below, which occurs with probability Pr[sss2] = 1/36:

sss2 σσσ i sss2 +σσσ i δδδ (sss2 +σσσ i)

(x,1,1+ x) (1,x,0) (1+ x,1+ x,1+ x) (1
3 ,

1
3 ,

1
3)

(x,1,1+ x) (1,y,0) (1+ x,1+ y,1+ x) (0,1,0)

The table shows that for sss2 = (x,1,1+ x), submission of the score-vector σσσ i = (1,y,0) by voter
i generates a shift in probability mass from alternatives A and C to B, relative to submission of
σσσ i = (1,x,0):

δA(sss2 +(1,x,0))−δA(sss2 +(1,y,0)) = 1/3
δB(sss2 +(1,y,0))−δB(sss2 +(1,x,0)) = 2/3

As alternative B’s gain (which appears in the denominator of L) exceeds alternative A’s loss (which
appears in the numerator of L), it follows immediately that L(p(1)) ∈ (0,1). Together with the
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fact that L(p(0)) > 0 by Lemma 1, we can infer by the Intermediate Value Theorem that there
exists at least one equilibrium weight α∗ ∈ (0,1) for every (x,y)-scoring rule with x < y and every
distribution G. In the Appendix (see Section 6.3), we show that a similar argument establishes the
result in Proposition 2 for five or more voters.

Limitations of Proposition 2. We first point out that Proposition 2 is essentially an existence
result: it shows that there is a value α∗ s.t. voters’ equilibrium strategy involves the expression of
preference intensity. However, it neither establishes uniqueness of α∗, nor does it shed light on
how α∗ varies with the model parameters x, y, n, and the distribution G. Secondly, Proposition 2
does not apply to settings with two and four voters. To address at least partially these limitations,
we provide below a full characterization of the loss-gain-ratio for the cases of two and three voters,
as the number of possible aggregate score-vectors in these cases is still manageable. Common to
both settings is the fact that the continuum of (x,y)-scoring rules is partitioned in equilibrium into
a finite number of equivalence classes, with rules in a given class generating the same loss-gain-
ratio, and therefore the same value(s) α∗.18 However, with two voters, we find that contrary to
Proposition 2 not all (x,y)-scoring rules with x < y give rise to a FSE in which preference intensity
is expressed, even though the voting rule allows it. This feature also arises in settings with four
voters, as we show by means of an example at the end of this section.

Proposition 3. With two voters, the set of (x,y)-scoring rules with x < y is partitioned into three
categories depending on whether or not preference intensity is expressed in equilibrium:

1. Unique FSE with preference intensity expressed for all G. The following (x,y)-scoring
rules have a unique FSE with α∗ ∈ (0,1) for every distribution G:

(a) If x = 0.5, α∗ is the unique solution of α = (1+4p(α))/(1+8p(α));

(b) If x < 0.5 and y > 1− x, α∗ is the unique solution of α = (1+6p(α))/(1+12p(α));

(c) If x < 0.5 and y = 1− x, α∗ is the unique solution of α = (5−6p(α))/(7−12p(α));

2. Unique FSE where no preference intensity is expressed for any G. For (x,y)-scoring rules
with y < 0.5, and those with x > 0.5, the unique FSE features α∗ = 1;

3. Possibility of multiple FSE/preference intensity expressed for some G:

(a) If y ∈ (0.5,1− x), there exists a FSE with α∗ = 1 for all G. This is the unique FSE iff:

6p(α)>
2−3α

1−2α
for all α ∈ [

2
3
,1); (6)

otherwise there exist additional FSE with α∗∗ ∈ (0,1);

(b) If y = 0.5, there exists a FSE with α∗ = 1 for all distributions G. Furthermore, this is
the unique FSE iff G satisfies the following condition:

6p(α)>
4−5α

1−2α
for all α ∈ [

4
5
,1); (7)

otherwise there exist additional FSE with α∗∗ ∈ (0,1).

A sufficient condition for (6) and (7) to hold is that the distribution G is concave.
18Our results suggest that this is a general phenomenon for any finite n because K contains only three alternatives.
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The proof of Proposition 3 is in the Appendix (see Section 6.4). The left-hand panel of Fig.
2 illustrates the partitions in Proposition 3. The middle panel of Fig. 2 provides an illustration of
item 3 of Proposition 3 in the case where G is concave.
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Figure 2: Partitions in Prop. 3 (left); item 3. of Prop. 3 (middle); Prop. 4 (right)

Proposition 4. With three voters, the FSE voting strategy partitions the set of (x,y)-scoring rules
with x < y into 64 equivalence classes regardless of the distribution G from which the voters’
Bernoulli utilities are drawn (a detailed list can be found in Table 11 on pages 38 - 41 of the Ap-
pendix). For 38 of these equivalence classes - all of which feature a monotone loss-gain ratio -
there is a unique equilibrium weight α∗ for every G (for an illustration of which rules are contained
in these classes, see the black areas in right-hand panel of Fig. 2). For the remaining 26 equiv-
alence classes - for which the loss-gain-ratio is non-monotonic - uniqueness of the equilibrium
weight α∗ is distribution-dependent.19

The proof of Proposition 4 is in the Appendix (see Section 6.5). There, we list in a table all 64
equivalence classes that arise with three voters, along with the loss-gain-ratio for each equivalence
class. For a graphical illustration of these equivalence classes, see the partitions indicated by
dashed lines in Fig. 3 below. While our results in Propositions 3 and 4 show that the number
of equivalence classes for a given number of voters is not distribution-dependent, it is clear that
the value(s) of the equilibrium weight α∗ pertaining to each equivalence class does depend on
the distribution G through the loss-gain-ratio. Even in the relatively simple cases of two and
three voters, it is impossible to obtain an analytical expression for the equilibrium weight α∗ as
a function of the model parameters x, y, and the distribution G. The reason is that even for the
simplest parameterized distributions (such as G(u) = ub, with b > 0), the equilibrium condition
L(p(α∗)) = α∗ generates complicated expressions for which only computational solutions for α∗

can be obtained. For three voters and uniform G - a setting in which there is a unique equilibrium
weight α∗ for every equivalence class because at least one of the sufficient conditions in footnote
19 is satisfied - Fig. 3 shows some of the numerically computed values of α∗ as a function of x
and y. In order to interpret the figure, note that every number superimposed on a polygon in Fig. 3

19Two (not mutually exclusive) sufficient conditions for uniqueness of α∗ are: (i) the loss-gain-ratio associated with
the equivalence class is a contraction mapping (i.e. |L′(p(α))p′(α)| ≤ k < 1 for all α ∈ (0,1)); (ii) the loss-gain-
ratio associated with the equivalence class is either everywhere strictly convex, or everywhere strictly concave (i.e.
L′′(p(α))(p′(α))2 +L′(p(α))p′′(α)≷ 0 for all α ∈ (0,1)).
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represents the value α∗ pertaining to all two-parameter scoring rules whose values x and y form a
point within this polygon (exclusive of the dashed borders).20

.647 .5

.681.726
.76 .784 .5

.755 .821
.805

.778 .56
.596

.793

.775.667

.5
82 .5

.667.667

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

Figure 3: Equilibrium values of α∗ for three voters and uniform G

We conclude this section with an example to show that with four voters, not all (x,y)-scoring
rules with x < y feature an equilibrium voting strategy in which preference intensity is expressed:

Example 2. Let n = 3, and consider the (x,y)-scoring rule with x = 0.4 and y = 0.45. With the
help of Mathematica, we can compute explicitly the loss-gain-ratio L(p(α)) in (5):

L(p(α)) =

9
2

((1
6 − p(α)

)3
+(p(α))3

)
+12

((1
6 − p(α)

)2
p(α)+

(1
6 − p(α)

)
(p(α))2

)
9
2

((1
6 − p(α)

)3
+(p(α))3

)
+12

((1
6 − p(α)

)2
p(α)+

(1
6 − p(α)

)
(p(α))2

)
= 1 for all α ∈ [0,1].

This loss-gain-ratio implies an equilibrium weight α∗ = 1, so that no preference intensity is ex-
pressed for any distribution G. In fact, in can be verified that with four voters, no (x,y)-scoring
rule with x ∈ (1

3 ,
1
2) and y ∈ (x, 1+x

3 ) involves the expression of preference intensity for any G.

4 Effectiveness of two-parameter scoring rules

4.1 Welfare notions and effectiveness
In this section, we build on our equilibrium characterization in Section 3 to compare (x,y)-scoring
rules according to their effectiveness in selecting an alternative that is representative of voters’

20In order not to overload Fig. 3, we show the values α∗ only for the 20 equivalence classes associated with the
interiors of the various polygons. The remaining 44 equivalence classes are associated with the dashed boundaries
between the polygons, as well as the intersections of the dashed boundaries.
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preferences. The notion of effectiveness used here is due to Weber (1978). Expressed in terms
from the mechanism design literature, Weber’s effectiveness measure is defined as the welfare
gain of a given (x,y)-scoring rule over random selection of an alternative from K, divided by the
welfare gain of a ‘first best’ decision rule over random selection. The denominator of this ratio
thereby represents the maximal welfare gain that one can hope for in the hypothetical scenario
where incentive problems surrounding the revelation of voter-preferences are absent.

When we refer to the welfare of an (x,y)-scoring rule, we mean here expected utilitarian wel-
fare, given by the sum of voters’ ex ante expected utilities in the FSE of the scoring rule. Due to
the symmetry of our setup in Section 2, where all voters are ex ante identical, it suffices to compute
the ex ante expected utility of a representative voter and multiply it by the number of voters (i.e.
by n+1) in order to obtain expected welfare. Furthermore, as all ordinal rankings of the alterna-
tives in K are equally likely, we can compute the ex ante expected utility of any voter i by fixing a
representative ordinal ranking (associated with utilities ui

1 > ui
2 > ui

3), and then multiplying by six
voter i’s expected utility under the representative ranking.21 Thus, expected welfare, denoted by
W (x,y), is:

W (x,y)≡ 6(n+1)

(∫ 1

0

∫ ui
1

0

∫
α∗ui

1+(1−α∗)ui
3

ui
3

Ui((1,x,0),uuui)g(ui
2)dui

2 g(ui
3)dui

3 g(ui
1)dui

1

+
∫ 1

0

∫ ui
1

0

∫ ui
1

α∗ui
1+(1−α∗)ui

3

Ui((1,y,0),uuui)g(ui
2)dui

2 g(ui
3)du3 g(ui

1)dui
1

)

In order to define formally the effectiveness measure of Weber (1978), we have to quantify
the notions of ‘first best’ and ‘random selection’. Both are instances of so called direct revelation
mechanisms. Formally, a direct revelation mechanism (DRM) is a function fff : [0,1]3(n+1)→ ∆(K),
uuu 7→ ( fA(uuu), fB(uuu), fC(uuu)), where ∆(K) is the set of probability distributions over K, and fk(uuu) is
the probability that alternative k ∈ K is chosen by the mechanism when the voters’ type-profile is
uuu≡ (uuu1, . . . ,uuun+1). Ex ante expected welfare associated with a DRM is:

Welfare of fff = E[∑
k∈K

fk(uuu)(∑
i∈I

ui
k)] (8)

When we speak of ‘random selection’, we mean here the DRM fff R that selects each alternative
in K with equal probability, regardless of the voters’ types:

Definition 4. The DRM fff R implements random selection if ( f R
A (uuu), f R

B (uuu), f R
C (uuu)) = (1

3 ,
1
3 ,

1
3) for

all uuu ∈ [0,1]3(n+1).

A ‘first best’ decision rule, in contrast, is a DRM that maximizes expected welfare in (8) in
the hypothetical scenario where the types uuui of all n+1 voters, once realized, become observable
before the collective choice has to be made:22

Definition 5. A DRM fff FB is a first best decision rule if for every k∈K: ∑i∈I ui
k >maxl 6=k{∑i∈I ui

l}⇒
f FB
k (uuu) = 1 and ∑i∈I ui

k < maxl 6=k{∑i∈I ui
l}⇒ f FB

k (uuu) = 0.

On the basis of Definition 5, ex ante expected welfare of a first best decision rule reduces to the
expectation of the order statistic max{wA,wB,wC}, where wk ≡ ∑i∈I ui

k is a random variable with

21See (3) for the definition of Ui((1,σ i
B,0),uuu

i), where σ i
B ∈ {x,y}.

22I.e. a first best DRM is an ex ante classically efficient decision rule in the sense of Holmström and Myerson
(1983).
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support [0,n+ 1], and any two random variables wk, wl (k, l ∈ K, l 6= k) are i.i.d.23 We can now
define formally the effectiveness of an (x,y)-scoring rule:

Effectiveness≡ W (x,y)−Welfare of fff R

Welfare of fff FB−Welfare of fff R

4.2 Computational results
In this section, we present computational results regarding the effectiveness levels of all (x,y)-
scoring rules in a setting with three voters.24 Our main aim is to gain some insight into which
rule is most effective in selecting an alternative that represents voters’ preferences. We would also
like to know if (x,y)-scoring rules that allow for the expression of preference intensity are more
effective than those that only allow voters to convey their ordinal rankings (these latter rules are
the ones on the 45-degree line in the unit square, and the Borda rule is one of them).25

To obtain our computational results, we have selected specific distributions G from which
voters’ Bernoulli utilities are drawn, and then used Mathematica to compute the equilibrium
weights α∗ that characterize FSE voting strategies. To make as broad as possible the scope of
our computational results, we used 25 different Beta-distributions for G. The density function
g(u;a,b) and the cumulative distribution function G(u;a,b) of the Beta-distribution are parame-
terized by two shape parameters a,b > 0: g(u;a,b)≡ ua(1−u)b/

∫ 1
0 sa(1− s)bds and G(u;a,b)≡∫ u

0 sa(1− s)bds/
∫ 1

0 sa(1− s)bds for 0 ≤ u ≤ 1. In order to expedite the computation of the equi-
librium weights α∗ and their associated welfare levels, we generate our 25 Beta-distributions by
varying separately each of the two shape-parameters a and b from 1 to 5 in increments of 1 (as
opposed to using smaller increments). E.g. the uniform distribution corresponds to the case where
a = b = 1.

Note that the effectiveness levels of different (x,y)-scoring rules can be compared meaningfully
here because we have chosen our 25 Beta-distributions so that each rule gives rise to a unique
equilibrium weight α∗ ∈ (0,1). We have verified uniqueness by checking explicitly the sufficient
conditions in footnote 19.26 Our computational results indicate that the (x,y)-scoring rules which
generate the highest average effectiveness across all 25 Beta-distributions are those in the top left
corner of Fig. 4 (those yielding 89.06% effectiveness).27 These rules allow voters to express their

23If we denote by H the distribution of the random variable wk, then the distribution of the order statistic
max{wA,wB,wC} is H̄(w) ≡ Pr[max{wA,wB,wC}] = (H(w))3. Note that analytical expressions for H are difficult
to obtain for arbitrary distributions G. In our computational work below, we therefore compute first best welfare using
Monte Carlo experiments in Mathematica 8.0 for Windows 7x64.

24The reason for focusing on three voters is that this is the smallest number of voters for which the FSE voting
strategy in Corollary 1 involves α∗ ∈ (0,1) for all x < y.

25Kim (2012) proves analytically for the case of the uniform distribution that ordinal rules do not maximize social
welfare.

26By Proposition 4, we only have to verify uniqueness for (x,y)-scoring rules in the 26 equivalence classes that
feature a non-monotonic loss-gain-ratio. For each of these equivalence classes, we have checked sufficient condition
(i) in footnote 19 for every one of our 25 Beta-distributions. This showed that 20 of the 26 equivalence generate a
loss-gain-ratio that is a contraction mapping. For the remaining six equivalence classes (namely those numbered 7.,
15., 16., 28., 29., and 58. in Table 11 at the end of the proof of Proposition 4), condition (i) was violated for some
of the 25 Beta-distributions. For these six equivalence classes, we then established uniqueness of α∗ across all 25
Beta-distributions by verifying that each loss-gain-ratio is either strictly convex or strictly concave.

27As with Fig. 3 above, we show the effectiveness levels only for the 20 equivalence classes associated with the
interiors of the various polygons.
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intensity of preference because x < y. We also find that ordinal rules (i.e. those where x = y) do
not yield maximal effectiveness.

In Table 1 below we present in the first column the effectiveness levels of well known special
cases of (x,y)-scoring rules (the second column will be explained below in Section 4.3). The
following pattern emerges: negative voting is the worst-performing two-parameter scoring rule,
followed by plurality voting. Approval voting outperforms both of them, but is dominated by
the best ordinal rule.28 This is not surprising, given that approval voting, while allowing for the
expression of preference intensity, does not allow voters to convey unambiguously their ordinal
rankings. Under the most effective rules, voters can convey both their ordinal ranking and express
their preference intensity.
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Figure 4: Average effectiveness in % across 25 Beta-distributions

Scoring Rule (x,y) Effectiveness w.r.t fff FB Effectiveness w.r.t fff ∗

Negative Voting (1,1) 67.28% 73.83%
Plurality Rule (0,0) 76.76% 84.25%

Approval Voting (0,1) 83.71% 91.88%
Best Ordinal rule (0.6,0.6) 86.41% 94.83%

Most effective rule (0.4,0.9) 89.06% 97.74%

Table 1: Average effectiveness of well-known voting rules

We conclude our computational section with an attempt to understand better how maximum
effectiveness varies with the distribution G. Our results reveal that of the 64 equivalence classes of
(x,y)-scoring rules with x < y, only five maximize effectiveness (each class for a different subset of
our 25 Beta-distributions). The first three classes are indicated by the numbers superimposed onto

28Among all rules with x = y, the one with x = y = 0.6 yields the highest average effectiveness across our 25
Beta-distributions.
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Figure 5: Graphical illustration of classes I-IV

the shaded gray areas in Fig. 5 (classes I, II, and IV are represented by a gray triangle each), while
classes III and V are represented by thick black lines.29 The figure confirms what we expected
on the basis of average effectiveness levels, namely that ordinal rules do not generate maximal
effectiveness for any of the 25 Beta-distributions.

To illustrate the types of distributions associated with each of the maximally effective equiv-
alence classes, we list in Table 2 on page 20 the five classes along with the Beta-distributions for
which each class is most effective. We also provide the indicative shape of the density under each
Beta-distribution so as to convey a sense of how the maximally effective class of scoring rules
varies with the concentration of probability mass under each distribution. The observation that
emerges from Table 2 is that for distributions which place much of their probability mass on high
utilities, the most effective (x,y)-scoring rules involve a value of x close to 0.5, and a value of
y > 1− 0.5x (see rules IV and V); for distributions that spread their mass more evenly, the most
effective rules involve a wider spread between the values of x and y (see rules II and III) than the
spread that emerges under rules IV and V. However, as Fig. 4 indicates, the effectiveness levels of
classes II, III, and IV are virtually identical (the effectiveness of class III, which was omitted from
Fig. 4, is 89.04%). This suggests that any of these rules are likely to perform very well across a
wide range of distributions. Only when probability mass is heavily concentrated on low values (as
in B(1,5)) is class I most effective.

Finally, to make it easier for the reader to glean how many of our 25 Beta-distributions are
actually associated with each of the maximally effective equivalence classes, we show in Fig. 6 a
histogram that conveys for how many distributions, and for which ones, each of the classes I-V
in Fig. 5 is most effective (in the histogram, B(a,b) denotes the Beta-distribution with shape-
parameters a and b).

29Dashed lines around shaded areas indicate that the boundaries are excluded. In terms of the 64 equivalence classes
listed in Table 11 at the end of the proof of Proposition 4, classes II, III, IV, and V in the figure correspond to classes
numbered 58., 57., 56, and 55., resp. in Table 11. Class I in the figure corresponds to class 15. in Table 11.

19



Indicative shape of g(u;a,b) Parameters a and b Most effective scoring rules

a = 1, b = 5

a = 1, 2 < b < 5

Class I

Class II

2≤ a < b≤ 5 Class II

a = 1, b = 2 Class II

a = 1, b = 1 Class II

a = 2, b = 1 Class II

a = b > 1 Class III

2≤ b < a≤ 5 Class IV

b = 1, 2 < a < 5 Class V

Table 2: Most effective (x,y)-scoring rule associated with each Beta-distribution
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Class II Class IV Class III Class V Class I
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Figure 6: Histogram showing Beta-distributions associated with classes I-V

4.3 A superior measure of effectiveness
It is important to note that evaluating the effectiveness of two-parameter scoring rules against first
best decision rules gives a somewhat unfavorable picture. The reason is that first best decision rules
do not have to satisfy constraints to ensure that all voters report truthfully their types. Therefore,
we would like to have a more realistic benchmark against which to compare two-parameter scoring
rules. Ideally, we would like to compare them to so called ‘second best decision rules’ (i.e. rules
that maximize ex ante welfare among all incentive compatible DRMs). However, a complete
characterization of incentive compatible DRMs is beyond the scope of this paper. In order to make
some progress in spite of this, we highlight here an equilibrium property of (x,y)-scoring rules that
must also hold in any incentive compatible DRM: Consider any voter i, and pick two proportional
types ûuui, ũuui ∈ [0,1]3 that reflect the same ordinal ranking of the alternatives. By ‘proportional’ we
mean that ũuui = c(ûi

1, û
i
2, û

i
3) for some real-valued scalar c > 0. Observe that under the symmetric

voting strategy in Corollary 1, if type ûuui submits the individual score-vector σσσ i = (1,y,0), then
so will type ũuui. This implies that all types uuui ∈ [0,1]3 with the same ‘normalized type’ (1,(ûi

2−
ûi

3)/(û
i
1− ûi

3),0) will submit the same score-vector σσσ i as ûuui.
It is important to emphasize that under state-dependent expected utility assumed in our model,

it is not possible w.l.o.g. to replace voters’ original types uuui with their normalized types (only
the Bernoulli utility ui

3 of the lowest-ranked alternative can be normalized to zero w.l.o.g. for
every type uuui ∈ [0,1]3; see also footnote 13). However, the standard characterization of incentive
compatible DRMs (see e.g. Rochet, 1987) implies that if a DRM gives voters the incentive to reveal
truthfully their types, then the mechanism can only be responsive to voters’ normalized types. In
other words, an incentive compatible DRM must treat the type ũuui the same as the type ûuui. This is
referred to in Hortala-Vallve (2009) as ‘bunching of proportional types’. If this was not the case,
and a voter could expect a more favorable distribution over alternatives simply by exaggerating
all components of his type-vector by the same factor, then it would be in the voter’s interest to do
so. While incentive compatibility of a DRM may require constraints in addition to the bunching
of proportional types, it is clear that no incentive compatible DRM can generate higher ex ante
expected welfare than a mechanism that respects only the bunching requirement. Therefore, the
latter mechanism should serve as a more realistic basis for computing the effectiveness of (x,y)-
scoring rules than first best decision rules.

We propose now a particular DRM fff ∗ that treats the same all voters who have the same normal-
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ized type. Consider a voter i who reports a type ûuui = (ûi
1, û

i
2, û

i
3), with associated ordinal ranking

�i. On the basis of his report, voter i is assigned the following ‘secondary type’ τττ i:

τττ
i ≡ (τ i

1,τ
i
2,τ

i
3) =

(
E[ui

1| �i],θiE[ui
1| �i]+ (1−θi)E[ui

3| �i],E[ui
3| �i]

)
where θi ≡ (ûi

2− ûi
3)/(û

i
1− ûi

3), and E[ui
k| �i] is the expectation of ui

k conditional on the ordinal
ranking associated with voter i’s reported type ûuui.30 Given the secondary types τττ i of all voters, let
fff ∗ select a probability distribution over K that is first best in the sense of Definition 5, but with
respect to the profile of secondary types τττ ≡ (τττ1, . . . ,τττn+1) rather than the reported types. It is
straightforward to show that fff ∗ gives voters the incentive to reveal truthfully their ordinal rankings
when all other voters do so.31

We would like to argue that the DRM fff ∗ is a more realistic benchmark for evaluating the
effectiveness of two-parameter scoring rules, because both fff ∗ and the FSE of (x,y)-scoring rules
bunch proportional types. We have computed numerically the ex ante expected welfare of fff ∗

across all 25 Beta-distributions, and have used the results to obtain the average effectiveness of
(x,y)-scoring rules relative to fff ∗, instead of fff FB.32 The results are reported in the second column
of Table 1, and they reveal that the most effective rule now comes very close to full effectiveness
(Equivalence class II in Fig. 5 is again the most effective; in fact, the ranking of effectiveness-
levels is not affected by using the benchmark fff ∗ instead of fff FB). This suggests that the lower
effectiveness of class II relative to first best can be attributed almost entirely to the need to bunch
proportional types.33 Even though class II may not be a second best DRM, its very small loss in
effectiveness relative to fff ∗ suggests that it comes very close.

5 Conclusion
In this paper, we have characterized symmetric equilibria of two-parameter scoring rules. With
three voters, these symmetric equilibria are unique for the 25 Beta-distributions considered here.
We can therefore safely compare the performance of different scoring rules across these distri-
butions. As a measure of performance, we have reprised the notion of effectiveness proposed in
Weber (1978). Our results show that the plurality rule and negative voting are the least effective
in representing the preferences of the electorate. Whilst approval voting performs much better
than either of these rules, it does not perform as well as optimal (x,y)-scoring rules, which feature
a relatively small x-value and large y-value. Our computational results suggest that voting rules
which allow voters to express their strength of preference perform better than those which do not.
In future work, we intend to explore further the characteristics of voting mechanisms that are op-
timal in the class of incentive compatible mechanisms (i.e. so called ‘second best’ decision rules).
However, any such work will have to address the considerable mathematical difficulties that an
analytical mechanism design approach to this question entails.

30Observe that both the reported type ûuui and the corresponding secondary type τττ i give rise to the same normalized
type: (1,θi,0).

31Note, however, that we do not make any claims as to whether fff ∗ is fully incentive compatible. Voters may still
have an incentive to misrepresent their types in ways other than simply multiplying them by a constant.

32Ex ante expected welfare of fff ∗ has been obtained by means of Monte Carlo experiments.
33This observation tallies with the very small welfare losses found in Börgers and Postl (2009), who studied a model

where the Bernoulli utility of each agents’ favorite alternative was ‘normalized’ to 1, and that of the least preferred
alternative was normalized to 0. As a result, there were no proportional types to be bunched in their model.
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6 Appendix

6.1 Proof of Proposition 1
Consider voter i ∈ I. From his perspective, the score-vector vvv(uuu j) submitted by any voter j 6= i is a
r.v. with sample space Σx,y and generic realization σσσ j = (σ

j
A,σ

j
B,σ

j
C) ∈ Σx,y. To obtain the proba-

bility distribution of vvv(uuu j), note that the information structure in Section 2.1, together with the fact
that the voting strategy vvv is symmetric in the sense of property S2 implies that any permutation
σ̂σσ

j of a given score-vector σσσ j ∈ Σx,y occurs with the same probability as σσσ j. In formulating his
best response to the voting strategy vvv used by all voters j 6= i, voter i must compute the expected
probability distribution E[δδδ (sssn +σσσ i)] over K implied by the (x,y)-scoring rule for the aggregate
score-vector sssn +σσσ i. Note that sssn = ∑ j 6=i vvv(uuu j) is a r.v. whose distribution is derived from that of
the individual score-vectors vvv(uuu j) submitted by voters j 6= i. In Lemmas 2 and 3 below, we derive
for the r.v. sssn the relevant characteristics of its sample space Sn

x,y and the probability distribution on
it.

Lemma 2. The probability that alternative k has the highest aggregate score is the same for all
k ∈ K.

Proof of Lemma 2. To show this, we introduce the following notation: The subset Sn
k ⊂ Sn

x,y
contains all aggregate score-vectors s.t. alternative k has the highest aggregate score. To ease
notation, we omit the explicit reference to the values x and y associated with the given (x,y)-
scoring rule: we write Σ instead of Σx,y, and Sn instead of Sn

x,y. Now pick any aggregate score-vector
sssn ∈ Sn

A. That is, the components of sssn are s.t. ∑ j 6=i σ
j

A > max{∑ j 6=i σ
j

B,∑ j 6=i σ
j

C}. Consequently,
the aggregate ranking of alternatives in K across all voters j 6= i is: A�n B and A�n C, where �n
denotes the aggregate preference relation. Next, generate for each voter j 6= i a new score-vector
σ̂σσ

j by interchanging in the original score-vectors σσσ j the scores assigned to alternatives A and B:
σ̂σσ

j = (σ
j

B,σ
j

A,σ
j

C). Adding up these new score-vectors σ̂σσ
j, we obtain an aggregate score-vector

ŝssn ≡ (∑ j 6=i σ
j

B,∑ j 6=i σ
j

A,∑ j 6=i σ
j

C) under which alternative B has the highest score (i.e. B �n A and
B �n C). By virtue of the fact that the set Σ contains all permutations of (1,x,0) and (1,y,0), it
follows that ŝssn ∈ Sn

B ⊂ Sn. Furthermore, Pr[vvv(uuu j) = σ̂σσ
j] = Pr[vvv(uuu j) = σσσ j] for every permutation

σ̂σσ
j of σσσ j, it follows that the aggregate score-vectors sssn and ŝssn occur with the same probability. By

interchanging in all score-vectors σσσ j the scores assigned to alternatives A and C, we can obtain
an aggregate score-vector (∑ j 6=i σ

j
C,∑ j 6=i σ

j
B,∑ j 6=i σ

j
A) ∈ Sn

C ⊂ Sn (i.e. C �n A and C �n B) which
occurs with the same probability as the aggregate score-vector sssn. Thus, for every aggregate score-
vector in Sn s.t. alternative A has the highest score, there is a score-vector in Sn s.t. alternative B (C,
resp.) has the highest score. Therefore, the number |Sn

k | of aggregate score-vectors s.t. alternative
k has the highest score is the same for all k ∈ K. Furthermore, the probability that the aggregate
score-vector sssn is s.t. alternative k has the highest score (and therefore δk(sssn) = 1) is the same for
all k ∈ K: Pr[Sn

A] = Pr[Sn
B] = Pr[Sn

C].

Lemma 3. The probability that any two alternatives k, l ∈ K (k 6= l) are in a tie for the highest
score is the same for all pairs (k, l).

Proof of Lemma 3. Let Sn
kl ⊂ Sn denote the set containing all aggregate score-vectors s.t.

two alternatives k and l are in a tie for the highest score while beating the remaining alternative.
Now pick any aggregate score-vector s̄ssn ∈ Sn

AB. That is, the components of s̄ssn are s.t. ∑ j 6=i σ̄
j

A =

∑ j 6=i σ̄
j

B > ∑ j 6=i σ̄
j

C (i.e. A ∼n B �n C). Next, generate for each voter j 6= i a new score-vector
σ̌σσ

j by interchanging in the original score-vectors σ̄σσ
j the scores assigned to alternatives A and C:
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σ̌σσ
j = (σ̄

j
C, σ̄

j
B, σ̄

j
A). Adding up these new individual score-vectors σ̌σσ

j, we obtain the aggregate
score-vector šssn = (∑ j 6=i σ̄

j
C,∑ j 6=i σ̄

j
B,∑ j 6=i σ̄

j
A) ∈ Sn

BC ⊂ Sn (i.e. B∼n C �n A). Note that aggregate
score-vectors s̄ssn and šssn occur with the same probability. This argument shows that for every
aggregate score-vector in Sn s.t. alternatives A and B tie while beating C, there exists an aggregate
score-vector in Sn s.t. alternatives B and C tie while beating A. Consequently, the number |Sn

AB|
of aggregate score-vectors in Sn is the same as the number of aggregate score-vectors |Sn

BC| in Sn.
Furthermore, Pr[Sn

AB] = Pr[Sn
BC]. Next, consider an aggregate score-vector s̆ssn ∈ Sn

AC s.t. alternatives
A and C tie while beating alternative B (i.e. A ∼n C �n B). By interchanging the A- and B-scores
in the original score-vectors σ̆σσ

j, we obtain an aggregate score-vector s.t. alternatives B and C tie
for the highest score (i.e. B∼n C �n A), and this new aggregate score-vector occurs with the same
probability as the original aggregate score-vector s̆ssn. We can therefore conclude that for every
aggregate score-vector in Sn s.t. alternatives A and C tie while beating B, there exists an aggregate
score-vector in Sn s.t. alternatives B and C tie while beating A. Consequently, the number of
aggregate score-vectors |Sn

AC| in Sn is the same as the number of aggregate score-vectors |Sn
BC| in

Sn. In summary: |Sn
AC|= |Sn

BC|= |Sn
AB| and Pr[Sn

AC] = Pr[Sn
BC] = Pr[Sn

AB].

We are now ready to continue the proof of Proposition 1 in the main text. Our objective is to
show that it is optimal for voter i to assign a score of 1 to his favorite alternative, and a score of zero
to his lowest ranked alternative when all other voters use the same strategy that is symmetric in the
sense of S2. We start with the following observation: Using Lemmas 2 and 3 above, it is easy to
see that the expected probability E[δk(sssn)] assigned by the (x,y)-scoring rule δδδ to any alternative
k on the basis of the aggregate score-vector sssn is the same for all k ∈ K:34

E[δA(sssn)]≡ Pr[Sn
A]+

1
2
(Pr[Sn

AB]+Pr[Sn
AC])+

1
3

Pr[Sn
ABC]

=
1
3
= E[δB(sssn)] = E[δC(sssn)]

Now suppose w.l.o.g. that voter i submits the score-vector σσσ i =(1,σ i
B,0), which assigns a score

of 1 to alternative A, a score of σ i
B ∈ {x,y} to alternative B, and a score of 0 to alternative C. In what

follows, we show that this results in an expected probability distribution E[δδδ (sssn+σσσ i)] over the set
of alternatives K s.t.: E[δA(sssn+σσσ i)]> 1/3>E[δC(sssn+σσσ i)] and E[δA(sssn+σσσ i)]>E[δB(sssn+σσσ i)] =
E[δC(sssn +σσσ i)] for σ i

B = 0; E[δA(sssn +σσσ i)] > E[δB(sssn +σσσ i)] > E[δC(sssn +σσσ i)] for all σ i
B ∈ (0,1);

and E[δA(sssn +σσσ i)] = E[δB(sssn +σσσ i)] > E[δC(sssn +σσσ i)] if σ i
B = 1. To show this, we distinguish

three cases: Case I, where σ i
B = 0; Case II, where σ i

B ∈ (0,1); and Case III, where σ i
B = 1. In

each case, we compute for every k ∈ K the expected change E[∆δk(sssn +σσσ i)] in the probability of
alternative k, where ∆δk(sssn +σσσ i) ≡ δk(sssn +σσσ i)− δk(sssn). This allows us to capture the way in
which the score-vector σσσ i submitted by voter i affects the probability distribution E[δδδ (sssn +σσσ i)].
To facilitate the computation of ∆δk(sssn +σσσ i) for every sssn ∈ Sn, we split the set Sn on the basis of
the alternatives’ aggregate scores, and the aggregate ordinal ranking these scores give rise to. In
addition to the subsets Sn

k and Sn
kl defined in the proofs of Lemmas 2 and 3 above, and the subset

Sn
ABC defined in footnote 34, we will also encounter the following subsets of Sn

C: Sn
C,A and Sn

C,B
(which are associated with the aggregate ordinal rankings C �n A �n B and C �n B �n A, resp.),
as well as Sn

C,AB (associated with C �n A∼n B). With the exception of subsets where alternative A
holds or shares with one or more alternatives the highest aggregate score, we may have to consider
further subsets of Sn depending on how the aggregate A-score sA

n relates to the scores sB
n and sC

n of
the other two alternatives.

34The event that an alternative ties with the other two alternatives is denoted by Sn
ABC ⊂ Sn.
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Subset of Sn
δA(sssn) δB(sssn) ∆δA(sssn+1) ∆δB(sssn+1)

I.1 Sn
A 1 0 0 0

I.2 Sn
AB 1/2 1/2 1/2 −1/2

I.3 Sn
AC 1/2 0 1/2 0

I.4 Sn
ABC 1/3 1/3 2/3 −1/3

I.5 Sn
BC: sB

n−sA
n<1 0 1/2 1 −1/2

I.6 Sn
BC: sB

n−sA
n=1 0 1/2 1/3 −1/6

I.7 Sn
BC: sB

n−sA
n>1 0 1/2 0 0

I.8 Sn
B: sB

n−sA
n<1 0 1 1 −1

I.9 Sn
B: sB

n−sA
n=1 0 1 1/2 −1/2

I.10 Sn
B: sB

n−sA
n>1 0 1 0 0

I.11 Sn
C: sC

n−sA
n<1 0 0 1 0

I.12 Sn
C: sC

n−sA
n=1 0 0 1/2 0

I.13 Sn
C: sC

n−sA
n>1 0 0 0 0

Table 3: Change in δk when σσσ i = (1,0,0)

6.1.1 Case I: σ i
B = 0

Table 3 below displays the values of δA(sssn) and δB(sssn), as well as ∆δA(sssn+1) and ∆δB(sssn+1), for
sssn in all relevant subsets of Sn. To ease notation, we write sssn+1 as shorthand for sssn +σσσ i. In order
to reduce the dimensions of the table, we omit δC(sssn), as δC(sssn) = 1 − δA(sssn) − δB(sssn). We also
omit ∆δC(sssn+1) from the table, as ∆δA(sssn+1) + ∆δB(sssn+1) + ∆δC(sssn+1) = 0. As Table 3 reveals,
the change ∆δA(sssn +(1,0,0)) is non-negative for all aggregate score-vectors sssn, while ∆δB(sssn +
(1,0,0)) and ∆δC(sssn +(1,0,0)) are both always non-positive, and sometimes negative. It follows
immediately that E[δA(sssn+(1,0,0))]> 1/3, and E[δB(sssn+(1,0,0))] =E[δC(sssn+(1,0,0))]< 1/3.

Now consider w.l.o.g. a voter i with ordinal ranking A �i B �i C (i.e. Bernoulli utilities ui
A >

ui
B > ui

C). By the argument in the preceding paragraph, his choice problem of which score-vector to
submit essentially boils down to choosing the alternative to which he wishes to assign a coefficient
πH > 1/3 in his expected utility function, while assigning a coefficient πL < 1/3 to the remaining
two alternatives.35 For instance, when choosing the score-vector (1,0,0), voter i’s expected utility
is Ui((1,0,0),uuui) = πHui

A +πL(ui
B + ui

C). The expected utilities from the other two score-vectors
are obtained analogously. Now observe that Ui((1,0,0),uuui)−Ui((0,1,0),uuui) = (πH − πL)(ui

A−
ui

B) > 0 and Ui((0,1,0),uuui)−Ui((0,0,1),uuui) = (πH − πL)(ui
B− ui

C) > 0, which shows that it is
optimal for voter i to assign the score of 1 to his favorite alternative A.

6.1.2 Case II: σ i
B ∈ (0,1)

Table 4 below displays the values of δA(sssn) and δB(sssn), as well as ∆δA(sssn+1) and ∆δB(sssn+1), for sssn
in all relevant subsets of Sn. As can be inferred from Table 4, the change ∆δC(sssn+(1,σ i

B,0)) is non-
positive for all, and negative for some aggregate score-vectors sssn. Thus, E[δC(sssn +(1,σ i

B,0))] <
1/3. Therefore, it is optimal for voter i to assign a score of 0 to his least preferred alternative.
While the change ∆δA(sssn + (1,σ i

B,0)) is non-negative for all, and positive for some aggregate
score-vectors sssn, the change ∆δB(sssn +(1,σ i

B,0)) takes both positive values for some, and negative
values for other aggregate score-vectors sssn.

35We use the shorthand πH to denote the probability of the alternative that receives the score of 1 in voter i’s chosen
score-vector, while πL denotes the probability of the alternatives that receive zero scores.
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We begin by showing that E[δA(sssn +(1,σ i
B,0))] exceeds E[δB(sssn +(1,σ i

B,0))]. For this pur-
pose, we compute the difference between these two expected probabilities using Table 4:

E[δA(sssn +(1,σ i
B,0))]−E[δB(sssn +(1,σ i

B,0))]
= E[∆δA(sssn +(1,σ i

B,0))]−E[∆δB(sssn +(1,σ i
B,0))]+E[δA(sssn)]︸ ︷︷ ︸

=1/3

−E[δB(sssn)]︸ ︷︷ ︸
=1/3

= Pr[II.2]+
1
2

Pr[II.3]+Pr[II.4]+
3
2

Pr[II.5]+
1
2

Pr[II.6]

−1
2

Pr[II.7]+2Pr[II.8]+Pr[II.9]+Pr[II.11]+
1
2

Pr[II.12]

+Pr[II.14]+
1
2

Pr[II.16]− 1
2

Pr[II.18]−Pr[II.20] (9)

To show that this difference is positive, we need to argue that any negative terms in (9) are canceled
out or exceeded by the positive terms. Intuitively, this means showing that for every aggregate
score-vector sssn s.t. alternative B gains probability mass from alternative C while A does not, there
exists an aggregate score-vector ŝssn which arises with the same probability as sssn s.t. alternative A
gains the same amount of probability mass from C while B does not.36

Subset of Sn
δA(sssn) δB(sssn) ∆δA(sssn+1) ∆δB(sssn+1)

II.1 Sn
A 1 0 0 0

II.2 Sn
AB 1/2 1/2 1/2 −1/2

II.3 Sn
AC 1/2 0 1/2 0

II.4 Sn
ABC 1/3 1/3 2/3 −1/3

II.5 Sn
BC: sB

n−sA
n<1−σ i

B 0 1/2 1 −1/2

II.6 Sn
BC: sB

n−sA
n=1−σ i

B 0 1/2 1/2 0

II.7 Sn
BC: sB

n−sA
n>1−σ i

B 0 1/2 000 111///222

II.8 Sn
B: sB

n−sA
n<1−σ i

B 0 1 1 −1

II.9 Sn
B: sB

n−sA
n=1−σ i

B 0 1 1/2 −1/2

II.10 Sn
B: sB

n−sA
n>1−σ i

B 0 1 0 0

II.11 Sn
C,A∪Sn

C,AB: sC
n−sA

n<1 0 0 1 0

II.12 Sn
C,A∪Sn

C,AB: sC
n−sA

n=1 0 0 1/2 0

II.13 Sn
C,A∪Sn

C,AB: sC
n−sA

n>1 0 0 0 0

II.14 Sn
C,B: sC

n−sA
n<1∧sB

n−sA
n<1−σ i

B 0 0 1 0

II.15 Sn
C,B: sC

n−sA
n<1∧sB

n−sA
n=1−σ i

B 0 0 1/2 1/2

II.16 Sn
C,B: sC

n−sA
n=1∧sB

n−sA
n<1−σ i

B 0 0 1/2 0

II.17 Sn
C,B: sC

n−sA
n=1∧sB

n−sA
n=1−σ i

B 0 0 1/3 1/3

II.18 Sn
C,B: sC

n−sA
n>1∧sC

n−sB
n=σ i

B 0 0 000 111///222

II.19 Sn
C,B: sC

n−sA
n>1∧sC

n−sB
n>σ i

B 0 0 0 0

II.20 Sn
C,B: sB

n−sA
n>1−σ i

B∧sC
n−sB

n<σ i
B 0 0 000 111

Table 4: Change in δk when σσσ i = (1,σ i
B,0), where σ i

B ∈ (0,1)

We consider first an aggregate score-vector sssn in subset II.7. Such a score-vector has the
property that B∼n C�n A with sB

n −sA
n > 1−σ i

B. Now interchange, in each individual score-vector

36In Table 4, see events II.7, II.18, and II.20 highlighted in bold, in which B gains while A does not.
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σσσ j = (σ
j

A,σ
j

B,σ
j

C) associated with sssn, the scores σ
j

B and σ
j

A. This give rise to new individual score-
vectors σ̂σσ

j = (σ
j

B,σ
j

A,σ
j

C) for all j 6= i, and an associated aggregate score-vector ŝssn = (ŝA
n , ŝ

B
n , ŝ

C
n ) =

(sB
n ,s

A
n ,s

C
n ), where A ∼n C �n B and ŝA

n − ŝB
n > 1−σ i

B. Note that the new aggregate score-vector
ŝssn is an element of subset II.3 (i.e. ŝssn ∈ Sn

AC), and that Pr[ŝssn] = Pr[sssn] (by virtue of the fact that
ŝssn is a permutation of sssn, and that the permuted individual score-vectors σ̂σσ

j occur with the same
probability as the original individual score-vectors σσσ j). This implies that in the expression for
the difference in equation (9) above, the term −(1/2)Pr[II.7] is counteracted by the positive term
(1/2)Pr[II.3].37

Next, we consider aggregate score-vectors sssn in subsets II.18 and II.20. As these subsets
depend on the value of σ i

B, we distinguish below settings where σ i
B ≤ 1/2 from settings where

σ i
B > 1/2:

Case II.1: σσσ i
B ≤≤≤ 111///222. Consider first an aggregate score-vector sssn in subset II.20. Such a score-

vector has the property that C �n B�n A, with sC
n − sB

n < σ i
B and sB

n − sA
n > 1−σ i

B. Now generate
a new aggregate score-vector as follows: in the individual score-vectors σσσ j = (σ

j
A,σ

j
B,σ

j
C) ( j 6= i)

associated with sssn, permute the scores so that σ̂
j

A = σ
j

B, σ̂
j

B = σ
j

C, and σ̂
j

C = σ
j

A. This yields a new
aggregate score-vector ŝssn s.t. B�n A�n C, with ŝB

n− ŝA
n < σ i

B≤ 1/2≤ 1−σ i
B and ŝA

n− ŝC
n > 1−σ i

B.
Observe that ŝssn is an element of subset II.8, and that Pr[ŝssn] = Pr[sssn]. This implies that in the
difference in equation (9) above, the negative term −Pr[II.20] is counteracted by the positive term
2Pr[II.8].

Next, note that we can deal with aggregate score-vectors sssn in subset II.18 in a similar fashion.
After appropriate permutation of the individual score-vectors σσσ j, we obtain ŝssn s.t. B �n A �n C,
with ŝB

n − ŝA
n = σ i

B ≤ 1/2≤ 1−σ i
B, which is an element of subset II.8 if σ i

B < 1/2, and an element
of subset II.9 if σ i

B = 1/2.

Case II.2: σσσ i
B >>> 111///222. Consider first an aggregate score-vector sssn in subset II.20. Such a score-

vector has the property that C�n B�n A, with sC
n −sB

n < σ i
B and sB

n −sA
n > 1−σ i

B. In the individual
score-vectors σσσ j = (σ

j
A,σ

j
B,σ

j
C) ( j 6= i) associated with sssn, permute the scores so that σ̂

j
A = σ

j
B,

σ̂
j

B = σ
j

A, and σ̂
j

C = σ
j

C. This yields ŝssn s.t. C �n A �n B, with ŝC
n − ŝA

n < σ i
B < 1 and ŝA

n − ŝB
n >

1−σ i
B. Note that ŝssn is an element of subset II.11, and that Pr[ŝssn] = Pr[sssn]. This implies that in the

expression for the difference in equation (9) above, the negative term −Pr[II.20] is counteracted
by the positive term Pr[II.11].

Note that we can deal with aggregate score-vectors sssn in subset II.18 in a similar fashion.
After appropriate permutation of the individual score-vectors σσσ j, we obtain ŝssn s.t. C �n B �n A,
with ŝC

n − ŝA
n = σ i

B < 1, which is an element of subset II.11. In summary, we can conclude that
E[δA(sssn+σσσ i)]>E[δB(sssn+σσσ i)] for all σ i

B ∈ (0,1). Having shown this, we now show that E[δB(sssn+
(1,σ i

B,0))]>E[δC(sssn+(1,σ i
B,0))]. For this purpose, we compute the difference between these two

37In fact, as subset II.3 also contains aggregate score-vectors šssn where šA
n = šC

n > šB
n and šA

n − šB
n ≤ 1−σ i

B, it follows
that (1/2)Pr[II.3]− (1/2)Pr[II.7]> 0.
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expected probabilities. Using Table 4, this difference reduces to:

E[∆δB(sssn +(1,σ i
B,0))]−E[∆δC(sssn +(1,σ i

B,0))]

= Pr[II.7]+Pr[II.18]+
3
2

Pr[II.15]+Pr[II.17]+2Pr[II.20]

−1
2

Pr[II.2]−Pr[II.8]− 1
2

Pr[II.9]

+
1
2

Pr[II.3]+
1
2

Pr[II.6]+Pr[II.11]

+
1
2

Pr[II.12]+Pr[II.14]+
1
2

Pr[II.16] (10)

To show that this difference is positive, we need to argue that any negative terms in (10) are
canceled out or exceeded by the positive terms. First, it is easy to see that Pr[II.2] = Pr[II.3] because
event II.2 corresponds to the subset Sn

AB and event II.3 corresponds to the subset Sn
AC. By Lemma

3, we know that Pr[Sn
AB] = Pr[Sn

AC]. Next, consider event II.8. This event can be partitioned into
two sub-events:

Case II.3: B �n A �n C with sB
n − sA

n < 1−σ i
B. Now generate a new aggregate score-vector ŝssn

by interchanging the scores of alternatives B and C. This new score-vector is associated with the
ordinal ranking C �n A �n B with ŝC

n − ŝA
n < 1−σ i

B < 1. It is easy to see that ŝssn is an element of
event II.11. In other words, for every aggregate score-vector sssn that falls into the first partition of
II.8, there is an aggregate score-vector ŝssn in II.11 that arises with the same probability as sssn.

Case II.4: B �n C �n A with ŝB
n − ŝA

n < 1−σ i
B. Now generate a new aggregate score-vector s̃ssn

by interchanging the scores of alternatives B and C. This new score-vector is associated with the
ordinal ranking C �n B�n A with s̃C

n − s̃A
n < 1−σ i

B. As s̃B
n < s̃C

n , it follows that s̃B
n − s̃A

n < 1−σ i
B.

It is now easy to see that s̃ssn is an element of event II.14. In other words, for every aggregate
score-vector sssn that falls into the second partition of II.8, there is an aggregate score-vector s̃ssn in
II.14 that arises with the same probability as sssn. Together, Cases II.3 and II.4 show that the term
−Pr[II.8] in (10) is fully canceled out by the positive terms Pr[II.11] and Pr[II.14].

Now consider event II.9. This event can be partitioned into two sub-events:

Case II.5: B �n A �n C with sB
n − sA

n = 1−σ i
B. Now generate a new aggregate score-vector ŝssn

by interchanging the scores of alternatives B and C. This new score-vector is associated with the
ordinal ranking C �n A �n B with ŝC

n − ŝA
n = 1−σ i

B < 1. It is easy to see that ŝssn is an element of
event II.11. In other words, for every aggregate score-vector sssn that falls into the first partition of
II.9, there is an aggregate score-vector ŝssn in II.11 that arises with the same probability as sssn.

Case II.6: B �n C �n A with sB
n − sA

n = 1−σ i
B. Now generate a new aggregate score-vector s̃ssn

by interchanging the scores of alternatives B and C. This new score-vector is associated with the
ordinal ranking C �n B�n A with s̃C

n − s̃A
n = 1−σ i

B. As s̃B
n < s̃C

n , it follows that s̃B
n − s̃A

n < 1−σ i
B.

It is now easy to see that s̃ssn is an element of event II.14. In other words, for every aggregate
score-vector sssn that falls into the second partition of II.9, there is an aggregate score-vector s̃ssn in
II.14 that arises with the same probability as sssn. Together, Cases II.5 and II.6 show that the term
−Pr[II.9] in (10) is fully canceled out by the positive terms Pr[II.11] and Pr[II.14].

In conclusion of Case II, we can state that E[δA(sssn +σσσ i)] > E[δB(sssn +σσσ i)] > E[δC(sssn +σσσ i)]
for all σ i

B ∈ (0,1). Now consider w.l.o.g. a voter i with Bernoulli utilities ui
A > ui

B > ui
C. His

choice problem of which score-vector to submit essentially boils down to choosing the alternative
to which he wants to assign a coefficient πH , to which he wants to assign a coefficient πM, and
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to which he wants to assign πL, with πH > πM > πL.38 Of the six possible assignments of coef-
ficients to alternatives, only the following three require further consideration (the remaining three
are dominated in expected utility terms):

(i) Ui((1,σ i
B,0),uuu

i) = πHui
A +πMui

B +πLui
C

(ii) Ui((σ
i
B,0,1),uuu

i) = πMui
A +πLui

B +πHui
C

(iii) Ui((0,1,σ i
B),uuu

i) = πLui
A +πHui

B +πMui
C

Forming the difference between (i) and (ii), and adding and subtracting πMui
C, it is easy to see that:

Ui((1,σ i
B,0),uuu

i)−Ui((σ
i
B,0,1),uuu

i) = (πH−πM)(ui
A−ui

C)+(πM−πL)(ui
B−ui

C)> 0.

Similarly, forming the difference between (i) and (iii), and adding and subtracting πLui
B, it is easy

to see that:

Ui((1,σ i
B,0),uuu

i)−Ui((0,1,σ i
B),uuu

i) = (πH−πL)(ui
A−ui

B)+(πM−πL)(ui
B−ui

C)> 0.

We can therefore conclude that the unique utility-maximizing score-vector for agent i is (1,σ i
B,0),

which coincides with agent i’s true ordinal ranking.

6.1.3 Case III: σ i
B = 1

Table 5 below displays the values of δA(sssn) and δB(sssn), as well as ∆δA(sssn+1) and ∆δB(sssn+1), for sssn
in all relevant subsets of Sn. As can be inferred from Table 5, the change ∆δC(sssn+(1,1,0)) is non-
positive for all, and negative for some aggregate score-vectors sssn. Therefore, E[δC(sssn+(1,1,0))]<
1/3. Consequently, it is optimal for voter i to assign a score of 0 to his least preferred alternative.
Note that both ∆δA(sssn+(1,1,0)) and ∆δB(sssn+(1,1,0)) are non-negative for all possible aggregate
score-vectors sssn.

In order to show that the expected probabilities of alternatives A and B are equal, we compute
the difference between E[δA(sssn +(1,1,0))] and E[δB(sssn +(1,1,0))]:39

E[δA(sssn +(1,1,0))]−E[δB(sssn +(1,1,0))]

= E[∆δA(sssn +(1,1,0))]−E[∆δB(sssn +(1,1,0))]

= Pr[III.7]+
1
2

Pr[III.8]− 1
2

Pr[III.14]−Pr[III.15]−Pr[III.16]

This difference is zero because for every aggregate score-vector sssn in subsets III.15 and III.16
resp., there exists an aggregate score-vector ŝssn in subset III.7 that occurs with the same probability
as sssn, and vice versa. Any such score-vector is s.t. C �n B �n A, with sB

n > sC
n − 1. Now swap

in the individual score-vectors σσσ j that give rise to the aggregate score-vector sssn the A-score and
the B-score. This gives rise to individual score-vectors σ̂σσ

j = (σ
j

B,σ
j

A,σ
j

C), and an aggregate score-
vector ŝssn = (ŝA

n , ŝ
B
n , ŝ

C
n ) = (sB

n ,s
A
n ,s

C
n ). The new aggregate score-vector ŝssn is s.t. C �n A�n B, with

ŝC
n − ŝA

n < 1. This makes ŝssn an element of subset III.7. Furthermore, Pr[ŝssn] = Pr[sssn]. As a result, the

38We use the shorthand πM to denote the probability of the alternative that receives the score of σ i
B in voter i’s

chosen score-vector, while πH and πL are as defined in footnote 35.
39Note that, by Lemma 3, the terms (1/2)Pr[III.3] and (1/2)Pr[III.5] cancel out in the expression for E[∆δA(sssn +

(1,1,0))]−E[∆δB(sssn +(1,1,0))].
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Subset of Sn
δA(sssn) δB(sssn) ∆δA(sssn+1) ∆δB(sssn+1)

III.1 Sn
A 1 0 0 0

III.2 Sn
AB 1/2 1/2 0 0

III.3 Sn
AC 1/2 0 1/2 0

III.4 Sn
ABC 1/3 1/3 1/6 1/6

III.5 Sn
BC 0 1/2 000 111///222

III.6 Sn
B 0 1 0 0

III.7 Sn
C,A: sC

n−sA
n<1 0 0 1 0

III.8 Sn
C,A: sC

n−sA
n=1 0 0 1/2 0

III.9 Sn
C,A: sC

n−sA
n>1 0 0 0 0

III.10 Sn
C,AB: sC

n−sA
n<1 0 0 1/2 1/2

III.11 Sn
C,AB: sC

n−sA
n=1 0 0 1/3 1/3

III.12 Sn
C,AB: sC

n−sA
n>1 0 0 0 0

III.13 Sn
C,B: sA

n+1<sC
n∧sB

n+1<sC
n 0 0 0 0

III.14 Sn
C,B: sA

n+1<sC
n∧sB

n+1=sC
n 0 0 000 111///222

III.15 Sn
C,B: sA

n+1<sC
n∧sB

n+1>sC
n 0 0 000 111

III.16 Sn
C,B: sA

n+1≥sC
n 0 0 000 111

Table 5: Change in δk when σσσ i = (1,1,0)

difference Pr[III.7]−Pr[III.15]−Pr[III.16] is zero. A very similar construction allows us to show
that the difference (1/2)Pr[III.8]− (1/2)Pr[III.14] is also zero. Consequently, E[δA(sssn+(1,1,0))]
= E[δB(sssn +(1,1,0))] > 1/3 > E[δC(sssn +(1,1,0))].

Now consider w.l.o.g. a voter i with Bernoulli utilities ui
A > ui

B > ui
C. His choice problem of

which one of the score-vectors (1,1,0), (1,0,1), and (0,1,1) to submit essentially boils down to
choosing the alternative to which he wishes to assign a coefficient πL < 1/3 in his expected utility
function, while assigning a coefficient πH > 1/3 to the remaining two alternatives. For instance,
when choosing the score-vector (1,1,0), voter i’s expected utility is Ui((1,1,0),uuui) = πH(ui

A +
ui

B) + πLui
C. The expected utilities from the other two score-vectors are obtained analogously.

Now observe that Ui((1,1,0),uuui)−Ui((1,0,1),uuui) = (πH−πL)(ui
B−ui

C)> 0 and Ui((1,0,1),uuui)−
Ui((0,1,1),uuui) = (πH −πL)(ui

A−ui
B) > 0, which shows that it is optimal for voter i to assign the

score of 0 to his least preferred alternative C.

6.2 Proof of Lemma 1 (for five or more voters)
We present the proof by considering, in turn, an odd number of voters greater or equal to five (i.e.
n≥ 4 and even), followed by an even number of voters greater or equal to six (i.e. n≥ 5 and odd).

6.2.1 Five or more voters (odd)

We highlight a particular aggregate score-vector sssn (where n ≥ 4 and even) with Pr[sssn] = (1
6 −

p(0))n = 1
6n s.t. δA(sssn+(1,x,0))−δA(sssn+(1,y,0))> 0. We construct this aggregate score-vector

sssn by building on the score-vector sss2 = (y,1,1+y) featured in the proof of Lemma 1 for n = 2 (see
Section 3 in the main body of the paper). Let n = 2(1+m) (where m ∈ N) and suppose that the
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aggregate score-vector across these 2(1+m) voters is composed as follows:

sssn = sss2 + sss2m

= (y,1,1+ y)+ sss2m

where sss2m = (m(1+ y),m(1+ y),0). That is, of the 2m voters whose individual score-vectors are
aggregated into sss2m, half have the individual score-vector (1,y,0), while the remaining half have
the individual score-vector (y,1,0). On the basis of sss2m, alternatives A and B are in a two-way
tie. Upon adding the score-vectors sss2 and sss2m, we obtain the following aggregate score-vector sssn
across all 2(1+m) voters other than i:

sssn = (m(1+ y)+ y,m(1+ y)+1,1+ y)

Table 6 shows that if voter i submits the score-vector σσσ i = (1,y,0), then alternatives A and B are
in a tie for the highest score. If, instead, he submits the score-vector σσσ i = (1,x,0), then alternative
A wins outright. Therefore, submission of σσσ i = (1,y,0) implies a shift in probability mass from A
to B for any m ∈N, relative to submission to σσσ i = (1,x,0).

σσσ i sssn+σσσ i δδδ (sssn+σσσ i)

(1,x,0) ((1+y)(m+1),m(1+y)+1+x,1+y) (1,0,0)

(1,y,0) ((1+y)(m+1),(1+y)(m+1),1+y) ( 1
2 ,

1
2 ,0)

Table 6: Score-vector sssn that shows L(p(0))> 0 for n = 2(1+m)

As alternative A’s loss in probability features in the numerator of the loss-gain-ratio (5), it follows
immediately that L(p(0))> 0.

6.2.2 Six or more voters (even)

We highlight a particular aggregate score-vector sssn (where n ≥ 5 and odd) with Pr[sssn] = (1
6 −

p(0))n = 1
6n s.t. δA(sssn + (1,x,0))− δA(sssn + (1,y,0)) > 0. We construct this aggregate score-

vector sssn by building on sss2 = (y,1,1+ y) featured in the proof of Lemma 1 for n = 2. Let n =
2(1+m)+ 3m̂, where m̂ ∈ N and m ∈ N∪{0}. The idea behind this construction is as follows:
Starting from some odd n≥ 5, subtract 2 from n. If the resulting odd number n−2 is divisible by 3,
set m = 0 and m̂ = (n−2)/3. Otherwise, choose the smallest integer-value for m s.t. n−2(1+m)
is divisible by three, and set m̂ = (n−2(1+m))/3. For example, if n = 9, then m = 2 and m̂ = 1.
If, instead, n = 13, then m = 1 and m̂ = 3. Now suppose that the aggregate score-vector across
these 2(1+m)+3m̂ voters is composed as follows:

sssn = sss2 + sss3m̂ + sss2m

= (y,1,1+ y)+ sss3m̂ + sss2m

where sss2m = (m(1+ y),m(1+ y),0) and sss3m̂ = (m̂(1+ y), m̂(1+ y), m̂(1+ y)). That is, of the 2m
voters whose individual score-vectors are aggregated into sss2m, half have the individual score-vector
(1,y,0), while the remaining half have the individual score-vector (y,1,0). On the basis of sss2m,
alternatives A and B are in a two-way tie. Of the 3m̂ voters whose individual score-vectors are
aggregated into sss3m̂, a third have the individual score-vector (1,y,0), another third have (0,1,y),
and the final third have (y,0,1). That is, on the basis of sss3m̂, alternatives A, B, and C are in a
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three-way tie. Upon adding the score-vectors sss2, sss3m̂, and sss2m, we obtain the following aggregate
score-vector sssn across the 2(1+m)+3m̂ voters other than i:

sssn = (y+(1+ y)(m̂+m),1+(1+ y)(m̂+m),(1+ y)(m̂+1))

Table 7 shows that if voter i submits the score-vector σσσ i = (1,y,0), then alternatives A and B are
in a tie for the highest score. If, instead, he submits the score-vector σσσ i = (1,x,0), then alternative
A wins outright. Therefore, submission of σσσ i = (1,y,0) implies a shift in probability from A to B
for any m̂ ∈N and m ∈N∪0, relative to submission of σσσ i = (1,y,0):

σσσ i sssn+σσσ i δδδ (sssn+σσσ i)

(1,x,0) ((1+y)(m̂+m+1),1+x+(1+y)(m̂+m),(1+y)(m̂+1)) (1,0,0)

(1,y,0) ((1+y)(m̂+m+1),(1+y)(m̂+m+1),(1+y)(m̂+1)) ( 1
2 ,

1
2 ,0)

Table 7: Score-vector sssn that shows L(p(0))> 0 if n = 2(1+m)+3m̂

As alternative A’s loss in probability features in the numerator of the loss-gain-ratio in (5), it
therefore immediately that L(p(0))> 0.

6.3 Proof of Proposition 2 (for five or more voters)
We present the proof by considering, in turn, an odd number of voters greater or equal to five (i.e.
n≥ 4 and even), followed by an even number of voters greater or equal to six (i.e. n≥ 5 and odd).

6.3.1 Five or more voters (odd)

We have to show that L(p(1))< 1. To this end, we highlight an appropriate aggregate score-vector
sssn (where n ≥ 4 and even) s.t. δB(sssn +(1,y,0))− δB(sssn +(1,x,0)) > δA(sssn +(1,x,0))− δA(sssn +
(1,y,0)). More specifically, we construct this aggregate score-vector sssn by building on the score-
vector sss2 = (x,1,1+ x) featured in the proof of Proposition 2 for n = 2 (see Section 3 in the main
body of the paper). Let n = 2(1+m) (where m ∈N) and suppose that the aggregate score-vector
across these 2(1+m) voters is composed as follows:

sssn = sss2 + sss2m

= (x,1,1+ x)+ sss2m

where sss2m = (0,m(1+ x),m(1+ x)). That is, of the 2m voters whose individual score-vectors are
aggregated into sss2m, half have the individual score-vector (0,1,x), while the remaining half have
the individual score-vector (0,x,1). On the basis of sss2m, alternatives B and C are in a two-way
tie. Upon adding the score-vectors sss2 and sss2m, we obtain the following aggregate score-vector sssn
across the 2(1+m) voters other than i:

sssn = (x,m(1+ x)+1,(1+ x)(m+1))

Note that Pr[sssn] = p(α)n, which is positive α = 1. Table 8 shows that if voter i submits the score-
vector σσσ i = (1,y,0), then alternatives B wins outright. If, instead, he submits the score-vector
σσσ i = (1,x,0), then alternatives B and C are in a tie for the highest score. Therefore, submission of
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σσσ i ŝssn+σσσ i δδδ (ŝssn+σσσ i)

(1,x,0) (1+x,(1+x)(m+1),(1+x)(m+1)) (0, 1
2 ,

1
2 )

(1,y,0) (1+x,(1+x)m+1+y,(1+x)(m+1)) (0,1,0)

Table 8: Score-vector sssn that shows L(p(1))< 1 for n = 2(1+m)

σσσ i = (1,y,0) implies a shift in probability mass from C to B for any m ∈N, relative to submission
of σσσ i = (1,x,0):
As alternative B’s gain in probability from C exceeds A’s loss (which is zero in event sssn), it follows
immediately that L(p(1)) < 1. As L(p(0)) > 0 by Lemma 1, we can appeal to the Intermediate
Value Theorem to conclude that for any even n≥ 4, all x < y, and any distribution G, there exists
an equilibrium weight α∗ ∈ (0,1).

6.3.2 Six or more voters (even)

Next, we show that L(p(1)) < 1. To this end, we highlight an aggregate score-vector sssn s.t.
δB(sssn + (1,y,0))− δB(sssn + (1,x,0)) > δA(sssn + (1,x,0))− δA(sssn + (1,y,0)). We construct this
aggregate score-vector sssn by building on the score-vector sss2 = (x,1,1+ x) featured in the proof of
Proposition 2 for n = 2. Again, let n = 2(1+m)+3m̂ (where m̂ ∈N and m ∈N∪0) and suppose
that the aggregate score-vector across these 2(1+m)+3m̂ voters is composed as follows:

sssn = sss2 + sss3m̂ + sss2m

= (x,1,1+ x)+ sss3m̂ + sss2m

where sss2m = (0,m(1+ x),m(1+ x)) and sss3m̂ = (m̂(1+ x), m̂(1+ x), m̂(1+ x)). That is, of the 2m
voters whose individual score-vectors are aggregated into sss2m, half have the individual score-vector
(0,1,x), while the remaining half have the individual score-vector (0,x,1). On the basis of sss2m,
alternatives B and C are in a two-way tie. Of the 3m̂ voters whose individual score-vectors are
aggregated into sss3m̂, a third have the individual score-vector (1,x,0), another third have (0,1,x),
and the final third have (x,0,1). That is, on the basis of sss3m̂, alternatives A, B, and C are in a
three-way tie. Upon adding the score-vectors sss2, sss2m, and sss3m̂, we obtain the following aggregate
score-vector sssn across the 2(1+m)+3m̂ voters other than i:

sssn = (x+m(1+ x),1+(1+ x)(m̂+m),(1+ x)(m̂+m+1))

Note that Pr[sssn] = ((1/6)p(α))n, which is positive α = 1. Table 9 shows that if voter i submits the
score-vector σσσ i =(1,y,0), then alternatives B wins outright. If, instead, he submits the score-vector
σσσ i = (1,x,0), then alternatives B and C are in a tie for the highest score. Therefore, submission
of σσσ i = (1,y,0) implies shift in probability from C to B for any m̂ ∈N and m ∈N∪0, relative to
submission of σσσ i = (1,x,0):

σσσ i ŝss1
n+σσσ i δδδ (ŝssn+σσσ i)

(1,x,0) ((1+x)(m+1),(1+x)(m̂+m+1),(1+x)(m̂+m+1)) (0, 1
2 ,

1
2 )

(1,y,0) ((1+x)(m+1),1+y+(1+x)(m̂+m),(1+x)(m̂+m+1)) (0,1,0)

Table 9: Score-vector sssn that shows L(p(1))< 1 if n = 2(1+m)+3m̂
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As alternative B’s gain in probability from C exceeds A’s loss (which is zero in event sssn), it follows
immediately that L(p(1)) < 1. As L(p(0)) > 0 by Lemma 1, we can appeal to the Intermediate
Value Theorem to conclude that for any odd n ≥ 5, all x < y, and any distribution G, there exists
an equilibrium weight α∗ ∈ (0,1).

6.4 Proof of Proposition 3
In the case where voter i interacts with just one other voter (i.e. n = 1), it is easy to list the twelve
realizations of the aggregate score-vector sss1 that can arise when voter j 6= i uses a symmetric
strategy in the sense of property S2. In fact, the aggregate score-vector sss1 is simply given by voter
j’s individual score-vector σσσ j. In Table 10 we list all twelve possible realizations of sss1.

Row sss1 Pr[sss1] sss1+(1,x,0) δδδ (sss1+(1,x,0)) sss1+(1,y,0) δδδ (sss1+(1,y,0))

1. (1,x,0) p(α) (2,2x,0) (1,0,0) (2,x+y,0) (1,0,0)

2. (1,y,0) 1
6−p(α) (2,x+y,0) (1,0,0) (2,2y,0) (1,0,0)

3. (1,0,x) p(α) (2,x,x) (1,0,0) (2,y,x) (1,0,0)

4. (1,0,y) 1
6−p(α) (2,x,y) (1,0,0) (2,y,y) (1,0,0)

5. (x,1,0) p(α) (1+x,1+x,0) ( 1
2 ,

1
2 ,0) (1+x,1+y,0) (0,1,0)

6. (y,1,0) 1
6−p(α) (1+y,1+x,0) (1,0,0) (1+y,1+y,0) ( 1

2 ,
1
2 ,0)

7. (0,1,x) p(α) (1,1+x,x) (0,1,0) (1,1+y,x) (0,1,0)

8. (0,1,y) 1
6−p(α) (1,1+x,y) (0,1,0) (1,1+y,y) (0,1,0)

9. (x,0,1) p(α) (1+x,x,1) (1,0,0) (1+x,y,1) (1,0,0)

10. (y,0,1) 1
6−p(α) (1+y,x,1) (1,0,0) (1+y,y,1) (1,0,0)

11. (0,x,1) p(α) (1,2x,1) (δA,δB,δC) (1,x+y,1) (δA,δB,δC)

12. (0,y,1) 1
6−p(α) (1,x+y,1) (δA,δB,δC) (1,2y,1) (δA,δB,δC)

Table 10: All realizations of aggregate score-vector sss1 in case of two voters

In our proof, we focus on the loss-gain-ratio L(p(α)) in order to identify the equilibrium weight
α∗ as fixed point of L. Note that the loss-gain-ratio (defined in (5)) can be obtained readily from
Table 10: The expected loss in the probability of alternative A (which appears in the numerator
of the loss-gain-ratio) is given by the probability-weighted sum of the differences between the
respective first entries of the probability-vectors in the fifth and seventh columns of the table.
Similarly, the expected gain in the probability of alternative B (which appears in the denominator
of the loss-gain-ratio) is given by the probability-weighted sum of the differences between the
respective second entries of the probability-vectors in the seventh and fifth columns.

Obviously, only those aggregate score-vectors sss1 for which voter i is pivotal matter for the
loss-gain-ratio. As can be seen from Table 10, the vectors for which voter i is pivotal depend on
the values of the model parameters x and y. In particular, in the 11th and 12th rows of the table,
the distribution (δA,δB,δC) induced by the voters’ individual score-vectors can only be determined
conclusively by making assumptions about the values of x and y:

1. For all x and y in items 1.(a) - 1.(c) of Proposition 3, it is easy to verify using Table 10 that
L(p(α)) in each case is given by the respective fraction in items 1.(a) - 1.(c). Furthermore,
in cases 1.(a) and 1.(b) we have L(p(0))> L(p(1)) and L′(p)< 0 for all p ∈ [0, 1

6 ], while in
case 1.(c) we have L(p(0)) < L(p(1)) and L′(p) > 0. It therefore follows immediately that
L has a unique interior fixed point α∗ ∈ (0,1) in each of these three cases.
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2. For all values of x and y in item 2 of Proposition 3, it is easy to verify using Table 10 that
L(p(α)) = 1 for all α . Therefore, the unique fixed point of L is α∗ = 1.

3. For all x and y in item 3.(a), we have L(p(α)) = (2−6p(α))/(3−12p(α)), with L(p(0)) =
2/3, L(p(1)) = 1, and L′(p) > 0 for all p ∈ [0, 1

6 ]. Similarly, for all x and y in item 3.(b),
the LGR is L(p(α)) = (4− 6p(α))/(5− 12p(α)), with L(p(0)) = 4/5, L(p(1)) = 1, and
L′(p) > 0 for all p ∈ [0, 1

6 ]. Therefore, in both cases L has a fixed point at α∗ = 1. This
is the unique fixed point of L iff L(p(α)) > α for all α ∈ [0,1). By solving this inequality
for 6p(α) in cases 3.(a) and 3.(b), we obtain the conditions in (6) and (7), resp. To see that
concavity of G is sufficient for these two conditions to hold, note that the function 6p(α) is
increasing and concave if G is concave:

p′(α) =
∫ 1

0

(∫ u1

0
g(αu1 +(1−α)u3)(u1−u3)g(u3)du3

)
g(u1)du1 > 0,

p′′(α) =
∫ 1

0

(∫ u1

0
g′(αu1 +(1−α)u3)(u1−u3)

2g(u3)du3

)
g(u1)du1 ≤ 0.

As the function 6p(α) takes the values 6p(0) = 0 and 6p(1) = 1, it is obvious that for
concave G it holds that 6p(α) ≥ α for all α .40 Furthermore, it is easy to verify that the
functions (2−3α)/(1−2α) and (4−5α)/(1−2α) in (6) and (7), resp., are strictly smaller
than α for all α ∈ [0,1).41 Therefore, it follows immediately that the conditions in (6) and
(7) are satisfied.

6.5 Proof of Proposition 4
We show first that the continuum of (x,y)-scoring rules with x < y is partitioned in equilibrium into
64 equivalence classes. To see this, consider w.l.o.g. a voter i with ordinal ranking A �i B �i C.
In order to determine the equilibrium weight α∗ associated with the FSE voting strategy for given
parameters x, y, and G, we need to compute the loss-gain-ration L(p(α)) in (5). This, in turn,
requires voter i to determine for each aggregate score-vector sss2 = (sA

2 ,s
B
2 ,s

C
2 ) across the other two

voters the distributions over outcomes δδδ (sss2 + (1,x,0)) and δδδ (sss2 + (1,y,0)) that arise when he
assigns a score of x and y, resp., to his middle-ranked alternative. To obtain these distributions
(which are defined in Definition 2) voter i must solve for every sss2 ∈ S2

x,y:

max{sA
2 +1,sB

2 + x,sC
2} and max{sA

2 +1,sB
2 + y,sC

2}.

Observe that the components sk
2 (where k ∈ {A,B,C}) may themselves depend on the parame-

ters x and y. To make explicit this dependence, we can rewrite the aggregate score-vector sss2 by
introducing the following vector: κκκ = (a1,ax,ay,b1,bx,by,c1,cx,cy), where a1 is the number of
voters other than i who assign a score of 1 to alternative A, ax is the number of other voters who
assign a score of x to alternative A, and ay is the number of other voters who assign a score of y
to alternative A. The remaining elements of the vector κκκ are defined analogously.42 We can now
write: s2

A = a1+axx+ayy, and the remaining two components of sss2 can be expressed analogously.

40To see this, note that by definition of concavity: α6p(1)+(1−α)6p(0)≤ 6p(α ·1+(1−α) ·0)⇔ α ≤ 6p(α).
41To see this, note that (for α ∈ [0.5,1)): (2−3α)/(1−2α) < α ⇔ (α−1)2 > 0 and (4−5α)/(1−2α) < α ⇔

(α−1)(α−2)> 0.
42Note that with three voters (i.e. n = 2) each component of κκκ is in {0,1,2}. Furthermore, c1 = 2 − a1 − b1, and

cx + cy = 2 − ax − ay − bx − by.
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With this notation, the distributions over outcomes δδδ (sss2 +(1,x,0)) and δδδ (sss2 +(1,y,0)), resp., are
obtained by solving the following problems for every possible realization of the vector κκκ:

max{a1 +1+axx+ayy,b1 +(bx +1)x+byy,c1 + cxx+ cyy} (11)

and
max{a1 +1+axx+ayy,b1 +bxx+(by +1)y,c1 + cxx+ cyy}. (12)

This shows that for every given κκκ , the winning alternative in 11 and 12, resp., is determined by
up to three linear inequalities involving the model parameters x and y. These inequalities partition
the set {(x,y) ∈ [0,1]2|0≤ x < y≤ 1} of possible (x,y)-scoring rules. The intersection of all these
partitions across all possible vectors κκκ gives rise to the different equivalence classes, each of which
is associated with a distinct loss-gain-ratio. With three voters (n= 2), there are a total of 12n = 144
constellations of individual score-vectors across the two voters other than i, and these give rise to 75
distinct aggregate score-vectors sss2.43 For each sss2 (and the associated vector κκκ), we have computed
the distributions over outcomes δδδ (sss2+(1,x,0)) and δδδ (sss2+(1,y,0)) as a function of the parameters
x and y by solving (11) and (12). In addition to partitioning the set of (x,y)-scoring rules into its
interior and its boundaries (as well as its corner points (0,0), (0,1), and (1,1)), the solutions to
(11) and (12) give rise to the interior partitions of the set {(x,y) ∈ [0,1]2|0 ≤ x < y ≤ 1} listed in
the following table. The (in-)equalities in the first column of the table give rise to the dashed lines
in Fig. 3 that demarcate the 64 equivalence classes.

Partition Aggregate score-vector sss2 giving rise to partition

y S 1− x (2,1+ x+ y,x), (2,1+ x+ y,y), (1+ x+ y,y,2), (1+ x+ y,x,2)

y S 2−2x (2,2x+ y,1), (1,2x+ y,2)

y S 1
2 (2,1+2y,x), (2,1+2y,y), (1+2y,y,2), (1+2y,x,2)

y S 2x (1+2x,1+ y,1), (1,1+2x,1+ y)

y S 1− 1
2x (1,x+2y,2), (2,x+2y,1)

x S 1
2 (1+2x,y,2), (1+2x,x,2), (2,1+2x,y), (2,1+2x,x)

y S 2
3 (2,3y,1), (1,3y,2)

x S 2
3 (2,3x,1), (1,3x,2)

y S 1
2 +

1
2x (2+ x,1+2y,0), (1+2y,2+ x,0)

Having established that the continuum of (x,y)-scoring rules is partitioned into a finite number
of distinct equivalence classes regardless of the distribution G, we now compute the loss-gain-ratio
for each equivalence class. Observe that for n = 2, the loss-gain-ratio in (5) can be expressed
equivalently in the following form:

L(p(α)) =
n1
(1

6 − p(α)
)2

+n2
(1

6 − p(α)
)

p(α)+n3 (p(α))2

d1
(1

6 − p(α)
)2

+d2
(1

6 − p(α)
)

p(α)+d3 (p(α))2
(13)

43For the sake of brevity, we do not list explicitly here these 75 aggregate score-vectors. However, it is easy to do
so (to facilitate this process, we have used Mathematica).
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The values of n1, n2, and n3 (d1, d2, and d3, resp.) depend on the equivalence class being con-
sidered. For example, n1 (d1, resp.) represents the sum ∑sss2 (δA(sss2 +(1,x,0))−δA(sss2 +(1,y,0)))
(∑sss2 (δB(sss2 +(1,y,0))−δB(sss2 +(1,x,0))), resp.) over all aggregate score-vectors sss2 that arise
when both voters other than i assign the higher score of y to their respective middle-ranked alter-
natives. The remaining coefficients of the loss-gain-ratio in (13) are defined analogously.

Table 11 at the end of this proof lists for each equivalence class the associated values of the
coefficients n1, n2, n3, d1, d2, and d3 in the loss-gain-ratio in (13). Furthermore, the table lists the
values of the loss-gain-ratio L(p(α)) at α = 0 (where p(0) = 0) and α = 1 (where p(1) = 1/6),
as well providing information about the monotonicity of the loss-gain-ratio. In the column titled
‘Mono’ we indicate by ‘+’ that the loss-gain-ratio is strictly increasing, by ‘−’ the fact that the
loss-gain-ratio is strictly decreasing, and by ‘const.’ the fact that the loss-gain-ratio is constant.
As the values of L(0) and L(1

6) are strictly between 0 and 1 for every equivalence class, it follows
immediately that there is a unique interior fixed point (i.e. a point α∗ s.t. L(p(α∗)) = α∗) for every
equivalence class that generates a monotone loss-gain-ratio.44

Observe, however, that Table 11 also contains equivalence classes for which the loss-gain-ratio
is non-monotonic. In the column titled ‘Mono’, we denote by ‘∓’ a loss-gain-ratio that is de-
creasing up to some turning point ᾱ , and which is increasing thereafter. Similarly, the symbol ‘±’
indicates a loss-gain-ratio that is increasing up to some turning point ᾱ , and which is decreasing
thereafter. For equivalence classes with a non-monotonic loss-gain-ratio, the column titled ‘TP’
provides an implicit statement of the associated turning point ᾱ by listing the value of p(ᾱ). As
p(ᾱ) ∈ (0,1/6) for each non-monotonic loss-gain ratio, it follows that the corresponding value ᾱ

is strictly between 0 and 1.45

In order to establish uniqueness of the equilibrium weight α∗ for equivalence classes with a
non-monotonic loss-gain-ratio, we can draw upon the two sufficient conditions stated in Proposi-
tion 4: (i) if the loss-gain-ratio L(p(α)) is a contraction of [0,1], then L(p(α)) has a unique fixed
point. As the loss-gain-ratio is a differentiable function of α , the following condition is necessary
and sufficient for L(p(α)) to be a contraction: |L′(p(α))p′(α)| ≤ k < 1 for all α ∈ (0,1). Unfortu-
nately, it is impossible to verify this condition in general and without specifying the distribution G
that underlies the function p(α); (ii) if the loss-gain-ratio is either everywhere strictly convex, or
everywhere strictly concave, it follows that the function L(p(α)) has a unique fixed point because
it takes values L(p(0)),L(p(1)) ∈ (0,1) at the boundaries of the interval [0,1]. This implies im-
mediately that the function L(p(α)) can intersect the 45-degree line only once. Unfortunately, it is
impossible to verify convexity or concavity of the loss-gain-ratio in general, as the sign of its sec-
ond derivative L′′(p(α))(p′(α))2 +L′(p(α))p′′(α) depends on the magnitudes of the derivatives
p′(α) and p′′(α), and therefore on the distribution G that underlies the function p(α).

44Note that the first derivative of the loss-gain-ratio is given by L′(p(α))p′(α). As p′(α)> 0 by definition, the sign
of the derivative depends on the sign of the function L′(p). As long as L′(p) S 0 for all p ∈ [0, 1

6 ], it follows that the
loss-gain-ratio is monotone.

45For equivalence classes with non-monotonic loss-gain-ratio, our results show that either L′(p) < 0 for 0 < p <
p(ᾱ) and L′(p) > 0 for p(ᾱ) < p < 1/6, or vice versa. In the former case, the first derivative of the loss-gain-ratio
L′(p(α))p′(α) has the following sign: L′(p(α))p′(α) < 0 for 0 < α < ᾱ and L′(p(α))p′(α) > 0 for ᾱ < α < 1. In
the latter case, the reverse holds.
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Class (x,y) n1 n2 n3 d1 d2 d3 L(0) L(1
6) Mono TP

1.
x ∈ (0, 1

2)

y ∈ (x,min{2x, 1
2})

1
3 1 2

3
2
3 2 4

3
1
2

1
2 const. N/A

2. x ∈ (0, 1
4)

y = 2x
1
3 2 5

3
2
3 4 7

3
1
2

5
7 + N/A

3.
x ∈ (0, 1

4)

y ∈ (2x, 1
2)

1
3 3 8

3
2
3 6 10

3
1
2

4
5 + N/A

4.
x = 0
y ∈ (0, 1

2)
4
3 2 8

3
8
3 6 16

3
1
2

1
2 ∓

√
2−1
6

5.
x ∈ (1

4 ,
1
2)

y = 1
2

4
3 2 2

3
5
3 3 4

3
4
5

1
2 − N/A

6.
x = 1

4
y = 1

2

1
3 3 5

3
5
3 5 7

3
1
5

5
7 + N/A

7.
x ∈ (0, 1

4)

y = 1
2

4
3 4 8

3
5
3 7 10

3
4
5

4
5 ∓

√
2−1
6

8.
x = 0
y = 1

2

17
6 6 8

3
25
6 8 16

3
17
25

1
2 ±

√
368−19

6

9.
x ∈ (1

2 ,
2
3)

y ∈ (x, 2
3)

1
3 1 2

3
2
3 2 4

3
1
2

1
2 const. N/A

10.
x = 1

2
y ∈ (1

2 ,
2
3)

1
3 2 5

3
2
3 3 7

3
1
2

5
7 + N/A

11.
x ∈ (1

3 ,
1
2)

y ∈ (1− x, 2
3)

1
3 3 8

3
2
3 4 10

3
1
2

4
5 + N/A

12. x ∈ (1
3 ,

1
2)

y = 1− x
4
3 3 5

3
5
3 4 7

3
4
5

5
7 + N/A

13.
x ∈ (1

4 ,
1
2)

y ∈ (1
2 ,min{2x,1− x})

7
3 3 2

3
8
3 4 4

3
7
8

1
2 − N/A

14. x ∈ (1
4 ,

1
3)

y = 2x
7
3 4 5

3
8
3 6 7

3
7
8

5
7 ∓ 7−

√
29

12

15.
x ∈ (0, 1

3)

y ∈ (max{1
2 ,2x}, 1+x

2 )
7
3 5 8

3
8
3 8 10

3
7
8

4
5 ∓

√
57−7
6

16.
x ∈ (0, 1

3)

y = 1+x
2

17
6 6 8

3
19
6 9 10

3
17
19

4
5 ∓ 11

6 −
√

3

17.
x ∈ (0, 1

3)

y ∈ (1+x
2 , 2

3)
10
3 7 8

3
11
3 10 10

3
10
11

4
5 ∓ 19−

√
246

30

18.
x = 0
y ∈ (1

2 ,
2
3)

13
3 8 8

3
17
3 10 16

3
13
17

1
2 ± 5−

√
24

6
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Class (x,y) n1 n2 n3 d1 d2 d3 L(0) L(1
6) Mono TP

19.
x ∈ (1

2 ,
2
3)

y = 2
3

4
3 1 2

3
13
6 2 4

3
8
13

1
2 − N/A

20.
x = 1

2
y = 2

3

4
3 2 5

3
13
6 3 7

3
8
13

5
7 + N/A

21.
x ∈ (1

3 ,
1
2)

y = 2
3

4
3 3 8

3
13
6 4 10

3
8
13

4
5 + N/A

22.
x = 1

3
y = 2

3

17
6 5 8

3
11
3 7 10

3
17
22

4
5 ∓ 11−

√
112

6

23.
x ∈ (0, 1

3)

y = 2
3

13
3 7 8

3
31
6 10 10

3
26
31

4
5 ∓ 39−

√
876

90

24.
x = 0
y = 2

3

16
3 8 8

3
43
6 10 16

3
32
43

1
2 ± 10−

√
85

30

25.
x ∈ (2

3 ,1)
y ∈ (x, 1+x

2 )
1
3 1 2

3
2
3 2 4

3
1
2

1
2 const. N/A

26.
x = 2

3
y ∈ (2

3 ,
5
6)

1
3 1 5

3
2
3 2 17

6
1
2

10
17 + N/A

27.
x ∈ ( 6

10 ,
2
3)

y ∈ (2(1− x), 1+x
2 )

1
3 1 8

3
2
3 2 13

3
1
2

8
13 + N/A

28. x ∈ ( 6
10 ,

2
3)

y = 2(1− x)
1
3 3 5

3
2
3 5 17

6
1
2

10
17 ±

√
3−1
6

29.
x ∈ (1

2 ,
2
3)

y ∈ (2−x
2 ,min{1+x

2 ,2(1− x)})
1
3 5 2

3
2
3 8 4

3
1
2

1
2 ±

√
2−1
6

30.
x ∈ (1

2 ,
2
3)

y = 2−x
2

4
3 3 2

3
13
6 5 4

3
8
13

1
2 − N/A

31.
x ∈ (1

2 ,
2
3)

y ∈ (2
3 ,

2−x
2 )

7
3 1 2

3
11
6 2 4

3
7
11

1
2 − N/A

32.
x = 1

2
y ∈ (2

3 ,
3
4)

7
3 2 5

3
11
3 3 7

3
7
11

5
7 + N/A

33.
x ∈ (1

3 ,
1
2)

y ∈ (2
3 ,

1+x
2 )

7
3 3 8

3
11
3 4 10

3
7
11

4
5 + N/A

34.
x ∈ (1

3 ,
1
2)

y = 1+x
2 )

17
6 4 8

3
25
6 5 10

3
17
25

4
5 + N/A

35.
x ∈ (1

2 ,
2
3)

y ∈ (1+x
2 ,min{2x, 2−x

2 })
10
3 5 8

3
14
3 6 10

3
5
7

4
5 ± 5

36

Table 11 continues on next page...
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Class (x,y) n1 n2 n3 d1 d2 d3 L(0) L(1
6) Mono TP

36. x ∈ (1
3 ,

4
10)

y = 2x
10
3 6 11

3
14
3 8 13

3
5
7

11
13 + N/A

37.
x ∈ (0, 4

10)

y ∈ (max{1− x,2x}, 2−x
2 )

10
3 7 14

3
14
3 10 16

3
5
7

7
8 ∓

√
50−7
6

38. x ∈ (0, 1
3)

y = 1− x
13
3 7 11

3
17
3 10 13

3
13
17

11
13 ∓ 17−

√
245

24

39.
x ∈ (0, 1

3)

y ∈ (2
3 ,1− x)

16
3 7 8

3
20
3 10 10

3
4
5

4
5 ∓ 2−

√
2

6

40.
x = 0
y ∈ (2

3 ,1)
19
3 8 8

3
26
3 10 16

3
19
26

1
2 ± 25−

√
472

102

41.
x = 2

3
y = 5

6

5
6 2 5

3
7
6 3 17

6
5
7

10
17 − N/A

42.
x = 6

10
y = 8

10

5
6 4 5

3
7
6 6 17

6
5
7

10
17 − N/A

43.
x ∈ ( 6

10 ,
2
3)

y = 1+x
2

5
6 2 8

3
7
6 3 13

3
5
7

8
13 − N/A

44.
x ∈ (1

2 ,
6
10)

y = 1+x
2

5
6 6 2

3
7
6 9 4

3
5
7

1
2 − N/A

45.
x = 1

2
y = 3

4

11
6 5 5

3
8
3 7 7

3
11
16

5
7 + N/A

46.
x ∈ ( 4

10 ,
1
2)

y = 2−x
2

7
3 7 8

3
19
6 9 10

3
14
19

4
5 + N/A

47.
x = 4

10
y = 8

10

7
3 8 11

3
19
6 11 13

3
14
19

11
13 ∓

√
149−11

84

48.
x ∈ (0, 4

10)

y = 2−x
2

7
3 9 14

3
19
6 13 16

3
14
19

7
8 ∓

√
1032−25

222

49.
x ∈ (2

3 ,1)
y = 1+x

2

5
6 2 2

3
7
6 3 4

3
5
7

1
2 − N/A

50.
x ∈ (2

3 ,1)
y ∈ (1+x

2 ,1)
4
3 3 2

3
5
3 4 4

3
4
5

1
2 − N/A

51.
x = 2

3
y ∈ (5

6 ,1)
4
3 3 5

3
5
3 4 17

6
4
5

10
17 − N/A

52.
x ∈ (1

2 ,
2
3)

y ∈ (max{2(1− x), 1+x
2 },1)

4
3 3 8

3
5
3 4 13

3
4
5

8
13 − N/A

Table 11 continues overleaf...
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Class (x,y) n1 n2 n3 d1 d2 d3 L(0) L(1
6) Mono TP

53. x ∈ (1
2 ,

6
10)

y = 2(1− x)
4
3 5 5

3
5
3 7 17

6
4
5

10
17 − N/A

54.
x ∈ (1

2 ,
6
10)

y ∈ (1+x
2 ,2(1− x))

4
3 7 2

3
5
3 10 4

3
4
5

1
2 − N/A

55.
x = 1

2
y ∈ (3

4 ,1)
4
3 8 5

3
5
3 11 7

3
4
5

5
7 − N/A

56.
x ∈ ( 4

10 ,
1
2)

y ∈ (2−x
2 ,2x)

4
3 9 8

3
5
3 12 10

3
4
5

4
5 ∓

√
2−1
6

57. x ∈ ( 4
10 ,

1
2)

y = 2x
4
3 10 11

3
5
3 14 13

3
4
5

11
13 ∓

√
145−7
96

58.
x ∈ (0, 1

2)

y ∈ (max{2−x
2 ,2x},1)

4
3 11 14

3
5
3 16 16

3
4
5

7
8 ∓

√
436−11
210

59. x ∈ (2
3 ,1)

y = 1
10
3 6 8

3
14
3 8 10

3
5
7

4
5 + N/A

60. x = 2
3

y = 1
10
3 6 11

3
14
3 8 29

6
5
7

22
29 + N/A

61. x ∈ (1
2 ,

2
3)

y = 1
10
3 6 14

3
14
3 8 19

3
5
7

14
19 ±

√
3−1
6

62. x = 1
2

y = 1
10
3 10 17

3
14
3 14 41

6
5
7

31
41 + N/A

63. x ∈ (0, 1
2)

y = 1
10
3 14 20

3
14
3 20 22

3
5
7

10
11 ∓

√
12−3
36

64.
x = 0
y = 1

22
3 16 20

3
32
3 20 28

3
11
16

5
7 ± 8−

√
55

6

Table 11: loss-gain-ratios of all equivalence classes in settings with three voters
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