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ABSTRACT:
A listening test was conducted with 32 participants to obtain data on emotional changes in response to three types of

urban soundscape spatial sequences. By establishing a time series model, the relationship between psychoacoustic

parameters of the sequence and changes in the two dimensions of emotion was determined. Results showed that

psychoacoustic parameters can explain 44% and 40%–49% of the changes in the pleasantness and arousal

dimensions of emotion, respectively. Roughness and fluctuation have the highest correlation with emotional

changes, while loudness and articulation index have the lowest correlation with emotional changes. This research

verified the lags between psychoacoustic changes in the soundscape and the associated perceived emotion. First,

there was a 3–4 s lag between psychoacoustic parameters and emotional changes. Second, changes in roughness and

loudness could cause synchronous changes in emotions, while other parameters could cause delayed changes in

emotions. Finally, the lag of emotion had a strong and stable explanatory power for emotional changes. This

research proves the effectiveness of the time series analysis technology in establishing the dynamic relationship

between the acoustic parameters of soundscape sequences and the second-by-second perceived emotions and

provides a new data analysis method for in-depth study of soundscape sequence perception.
VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0014287
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I. INTRODUCTION

As the scale of cities expands, soundscapes become

increasingly complex. Research into urban soundscapes has

not been limited to noise control but extends to soundscape

perception.1–3 The perception of an urban soundscape is multi-

faceted, and the emotional perception of the soundscape is an

important area.4,5 According to the definition of soundscape in

ISO12913-1, an urban soundscapes are related to persons,

activities, and places in space and time.6 Therefore, research

on emotional perception of an urban soundscape involves the

dynamic changes in a soundscape with time and space and the

consequent dynamic changes of emotional perception. Thus,

exploring an explainable quantitative relationship between

these two changing variables is the purpose of this study.

In the research into the quantitative relationship

between the soundscape and its perception, different kinds

of sound sources or soundscape segments are usually used

as stimuli in the listening tests, and subjects are required to

answer a series of subjective questions concerning percep-

tion after exposure to each stimulus. Then the acoustic

parameters of each stimulus are calculated by acoustic

software, and a quantitative relationship between acoustic

parameters and subjective evaluation is established by using

multiple regression analysis.3,7 Hall et al.8 investigated the

quantitative relationship between the acoustical parameters

of soundscape segments and the perceived affective quality

dimensions: pleasantness and vibrancy. Using the semantic

differential method, the subjective evaluation of the pleas-

antness and vitality of the soundscape was obtained. Then

four acoustic parameters (roughness, sharpness, loudness,

and tonality) of each segment were calculated using the

ArtemiS software. Following this, a multiple linear regres-

sion mode was established between pleasure/vitality and

acoustic parameters to explore the stronger predictors for

pleasure/vitality. Similar to previous studies, Aletta et al.9

also studied the relationship between the vibrancy dimen-

sion of the perceived affective quality and the soundscapes

in a listening test by using a questionnaire. They selected

roughness, the presence of people, fluctuation strength,

loudness, and the presence of music as predictors and estab-

lished a linear regression model between these factors and

vibrancy. The model’s explanatory ability reached 76%.

However, for the purpose of the relationship between the

dynamic soundscapes and its emotional perception, there are

still some shortcomings in the method of previous research.a)Electronic mail: J.kang@ucl.ac.uk
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First, the measurement of soundscape perception mostly

uses the semantic differential scales, which are suitable for

evaluating the general emotional perception caused by a

stimulus but cannot track the emotional changes during the

process.10 Second, multiple linear regression is a method

suited for cross section data, while the data obtained in this

research are time series data (both the data of the acoustic

parameters of the soundscape and emotional perception);

hence, this method cannot analyze the study data

effectively.

An important concern is capturing the emotional

changes caused by the soundscape. The continuous emo-

tional measurement method is widely used to study relation-

ships between the acoustical features of music and the

emotional changes of the participants. This method usually

uses software (such as two-dimensional emotion-space and

EMuJoy) to record the emotional changes of the partici-

pants, which allows researchers to report these changes by

moving the mouse on the computer screen while listening to

music. The software collects emotional data at a certain

frequency.11–13 Schubert14 developed the software of two-

dimensional emotion-space to capture the continuous emo-

tional changes of music. The software was developed based

on the two-dimensional theory of emotions. The theory uses

the two-dimensional emotional space composed of two per-

pendicularly intersecting dimensions in the plane to measure

emotions, and this emotional space is presented to the sub-

jects through the computer screen. The software allows the

subjects to continuously evaluate their perceived emotion by

adjusting the position of the mouse on the computer screen

in the two-dimensional space while listening to music.

Subsequently, the software records the changes of emotion

in the dimension of time, which enables a second-by-second

measurement of emotion. Schubert further verified the

validity and reliability of the software through experi-

ments.14 Nagel et al.15 further developed the open resource

software EMuJoy based on previous research, and this soft-

ware is more convenient for research. The software allows

playing not only audio but also video; it also provides ports

for connecting physiological measurement instruments.

The reliability and validity of the software have been

proved.16 Therefore, continuous emotional measurement

was used to capture the emotional changes caused by the

urban soundscape.

Another problem pertains to data analysis; the data

obtained in this study are time series data, which contain

the correlation itself. Spurious regression can result if linear

regression is used to establish a model in the time series

data. Conversely, the time series analysis is a method that

uses the correlation of the data to build a model.17 Time

series techniques include the univariate and multivariate

models. The former is a model that uses the correlation of

the time series data itself for prediction, which includes the

autoregression model (AR) and the autoregressive and

moving average model (ARMA). The latter focuses on

exploring the long-term relationship between multivariate

variables, which include the vector autoregression (VAR)

and the autoregressive distributed lag (ARDL). Time series

analysis has been widely used in the study of emotional per-

ception of music. A specific time series model is selected to

establish a dynamic relationship between the acoustic char-

acteristics of music and the emotional perception.14,18,19

For example, when the multivariate time series model was

not yet fully developed, Schubert20 tried to combine the AR

model with the linear regression model to study the rela-

tionship of the multivariate time series variables in the

research of real-time emotional perception of music. He

selected six acoustic features to describe the changing char-

acteristics of the music over time, including loudness,

rhythm, melody, contour, texture, and spectral centroid.

Then, by using the method of continuous emotional mea-

surement, the data of the second-by-second perceived emo-

tional evaluation of the four pieces of music were obtained.

Finally, a combination of the AR model and linear regres-

sion model was used to establish the relationship between

musical features and perceived emotions. The results

showed that the model can explain 33%–73% of the per-

ceived emotions and that perceived emotion usually has a

delayed response within 1–3 s after the change of musical

features. With the development of multivariate time series

models, Rogert21 could directly use the VAR model to

establish the relationship between the perceived emotion

and acoustic features (such as intensity and spectral flat-

ness). Although the results of this research partly verified

the results of the previous studies, the application of the

VAR model greatly improved the efficiency and convenience

of the study. Therefore, compared with multiple linear regres-

sion, the time series analysis technology not only can establish

the dynamic relationship of multiple time series variables, but

also can be used to explore the synchronization/lag relation-

ship between the variables, allowing for in-depth research.

Thus, the study of the dynamic relationship between the

acoustic parameters of the urban soundscape sequence and the

perceived emotion can also be completed by selecting an

appropriate time series model.

Therefore, this study uses the method of time series

analysis to study the quantitative relationship between the

changes in the acoustic parameters of the urban soundscape

sequence and the changes in self-reported perceived emo-

tions. This study further hopes to draw conclusions on the

following questions. First, is it possible to establish the rela-

tionship between the changes in the acoustic parameters of

urban soundscape sequence and emotional changes using

time series analysis, and how does the model reflect this

dynamic relationship? Second, is there a synchronous or

lagged relationship between the changes in acoustic parame-

ters and the emotional changes that follow, and can it be

easily reflected in the model? Finally, how is the explana-

tory power of the model established by time series technol-

ogy in the study of emotional perception of soundscape, and

is there any possibility of improving the model? Ultimately,

it is expected that time series analysis techniques can pro-

vide an effective method for researching emotional percep-

tion of dynamic soundscapes.
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II. METHODOLOGY

A. Production of urban soundscape spatial
sequences

Studies have demonstrated that the impact of sound-

scapes on perception differs in different urban spaces.22

Building on previous research on responses to soundscapes,

this research selected three typical urban spaces as sound-

scape recording sites—urban parks, a commercial pedestrian

mall, and roads with their surrounding areas. To restore the

spatial aspects of the urban soundscape, audio recordings

developed on-site were used in the experiment. Before

recording, several representative sound scenes were selected

for each urban space, as shown in Fig. 1. For example, a

selection of five typical sound scenes in the park was

considered for the urban park sequence. The first one was

the amusement park area. Here, the soundscape was domi-

nated by the mechanical sound of amusement park equip-

ment and human voices. The second category was the dating

corner area, and its soundscape was dominated by the sound

of bird calls and human voices; it was the most crowded of

all the areas. The third was the lotus pond area, a gathering

place for music lovers. Here, the soundscape was dominated

by human voices and musical instruments. The fourth was

the Xishan Waterfall area, where the soundscape was domi-

nated by the sound of the breeze and bird calls; it was the

quietest of all the areas. Fifth was the Taohuayuan area, the

junction area between the amusement park and Xishan

Waterfall. Here, the soundscape was more complex, consist-

ing of human voices, bird calls, mechanical sounds, and the

sounds of the breeze. The selection process for the other two

sequences—including the pedestrian mall and the road—

involved nine and eight typical sound scenes, respectively,

as shown in Fig. 1. This was followed by the audio record-

ing of each sound scene. To ensure a sufficient density of

people, a particular recording time was selected: 9–11 a.m.

on Saturday and Sunday. According to the ISO-2 standard,23

a 5-min recording time can fully reflect the soundscape char-

acteristics of the area, so a continuous recording of 5 min

was made for each sound scene. The recordings were stored

in HDF format, with 44 100–97 Hz sampling, 16-bit quanti-

zation. For the editing of the sound sequences, first, a 1-min

soundscape clip from the 5-min recording was isolated.

Then the 1-min clips were connected according to the order

shown in Fig. 1 to form a sound sequence. The purpose was

to control the time of the whole experiment to avoid fatigue

of the subjects. The 1-min soundscape clip should be able to

reflect the characteristics of the sound scenes and also avoid

the unusual sound source that does not belong to the sound

scene. Finally, three soundscape spatial sequences, namely

the park, the pedestrian mall, and the road, were obtained by

using the software Cooledit. Their durations were 5, 8, and

9 min, respectively.

There are a few points to explain. First, the selection of

the number of sound scenes in each sequence is based on the

soundscape characteristics of different urban spaces. A more

real restoration of the soundscape in the laboratory can trig-

ger a more real emotional experience. Although the number

of sound scenes of the park sequence is lower than the num-

ber for the other two sequences, this does not affect the

results of the experiment. As the focus of this experiment is

the variation of acoustic parameters, there is no direct rela-

tionship between the number of sound scenes and the varia-

tion of acoustic parameters. Second, although the pedestrian

mall and the road sequences are sometimes similar in

appearance, the content of these urban soundscapes differs;

hence, a learning curve does not occur. Finally, the order of

the sound scenes in each sequence is preset. If this were not

the case, there would be many combinations, which would

not be conducive for the experimental conditions. Therefore,

the results of this experiment only allow for the preset order,

and deviation is expected.
FIG. 1. (Color online) The selection of sound scenes in different urban

spaces. N/A, not applicable.
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B. Selection and analysis of psychoacoustic
parameters

Psychoacoustic parameters are objective physical quantities

that describe people’s subjective feelings of sound, which play

an important role in auditory sensations. Loudness, sharpness,

fluctuation strength, roughness, tonality, and articulation index

are the commonly used psychoacoustic parameters.24 Loudness

is the most important psychoacoustic quantity, describing the

intensity of volume.25 Sharpness is a parameter describing the

proportion of high-frequency components in the sound spectrum

and reflects the harshness of the sound. Fluctuation reflects the

slower changes in sound. Roughness reflects the perceptual

effect of fast amplitude modulation of a sound.24 Tonality is the

sensation of timbre, which indicates whether sound consists

mainly of tonal components or broadband noise.26 Articulation

index reflects the transmission efficiency of speech information

in background noise.27 Therefore, psychoacoustic parameters

are functions of the time structure and spectral distribution and

can qualitatively describe the dynamic changes of soundscape

sequences from different angles.

Six psychoacoustic parameters are selected in this

research, namely, loudness, sharpness, fluctuation strength,

roughness, tonality, and articulation index. The reason is that,

on the one hand, the greater the number of parameters, the bet-

ter the multi-dimensional description that can be made of the

changes of the soundscape. On the other hand, the selection of

the number of parameters, as the independent variable in the

model, is restricted by the data amount of the dependent vari-

able, which is emotional changes. The data amount of the

emotional changes in the park sequence is the least and is 300

(the duration of the sequence is 300 s). According to previous

research, the least data amount can meet the requirement of

six independent variables simultaneously.20

The parameters were calculated using ArtemiS Suite 11

(Advanced Research Technology for Measurement and

Investigation of Sound and Vibration). The method embedded

in ArtemiS calculates the roughness, sharpness, tonality, and

articulation index.28 The calculation of loudness was based on

the calculation method proposed by Zwicker in ISO 532-1.29

The sharpness was calculated based on DIN 45692.30 The

time interval of calculation for each parameter needs to be set

in the software, but it needs to consider the requirements of

the time series analysis. In the multivariate time series analy-

sis, the independent variables and dependent variables should

have the same time interval, which is to say, the time interval

of the data of the acoustic parameters needs to be the same as

that of the self-reported emotional changes (1 s; see Sec. III B).

Therefore, the time interval of the calculation of the acoustic

parameters is also set to 1 s.

Figure 2 shows variation of acoustic parameters with

time. The x axis is time with every 60 s representing a sound

scene. The y axis represents the acoustic parameter and its

unit, including roughness and its unit asper, fluctuation and

its unit vacil, sharpness and its unit acum, loudness and its

unit song, article and its unit %, and tonality and its unit

Hearing Model by Sottek (HMS). In general, there is a

similar variation range of the same parameter in different

sequences, but the variation characteristics of the curve,

such as the position of the peak, number of peaks, shape of

the variation, and frequency of the variation, differ. For

roughness, the position of the peaks in the three sequences is

significantly different. For fluctuation strength, the fre-

quency of variation is obviously different, and it is the high-

est in the road sequence. For sharpness and loudness, the

shape of the variation is different in different sequences, and

it shows an obvious characteristic of double-peak in the

pedestrian mall sequence compared with the other two. For

tonality, the value of the peak and the frequency of the vari-

ation are significantly higher than those of the other two

sequences. Therefore, it can be seen that there is a signifi-

cant difference in the variation characteristics of the param-

eters in these three sound sequences, which can provide

more diversified data for the model.

C. Measurement of emotional changes

The EMuJoy software was selected to record the emo-

tion in the experiment, based on the two-dimensional emo-

tional theory. Unlike the three-dimensional theory,31 the

two-dimensional theory describes the emotion through

the dimensions of pleasantness and arousal.32 As shown in

Fig. 3, the software interface shown to the participants is

composed of two axes (representing two dimensions of emo-

tion) intersecting at right angles. The x axis represents the

pleasantness dimension; the left and the right sides of the x
axis represent the negative emotion (“displeasure”) and the

positive emotion (“pleasure”), respectively, with the value

changing from –1 to 1. The y axis represents the arousal

dimension, the lower and upper sides of the y axis represent

calming (“low arousal”) and arousing (“high arousal”),

respectively, with the value changing from –1 to 1. When

the sound stimulus plays, the participant can report their

emotional changes by clicking the mouse on the screen to

select an emotional point in the two-dimensional emotional

space at any time during the process. The number of possi-

ble clicking times is unlimited. The software records the

data every 50 ms15 and obtains the variation in pleasantness

and arousal over time. Previous studies have confirmed the

validity of the software.12,13,15

First, the entire procedure was explained to the partici-

pants, and their informed consent was obtained. Then the

concept of the emotional dimensions and the use of the soft-

ware were explained to the subjects. According to previous

studies,33 to familiarize the subjects with the use of the soft-

ware, five pictures from the International Affective Picture

System manual34 were selected and displayed to the subjects

randomly. Then the participants were asked to listen care-

fully to three audio clips played through the headphones,

assess whether their emotions were affected by the audio,

and use the mouse to mark the corresponding emotional

point once identified. They could report their emotions at

any time without any limit on the number of times. If there

was no emotional change during the whole process, they
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could elect not to click the mouse. The experiment was con-

ducted in a listening room with a background noise of 25

dBA at a frequency of 500–1000 Hz during daytime. During

the experiment, the subjects were in the listening room by

themselves without any disturbance, and the audio playback

was controlled by the computer in the control room. There

are three sound sequences in the experiment, and each audio

is played to the subjects only once randomly to eliminate

the influence of the factor of the order between the

sequences on the results. The park, pedestrian mall, and

road sequences lasted for 5, 9, and 8 min, respectively, and

there was also a blank time of 30 s between the sequences to

eliminate the potential influence in emotion of the previous

audio on the next.35 Therefore, the whole experiment took

about 25 min. The audio was played through headphones,

and the volume of the headphones was calibrated by con-

necting the dummy heads [Head Acoustics (Herzogenrath,

Germany) HMS III] before the experiment.

FIG. 2. (Color online) Variation of acoustic parameters with time in different sound sequences.
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D. Participants

The previous research on soundscapes indicates that a

sample of 30 subjects can meet the needs of the listening

test.24,36 The participants totalled 32 (15 male and 17 female),

with a normal hearing level of 20–30 dB at a frequency of

500–1000 Hz.23 Since the focus of this study is not on the dif-

ference of ages, only those aged 20–30 years (mean age:

27 years, standard deviation: 4.1) were selected for conve-

nience. The participants’ occupations included students, office

workers, and freelancers. All participants were volunteers;

hence, they were not compensated for participation.

E. Data analysis

Multiple regression analysis is usually employed to

study the quantitative relationship between multiple factors

in soundscape research,37,38 which applies to the analysis of

cross-sectional data. The data obtained in this experiment—

unlike in previous studies—were time series data, which are

continuous. Spurious regression can occur if the multiple

regression method is used on time series data. Therefore, the

time series analysis method was used to build the regression

model using the correlation of the data itself. This method is

widely used in emotional perception research.39 The autore-

gressive distributed lag (ARDL) model was selected among

many multivariate time series models. Compared with other

models, it has the following advantages. First, it is a multi-

variate linear model with pre-determined causality com-

pared with other structural models, which makes it easier to

explain the practical relationship between the independent

variables and dependent variables. Second, the structure

includes the lag of both the independent and dependent vari-

ables, which can help quantify how the lag effect of emotion

is reflected in different psychoacoustic parameters.40,41

The EViews 10.0 software was used to establish the

ARDL model. The model was established in four steps—

data verification, model setting, model verification, and

model application—as shown in Fig. 4.

According to the requirements of the ARDL model, the

time series data must be stable.40 Therefore, the ADF unit root

test method was used to verify the stationarity of the time

series data of the psychoacoustic parameters and emotional

changes. The results showed that, compared to other parame-

ters, only the data of tonality in the road sequence were not

stable in the data test of the psychoacoustic parameters.

Additionally, the data for the two dimensions of emotion were

not stable. The data for the non-stationary time series must be

stabilized before it is entered into the model, and the differ-

ence method was used to achieve this. The first-order differ-

ence operation was used to subtract the previous value from

the next value in the time series data, and D(X) was the defini-

tion assigned to the new sequence obtained, where X repre-

sented the original series. Then the first-order difference

operation was performed on all non-stationary time series

data, and the stability of the new series was tested again. The

results showed that the new series was stable.

Another test for the data is the co-integration test, which

is mainly used if there are two or more non-stationary series

in one model.42 Only when non-stationary variables have a

co-integration relationship can they be included in the same

regression model; otherwise, spurious regression will occur.

Therefore, the Engle–Granger (EG) co-integration analysis

was conducted on the two groups of variables in the road

sequence model—pleasantness and tonality, and arousal and

tonality—to test whether there was a co-integration relation-

ship between them. The results showed no co-integration

relationship between tonality and pleasantness/arousal in the

road sequence. Therefore, the variable of tonality was not

included in the regression of the road sequence model.

The “adjusted R-squared” was used as the selection cri-

terion for the lag order of the variable, and the

“Newey–West” estimation method was selected to avoid the

autocorrelation of the model.

Finally, the Breusch–Godfrey (BG) serial correlation

Lagrange multiplier (LM) test was used to assess the autocor-

relation of the ARDL model. Results showed that there was

no autocorrelation in the other models, except for the pleas-

antness model of the park sequence and the road sequence. It

can be used to analyse the relationship between variables or

predict data for models without autocorrelation. It can also be

used for analysis—but not prediction—for models with auto-

correlation, due to the “Newey–West” setting.

III. RESULTS

A. The difference in correlations between different
psychoacoustic parameters and emotional changes

Since the correlation in the model is complex, the abso-

lute value of the correlation coefficient and the positive/

negative of the value are discussed separately. This section

is about the former, and the latter will be discussed in

Sec. III B. Figure 5 illustrates the differences in correlations

between different psychoacoustic parameters and emotional

dimensions. Table I presents further detailed data. The

results show that the correlation is the highest between

FIG. 3. The subject interface of EMuJoy software (Ref. 15). Reproduced

from F. Nagel, R. Kopiez, O. Grewe, and E. Altenm€uller, Behav. Res.

Methods 39(2), 283–290 (2007). Copyright 2007 Author(s), licensed under

a Creative Commons Attribution 4.0 License (Ref. 15).
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roughness/fluctuation strength/sharpness and emotional

changes, while it is low between loudness/articulation index

and emotional changes. There is a complicated relationship

between tonality and emotional changes. The value of the

coefficients between all parameters and emotion is signifi-

cantly larger in the park sequence than in the road sequence.

Roughness has the highest correlation with emotional

changes among all parameters and is the strongest predictor

of emotional changes. However, its correlation is not signifi-

cant in the traffic sequence. Its correlation coefficient can

reach 0.30–0.48 in the pleasantness dimension and

0.25–0.58 in the arousal dimension. Fluctuation strength is

also a parameter with a high correlation coefficient

(0.19–0.59), but its correlation is also not significant in the

traffic sequence. Compared with the former two parameters,

the correlation coefficient of sharpness is reduced and can

increase to 0.04 in the pleasantness dimension and 0.03 in

the arousal dimension. This correlation is significant in all

the sound sequences, which means that sharpness is not

affected by different soundscape sequences and is the most

stable parameter.

Although loudness/articulation index has a weak corre-

lation with emotional changes, they are still noteworthy. The

strongest predictor parameters (such as roughness) failed to

predict emotional changes in the road sequence. However,

this is not the case with loudness/articulation index. Their

correlation is significant in different sequences—especially

the road sequence—which means that there is a weak and

stable correlation between loudness/articulation index and

emotional changes. Therefore, the parameters of different

prediction factors can play a complementary role in predict-

ing the emotional perception of soundscape sequences. It is

FIG. 4. The steps of the ARDL model.

FIG. 5. (Color online) Comparison of correlation values between psychoacoustic parameters.
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important to use various parameters to predict emotion, not

just the parameters with high correlation coefficients.

The articulation index is a parameter to measure the trans-

mission efficiency of speech information in background

noise. Research on the emotional perception of urban sound-

scapes has shown that the arousal dimension is related to the

informativeness of the sound.5,8 Thus, the articulation index

can be assumed as a parameter for describing the informa-

tiveness of the sound; however, the low correlation coeffi-

cient also demonstrates its weak ability to do this. Therefore,

modifications in future studies may be required to improve

its ability to predict emotional perception from the perspec-

tive of describing more sound information.

Significantly, the correlation coefficient of tonality is

0.02 in the park sequence, but it is not significant in the

pedestrian mall sequence. This indicates that tonality has a

complicated relationship with emotional changes and cannot

be used to predict them.

B. The lag in emotional changes in different
psychoacoustic parameters

Two parts are discussed in this section, as shown in

Table II. The first part is regarding the lag in emotional

changes in different psychoacoustic parameters. This means

that the emotion is affected within a period after the change

of parameters. The second part explores the lags in emo-

tional changes—at particular moments—and how they are

affected by previous emotional changes. The lag includes

the time of the lag and the correlation (positive and nega-

tive) at different lags.

The lag time of different psychoacoustic parameters is

stable at about 3–4 s. The lag time of emotion for roughness

or fluctuation strength is 3 s and reaches 4 s for sharpness,

loudness, articulation index, and tonality. However, the sig-

nificant lag time (the lag time corresponding to the signifi-

cant lags) differs in different soundscape sequences for one

parameter. For example, the significant lag time for rough-

ness and fluctuation strength in the park sequence is 3 s,

which is longer than it is in the pedestrian mall sequence

(1 s) or the road sequence (0 s). Similarly, the significant lag

time of sharpness or loudness to emotion is longer in the

pedestrian mall and road sequences (3–4 s) than it is in the

park sequence (1–2 s). The perception of the lag time varies

in different soundscape sequences.

The correlation between one parameter and emotional

changes is dynamic (positive or negative) at different lags.

For example, the correlation between the roughness and

pleasantness dimensions is first positive at lag 0, becomes

negative at lag 1, and reverts to positive at lag 2/3 in the

pleasantness model of the park sequence. The same situation

occurs in other psychoacoustic parameters. The findings of

the positive or negative correlation between a certain param-

eter and emotional changes are inconclusive, which is dif-

ferent from the results of previous studies, but this dynamic

correlation may provide a new angle for future research.

In addition, emotional changes are synchronized with

the change of some parameters but delayed for the change

of others. Emotional changes are synchronized with the

change of roughness or loudness and delayed for the

changes in fluctuation strength, sharpness, and articulation

index. For example, the significant lag of roughness first

appears at lag 0, which shows that emotional changes are

very sensitive to changes in roughness and are synchronized.

Lag 3 of roughness is also significant, which also means that

the impact of roughness on emotions is continuous.

Therefore, the changes in roughness are synchronized with

the changes in emotion, and the continuous effect of rough-

ness can reach 3 s, which mirrors loudness. However, for

sharpness and fluctuation strength, significant lags appear at

the lag 2/3 or the lag 1/3, respectively, indicating that there

is a delayed correlation between these parameters and

emotion.

Finally, considering the emotional lag in their two

dimensions, the lag time of the pleasantness dimension is

4 s, and the arousal dimension is 3–4 s. That is to say that

the emotional changes at a given moment are affected by

the emotional changes in the past 3–4 s. The correlation of

emotional changes is significantly positive at lag 1 and then

demonstrates dynamic changes at other lags.

C. The interpretive ability of the model for emotional
changes

As shown in Fig. 6, the model explains 42%–43% of

the variation in pleasantness, and 40%–49% of the variation

TABLE I. Coefficient between psychoacoustic parameters and emotional dimensions in different sequences. The correlation coefficient in the table is the

largest absolute value with the highest significance, and the coefficients with significance less than 10% are blank.

Emotional dimensions in different sequences

Psychoacoustic parameters

Roughness Fluctuation Sharpness Loudness Articulation Tonality

Pleasantness dimension mode

Park 0.475 212 0.326 983 0.044 563 0.008 538 0.027 439

Pedestrian mall 0.295 424 0.188 618 0.022 613 0.002 028 0.000 827

Road 0.020 810 0.001 792 0.000 707

Arousal dimension mode

Park 0.581 602 0.592 25 0.031 008 0.001 908 4 0.021 705

Pedestrian mall 0.251 091 0.193 786 0.015 25 0.001 546 0.000 324 0.002 902

Road 0.260 236 0.015 756 0.000 939 0.000 71
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in arousal, in terms of variables of psychoacoustic parame-

ters (roughness, fluctuation strength, sharpness, loudness,

tonality, and articulation index), as well as its lags and emo-

tion lags. It seems that the R2 of the pleasantness dimension

is more stable than that of the arousal dimension across dif-

ferent soundscape sequences. However, the R2 of the model

is related to the interpretive ability of both the psychoacous-

tic parameters and the emotion. By comparing the absolute

value of the correlation coefficient of the independent varia-

bles, it can be observed that the correlation between the

emotional changes and the psychoacoustic parameters

declines, and the correlation between the emotional changes

and the lags is raised when the sequence is changed from

park to pedestrian mall to road. This phenomenon exists in

both the pleasantness and arousal models. However, there is

a decrease in the interpretive ability of the psychoacoustic

parameter and an increase in the interpretive ability of emo-

tion itself to reach a dynamic balance in different pleasant-

ness, but not in different arousal dimension models.

Therefore, the R2 of the pleasantness dimension model is

stable, while the R2 of the arousal dimension model is vari-

able. The reason for this phenomenon may relate to the com-

position of the soundscape sequences. Further analysis

revealed that the composition of the park sequence was rela-

tively simple compared with the road sequence—the emo-

tional change relies more on itself than on acoustic features

in the more complex soundscape sequences.

This section further compares the difference between

the actual and predicted values of the emotional changes, by

selecting the model without autocorrelation, as shown in

Fig. 7. It is evident that the model has a better fit with

smooth emotional changes but a poor fit for the sharp ones.

As shown in Fig. 7, two sharp emotional changes appear at

the beginning of minutes 2 and 7 in the pleasantness model

of the pedestrian mall sequence, corresponding to the sound

of musical instruments and traffic noise, respectively. A

sharp emotional change also appears at the beginning of

minute 5 in the arousal model of the park sequence, corre-

sponding to the sound of mechanical noise. In the arousal

model of the traffic sequence, the sharp decrease in emotion

at minute 5 corresponds to the sound of construction noise.

It seems that the point of poor fit in the model is related to

the type of sound source. However, in the arousal model of

the road sequence, the sharp emotional changes correspond-

ing to the traffic noise demonstrate a better model fit.

Further analysis shows that the soundscape of the park,

TABLE II. Correlation between emotional dimensions and acoustic parameters and its lags. 0, 1, 2, 3, and 4 represent the lags of one acoustic parameter.

For example, “1” represents “Lag(1),” which is obtained by delaying the parameter by 1 s. “þ”/“�” represent the positive/negative relationship between the

acoustic parameters and emotional dimensions, and asterisks represent the significance of the correlation. *, **, and *** represent p-value levels of 10%,

5%, and 1%, respectively.

Lag variable

Pleasantness dimension Arousal dimension

0 1 2 3 4 0 1 2 3 4

Roughness

Park sequence þ** � þ þ*** �** þ* � þ***

Pedestrian mall sequence þ �** � þ þ �* þ þ
Road sequence þ þ**

Fluctuation

Park sequence þ � � þ** þ þ �** þ**

Pedestrian mall sequence þ �* þ � þ �***

Road sequence þ þ � � þ
Sharpness

Park sequence � þ* � þ � þ þ �**

Pedestrian mall sequence � � �* þ*** þ �* �*** þ***

Road sequence þ þ �*** þ*** � � �** þ***

Loudness

Park sequence þ � *** þ þ
Pedestrian mall sequence �* � � þ þ �*** � �* þ þ***

Road sequence �*** �*** þ*** þ*** � � þ
Articulation

Park sequence � � þ � � þ þ* þ �*

Pedestrian mall sequence � � � þ* �*

Road sequence �*** � þ*** � þ þ** �***

Tonality

Park sequence �** þ*** �*** þ** �* � þ �*** þ***

Pedestrian mall sequence þ þ þ � þ*

Road sequence

D(pleasantness/arousal)

Park sequence þ*** � þ �** þ*** þ þ*

Pedestrian mall sequence þ*** � � þ*** þ*** þ þ �*

Road sequence þ*** � þ þ** þ*** �*** þ
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characterised by natural sounds, is quieter, while the sound-

scape of the pedestrian mall, dominated by artificial sounds,

is noisy. Traffic noise—an artificial sound—is significantly

different from the soundscape of the park compared to the

pedestrian mall. Hence, the differences between the sound

sources in the soundscapes are another important factor.

Therefore, the type of sound source must be considered to

achieve a better model fit, and the contrast between the

sound source and the soundscape is an important factor.

IV. DISCUSSION

The research shows that the time series technique pro-

vides an effective method for the study of the perception of

FIG. 6. (Color online) The trend of the coefficients between variables.
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soundscape sequences. If the research of soundscape percep-

tion focuses on soundscape sequence, rather than on the

sound sources or the soundscape fragments, then analysis of

the time series data becomes the primary problem. Although

this study has proved that the method of time series analysis

is effective for the above problems, this method is conve-

nient only for numerical variables and ineffective for cate-

gorical variables. Therefore, the acoustic parameters, which

are the numerical variables in this study, were selected as

the independent variables of the model in this study. The

results also showed that only using the acoustic parameters

to predict emotional changes is not enough, and more poten-

tial variables may be related to the type of sound source.

Previous studies have also shown that the information car-

ried by the sound source also largely determines people’s

perception of the soundscape.4 Therefore, the type of sound

source, as a categorical variable, could be decoded in several

dimensions, and its dimensions could be encoded to convert

the categorical variable into a numerical variable. How to

disassemble to preserve the characteristics of the sound

source to the greatest extent is worth studying, as such an

idea will greatly improve the convenience of using the time

series model in soundscape research. However, the question

of the dimensions in which the sound source could be

decoded to preserve the information carried by it deserves

more study. This will also improve the convenience of using

the time series technique in soundscape research.

In addition, the application of time series technology can

allow in-depth research on soundscape perception.

The previous research on soundscape perception is static. For

example, the conclusion is usually a certain correlation coef-

ficient between the perception and the acoustic parameter,

which ignores the change of the perception in the process.

However, this study shows that there is a dynamic relation-

ship between the acoustic features and emotional perception

and that emotional perception will reach a steady state within

1–4 s after the change in soundscape features. However,

perception is always adjusting as the soundscape is always

changing. Therefore, both the magnitude and positive or neg-

ative relationship of the correlation vary at different lag

times. The time series analysis technology makes it possible

to investigate people’s attention to the cognitive process of

soundscape. However, this dynamic relationship also brings

some challenges for further analysis. For example, there is no

regularity in the positive/negative correlation at different lag

times, leading to an inconclusive result. This is because the

emotional perception of the real soundscape sequence con-

tains complex factors. For example, the information carried

by the sound resource is diverse, and it also has different

meanings for different people. Simultaneously, people’s pre-

vious emotional cognition of different types of soundscape

also plays an important role in the process of emotional expe-

rience. Therefore, a stable conclusion for a certain parameter

can be obtained only by excluding the influence of the non-

acoustic factors as much as possible and designing the control

experiment for a certain parameter. The significance of this

study is exploratory rather than conclusive, and it hopes to

provide more perspectives for further research.

FIG. 7. (Color online) Comparison of actual value and predicted value of emotional changes.
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V. CONCLUSIONS

A time series model was established in this study to

explore the relationship between the changes in psycho-

acoustic parameters and emotional changes in three types of

urban soundscape spatial sequences. The main findings are

as follows.

(1) The difference in correlation between psychoacoustic

parameters and emotional changes: Roughness and fluc-

tuation strength are strong predictors of emotional

changes, and sharpness is a stable predictor across dif-

ferent sequences. Loudness and articulation index are

weak but stable predictors of emotional changes.

Tonality has a complex relationship with emotion.

Finally, different parameters can play a complementary

role in the prediction of emotional changes in different

soundscape sequences.

(2) The lag of emotional changes to psychoacoustic parame-

ters: First, the lag time of emotional changes to all

parameters is stable at 3–4 s, but the significant lag time

differs between different soundscape sequences for the

same parameters. Second, the correlation between one

psychoacoustic parameter and emotional changes is

dynamic (positive or negative) at different lags.

Roughness and loudness have both synchronous and

delayed correlations with emotional changes, while fluc-

tuation strength, sharpness, and articulation index only

have delayed correlations with emotional changes.

Finally, the lag time of emotion in the two dimensions is

3–4 s, and there is a significant positive correlation with

emotional changes at lag 1.

(3) The interpretive ability of the model for emotional

changes: The R2 of the pleasantness model is stable at

about 43%, and the R2 of the arousal model is between

40% and 49% in a different model. There is a better

model fit for smooth emotional changes and a poor

model fit for sharp emotional changes.

This study verifies the role of the psychoacoustic param-

eters of urban spatial soundscapes in predicting the emotional

changes induced by them. However, it also indicates the limi-

tations of the predictive power of these parameters. In gen-

eral, psychoacoustic parameters have a stronger ability to

predict stable emotional changes but a weaker ability to pre-

dict sharp emotional changes, which may be related to the

non-acoustic factors. The three indicators of roughness, fluc-

tuation strength, and sharpness do play an important role in

predicting emotional changes, but indicators with weak

predictive power, such as the articulation index, are still

worthy of further research. In addition, there is a lag phenom-

enon between psychoacoustic parameters and emotional

changes, but it does not exist in all indicators, which shows

that there is a difference in emotional perception for different

acoustic parameters, and the reasons for this deserve further

research. Although this research provides the length of the

lag of emotional changes for parameters, its composition is

complicated and relates to cognition. A strong and stable

“emotional inertia” is evident in the emotional changes

induced by soundscapes, which cannot be ignored in future

research in the study of the emotional perception of sound-

scapes. Finally, the perceived emotions of different age

groups may be different, so this study is only valid for young

people, and further research is needed for other age groups.

This study validates the usefulness of time series analy-

sis techniques in studying emotional perception of urban

soundscapes. On the one hand, this method can effectively

establish the relationship in several dynamically changing

factors, like the changing soundscape and its changing per-

ception. At the same time, this method allows the lag rela-

tionship between these factors to be revealed, which

provides a new angle for further exploration of cognitive-

related research on soundscapes. On the other hand, how to

convert categorical variables into numerical ones to incorpo-

rate them into the time series model to improve predictive

ability is also a new challenge for future research. Finally,

there are many options for multivariate time series models,

and only the model of ARDL has been investigated in this

research. Other multivariate models, such as the VAR model,

which focuses on dynamic matrix system between variables,

also provide great value for the study of soundscapes.
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APPENDIX

See Tables III and IV for results of the ADF unit root

test and the co-integration test and Tables V, VI, and VII for

the ARDL models of the park and emotional dimensions, the

pedestrian mall sequence and emotional dimensions, and the

road sequence and emotional dimensions, respectively.

TABLE III. ADF unit root test. (i) The c, t, and p in the equation form (c, t, p) represent constant, trend, and lag, respectively; (ii) the ADF unit root test

uses the MacKinnon one-sided p-values; (iii) D(X) represents the first-order difference of X sequence.

Variable Equation form (c, t, p) 5% level t-statistic Probability Result

Park sequence

Psychoacoustic parameters

Loudness (c, t, 0) �3.424 875 �4.234 415 0.0045 Stable

Roughness (c, 0, 0) �2.870 964 �4.263 138 0.0006 Stable
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TABLE III. (Continued.)

Variable Equation form (c, t, p) 5% level t-statistic Probability Result

Sharpness (c, t, 1) �3.424 926 �4.656 336 0.0010 Stable

Fluctuation (c, 0, 2) �2.871 029 �3.590 615 0.0065 Stable

Tonality (c, 0, 3) �2.871 061 �3.722 487 0.0042 Stable

Articulation (c, t, 0) �3.424 875 �3.780 015 0.0189 Stable

Emotional dimension

Pleasantness (0, 0, 1) �1.941 888 �1.696 410 0.0850 Unstable

D(pleasantness) (0, 0, 0) �1.941 888 �11.670 80 0.0000 Stable

Arousal (0, 0, 1) �1.941 888 �1.871 035 0.0586 Unstable

D(arousal) (0, 0, 0) �1.941 888 �9.603 602 0.0000 Stable

Pedestrian mall sequence

Psychoacoustic parameters

Loudness (c, 0, 1) �2.866 683 �3.997 975 0.0015 Stable

Roughness (c, 0, 1) �2.866 683 �8.189 147 0.0000 Stable

Sharpness (c, t, 1) �3.418 179 �4.916 618 0.0003 Stable

Fluctuation (c, 0, 4) �2.866 713 �4.228 677 0.0006 Stable

Tonality (c, 0, 2) �2.866 693 �4.886 576 0.0000 Stable

Articulation (c, 0, 0) �2.866 673 �3.450 376 0.0098 Stable

Emotional dimensions

Pleasantness (0, 0, 1) �1.941 412 �1.726 126 0.0800 Unstable

D(pleasantness) (0, 0, 0) �1.941 412 �12.681 87 0.0000 Stable

Arousal (0, 0, 1) �1.941 412 �1.472 299 0.1318 Unstable

D(arousal) (0, 0, 0) �1.941 412 �12.987 53 0.0000 Stable

Road sequence

Psychoacoustic parameters

Loudness (c, t, 0) �3.419 211 �5.895 974 0.0000 Stable

Roughness (c, t, 1) �3.419 231 �4.512 340 0.0016 Stable

Sharpness (c, 0, 0) �2.867 342 �4.559 803 0.0002 Stable

Fluctuation (c, 0, 4) �2.867 392 �5.133 191 0.0000 Stable

Totality (0, 0, 3) �1.941 489 �0.399 151 0.5398 Unstable

D(totality) (0, 0, 2) �1.941 489 �18.774 49 0.0000 Stable

Articulation (c, 0, 0) �2.867 342 �4.714 486 0.0001 Stable

Emotional dimensions

Pleasantness (0, 0, 1) �1.941 489 �1.434 337 0.1413 Unstable

D(pleasantness) (0, 0, 0) �1.941 486 �10.822 44 0.0000 Stable

Arousal (0, 0, 2) �1.941 487 �0.700 347 0.4132 Unstable

D(arousal) (0, 0, 1) �1.941 487 �12.631 53 0.0000 Stable

TABLE V. ARDL model of the park and emotional dimensions. *, **, *** represent the p-values level of 10%, 5%, and 1%, respectively.

Model 1 (pleasantness) Model 2 (arousal)

Variable Coefficient Variable Coefficient

D[pleasantness(�1)]

D[pleasantness(�2)]

D[pleasantness(�3)]

D[pleasantness(�4)]

Articulation

Articulation(�1)

Articulation(�2)

Articulation(�3)

Articulation(�4)

0.304271***

�0.033520

0.034538

�0.148179**

�0.000275

�0.000878

0.002116

�0.001531

�0.000422

D[arousal(�1)]

D[arousal(�2)]

D[arousal(�3)]

Articulation

Articulation(�1)

Articulation(�2)

Articulation(�3)

Fluctuation

Fluctuation(�1)

0.394204***

0.053083

0.107032*

5.13� 10�6

0.000815*

0.001438

�0.001908*

0.080814

0.153302

TABLE IV. Co-integration test—Engle–Granger.

Series Null hypothesis Engle–Granger tau-statistic Probability Co-integration

Pleasantness tonality Series are not cointegrated �1.857 096 0.6021 No

Arousal tonality Series are not cointegrated �2.557 888 0.2563 No
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TABLE V. (Continued.)

Model 1 (pleasantness) Model 2 (arousal)

Variable Coefficient Variable Coefficient

Fluctuation

Fluctuation(�1)

Fluctuation(�2)

Fluctuation(�3)

Loudness

Loudness(�1)

Loudness(�2)

Roughness

Roughness(�1)

Roughness(�2)

Roughness(�3)

Sharpness

Sharpness(�1)

Sharpness(�2)

Sharpness(�3)

Sharpness(�4)

Tonality

Tonality(�1)

Tonality(�2)

Tonality(�3)

Tonality(�4)

0.235498

�0.06634

�0.467881

0.326983**

0.001517

�0.008538***

0.001802

0.384042**

�0.109165

0.279385

0.475212***

�0.009725

0.044563*

�0.000979

0.007515

�0.036818

�0.014828**

0.027439***

�0.024490***

0.014588**

�0.011708*

Fluctuation(�2)

Fluctuation(�3)

Loudness

Roughness

Roughness(�1)

Roughness(�2)

Roughness(�3)

Sharpness

Sharpness(�1)

Sharpness(�2)

Tonality

Tonality(�1)

Tonality(�2)

Tonality(�3)

�0.592250**

0.383462**

0.000110

�0.398345**

0.657013*

�0.416766

0.581602***

0.007781

0.027538

�0.031008**

�0.009306

0.005858

�0.021705***

0.013531***

C 0.109664 C �0.038111

@Trend �2.55� 10�5 @Trend �3.70� 10�5*

R-squared 0.420824 R-squared 0.492717

N 300 N 300

TABLE VI. ARDL model of the Pedestrian mall sequence and emotional dimensions. *, **, *** represent the p-values level of 10%, 5%, and 1%,

respectively.

Model 3 (Pleasantness) Model 4 (Arousal)

Variable Coefficient Variable Coefficient

D[pleasantness(�1)]

D[pleasantness(�2)]

D[pleasantness(�3)]

D[pleasantness(�4)]

Articulation

Articulation(�1)

Articulation(�2)

Articulation(�3)

Fluctuation

Fluctuation(�1)

Fluctuation(�2)

Fluctuation(�3)

Loudness

Loudness(�1)

Loudness(�2)
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