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Abstract 

TiO2 photocatalytic degradation technology, as an efficient, clean technology, is 

widely used in the treatment of contaminated wastewater. To expand the absorption 

spectrum of TiO2, from UV to visible light, considerable effort has been put into the 

modification of TiO2. Current TiO2 studies still rely on experimental work, mainly focusing 

on the effects of experimental variables on photocatalytic degradation. However, multiple 
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variables introduce the experimental complexity and increase the cost. As a result, TiO2 

development could be time-consuming and less cost-effective. Herein, we use a machine 

learning (ML) approach to study the photocatalytic degradation of doped TiO2. In this study, 

the degradation rate of pollutant solution in the presence of doped TiO2 was simulated 

under various experimental conditions using a LightGBM model. The training data from 

experiments comprised nine inputs, namely dopant, dopant/Ti molar ratio, calcination 

temperature, pollutant, catalyst/pollutant mass ratio, pH, experimental temperature, light 

wavelength and illumination time. The predicted result from trained model shows a good 

accuracy with a high coefficient of determination (92.8%). By ranking importance of these 

influencing variables, this study may help a better design of TiO2 for wastewater treatment, 

thereby improving the purification efficiency and saving natural resources. 

Keywords: Doped TiO2; Photodegradation of wastewater; Machine learning; LightGBM;  

Degradation rate. 

1. Introduction  

Recently, water shortages have become an ever-growing challenge as the rapid 

industrial growth, environmental pollution, depleted water resources [1]. Currently, the 

chemical pollutant in circulation is 38,000 with more than 300 new materials being 

synthesized every year [2]. Consequently, it is difficult to purify the wastewater as its 

unstable quality with the large discharging, high chroma, and high content of refractory 

organics. Traditional wastewater treatment methods struggle to address above issues. For 
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example, the physical adsorption only separates pollutants without complete 

decomposition and might introduce the secondary pollution [3]. High-cost chemical 

methods have poor decolorization effects [4]. Hence, there is a pressing need to develop an 

efficient, green, and cost-effective technology for wastewater purification. 

The newly developed approach via photocatalytic degradation is a promising 

technology to address the challenge of wastewater treatment. Of the most interest, the TiO2, 

a well-known photocatalyst, has been attracted considerable attention from academics and 

industrial sectors. Because of its exceptional material properties, including the high 

refractive index and ultraviolet (UV) absorption, excellent incident photoelectric 

conversion efficiency and dielectric constant, good photocatalytic activity, photostability, 

chemical stability, and long-term corrosion resistance and nontoxicity [5]. When TiO2 

absorbs external energy under UV irradiation, the electrons (e-) in the valence band (VB) 

will become excited to the conduction band (CB) and migrate to the particle surface under 

the electric field, resulting in the generation of the electron-hole pairs. The e- on the TiO2 

surface could be easily captured by oxidizing substances such as dissolved oxygen in water. 

While the holes (h+) in the VB could be captured by the OH- and H2O to generate the 

hydroxyl radicals (·OH). The oxidation could purify most of the organic and inorganic 

pollutants in wastewater and mineralize them into harmless substances (i.e., inorganic 

small molecules, CO2 and H2O). This mechanism could be illustrated by Equations (1) - (5) 

and Figure 1. 
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TiO2 + hv →  h+ + e−  (1) 

e− +  O2  → · O2
−

  (2)   

h
+ +  OH

− → ∙ OH  (3)    

h
+ +  H2O → ∙ OH + H+   (4)    

∙ OH + h+  +  Organic →  Intermediates →  CO2 + H2O  (5)  

Unfortunately, Ti has a large band gap (3.2 eV); therefore, only a small fraction of 

solar light (approximately 5%) in the UV region can be utilized [6]. To develop a practical 

TiO2-based photocatalytic process, the efforts have been focused on either improving its 

photocatalytic activity or extending its absorption spectrum (from the UV to the visible 

range) by adding a second element to the TiO2 bulk structure [7]. Both metal and non-metal 

element doping TiO2 were used to impede electron-hole recombination and thus increase 

both visible light and capacity. 

Park et al. [8] synthesized N-TiO2 nanostructured materials via a graft polymerization. 

The resultant materials have enhanced catalytic activity for the degradation of methylene 

orange (MO) dyes after irradiation with visible light. This is attributed to the incorporation 

of N into the TiO2 structure, which reforms the electronic band level of TiO2. The doped 

material could absorb visible light, but e-/h+ pair recombination is limited because of the 

strong catalyzation. M. Khairy et al. [9] prepared M-doped TiO2 nanoparticles (M = Cu, 

Zn) by the sol–gel method. The photocatalytic activities for methyl orange (MO) 

degradation and chemical oxygen demand (COD) were investigated. An optical study 
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showed that doping ions led to an increase in the absorption edge wavelength and a 

decrease in the band gap energy of TiO2. In general, the doped TiO2 demonstrated higher 

photocatalytic activities than no doped one. It suggests that a host of reaction conditions 

(such as, dopant loading, initial concentration of pollutant solution and calcination 

temperature) could affect the degradation rate of the catalyst through the photocatalytic 

process [10-11]. However, it is challenging to determine the most efficient preparation 

conditions for the doped sample and the experimental conditions for photoreactivity assays 

over a wide range of variations in experimental variables. In the past, conventional research 

routes usually rely on the literature review and carry out a series of experiments that have 

not been explored (trial and error). Consequently, research progress might be restricted due 

to the excessive number of publications and the misleading data from different sources. 

Application of a ML approach to analyze the large amount of data collected from the 

previous literature could reveal unprecedented information, such as valuable trends. 
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Figure 1. The schematic diagram of TiO2 photocatalytic degradation of organic pollutants. 

With the implementation of the material genome initiative (MGI), machine learning 

(ML), an artificial intelligence tool, has been successfully used in wider research 

communities, such as natural language processing [12], medical diagnosis [13], and 

biomedicine [14]. On the one hand, in the computational materials field including first-

principle calculations, molecular dynamics and finite element simulation, researchers 

evaluated the photocatalytic degradation of ceftriaxone using heterogeneous O3 / UV / 

Fe3O4@TiO2 systems. They not only examine the effects of parameters (catalyst dosage, 

solution pH, initial concentration, and ozone concentration) on performance but also cover 

the photocatalytic oxidation processes using kinetic models [15]. S. Kang et al. developed 

a structured framework combining Neural Network potentials with evolutionary or random 
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searches to predict the structure of inorganic crystals and the program navigated 

configurational spaces102-103 times faster than the DFT-based method [16]. However, this 

method consumes considerable time and has some limitations. The application of ML could 

save calculation time to expand the space and time scale of the calculation system. On the 

other hand, the core statistical algorithm of machine learning has great capability for 

handling big data sets, thus it can correlate insightful information from the existing 

experimental database, explore the complex implicit relationship between various 

parameters, and establish an accurate prediction model through training and data mining. 

H. Masood et al. proposed an overall framework combining ML and domain knowledge to 

accelerate the development of solar photocatalysts [17]. Y. Zhang et al. developed a 

Gaussian regression model which can effectively estimate the Eg of TiO2 and ZnO by 

statistically analyzing the relationship among the lattice parameters, grain size, surface area 

and energy bandgap [18-19]. The ultimate objective for ML model development is to 

predict experimental results without conducting experiments and these experimental 

conditions have never been encountered before. 

In this paper, we studied the doped TiO2 photocatalytic experimental data using four 

ML algorithms. By comparing the errors from the Linear Regression, Random Forest, 

XGBoost and LightGBM models, LightGBM is the most powerful model which was used 

to determine and rank the importance factor of the activity of the photocatalyst. Finally, we 
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also use the model to predict the degradation rate of photocatalysts under experimental 

conditions not previously encountered. 

2. Materials and methods 

2.1 Database construction 

Initially, important factors affecting the photocatalytic activity of doped TiO2 are 

obtained by referencing hundred of TiO2 photocatalytic experiments from 2004-2021. Each 

data point contains nine experimental variables, i.e., dopant, dopant/Ti molar ratio, 

calcination temperature (°C), pollutant, catalyst/pollutant mass ratio, pH, experimental 

temperature (°C), light wavelength (nm) and illumination time (min). Dopants include non-

metallic elements (such as C [20], F [21], I [22] and N [23]) and metal elements (such as 

Ag [24], Bi [25], Cd [26] and Ce [27]), respectively. Pollutants include methyl blue [28], 

phenol [29], methyl orange [30], benzoic acid [31], acid orange [32], etc. The dopant/Ti 

molar ratio ranges from zero to 93:5. The calcination temperature has the range from 400 

to 900 °C. The mass ratio range is from 5:1 to 1000:1. The pH is in the range of 2 to 13. 

The experimental temperature is between 16 and 32 °C. The wavelength by illumination 

ranges from 254 to 600 nm. The illumination time is in the range of 5 to 480 min. All 

variables are summarized in Table 1. The output variable is the degradation rate, which is 

determined experimentally. 
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For typical doped TiO2 photocatalytic experiments, different types of modified TiO2 

were prepared by the sol-gel method under adjusted calcination temperature and the portion 

of dopants and TiO2. Next, a certain amount of doped TiO2 photocatalyst was added into 

the pollutant solution with the different pH values. After stirring in the dark environment 

for a while to reach the adsorption equilibrium, then the suspension was illuminated by 

light sources with different wavelengths. Within a given time interval, a small portion of 

the suspension was removed, and all solid particles were filtered out. Finally, the 

concentration of the contaminated solution was measured by a UV-vis spectrophotometer. 

The degradation rate can be calculated by following equation: 

ƞ =  
C0-C

C
 × 100%  (6)              

The  represents the degradation rate, C0 is the initial concentration of the 

contaminated solution before illumination, and C is the solution concentration after 

treatment at any time t. 

Table 1. The multiple input variables for training. 

Variable Range 

Dopant Ag, Bi, C, Ce, Cd, F, Fe, Ga, I, Mo, N, Ni, S 

Dopant/Ti mole ratio 0 - 93:5 

Calcination temperature 400 - 900 

Pollution 

Methylene Blue (MB), Phenol, Rhodamine B 

(RhB), Methyl Orange (MO), Methyl Red (MR), 

Acid Orange (AO) 

Catalyst/Pollutant mass ratio 5:1 - 1000:1 

pH 2 - 13 

Experimental temperature 16 - 32 

Light wavelength 254 - 600 

Illumination time 5 - 480 
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Finally, in total of 760 data points from 28 publications (Supplementary Materials) 

are used for model training. 

2.2 Model introduction 

The basic procedure of ML and the associated models are explained as follows: the 

programming platform is Jupyter NoteBook, a website-based interactive computing 

environment. Jupyter is an integrated development environment (IDE) for Python in 

Anaconda. Three python libraries were used, including NumPy, Pandas and Scikit-learn. 

As shown in Figure 2, the data requires pre-processing before further modeling. As ML 

models are based on mathematical functions; two variables (dopant and pollutant type) 

cannot be imported and trained directly, a LabelEncoder was thus used to encode these two 

variables. The rest variables are readable as numerical data. The seaborn pairplot function 

is employed to analyze the correlation between nine input variables in Section 3.1. Then, 

the datasets was split into the training set and the testing set with a ratio of 7:3. Moreover, 

the model reliability could be improved via the K-fold cross-validation (CV) method to 

avoid overfitting and underfitting. K-fold CV could randomly divide the original training 

set into k parts, selecting (k-1) as the training set whilst the remaining 1 as the validation 

set. The CV was repeated K times, and thus the average accuracy of K times is taken as the 

evaluation index for the final model. The selection of the K value can be flexible according 

to the actual situation, and 10 CVs were adopted in this study. 
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In the experiments, we use four models: Linear Regression (LR), Random Forest (RF), 

XGBoost (XGB) and LightGBM (LGB). Through the ten-fold CV method, we find the 

model with the best generalization performance and retrain it on original training set, and 

the testing set is used to make the final evaluation of the model performance. The details 

of the four models are described in the Supplementary Materials. 

 

Figure 2. The flow chart of machine learning. 

3. Results and discussion 

3.1 Correlation analysis 

Correlation analysis is analyzing two or more variables to measure the closeness 

between these variables. If there is a large value of linear correlation between the two input 

variables, it may lead to the prediction failure. Therefore, one should analyze the 

correlation of input variables before establishing the prediction model. If there are two 

input variables with a large linear correlation, either one of them will be removed or the 

sample size needs increase. 

We evaluated the correlations among all variables (i.e., dopant type, dopant/Ti molar 

ratio, calcination temperature, pollutant type, catalyst/pollutant mass ratio, pH, 
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experimental temperature, light wavelength, catalytic time). It concludes that there was 

barely linear relationship between any pair of variables. The relationships among the 

variables are illustrated in Figure 3 and Figure 4. 

The pairplot in Figure 3 shows the correlation between the four variables (dopant, 

dopant/Ti molar ratio, calcination temperatures, and catalyst/pollutant mass ratio) 

regarding the degradation rates. Here, the degradation rate is divided into five levels 

marked in blue (0-20), orange (20-40), green (40-60), red (60-80) and purple (80-100). The 

diagonal subgraphs represent the data distribution of each variable in the database, the x-

axis represents the range of variables, and the y-axis represents the distribution density of 

variables. For example, the first subfigure in the1st row of Figure 3 shows the distribution 

of calcination temperature at different levels against the degradation rates. The 2nd to 4th 

subfigures in the first row shows the function of dopant, dopant/Ti molar ratio, and 

catalyst/pollutant mass ratio (x-axis) against the temperature (y-axis). Similarly, the 

remaining subgraphs are the correlation diagrams in the other three rows.  

There is no linear relationship between the four input variables. For each non-diagonal 

subfigure, the straight line is the linear model of y ~ x fitted with data and the shaded area 

represents the 95% confidence interval. The probability that the invisible data will fall 

around the fitting line. While the linear model does not apply to the nonlinear relationship. 

Instead, a nonlinear model should be selected. The correlations between all variables are 

presented in Supplemental Materials (Figure S1). 
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In Figure 4, a 9 x 9 heatmap is plotted to show the correlation matrix. Each number in 

the sub-square represents the Pearson correlation coefficient of two variables. The darker 

the color, the value of the correlation coefficient is closer to 1. The higher value in each 

sub-square also indicates the two variables have a stronger correlation level. There is no 

linear relationship between each variable as shown in Figure 4, confirming the previous 

conclusions (Figure 3). This attributes to the complex catalytic mechanism, it is thus 

difficult to find a certain variable that greatly affects the catalytic activity according to 

Figures 3 and 4. But it helps the subsequent model selection, the effect of the nine variables 

on the degradation rate is described in section 3.3 and analyzed by a nonlinear model. 

 

Figure 3. The correlation between calcination temperature, dopant, dopant/Ti mole ratio and 
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catalyst/pollutant mass ratio. 

 

 

 

Figure 4. The heat map showing the correlation between nine input variables 

3.2 Model accuracy 
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In this study, we use four indicators to evaluate the proposed four models (i.e., LR, 

RF, XGB, and LGB). Three errors, namely the Mean Absolute Error (MAE), Mean Squared 

Error (MSE), and Root Mean Squared Error (RMSE), are used to calculate prediction errors, 

and the coefficient of determination (R2) is used to measure the correlation level. MSE 

value is the square of the difference between the predicted value and the real value. The 

smaller the value of MSE, the better the accuracy of the prediction model. RMSE (as a 

standard deviation of the residual) reveals the error between the predicted value and the 

real value. When R2 (maximum value is 1) is applied to the test set, the value is equal to 

the variance of external interpretation, which can be used to determine the model quality. 

When R2 is closer to 1, the better the fitting degree of the model. Here, both RMSE and R2 

are selected as the prime indicators to choose the best prediction model. The low RMSE 

and high R2 score will indicate a good fitting model. 

In Table 2, the LR showed the worst performance, with an RMSE of 0.762 and an R2 

score of 0.048. This also verifies the prior results in Section 3.1, suggesting the linear model 

cannot properly fit the relationship between various variables. Whilst those typical 

nonlinear regression models (i.e., RF, XGB, LGB) have significant improvement regarding 

both RMSE and R2 values. This is supported by having a relatively low RMSE (below 0.45) 

and high R2 (beyond 0.8). In particular, the LGB is the most stable and reliable model, with 

an RMSE of 0.194 and an R2 score of 0.899. Therefore, modeling photocatalytic 

degradation by the LGB model yields the best generalization capability, prediction 
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performance and the strongest robustness. Figure 5 visualizes the average error of the four 

models, where each subgraph shows the relationship between the experimental value (Y-

axis) and the predicted value (x-axis). The dotted line in this figure represents the perfect 

prediction line when y = x. The synthesis of Table 2 and Figure 5 shows that the predicted 

value of the LGB model can better simulate the real value. Hence, the LGB model is 

accepted as the final prediction model. 

 

Table 2. The prediction performance comparison of LR, RF, XGB and LGB models according  

to MAE, MSE, RMSE and R2. 

 Linear 

Regression 

Random 

Forest 

XGBoost LightGBM 

MAE 0.513 ± 0.104 0.235 ± 0.062 0.145 ± 0.103 0.116 ± 0.065 

MSE 0.601 ± 0.237 0.180 ± 0.126 0.086 ± 0.034 0.043 ± 0.031 

RMSE 0.762 ± 0.401 0.417 ± 0.148 0.293 ± 0.136 0.194 ± 0.101 

R2 0.048 ± 0.014 0.805 ± 0.035 0.884 ± 0.024 0.898 ± 0.012 

 



17 
 

 

Figure 5. The comparison of average errors among four models 

LGB model is used to re-train the original training set resulting in the R2 score of 

0.928. All parameters used for ML models are presented in the Supplementary Materials. 

The predicted value equals to the actual value when discrete data point is featuring on the 

y=x line. The proximity between the discrete data points and the y = x line shows the 

reliable prediction via the LGB model. Moreover, the difference between the predicted 

value and the observed value under the regression model must be random and unpredictable; 
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that is, there should be no interpretable and predictable information in the error. The 

residual diagram has dual functions as it can be used to intuitively observe the difference 

between the prediction and actual value as well as model quality evaluation. Figure 7 shows 

the relationship between the predicted value (x-axis) and residual value (y-axis). 

Theoretically, the best model (errorless) has zero residual, which is almost impossible in 

practical applications. However, for a good model, the errors could be randomly distributed. 

It is expected to see the residual values fluctuate near the horizontal line (y = 0). Figure 7 

shows that the testing data points are distributed next to the y=0 line with most residuals < 

20 %, affirming the validity of the LGB model. 

 

Figure 6. The error of LGB prediction model after retraining in the original training set. 
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Figure 7. The residual error of LGB prediction model after retraining in the original training set. 

3.3 The effect of the influencing factors on the degradation rate 

The importance of each input variable is investigated. The importance scoring of a 

feature is a means of scoring input features, revealing the relative importance of each 

feature for LGB model when making predictions upon how useful each input feature is in 

predicting the target variables.  

The significance of a feature is to reduce the uncertainty of the prediction target, and 

the feature that can reduce more uncertainty is crucial. This helps to achieve a better 

understanding of the effects of the experimental variables on the performance of the 

photocatalytic degradation process, thus offering guidance for practical design in real 

applications. Herein, feature importance values are calculated based on the number of times 
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that a feature is used in all trees. As shown in Figure 8, the importance of the nine features 

is ranked for the following analysis. 

In Figure 8, the illumination time (score of ca. 2750) is the most influential variable 

for photocatalytic degradation experiments. Generally, the photocatalytic degradation rate 

gradually increases with prolonged illumination time [33]. The reaction rate of 

photocatalytic oxidation can be described by the Langmuir-Hinshelwood kinetic equation 

[34]. With the progress of the reaction, both the concentration of organic pollutants and 

reaction rate will decline, thus the degradation rate will not further increase and reach a 

plateau after a certain period. C. Sahoo et al. [35] studied the use of Ag ion-doped TiO2 as 

a photocatalyst to degrade textile wastewater. The results show that the degradation rate 

increase in the first 45 minutes before degradation, and then the reaction rate slows down 

from 45 to 150 minutes. After 150 minutes, prolonging the illumination time does not 

increase the degradation rate at all. C. H. Chiou et al. [36] used Pr-doped TiO2 nanoparticles 

to photocatalyze the degradation of phenol, and the degradation rate peaked at 90 minutes. 

These two cases suggest that doping elements, organic pollutants and other experimental 

variables have different illumination times to achieve their best degradation efficiency. 

Therefore, before performing the photocatalytic degradation experiment, the issue we must 

tackle is to determine the illumination time for the specific experiment condition. 

TiO2 semiconductors have stable properties as the electrons are not easily excited. Due 

to this characteristic, various dopants have been introduced into the TiO2 photocatalyst to 
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enhance its photocatalytic efficiency. A dopant will be beneficial to capture electrons which 

reacts with water molecules, forming oxidative radicals to degrade organic pollutants. 

However, when the additive dopant accumulates to an excessive concentration, the dopant 

will negatively prevent TiO2 from capturing photons by (a) reducing the active surface area 

of the photocatalyst and (b) enhancing the photoinduced charge carrier recombination by 

narrowing the space charge region [37-38]. J. Shi et al. [39] studied the concentration of 

samarium as a dopant in titania catalysts for photocatalytic degradation of methyl orange. 

They observed that upon adding dopant concentrations of 0.05-0.1 mol% to titania, the 

photodegradation efficiency increase with increasing concentration and reach to the 

maximum. The degradation efficiency compared with that of pure TiO2 is improved by 

restraining the crystal size (with the larger surface areas), helping the transportation and 

exchange of organic matter, facilitating the movement of photogenerated support to the 

surface of the photocatalyst and preventing the recombination of support. However, it is 

noticeable that a significant reduction in the degradation efficiency of the photocatalyst. 

When the doped ion concentration is too high, the space charge region becomes very 

narrow, and the penetration depth of light into TiO2 greatly exceeds the space charge layer, 

thus the recombination of the electron-hole pairs in the semiconductor becomes easier. 

Based on the above descriptions and current model, it is reasonable to classify the dopant/Ti 

mole ratio catalyst as the secondary important factor for TiO2 degradation. 
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The catalyst/pollutant mass ratio includes two experimental variables: the amount of 

catalyst and the initial concentration of pollutant solution. Generally, when the catalyst 

dosage increases, the degradation rate of photocatalytic degradation pollutants increases. 

This attributes to the rise of the catalyst surface area, which increases the contact 

probability between organic matter and the catalyst, thus promoting the progress of the 

catalytic reaction. However, when the amount of catalyst reaches a certain limit, the 

photodegradation rate of pollutants will decline. On the one hand, this may be attributed to 

a higher dosage of catalyst. The catalysts overlap each other resulting in a higher thickness 

that might block the transmission depth of illumination, thus leading to the reduction of the 

photocatalytic effect due to light scattering. Another reason might be the agglomeration of 

nanoparticles at high concentrations in the solution, limiting the number of active surface 

sites available for exposure [40]. Similarly, if the initial concentration of pollutant solution 

exceeds the limit, the photodegradation rate will also decrease. Because the pollutants 

completely cover the surface of the photocatalyst, the number of photons reaching the 

surface of the catalyst and the number of hydroxyl ion free radicals and positive holes are 

reduced [41]. C. Sahooet et al. used silver doping TiO2 as a photocatalyst to study the effect 

of the initial dye concentration, which is in the range of 10-50 ppm, on the 

photodegradation of methyl red [42]. Hence, the catalyst/pollutant mass ratio is regarded 

as the 3rd important factor. 
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In most cases, anatase TiO2 has higher photocatalytic activity than rutile TiO2. The 

reason is that the anatase phase lattice contains more defects and dislocations, which can 

produce more oxygen vacancies to capture electrons, resulting in easier separation of 

photogenerated electrons and holes. The calcination temperature has a great influence on 

the crystal shape and surface morphology of the catalyst. As a result, it is listed as the fourth 

most important variable affecting the degradation rate. M. Hamadanian et al. [43] when 

studying the effect of calcination temperature on the photocatalytic activity of S-doped 

TiO2, found that when the calcination temperature was 500 °C, S-doped TiO2 only included 

the anatase phase and at this time, the photodegradation rate was the highest. Then, with 

increasing temperature, the degradation rate began to decline, and the formation of the 

rutile phase started at 750 °C. This is because with increasing calcination temperature, 

sintering occurs, and the surface area decreases, resulting in a reduction in catalytic activity. 

The light wavelength, dopant and pH have a similar influence on the degradation, with 

their absolute scores close to ca. 1000. As the core part of photocatalytic technology, the 

light source is an independent factor in the photocatalytic reaction system and a necessary 

condition to stimulate the photocatalytic degradation. Previous experiments show that the 

light wavelength affects the photocatalytic reaction under different light sources, and the 

wavelength applied to the photoactivation has an impact on the dye degradation speed; 

shorter wavelengths lead to faster degradation, and vice versa [44]. The dopant additives 

widen the visible light range and thus improve the photocatalytic efficiency, but not all 
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doped elements can do so. Only suitable semiconductor materials could influence the 

photoelectrochemical properties of TiO2 and change the band gap of the photocatalyst [45], 

and the mechanism of catalytic activity is also different. Studies show that after 10 hours 

of doping of metal and nonmetallic elements, such as C, Fe, N, and Zn into TiO2, C-TiO2 

has a high photocatalytic activity under visible light, mainly attributed to small particle size, 

high specific surface area, and good light absorption and photocatalytic activity within the 

visible light region [46]. Therefore, the selection of dopants determines photocatalytic 

degradation. The change in pH value will alter the adsorption of OH-, H+ on the 

photocatalyst surface and the surface charge of TiO2, influence the adsorption of reactants 

on the TiO2 surface and finally affect the photocatalytic reaction rate. In addition, different 

structures of reactants have different adsorption capacities for ·OH on the photocatalyst 

surface, resulting in different initial pH values for the degradation of different reactants 

[47-48]. For example, if pH goes up, the efficiency of photocatalytic degradation of 

rhodamine B gradually increases as the pH manipulates the charge of rhodamine B [49]. 

When the pH < 4, rhodamine B exists in the form of cations, the adsorption on the catalyst 

surface becomes difficult since the action of electrostatic repulsion, as a result, the 

degradation efficiency will be reduced. When pH > 4, rhodamine B exists in the form of 

zwitterions. Due to the action of electrostatic attraction, some molecules are adsorbed on 

the catalyst surface, and thus degradation efficiency increases. 
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The type of pollutants and experimental temperature, as the two least important 

features, also have an impact on photocatalytic activity. The worst example is that the 

photocatalytic degradation rate of monoazo dyes is higher than that of dyes with 

antraquinone structures; the presence of methyl and chloro groups in the dye molecule 

slightly lowers the efficiency, whilst a nitrite group acts oppositely [50]. Since most 

photocatalytic experiments are performed at near room temperature, the experimental 

temperature has little effect on the photocatalytic reaction. However, some researchers 

found that the photocatalytic degradation rate could go up with the increase in temperature 

[51]. 

 

Figure 8. The chart of importance analysis based on nine influencing factors. 

3.4 Model Verification 

In this section, we look at four successful cases to demonstrate the good prediction in 

new materials by our pre-trained model. Fe-ions can be doped into TiO2 to reduce the 
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recombination of photogenerated electrons and holes and thus enhance the photocatalytic 

activity of TiO2 due to its half-filled d-electronic configuration and identical ionic radius to 

Ti4+ [52-53]. Both pure TiO2 and Fe-doped TiO2 photocatalysts are prepared at a calcination 

temperature of 400 °C. They are pure crystals and have an anatase phase. Fe-doped TiO2 

can effectively degrade methylene blue under visible light irradiation. In Figure 9, the Fe-

doped TiO2 sample (70 %) demonstrates a greater degradation rate than that in pure TiO2 

(35%), nearly doubled. The trained LGB model is employed to predict the degradation rate 

of Fe-doped TiO2 under the same experimental conditions as the input variables. Notably, 

these input variables are excluded from our database and have not been trained. The green 

line (Figure 9) depicts the predicted profile, suggesting the max degradation rate (ca. 65 %) 

is slightly lower than that achieved by the experiment (70 %). Although these two curves 

are not overlapped, the trend of both curves develops quite identical, and the deviation is 

within an acceptable error range. The result shows the photocatalytic activity of TiO2 will 

be significantly improved by the Fe ions additives. 
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Figure 9. Concentration of the degradation rate as a function of irradiation time in the presence of the 

pure and Fe-doped TiO2 photocatalyst. 

Similarly, another three datasets are tested by our LGB model [54-57]. Figure 10(a) 

shows the Cd-doped TiO2 case study under simulated sunlight indoors. With increasing 

dopant loading, the predicted curve by the pre-trained LGB model (blue line) develops a 

similar trend to the experimental curve (red line) under identical conditions. Figure 10(b) 

and Figure 10(c) illustrate the Ag-doped TiO2 with the change of catalyst/pollutant mass 

ratio and C-doped TiO2 with the change of calcination temperature, respectively. In these 

two cases, the predicted values (blue line) are almost superimposed on the experimental 

data (green line), suggesting a high accuracy of prediction. 
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Based on presented case studies above, our trained LGB model could provide the 

accurate prediction on the degradation rate of doped TiO2. It is envisaged that the prediction 

accuracy will be further improved with the increase of the dopant database. In fact, it is 

extremely useful to obtain some reliable ML predictions to guide the actual experiments. 

 

Figure 10. Influence of Cd/Ti mole ratio, catalyst/pollutant mass ratio, calcination temperature on 

photocatalytic performance of doped TiO2 nanophotocatalyst: (a) calcination temperature: 500 °C, 

pollutant type: acid orange, catalyst/pollutant mass ratio: 50; (b) Ag/Ti mole ratio: 0.0101, calcination 

temperature: 500 °C, pollutant type: methylene blue; (c) C/Ti mole ratio: 16, pollutant type: methylene 

blue, catalyst/pollutant mass ratio: 100. 
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4. Conclusions 

In this study, the photocatalytic degradation rate of organic wastewater pollutants in 

the presence of various doped TiO2 photocatalysts has been comprehensively simulated 

using a machine learning approach. The selected data includes published 760 data points. 

By comparing the errors of the linear regression, random forest, XGBoost, and LightGBM 

(LGB) models, the LGB model with the best credibility is selected to make the further 

prediction. The application of ML provides a feasible route to rank the importance of 

experimental variables that affects catalytic activity in terms of the degradation of doped 

TiO2. The LightGBM model suggests the following influential sequence: illumination time > 

dopant/Ti molar ratio > catalyst/pollutant mass ratio > calcination temperature > light 

wavelength > dopant > pH > pollutant > experimental temperature. In addition, another 

four independent cases, including the Fe, Cd, C and Ag doped TiO2, are used to validate 

the model accuracy by comparing the experimental data with predicted values. Therefore, 

we envisage that the ML model-driven prediction can be used as guidance before actual 

doped-TiO2 experiments. Moreover, the volume and dimension of the current data pool is 

expected to expand via future high-throughput experiments, this will allow ML prediction 

to achieve higher accuracy than the current status and ultimately reduce the cost. This pre-

trained ML model could also be applied to other photocatalysts, greatly accelerating the 

development of photocatalytic degradation technology. 

Supplemental Materials 
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This section includes the details of the four models (Linear Regression, Random 

Forest, XGBoost and LightGBM), all datasets, the relationship between nine variables, and 

the parameters of the predicted model.  
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