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The human microbiota is implicated in many disease states, including

neurological disorders, cancer, and inflammatory diseases. This potentially

huge impact on human health has prompted the development of

microbiome engineering methods, which attempt to adapt the composition

and function of the human host-microbiota system for a therapeutic purpose.

One promisingmethod is the use of engineeredmicroorganisms that have been

modified to perform a therapeutic function. The majority of these products

have only been demonstrated in laboratory models; however, in recent years

more concepts have reached the translational stage. This has led to an increase

in the number of clinical trials, which are designed to assess the safety and

efficacy of these treatments in humans. Within this review, we highlight the

progress of some of thesemicrobiome engineering clinical studies, with a focus

on engineered live biotherapeutic products.
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1 Introduction

The human microbiota refers to all microorganisms and microbial communities that

colonise the human body. The largest of these communities is found within the digestive

tract. However, there are many other communities that play a role in human health,

including the skin (Byrd et al., 2018), vaginal (Chen et al., 2021), and oral microbiota

(Lamont et al., 2018). The microbiota potentially plays an integral role in human disease,

and dysbiosis in these communities has been implicated in numerous conditions. To date,

the microbiota has been linked to neurological diseases (via the gut-brain axis) (Morais

et al., 2021; Liu et al., 2022), inflammatory diseases (such as ulcerative colitis) (Caruso

et al., 2020), and cancer (Helmink et al., 2019), amongst others (Pascal et al., 2018; Gurung

et al., 2020; Hao et al., 2021). It is this profound effect that the microbiota is thought to

impart on the human host that has driven interest in microbiome engineering methods,

which aim to modify the human host-microbiota system for a therapeutic purpose;

OPEN ACCESS

EDITED BY

Qing Sun,
Texas A&M University, United States

REVIEWED BY

Jing Wui Yeoh,
National University of Singapore,
Singapore

*CORRESPONDENCE

Jack W. Rutter,
jack.rutter.16@ucl.ac.uk

SPECIALTY SECTION

This article was submitted to Synthetic
Biology,
a section of the journal
Frontiers in Bioengineering and
Biotechnology

RECEIVED 22 July 2022
ACCEPTED 30 August 2022
PUBLISHED 16 September 2022

CITATION

Rutter JW, Dekker L, Owen KA and
Barnes CP (2022), Microbiome
engineering: engineered live
biotherapeutic products for treating
human disease.
Front. Bioeng. Biotechnol. 10:1000873.
doi: 10.3389/fbioe.2022.1000873

COPYRIGHT

© 2022 Rutter, Dekker , Owen and
Barnes . This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Mini Review
PUBLISHED 16 September 2022
DOI 10.3389/fbioe.2022.1000873

https://www.frontiersin.org/articles/10.3389/fbioe.2022.1000873/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.1000873/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.1000873/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.1000873/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.1000873&domain=pdf&date_stamp=2022-09-16
mailto:jack.rutter.16@ucl.ac.uk
https://doi.org/10.3389/fbioe.2022.1000873
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.1000873


particularly for diseases where current treatment is inadequate or

non-existent (Brennan, 2022).

This review focuses on studies that use recombinant or

engineered live biotherapeutic products (eLBPs); in particular,

highlighting clinical trials that attempt to demonstrate their

safety and efficacy in humans. eLBPs are microorganisms that

have been genetically modified to perform a specific diagnostic or

therapeutic function. Previous reviews have summarised the

progress that has been made in developing these methods, but

the majority focus on preclinical research, with only a few

referring to clinical trials (Riglar and Silver, 2018;

Charbonneau et al., 2020; Cubillos-Ruiz et al., 2021;

McNerney et al., 2021). In this review we firstly introduce the

concept of eLBPs and how they differ from other microbiome

engineering techniques, before discussing relevant clinical trials

that are using eLBPs.

2 Engineered live biotherapeutic
products

Although the human microbiota is an incredibly complex

community, there are many strategies that can be used to try and

influence its composition and/or function (Lawson et al., 2019;

Madhusoodanan, 2020). Some examples of previously reported

strategies are given in Figure 1. One common method uses

naturally occurring probiotic bacteria, which are thought to

confer a health benefit to the host; although often their effects

on the host and native microbiota are not fully understood and

evidence of their ability to effectively colonise the gut remains

sparse (Liu et al., 2018; Zmora et al., 2018; Wieërs et al., 2020). It

should be noted that this short residency time can also occur with

eLBPs depending on the host chassis chosen, as shown by an

engineered E. coli Nissle 1917 strain that had a mean residence

time of 48 h in human patients (Kurtz et al., 2019). Although this

may be desirable in certain cases as it allows for more

reproducible and predictable pharmacological properties

(Adolfsen et al., 2021), repeated dosing may be required in

order to provide prolonged residency of the therapeutic strain

(Charbonneau et al., 2020). In addition, clinical evidence implies

that the effectiveness of probiotics can vary, whereby some

patients may benefit from treatment whilst others do not

(Reid et al., 2010). Over 1,000 clinical studies have involved

probiotics (Dronkers et al., 2020), exploring conditions such as

Parkinson’s disease (NCT04389762) (Lu et al., 2021), COVID-19

infection (NCT04399252) (Tang et al., 2021), and atopic

FIGURE 1
There are many techniques that can be used to engineer the human microbiota towards a therapeutic purpose, including probiotic strains,
defined microbial consortia, personalised diet and nutrition, or eLBPs (which are the focus of this review). These methods may be useful for the
treatment of a range of human diseases in future, for example metabolic diseases, diabetes and neurological conditions.
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dermatitis (NCT02585986) (Climent et al., 2021). Additionally, it

is possible to use multiple species as part of natural or synthetic

consortia. Faecal microbiota transplants (FMTs) are a prominent

example, where a “healthy” individual’s faecal matter is used to

try and replace a patient’s dysbiotic microbiota (Gupta et al.,

2016). Currently, there are many clinical trials exploring FMTs

and the FDA permits their use under “enforced discretion” for

Clostridioides difficile infection (CDI) that does not respond to

standard therapy (Grigoryan et al., 2020). Other perturbation

strategies include synbiotics (Panigrahi et al., 2017), phage

(Schooley et al., 2017), diets and personalised nutrition (e.g.

NCT01892956) (Zeevi et al., 2015). A non-exhaustive list of

clinical trials investigating various microbiome engineering

techniques is given in SI table 1.

Engineered methods include eLBPs (Ozdemir et al., 2018;

Tan et al., 2020). A simple illustration of this strategy is

engineering a bacterial chassis to express a therapeutic

molecule. In a ground-breaking study, Steidler et al. (2000)

demonstrated this principle by engineering Lactococcus lactis

to produce interleukin-10 for the treatment of murine colitis

(Steidler et al., 2000). In a more recent example, Cubillos-Ruiz

et al. (2022) engineered Lactococcus lactis to produce a

heterodimeric β-lactamase, showing that the strain was able to

reduce ampicillin-induced dysbiosis in a mouse model (Cubillos-

Ruiz et al., 2022). Using eLBPs offers several advantages over the

use of pre-, pro- or synbiotics (as defined in Figure 2A), as genetic

engineering can confer functions that are not expressed by the

native microbiota (Cubillos-Ruiz et al., 2021). Other advantages

include the ability to choose a defined strain chassis, reducing the

possibility of introducing pathogenic species and the secretion of

non-native molecules (Charbonneau et al., 2020; Yadav and

Chauhan, 2022). Furthermore, additional genetic elements

(e.g. auxotrophies and inducible promoters) allow for greater

control and flexibility of eLBPs in the host and environment

(Brennan, 2022). For example, Harimoto et al. (2022) developed

a programmable surface capsular polysaccharide (CAP) system

FIGURE 2
(A) Comparison of prebiotics, probiotics, synbiotics and eLBPs. All offer promising routes for modifying the human microbiotia (B) Summary of
clinical trials involving eLBPs (genetically-modified microorganisms used for a therapeutic purpose), discovered during this literature review.
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in Escherichia coli Nissle 1917; through inducible expression the

CAP system controlled bacterial encapsulation and subsequently,

showed a ten-fold increase in the maximum tolerated dose and

anti-tumour efficacy of the strain in a mouse model of cancer

(Harimoto et al., 2022). However, with prolonged use of eLBPs

there are concerns regarding loss of function, mutation, and

biocontainmnent of both the whole organism and genetic

material (Ozdemir et al., 2018; McNerney et al., 2021). In

addition, outside of E. coli and Lactobacillus, there are

relatively few tools available for engineering other relevant

species (Charbonneau et al., 2020; Chen et al., 2021). To date,

the vast majority of these methods have only been tested in vitro

or animal models. Examples of these studies are provided in SI

table 2. In recent years, an increasing number of eLBPs have

entered clinical trials resulting in more data on the safety and

efficacy of eLBPs in humans. Through the clinicaltrials.gov

database and literature review, we identified 65 clinical trials

involving eLBPs, although others may exist. Of these studies, 46.

2% were reported as complete, 21.5% as terminated and the

remainder as recruiting, active or unknown (Figure 2B). Within

this review, we primarily focus on two major areas of research: 1)

cancer therapeutics, and 2) metabolic diseases.

3 Cancer therapeutics

Treating cancer with bacteria is not a new concept. One of the

earliest reported cases of immunotherapy dates back to the 19th

century when mixtures of heat-killed bacteria, known as “Coley’s

toxin”, were used to treat inoperable tumours (Coley, 1891;

Bickels et al., 2002). Although not without criticism, as little

was known about the underlying principles by which it worked,

many patients were declared disease free after treatment

(McCarthy, 2006). In addition, many species of bacteria have

an inherent ability to preferentially colonise within the tumour

microenvironment (Duong et al., 2019). It has also been shown

that different tumour types have distinct microbiota

compositions (Nejman et al., 2020) and that the gut

microbiota is able to modulate the effects of chemotherapeutic

drugs (Heshiki et al., 2020). These factors have led to interest in

harnessing bacteria as vaccine products or as vehicles for the

production of localised therapeutics directly within the tumour

(Chowdhury et al., 2019). Therefore, it is of little surprise that

cancer therapy is one of the most common targets for eLBP

clinical trials (Figure 2B).

Currently, most cancer-focussed eLBPs in clinical trials can

be grouped into two categories based on the chosen chassis: trials

using Listeria monocytogenes (36 trials) or a Salmonella

subspecies (10 trials). Attenuated strains of L. monocytogenes

have been produced that display reduced virulence. For example,

the double-knockout ΔactA/ΔinlB strain, where the genes for

tropism and cell-to-cell transmission have been deleted; or the

ΔactA/ΔplcB strain (Johnson et al., 2011; Flickinger et al., 2018).

These attenuated strains are commonly engineered to act as

vaccines for specific forms of cancer, via secretion of a target

antigen (Morrow et al., 2019). A prominent example is ADXS11-

001 (also known as AXAL, or ADXS-HPV), an eLBP developed

by Advaxis for the treatment of HPV-associated cancers (Galicia-

Carmona et al., 2021). This prfA-defective strain secretes a

truncated fragment of listeriolysin O (LLO), an

immunological pore-forming protein, fused to HPV-16 E7

(Miles et al., 2017). The ADXS11-001 strain has been involved

in several clinical trials for the treatment of cervical cancer (e.g.

NCT02164461, and NCT01266460). In addition, ADXS11-001

has been evaluated as a treatment for anal/rectal

(NCT02399813), head and neck cancers (NCT02002182).

Currently, the AIM2CERV double-blind, placebo-controlled

randomised study investigating ADXS11-001 for high risk

cervical cancer, is the only phase III clinical trial for a L.

monocytogenes based eLBP (NCT02853604) (Flickinger et al.,

2018). However, not all ADXS11-001 trials have been successful,

as a phase I trial (NCT01598792) for oropharyngeal cancer was

terminated early after a patient suffered from dose-limited

toxicity (Sacco et al., 2016).

Advaxis also developed the ADXS31-142 and ADXS31-164

eLBPs. ADXS31-142, intended for the treatment of prostate

cancer, was engineered to secrete a fusion of LLO and

prostate specific antigen (a serine protease that displays

elevated levels during prostate cancer progression) (Hannan

et al., 2012). Whereas ADXS31-164 was engineered to secrete

an LLO-HER2/neu chimeric protein (Shahabi et al., 2011). As

with ADXS11-001, both of these products have now gone

through phase I/II clinical trials (NCT02325557 and

NCT02386501, respectively).

Salmonella subspecies are also commonly used, as they can

penetrate and preferentially grow within tumour tissues

(Pangilinan and Lee, 2019). The VXM01 strain, developed by

Vaximm using a Salmonella typhi chassis, was engineered to

produce vascular endothelial growth factor-2 (Wick et al., 2018).

This strain was initially trialed with 45 patients suffering from

advanced/stage IV pancreatic cancer (NCT01486329)

(Niethammer et al., 2012). A further phase I clinical trial

(NCT02718443) tested an oral administration of VXM01 on

14 patients with glioblastoma. VXM01 was found to produce a

positive increase in the CD8/Treg ratio of post-vaccine tumour

tissues (Wick et al., 2018). Following these promising results, a

phase I/II clinical trial (NCT03750071) is now recruiting

30 patients with recurrent glioblastoma. This study will

explore the efficacy of VXM01 in combination with Avelumab

(a checkpoint inhibitor), following standard treatment. Further

trials are exploring the use of engineered Salmonella for the

treatment of liver cancer (NCT01099631), myeloma

(NCT03762291), and neuroblastoma (NCT04049864).

Alongside the L. monocytogenes and Salmonella based

studies, E. coli Nissle 1917 has been used as a chassis for

cancer-targeting eLBPs. Synlogic’s SYNB1891 strain was
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engineered to target the stimulator of interferon genes (STING)

agonists pathway to trigger anti-tumour immunity, via

expression of cyclic di-AMP (CDA) (Leventhal et al., 2020).

Alongside CDA production, a biocontainment system was added

to the SYNB1891 strain. Leventhal et al. introduced ΔdapA (4-

hydroxy-tetrahydropicolinate synthase) and ΔthyA (thymidylate

synthesase) knockouts, showing that this dual-auxotroph was

able to prevent in vivo proliferation of SYNB1891 in various

tumour types (Leventhal et al., 2020). SYNB1891 was able to

stimulate anti-tumour immunity in tumour-bearing mice and

triggered the STING pathway in human antigen-presenting cells

in vitro. SYNB1891 has subsequently entered a phase I clinical

trial (NCT04167137). This trial is recruiting patients with

advanced/metastatic solid tumours and lymphoma, with the

aim to test SYNB1891 alone or in combination with

Atezolizumab (an immunotherapy drug). These studies

highlight the vast potential eLBPs hold for the treatment of a

variety of cancer types.

4 Metabolic diseases

Synthetic biology engineering techniques allow for the

creation of eLBPs that can produce non-native molecules,

such as human proteins (Charbonneau et al., 2020). This

allows for eLBPs that can correct conditions caused by errors

of human metabolism. There are several promising eLBPs for

treating metabolic diseases in clinical development. For example,

the SYNB1618 E. coli Nissle 1917 strain developed by Synlogic,

for the treatment of phenylketonuria (PKU). PKU is a rare

disease caused by genetic mutations of the phenylalanine

hydroxylase enzyme; which results in elevated levels of

phenylalanine in the blood. If left untreated, PKU can cause

severe neurological complications. Traditionally, PKU is

managed through a phenylalanine-restricted diet, which can

have a negative impact on a patient’s quality of life (Rocha

and MacDonald, 2016). The SYNB1618 strain was engineered

to consume phenylalanine within the digestive tract, via action of

the phenylalanine ammonia lyase (PAL) and L-amino acid

deaminase (LAAD) enzymes. Following positive results in

mouse and non-human primate models of PKU (Isabella

et al., 2018), SYNB1618 was evaluated in a Phase I/IIa clinical

study (NCT03516487). This trial recruited both healthy

volunteers and PKU patients; showing that SYNB1618 was

safe and well-tolerated up to a maximum dose of 2 × 1011

colony-forming units (Puurunen et al., 2021). As discussed by

the authors, the successful completion of this clinical trial

provided proof of the potential to use eLBPs in the treatment

of rare metabolic conditions (Puurunen et al., 2021). In addition,

data from this study has been used to develop in vitro gut-on-

chip (Nelson et al., 2021) and predictive pharmacology models

(Charbonneau et al., 2021); showing that results from clinical

trials can feed back into the preceding laboratory design process,

in order to help address some of the limitations present in animal

models (Brennan, 2022). Following the successful trial of

SYNB1618, Synlogic developed the SYNB1934 strain

(Adolfsen et al., 2021). SYNB1934 was created through

optimisation of PAL enzyme activity, displaying a two-fold

increase in vivo PAL activity relative to SYNB1618. A phase I

clinical trial (NCT04984525) successfully showed that

SYNB1934 was also safe and well-tolerated in healthy adult

volunteers. Subsequently, a new clinical trial (NCT04534842)

is recruiting patients, in order to perform a head-to-head

comparison of the SYNB1618 and SYNB1934 eLBPs.

Another E. coli Nissle 1917 based eLBP, referred to as

SYNB8802, has been designed to combat enteric hyperoxaluria

(EH). EH is caused by excessive absorption of dietary oxalate,

which can cause kidney failure. This can be due to genetic defects,

or via gastrointestinal conditions that increase oxalate uptake

(Witting et al., 2021). Currently, there are no approved

pharmaceutical treatments for this condition (Lubkowicz

et al., 2022). SYNB8802 was modified to express genes from

the oxalate degradation pathway of Oxalobacter formigenes,

alongside an oxalyl-CoA synthetase gene. These modifications

conferred the ability for SYNB8802 to degrade oxalate in vitro

(Lubkowicz et al., 2022). As with SYN1618, SYNB8802 was tested

in mouse and non-human primate models; demonstrating that

SYNB8802 could reduce the excreted levels of urinary oxalate

(Lubkowicz et al., 2022). A phase I clinical trial (NCT04629170)

is now recruiting healthy adults and EH patients, to evaluate the

safety and efficacy of SYNB8802 in humans. Novome

Biotechnologies have also developed an engineered Bacteroides

strain for the treatment of EH, named NOV-001; which is

currently recruiting for a phase I/II clinical trial (NCT04909723).

The Synlogic SYNB1020 strain was developed as a treatment

option for hyperammonia; a condition caused by liver damage

(i.e. cirrhosis), or defects in ammonia-detoxifying enzymes.

SYNB1020, another E. coli Nissle 1917 strain, was engineered

to convert NH3 to arginine in anaerobic conditions; with the

strain promoting improved survival in a mouse model of

hyperammonia (Kurtz et al., 2019). The strain completed

phase I clinical trials (NCT03179878). However,

SYNB1020 failed a subsequent phase Ib/IIa clinical trial

(NCT03447730), which was terminated due to a reported lack

of efficacy.

5 Other targets

Inflammatory bowel disease (IBD) is a chronic,

inflammatory disease of the digestive tract, with two major

subtypes: Crohn’s disease and ulcerative colitis (UC). The

full mechanisms behind IBD are not yet understood,

however there is a general consensus that the microbiota

plays an integral role in the development and progression

of IBD (Lee and Chang, 2021). Traditionally, IBD therapies
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attempt to target cytokines of the inflammatory cascade or

systemic immunomodulation. However, these treatments are

not always effective and may cause adverse side effects (Eindor-

Abarbanel et al., 2021). As such, there are several clinical trials

exploring the use of probiotics for the treatment of IBD (e.g.

NCT04969679, NCT04842149). Additionally, ActoGenix have

developed two eLBPs to treat these conditions that have entered

clinical trials. The first, AG011, was an engineered L. lactis

strain that secreted hIL-10 and was shown to be safe and well-

tolerated in an UC patient cohort (NCT00729872). AG014,

based on the same L. lactis platform as AG011, was engineered

to produce an anti-TNFα antibody fragment of certolizumab

(Vandenbroucke et al., 2010). AG014 was evaluated as part of a

phase I clinical trial, but has not been developed further (Crowe

et al., 2018).

Another eLBP, AG013, was created to treat oral mucositis

(OM) in patients with head and neck cancer undergoing

chemoradiation therapy. This L. lactis strain was engineered

to secrete human Trefoil Factor 1. Initially, AG013 was shown

to be effective in a hamster based model of radiation-induced

OM (Caluwaerts et al., 2010). Following a successful phase I trial

(NCT00938080), which demonstrated the safety of AG013 in

patients receiving induction chemotherapy for the treatment

of head and neck cancer, AG013 entered phase II clinical

trials (NCT03234465). However, in a statement issued by

Oragenics, Inc. this study was terminated as there was no

statistically significant difference in the duration of OM

between AG013 and the placebo.

6 Outlook

Currently, many eLBPs in trials are based on the

constitutive expression of specific molecules. However,

modern engineering tools allow for the development of more

complex systems. For example biosensors that sense and

respond to environmental cues in a dynamic manner (Riglar

et al., 2017; Hicks et al., 2020; Rutter et al., 2021), engineered

strains that display targeted or prolonged colonisation in a

specific environment (Fedorec et al., 2021; Chien et al., 2022),

and living materials that are embedded with engineered

microbes (Rodrigo-Navarro et al., 2021; Omer et al., 2022).

Recent examples include biosensors for acetoacetate, oxygen

lactacte, pH and inflammation (Riglar et al., 2017; Rutter et al.,

2021; Chien et al., 2022); ingestible micro-bio-electronic

devices that use heme-sensitive bacteria to report on

gastrointestinal health (Mimee et al., 2018); and engineered

native strains that were used for prolonged transgene delivery in

a mouse model (Russell et al., 2022). Furthermore, several

methods for mitigating the issue of biocontainment for

eLBPs have been developed. One method that has already

been used in clinical trials are auxotrophies that attempt to

limit the growth of engineered strains outside of the desired

environment, for example the Synlogic ΔdapA auxotroph for

the essential cell wall component diaminopimelate (Adolfsen

et al., 2021). Other biocontainment strategies include

‘deadman’ and ‘passcode’ kill switches, which can be re-

programmed for various environmental cues. These switches

can be used to block the transcription of essential genes in the

absence of a specific input or to trigger self-killing of engineered

strains via the production of a toxin, preventing undesired cell

growth (Chan et al., 2016). We expect clinical trials evaluating

these more complex systems to arise; although it will be

essential to ensure these systems behave in a predictable and

robust manner. Furthermore, it should be noted that an integral

feature of eLBPs is that a single strain can be engineered to

target more than one condition simultaneously (Brennan,

2022). As stated by Puurunen et al. (2021) this is

particularly promising for the treatment of metabolic

diseases and differentiates eLBPs from traditional methods,

such as enzyme replacement therapy (Puurunen et al., 2021).

Therefore, it is possible that more advanced eLBPs, which are

able to produce multiple therapeutic effectors from a single

strain, will enter clinical trials.

As evidenced by the number of complete, and ongoing,

clinical trials, the development of eLBPs is an exciting

application of microbiome engineering research. Despite this,

it is important to highlight the issues that can occur when eLBPs

enter clinical trials. As shown by the number of terminated and

unsuccessful clinical trials, a major issue is that positive in vitro

and animal model data do not always translate into safe and

efficacious treatment in humans. Of the 14 terminated eLBP

clinical trials identified during this literature review 50% were

terminated due to a reported lack of efficacy or clinical activity in

humans. Although undoubtedly more needs to be done to

alleviate these problems, considerable research is going into

the development of novel model systems that can be used to

characterise eLBPs more comprehensively before they reach

clinical testing. These include novel animal models (Hwang

et al., 2017; Rutter et al., 2019), innovative organ-on-chip

systems that try to mimic human tissues (Bein et al., 2018;

Nelson et al., 2021) and mechanistic models that attempt to

predict the in vivo activity of eLBPs (Charbonneau et al., 2021). It

is hoped that these new technologies will benefit the patients that

need these therapies most by helping to translate some of the

many developed eLBP strains into clinical treatments.

Finally, as discussed in detail by Charbonneau et al. (2020), it

is important to consider the wider regulatory, environmental and

societal impacts these new treatment modalities may have if they

are to be approved for human use (Charbonneau et al., 2020). For

example, manufacturing facilities will be needed that are able to

produce standardised, high-quality eLBPs at large scales, while

complying with current good manufacturing practices (cGMP)

(Brennan, 2022). In addition, physicians, patients and the general

public will need to be educated on the benefits and associated

risks of these products if they are to become widely accepted
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(Charbonneau et al., 2020). Although it is evident that challenges

remain, eLBPs hold vast potential to address unmet needs in the

treatment of human disease. It will be interesting to watch how

society reacts to these technologies as they continue to approach

the clinic over the coming years.
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