
Springer Nature 2021 LATEX template

Reaching Consensus for Asynchronous Distributed Key

Generation

Ittai Abraham1, Philipp Jovanovic2, Mary Maller3, Sarah Meiklejohn2,4, Gilad
Stern5 and Alin Tomescu6

1VMware Research, Herzliya, Israel.
2University College London, London, United Kingdom.

3Ethereum Foundation, London, United Kingdom.
4Google, London, United Kingdom.

5The Hebrew University in Jerusalem, Jerusalem, Israel.
6VMware Research, Palo Alto, CA, USA.

Abstract

We give a protocol for Asynchronous Distributed Key Generation (A-DKG) that
is optimally resilient (can withstand f < n

3
faulty parties), has a constant

expected number of rounds, has O(λn3) expected communication complexity, and
assumes only the existence of a PKI. Prior to our work, the best A-DKG protocols
required Ω(n) expected number of rounds, and Ω(n4) expected communication.
Our A-DKG protocol relies on several building blocks that are of independent interest. We define
and design a Proposal Election (PE) protocol that allows parties to retrospectively agree on a
valid proposal after enough proposals have been sent from different parties. With constant prob-
ability the elected proposal was proposed by a nonfaulty party. In building our PE protocol, we
design a Verifiable Gather protocol which allows parties to communicate which proposals they
have and have not seen in a verifiable manner. The final building block to our A-DKG is a
Validated Asynchronous Byzantine Agreement (VABA) protocol. We use our PE protocol to con-
struct a VABA protocol that does not require leaders or an asynchronous DKG setup. Our
VABA protocol can be used more generally when it is not possible to use threshold signatures.

1 Introduction

In this work we study Decentralized Key Gen-
eration in the Asynchronous setting (A-DKG).
Our protocol works in the authenticated model,
assumes a Public Key Infrastructure (PKI),
obtains optimal resilience (i.e., tolerates f <
n
3 malicious parties), and terminates in O(1)
expected rounds using just O(λn3) expected
words, where a word can contain a constant num-
ber of values and cryptographic signatures and

λ is a cryptographic security parameter. Previ-
ously, the best protocol for A-DKG with opti-
mal resilience is by Kokoris-Kogias, Malkhi, and
Spiegelman [1] and it requires Ω(n) expected num-
ber of rounds and Ω(n4) expected number of
words.

A DKG protocol allows a set of n parties to
collectively generate a public key such that its
corresponding secret key is secret-shared between
all n parties. Actions that require the secret key
such as decrypting or signing can be performed

1

Springer Nature 2021 LATEX template

2 ADKG

by any f + 1 cooperating parties but not by
f or fewer. Unlike in secret sharing protocols,
there is no trusted dealer. Two key applications
of DKGs are threshold encryption and threshold
signature schemes. Threshold encryption can be
used to restrict employees’ access to databases or
to decrypt election results. Threshold signatures
can be used to implement random beacons [2],
reduce the complexity of consensus algorithms [3],
or more recently to outsource management of
secrets on a public blockchain to multiple, semi-
trusted authorities [4]. One of the challenges in
constructing a DKG is that there might be multi-
ple DKG transcripts that would pass verification,
and parties must agree on which DKG transcript
to eventually use in their application. This ulti-
mately boils down to a consensus problem in
which no preprocessing is possible. In this work,
we are interested in improving the consensus layer
of DKG protocols. We are careful to avoid the
use of any primitive that requires reaching agree-
ment on the output of a DKG (e.g., threshold
signatures) in order to instantiate our consensus
algorithm.

Kate, Huang, and Goldberg [5] observed in
an influential paper that many DKGs are unsuit-
able for use over the Internet due to their reliance
on synchrony assumptions and time-outs. Unsta-
ble communication channels are common over the
Internet and it is hard to be certain that all
players in the system will have seen all mes-
sages before moving onto the next round. Kate,
Huang and Goldberg [5] presented a weakly-
synchronous DKG with O(n4) complexity. How-
ever, their solution relies heavily on leaders who
may be adaptively targeted, and they still require
time-outs to distinguish optimistic scenarios from
worst-case scenarios. Recently Kokoris-Kogias,
Malkhi and Spiegelman [1] presented a fully asyn-
chronous solution which is leaderless and has
O(n4) expected communication complexity. The
actions of honest parties in their protocol are
event-driven and there are no timeouts.

In this work, we are able to improve on the
results of Kokoris-Kogias et al. We design a fully
asynchronous consensus algorithm for reaching
agreement on the outcome of a DKG that is lead-
erless and has O(λn3) complexity. Our solution is
secure under the presence of Byzantine adversaries
that may corrupt fewer than n

3 parties. Our results
are achieved without the use of binary agreements,

which is one of the reasons why we are able to
improve complexity. We see this as an important
improvement in the design of DKGs that are suit-
able for use over the Internet as well as a small step
towards removing the “slow” connotation from the
word “asynchronous”.

1.1 Our Contributions:

Our primary contributions are as follows:

• Assuming a PKI setup, we present a protocol for
solving Asynchronous Distributed Key Genera-
tion, that is resilient to f < n

3 Byzantine par-
ties, and runs in expected O(1) rounds, where
the non-faulty parties send an expected O(λn3)
words. Our A-DKG is used to set up thresh-
old signature schemes with group elements as
private keys.

• We present a new Validated Asynchronous
Byzantine Agreement (VABA) protocol that
uses a PKI but does not use a DKG. Our
new VABA protocol can reach agreement on
inputs of sizem words, in O(1) expected rounds,
using just O(λn3 + mn2) expected words, and
is resilient to an adversary controlling at most
f < n

3 parties. Our VABA protocol is the key
building block in obtaining our A-DKG.

• We define and instantiate a new primitive which
we call a Proposal Election (PE) protocol. Our
proposal election allows us to avoid relying on
leaders. Roughly speaking, in Proposal Elec-
tion, every party inputs some externally valid
value and, with constant probability, all parties
output the same value that was proposed by a
non-faulty party. Our Proposal Election runs in
O(1) rounds and O(λn3) words and is the key
building block in obtaining our VABA protocol.

• We define and instantiate an extension of the
Gather primitive by Canetti and Rabin [6–8]
to a Verifiable Gather protocol. Our verifi-
able gather protocol guarantees the existence
of some core set, such that all parties output
some verifiable super set of this core. To limit
the adversary, only outputs that contains this
core pass verification. Our verifiable gather is
the key building block in obtaining our proposal
election.

Springer Nature 2021 LATEX template

ADKG 3

ADKG

NWH

PE

VG TVRF

VRB APVSS

Fig. 1 Building block overview and interdependencies;
ADKG: Asynchronous Distributed Key Generation; NWH:
No Waitin’ HotStuff; PE: Proposal Election; VG: Verifiable
Gather; TVRF: Threshold Verifiable Random Function;
VRB: Validated Reliable Broadcast; APVSS: Aggregatable
Publicly Verifiable Secret Sharing;

1.2 Our techniques

We provide an overview on our building blocks and
their interdependencies in Figure 1. We obtain our
A-DKG using a combination of two advances. The
first is an Aggregatable Publicly Verifiable Secret
Sharing (APVSS) scheme by Gurkan et al. [9]
that uses a PKI. The second is a Validated Asyn-
chronous Byzantine Agreement (VABA) protocol
(as defined by Cachin, Kursawe, Petzold, and
Shoup [10]) that uses a PKI but does not use
a DKG, which is new to this paper. Without a
DKG, all previous constant expected time agree-
ment protocols had to rely on a weak abstraction
(that has a constant probability of error) of coin
tossing: Feldman and Micali for synchrony [11]
and Canetti and Rabin for asynchrony [7]. Our
work is also based on this paradigm of using a
weak building block. At first sight it may seem
that O(n4) words is the best one can hope for
in this paradigm. To obtain an A-DKG with
expected O(λn3) word complexity, we identify
three barriers, which this work overcomes using
novel techniques.

First barrier: aggregate many secret
sharings. Even in synchronous settings, the weak
coin of [11] requires at least n − f parties, such
that each such party has at least f + 1 secrets to
be attached to it. If each secret requires a sepa-
rate Verifiable Secret Sharing (VSS) invocation,
we get Ω((f + 1)(n − f)|V SS|) = Ω(n2|V SS|)

word complexity where |V SS| is the word com-
plexity of VSS. Since VSS, whether asynchronous
or not, requires |V SS| = Ω(n2) words [12, 13],
we get Ω(n4) just to attach enough secrets to
enough parties. To overcome this barrier we use
an Aggregatable PVSS [9], which allows to attach
Ω(n) secrets to Ω(n) parties using just O(n) Reli-
able Broadcasts [14, 15] of O(n)-sized APVSS
transcripts for a total of O(λn3) word complexity.

Second barrier: Weak Common Coin is
too weak. Suppose every party can have a ran-
dom secret sharing attached to it using a total of
O(λn3) words. In the classic Binary Asynchronous
Byzantine Agreement protocol, these secrets are
translated to a weak binary common coin and
this coin is used to break ties in case that not
all parties have the same input. The challenge for
a VABA protocol aiming for O(1) expected time
is the need to randomly elect an externally valid
proposal with constant probability. Using a weak
common coin to do this election seems challeng-
ing. Consider the case where the externally valid
inputs are O(n) bits long. We do not know of any
way to elect a valid proposal with constant prob-
ability using a weak common coin (for example,
one could use log n coins to elect a leader, but
due to the constant error probability this will have
an error probability that is polynomially close to
one).

We suggest a new approach that bypasses the
weak coin abstraction. Instead, we proceed to
extend the Gather primitive of Canetti and Rabin
[6–8] to a Verifiable Gather protocol. Recall that
a Gather protocol does not solve consensus but
instead guarantees the existence of some core set,
such that all parties output some super set of this
core. Roughly speaking, the goal of our new Verifi-
able Gather primitive is to introduce a verification
protocol to essentially force the adversary to also
only output super sets of this core (in the sense
that other outputs will not pass the verification).

We show how to combine Verifiable Gather
with random secret sharing [1] and an efficient
Reliable Broadcast [14–16] to obtain a new primi-
tive we call Proposal Election. Roughly speaking,
in Proposal Election, every party inputs some
externally valid value, and with constant prob-
ability, all parties output the same value that
was proposed by a non-faulty party. Our Proposal
Election runs in O(1) rounds and O(λn3) words.

Springer Nature 2021 LATEX template

4 ADKG

Conceptually, our Proposal Election abstrac-
tion can be viewed as the validated (multi-valued)
generalization of the weak common coin approach.
Technically, our Proposal Election (PE) exposes a
new validation abstraction that efficiently enables
electing a common externally valid value with con-
stant probability. Crucially, parties can also verify
that other parties provide the uniquely elected
value if the election process succeeded. This signif-
icantly limits the adversary’s behaviour and forces
it to essentially act honestly or remain silent.

Third barrier: efficient VABA, using PE
Our final challenge for asynchronous DKG is
obtaining a VABA protocol for messages of size m
(where m = Θ(n) words, is the size of a PVSS)
using PE at a cost of just O(mn2+λn3) = O(λn3)
words per view and just O(1) expected views
(due to the constant success probability of PE),
where each view consists of just a constant num-
ber of rounds. There are two natural approaches.
The first is to use known optimally resilient vali-
dated multi-valued techniques from known VABA
protocols. Unfortunately, the known VABA pro-
tocols of Cachin, Kursawe, and Shoup [17] and
Abraham, Malkhi, and Spiegelman [3] require
a DKG where all parties agree on the output
(except for negligible error) and do not seem to
work with the constant error probability of PE.
The work of Cachin, Kursawe, Lysyanskaya and
Strobl [18] uses an existing DKG to refresh to a
new DKG using Ω(n4) words. The work of Zhou,
Schneider and Van Renesse [19] suggest a refresh
protocol with exponentially high communication
complexity.

The second natural approach is to use binary
agreement techniques. Indeed, the application of
Bracha’s consensus technique [14] (with our PE
protocol) requires Ω(n) invocations of Reliable
Broadcast per bit, for a total of Ω(mn3) = Ω(n4)
words when m = Ω(n) (and this solution only
obtains weak validity).

We overcome this third barrier with a new
consensus protocol called No Waitin’ HotStuff
(NWH). As its name implies, NWH is a new mem-
ber of the HotStuff family of consensus protocols
[3, 20–22] which obtains O(λn3 +mn2) expected
words and O(1) expected rounds in the asyn-
chronous setting, using PE, and without relying
on a DKG.

Intuitively, in each view of NWH, a new invo-
cation of PE is used as a ”virtual leader”. For

safety, NWH uses the by-now-standard Key-Lock-
Commit paradigm of HotStuff [3, 20]. The main
novelty of NWH is in its liveness guarantees and
its ability to change view in asynchrony in a con-
stant number of asynchronous rounds even if the
”virtual leader” acts maliciously. NWH obtains
liveness in full asynchrony using our PE’s prop-
erties and a new mechanism that forces parties
(even malicious parties) to essentially send only
validated responses. In case of a non-faulty ”vir-
tual leader”, the PE properties guarantee that
all non-faulty parties see the same output from
the leader and that this input was an input of
a non-faulty party. In this case, the NWH pro-
tocol forces the faulty parties to essentially only
act as omission-faulty (hence a decision is guaran-
teed to be reached in such a view). In case of a
faulty ”virtual leader”, the PE properties guaran-
tee that all non-faulty parties eventually see some
output from the leader (might not be the same),
and the NWH protocol guarantees that only a safe
decision will be made or, if none can be reached,
eventually a view change will occur in a constant
number of rounds. The combination of NWH with
the constant probability of success for PE guaran-
tee termination in an expected constant number
of asynchronous rounds. NWH manages to obtain
these safety and liveness properties to obtain a
VABA protocol for messages of size m words with
Õ(mn2 + n3) expected message complexity and
O(1) expected rounds.

A Note on Adaptive Adversaries All our
results hold for a static adversary. However, we
note that given an aggregatable PVSS scheme that
is secure against adaptive adversaries, our VABA
protocol and therefore our A-DKG protocol would
also be secure against adaptive adversaries. This
is the same type of reduction as in [3, 17] where
the protocol is adaptivly secure if its underly-
ing cryptographic primitives are adaptivly secure.
The PVSS scheme of [9] is only proved security in
the static model. Obtaining an adaptively-secure
aggregatable PVSS remains an open question.

1.3 Related Work

Our work assumes a PKI and obtains a Validated
ABA protocol. However, many of our techniques
can be seen as (non-trivial) extensions of the work
done in the information theoretic model (where
there are private channels, but no PKI nor any

Springer Nature 2021 LATEX template

ADKG 5

computational bounds on the adversary). In the
information theoretic model, the natural validity
property is weaker and it is natural to focus on
the binary case. Any solution for consensus in
the asynchronous model must have infinite execu-
tions [23]. Ben-Or [24] showed how randomization
can be used to obtain a finite expected running
time and Bracha [14] showed how to do this with
optimal resilience. Reducing the expected number
of rounds to a constant was obtained by Canetti
and Rabin [7]. They provide the first ABBA with
optimal resilience and constant expected time.
It requires at least Ω(n8) words in expectation
(possibly more, but we did not verify). This was
improved by Patra, Choudhary, and Rangan [25]
to expected Õ(n4) words for ABBA. The proto-
cols of Canetti and Rabin [7], their extensions and
those that rely on cryptographic assumptions all
have a non-zero probability of non-termination. In
the information theoretic setting it is possible to
efficiently solve Asynchronous Binary Byzantine
Agreement (ABBA) with optimal resilience and
zero probability of non-termination [26], and this
can be done with just Õ(n6) expected words and
O(n) rounds [27].

The verifiable weak proposal election primitive
is an extension of the idea of a weak common coin,
which was introduced in the synchronous setting
by Feldman and Micali[11]. A weak common coin
is a primitive simulating a common shared ran-
domness source. The coin is weak in the sense
that with some probability the parties might not
agree on the value. Feldman later extended this
result to the asynchronous setting [6]. Katz and
Koo improve on the synchronous result [28].

A DKG can be viewed as a specific form of
a Multi-Party Computation (MPC) protocol. In
that sense, the work of Ben-Or, Canetti and Gol-
dreich [29] obtains perfect security for n > 4f
and the work of Ben-Or, Kelmer and Rabin [30]
obtains statistical security and optimal resilience
of n > 3f . Both protocols use ABBA as a building
block and have very high word complexity. Mod-
ern MPC protocols in the asynchronous model use
a DKG [31–33], so they could benefit from the
results of our work. Another related work that
may benefit from protocol is the work of Gagol,
Lesniak, Straszak and Swietek [34].

Following the publication of this work, several
important advances were made in achieving asyn-
chronous DKGs. First, the work of Das, Xiang

and Ren [35] constructed efficient reliable broad-
cast protocols, requiring O(λn2) words to be sent
for O(n) sized messages (λ being a cryptographic
security parameter). They then suggest using their
broadcast protocol in the protocols described in
this work in order to achieve an A-DKG protocol
requiring O(λn3) words to be sent in expecta-
tion and O(1) rounds in expectation. The work of
Gao, Lu, Lu, Tang, Xu and Zhang [36] achieves an
A-DKG protocol with O(1) expected rounds and
O(λn3) expected sent words. Their work focuses
on constructing efficient strong common coin and
leader election primitives, only using a PKI setup.
They then use these protocols in existing effi-
cient Validated Asynchronous Byzantine Agree-
ment (VABA) protocols. Utilizing their newly
constructed VABA protocol in the A-DKG con-
struction described in this work, they construct an
A-DKG protocol achieving O(1) expected rounds
and O(λn3) expected sent words. Finally, the
work of Das, Yurek, Xiang, Miller, Kokoris-Kogias
and Ren [37] constructs another A-DKG proto-
col. Their protocol requires O(λn3) words to be
sent in expectation, but O(log n) expected rounds,
unlike our constant expected number of rounds.
The A-DKG in their work is used to set up thresh-
old signature schemes whose private keys are field
elements, as opposed to our work (and the works
described above), which set up threshold signature
schemes with group elements as private keys.

2 Definitions and
Assumptions

2.1 Network and Threat Model

This work deals with protocols for n parties with
point-to-point communication channels. The net-
work is assumed to be asynchronous, which means
that there is no bound on message delay, but
all messages must arrive in finite time. The pro-
tocols below are designed to be secure against
a Byzantine adversary controlling up to f <
n
3 parties. This work uses several cryptographic
assumptions as ”perfect” black-boxes, meaning we
assume that an adversary cannot break them. As
described in [3, 10, 17], with high probability all
protocols require polynomially many uses of the
cryptographic primitives, so the protocols remain
secure in the face of a computationally bounded
adversary with all but a negligible probability.

Springer Nature 2021 LATEX template

6 ADKG

As described in the introduction, the protocols
themselves are secure against adaptive adversaries
given an instantiation of the cryptographic prim-
itives which is secure against such an adversary.
However, currently there are no known adaptively
secure instantiations for all of the primitives we
require. Similar to the protocols of [3, 17], the pro-
tocols presented can be seen as reductions from
one task to another that preserve security against
adaptive adversaries.

2.2 Reliable Broadcast

A Reliable Broadcast is an asynchronous proto-
col with a designated dealer. The dealer has some
input value M from some known domain M and
each party may output a value in M. A Reliable
Broadcast protocol has the following properties
assuming all nonfaulty parties participate in the
protocol:

• Validity. If the dealer is nonfaulty, then every
nonfaulty party that completes the protocol
outputs the dealer’s input value, M .

• Agreement. If two nonfaulty parties output
some value, then it is the same value.

• Termination. If the dealer is nonfaulty, then
all nonfaulty parties complete the protocol and
output a value. Furthermore, if some nonfaulty
party completes the protocol, every nonfaulty
party completes the protocol.

A Validated Reliable Broadcast protocol is a
Reliable Broadcast protocol variant where each
party has access to a common validate function,
validate : M → {0, 1}. We say that M ∈ M
is externally valid if validate(M) = 1. In a Vali-
dated Reliable Broadcast protocol, the dealer has
an externally valid input. A Validated Reliable
Broadcast protocol has the following additional
property:

• External Validity. If a nonfaulty party out-
puts a value, then this value is externally valid.

A recent work by Das, Xiang and Ren [35]
achieved a highly efficient reliable broadcast pro-
tocol for messages containing m words. Any reli-
able broadcast protocol can then be adjusted to a
protocol with External Validity by simply check-
ing that the protocol’s output is externally valid
before outputting it. For completeness, we pro-
vide a slightly less efficient Reliable Broadcast

protocol and a Validated Reliable Broadcast pro-
tocol in Appendix A with word complexity of
O(λn2 log n + mn), where m is the number of
words in any value inM.

2.3 Verifiable Gather

Gather is a natural multi-dealer extension of Reli-
able Broadcast where every party is also a dealer.
The output of a gather protocol is a gather-set. A
gather-set consists of at least n − f pairs (j, x),
such that j ∈ [n], x ∈ M, and each index j
appears at most once. For any given gather-set X,
we define its index-set Indices(X) = {j|∃(j, x) ∈
X} to be the set of indices that appear in X.

Intuitively speaking, the goal of Gather is to
have some common core gather-set such that all
parties output a super-set of this core. Note that
a Gather protocol does not solve consensus and
different parties may output different super-sets
of the core. For Verifiable Gather, the goal is
to limit the power of the adversary to generate
inconsistent outputs. Intuitively, for any gather-
set produced by the adversary, if it passes some
verification protocol, it must also be a super-set of
the common core.

Formally, a verifiable gather protocol consists
of a pair of protocols (Gather,Verify) and takes as
input an external validity function validate which
all parties have access to. For Gather, each party
i ∈ [n] has an externally valid input xi. Each party
may decide to output a gather-set Xi. After out-
putting the gather-set, parties must continue to
update their local state according to the Gather
protocol in order for the verification protocol to
continue working.

The properties of Gather (assuming all non-
faulty start):

• Binding Core. Once the first nonfaulty party
outputs a value from the Gather protocol there
exists a core gather-set X∗ such that if a non-
faulty party i outputs the gather set Xi, then
X∗ ⊆ Xi.

• Internal Validity. If (j, x) ∈ X∗ and j is
nonfaulty at the time the first nonfaulty party
completed the Gather protocol, then x is the
input of party j in Gather.

• Termination of Output. All nonfaulty par-
ties eventually output a gather-set.

Springer Nature 2021 LATEX template

ADKG 7

The Verify protocol receives an index-set I and
outputs a gather-set X such that Indices(X) = I.
It performs two actions at once: it verifies that the
index set includes the indices of the binding core,
and recovers the gather-set only from the indices
and the internal state of the verifying party. This
allows parties to send relatively small index-sets
instead of large gather-sets over the network. The
verification protocol limits the adversary to a very
narrow set of behaviours, so that any verifiable
gather-set must contain the Binding core gather-
set X∗. A party i can check any index-set I, which
we denote by executing Verifyi(I). If the execution
of Verifyi(I) terminates and outputs a value, we
say that i has verified the index-set I.

The termination properties of Verify (given
that all nonfaulty start Gather):

• Completeness. For any two nonfaulty par-
ties i, j, if j outputs Xj from Gather, then
Verifyi(Indices(Xj)) eventually terminates with
the output Xj .

• Agreement on Verification. For any two
nonfaulty i, j, and any index-set I, if Verifyi(Y)
terminates with the output X then Verifyj(I)
eventually terminates with the output X.

The correctness properties of the Verify proto-
col:

• Agreement. All nonfaulty parties agree on
values with common indexes. For any two non-
faulty i, j, and any index-sets I, J , if Verifyi(I)
terminates with the output X and Verifyj(J)
terminates with the output Y , and (k, x) ∈
X, (k, y) ∈ Y , then x = y.

• Includes Core. If Verifyi(I) terminates with
the output X, then the gather-set X contains
the binding core gather-set X∗ (as defined in
the Binding Core property of Gather).

• External Validity. If Verifyi(I) terminates
with the outputX for some nonfaulty i, then for
each (j, x) ∈ X, the value x is externally valid.

Observe that the Includes Core and Complete-
ness properties say that not only do all nonfaulty
output a gather-set that includes the core but that
any gather-set that passes verification contains the
core X∗.

2.4 Proposal Election

A perfect proposal election would allow each party
to input a proposal and then have all parties
output one common randomly elected proposal.
Proposal Election (PE) is an asynchronous pro-
tocol that tries to capture this spirit but obtains
weaker properties. Intuitively, there is only a con-
stant probability that the output of PE is one
common randomly elected proposal coming from
a nonfaulty proposer. As in the Verifiable Gather
(VG) protocol, we also add a verification proto-
col. Crucially, in the good event mentioned above,
the only value that passes verification is this com-
mon elected proposal. In the remaining cases, the
adversary can control the output and even cause
different parties to have different outputs. How-
ever, even in these cases we force the adversary
to allow all parties to eventually output some
verifying value. This PE is weak enough to be effi-
ciently implementable and we will later show that
it is strong enough to enable an efficient constant
expected round VABA protocol.

As in VG, we assume a domainM and we are
externally given a function validate that given any
message x ∈M can check the external validity of
x. A Proposal Election protocol consists of a pair
of protocols (PE,Verify). Each nonfaulty party i
starts with an externally valid input xi to PE. The
output of the PE protocol is a pair (x, π) where
x ∈M and π is a proof used in the Verify protocol.
We model these protocols as having some ideal
write-once state x∗. We assume ⊥ is not externally
valid and let x∗ ∈M∪{⊥}. Intuitively, if x∗ ̸= ⊥
then the output of all parties will be x∗, but when
x∗ = ⊥ then the adversary can cause different
parties to output different verifying values.

• α-Binding. For any adversary strategy, with
probability α, x∗ is set to an input of a party
that behaved in a nonfaulty manner when it
started the PE protocol.

In addition, the PE protocol has a natural termi-
nation property (assuming all nonfaulty start):

• Termination of Output. All nonfaulty par-
ties eventually output a pair (x, π).

A party i can check any pair of proposal
and proof, (x, π), which we denote by executing
Verifyi(x, π). If the execution of Verifyi(x, π) ter-
minates, we say that i has verified x. If the binding

Springer Nature 2021 LATEX template

8 ADKG

value x∗ is not ⊥, then the only value for which
the verify protocol can terminate is x∗. This lim-
its the adversary to essentially either reporting x∗,
or remaining silent. The termination properties of
Verify (given that all nonfaulty start PE):

• Completeness. For any two nonfaulty i, j, the
output (x, π) of party j from PE will even-
tually be verified by party i, i.e. Verifyi(x, π)
eventually terminates.

• Agreement on Verification. For any two
nonfaulty i, j, and any value x and proof π, if
Verifyi(x, π) terminates then Verifyj(x, π) even-
tually terminates.

Finally, the correctness properties of Verify:

• Binding Verification. If x∗ ̸=⊥ then for
every nonfaulty party j, and every (x, π), if
Verifyj(x, π) terminates then x = x∗.

• External Validity. If Verifyi(x, π) terminates
then the value x is externally valid.

We note that in the computational setting all these
properties hold with all but negligible probability.

2.5 Validated Asynchronous
Byzantine Agreement

In a Validated Asynchronous Byzantine Agree-
ment protocol, there is some external validity
function that every party has access to. In addi-
tion, there exists some success parameter α ∈
(0, 1) for the protocol. Each nonfaulty party i
starts with some externally valid input xi and
on termination must output a value. A Validated
Asynchronous Byzantine Agreement protocol has
the following properties (assuming all nonfaulty
start):

• Agreement. All nonfaulty parties that com-
plete the protocol output the same value.

• Validity. If a nonfaulty party outputs a value
then it is externally valid.

• α-Quality. With probability α, the output
value is chosen as one of the inputs xi (party i
was nonfaulty when it started the protocol).

• Termination. All nonfaulty parties almost-
surely terminate, i.e. with probability 1.

2.6 Cryptographic Abstractions

This work introduces a novel distributed consen-
sus algorithm which uses several cryptographic

tools as black-boxes. In Section 7 we discuss how
these tools can be instantiated with respect to
tools that currently exist in the literature and eval-
uate the efficiency of our protocol with respect
to these tools. The instantiations of the crypto-
graphic abstractions in this paper are all assumed
from prior work, with the exception of an A-
DKG protocol, which we define in this section and
construct in Section 6.

2.6.1 Distributed Key Generation

A distributed key generation algorithm is a
method to generate public keys for threshold sys-
tems without a trusted third party. It is assumed
that the aggregation and verification algorithms
keep state consisting of each party’s public key. A
DKG consists of the following algorithms.

• DKGSh(ski) 7→ dkgshare : A probabilistic algo-
rithm run by Party i that takes as input a secret
key and outputs a DKG share. The share also
contains a description of the party who sent it.

• DKGShVerify(pki, dkgshare) 7→ {0, 1} : A deter-
ministic algorithm run by Party j that returns
1 if it is convinced that the DKG share of Party
i is valid.

• DKGAggregate(D) 7→ dkg : An algorithm run by
Party i that takes as input a set D containing at
least 2f + 1 DKG shares from different parties
and outputs a DKG transcript.

• DKGVerify(dkg) 7→ {0, 1} : A deterministic
algorithm that returns 1 if and only if the
DKG transcript contains DKG shares that pass
verification from at least 2f+1 different parties.

The non-inclusion of a reconstruction algorithm
here is deliberate; we assume that the purpose of
the DKG is to generate a public key for a thresh-
old application and as such it is not clear that a
reconstruction algorithm is useful.

A distributed key generation algorithm should
be security preserving and correct. As the pur-
pose of a distributed key generation algorithm is to
generate a public key, secrecy guarantees are only
meaningful in the context of the threshold scheme
it is being used to instantiate. Security preserva-
tion captures this notion: it means that provided
no more than f parties are corrupted, a thresh-
old scheme under the DKG retains all properties
of the standard scheme under the key generation

Springer Nature 2021 LATEX template

ADKG 9

algorithm. For the sake of this paper we only for-
mally define security preservation for our thresh-
old verifiable random function and instead refer to
[9] for a full definition of security preservation.

Definition 1. An Asynchronous Distributed Key
Generation protocol has the following properties:

• Security Preservation. A threshold scheme
under the DKG retains all the properties of
the standard scheme under the key generation
algorithm, provided no more than f parties are
corrupted.

• Correctness. We have that:

DKGShVerify(pki,DKGSh(ski)) = 1

Assume that every dkgsharei ∈ D is such that
DKGShVerify(pki, dkgsharei) = 1. Then

DKGVerify(DKGAggregate(D)) = 1.

An asynchronous DKG, which is the topic of
this paper, is an interactive protocol allowing all
parties to output the same aggregated DKG tran-
script. Since the network is asynchronous, it is also
important to make sure that the parties eventu-
ally complete the protocol. Therefore, an A-DKG
protocol has the following two properties if all
nonfaulty parties participate in it:

• Agreement. All parties that terminate out-
put the same DKG transcript, dkg, such that
DKGVerify(dkg) = 1.

• Termination. All nonfaulty parties almost-
surely terminate, i.e., with probability 1.

2.6.2 Threshold Verifiable Random
Function

A threshold verifiable random function (VRF) is
an algorithm such that (f + 1) parties can com-
pute the output of the random function ϕ on some
input, but f cannot. A threshold VRF must be
unbiasable (f parties cannot guess even a single
bit of the outcome), and robust (f +1 honest par-
ties always agree on the output). We will instan-
tiate the threshold VRF using the aggregatable
DKG and VUF of Gurkan et al. [9].

In addition to
(DKGSh,DKGShVerify,DKGAggregate,DKGVerify)

defined above, a threshold VRF consists of the
following algorithms:

• ϕ(vrf dkg,m) 7→ {0, 1}λ : A deterministic func-
tion that takes in a DKG transcript (which
implicitly defines a secret key) and a message,
and outputs a binary string. We have that ϕ
cannot be computed by less than f + 1 parties.

• EvalSh(vrf dkg, ski,m) 7→ (ϕi(m), πi) : A prob-
abilistic algorithm run by Party i that takes
as input a DKG transcript, a secret key, and a
message and returns an evaluation share and a
proof share. Here ϕi is used to denote that this
is a share of ϕ(m) as opposed to the full eval-
uation (likewise πi). The share also contains a
description of the party who sent it.

• EvalShVerify(vrf dkg, pki,m, ϕi(m), πi) 7→
{0, 1} : A deterministic algorithm run by Party
j that takes as input a VRF-DKG transcript, a
public key, a message, an evaluation share, and
a proof share from Party i and returns 0/1 to
indicate rejection/acceptance.

• Eval(vrf dkg,m,F) 7→ (ϕ(vrf dkg,m), π) : An
algorithm that takes as input a DKG transcript,
a message, and a set F that contains evaluation
and proof shares from f +1 different parties. It
outputs a function evaluation and an aggregated
proof.

• EvalVerify(vrf dkg,m, ϕ(vrf dkg,m), π) 7→
{0, 1}: A deterministic algorithm that takes as
input a DKG transcript, a message, a func-
tion evaluation and a proof. It outputs 0/1 to
indicate rejection/acceptance.

Definition 2. A Threshold Verifiable Random
Function has the following properties:

• Unbiasability. The function ϕ(vrf dkg,m) is
distributed uniformly at random over all ver-
ifying DKGs and the message space M.
Let vrf dkg be an aggregated DKG tran-
script such that DKGVerify(vrf dkg) = 1.
Then as long as no nonfaulty party computes
EvalSh(vrf dkg,m), then the adversary cannot
guess a single bit of ϕ(vrf dkg,m).

• Uniqueness. For each vrf dkg,m, there is a
single value v = ϕ(vrf dkg,m) such that there
exists π with

EvalVerify(vrf dkg,m, v, π) = 1.

Springer Nature 2021 LATEX template

10 ADKG

• Correctness. We have that:

EvalShVerify
(
vrf dkg, pki,m,

EvalSh(vrf dkg, ski,m)
)
= 1

Assume that every (ϕi(vrf dkg,m), πi) ∈ F is
such that:

EvalShVerify(vrf dkg, pki,m, ϕi(vrf dkg,m), πi)

= 1.

Then:

EvalVerify(vrf dkg,m,Eval(vrf dkg,m,F)) = 1.

Unbiasability also assumes that no honest
party has sent a reconstruction share for vrf dkg.
We have chosen not to explicitly state this in the
definition because we have omitted a description
of a reconstruction algorithm for the DKG. When
the purpose of the DKG is to generate a public
key for a threshold VRF, no reconstruction takes
place.

2.6.3 Vector commitment

A vector commitment is used to bind a party to
a vector, such that they can later provably reveal
any position in the vector. A vector commitment
consists of the following algorithms.

• Commit(v) 7→ c : Takes as input a vector v and
outputs a commitment c.

• OpenProve(c, v, i) 7→ π : Takes as input a com-
mitment c to a vector v and an evaluation point
i. Outputs a proof that the ith entry of v is vi.

• OpenVerify(c, vi, i, π) 7→ 0/1 : A deterministic
algorithm that takes as input a commitment c,
an opening vi, an evaluation point i and a proof
π. It outputs 1 if it is convinced that the ith
entry of the vector committed in c is vi and 0
otherwise.

In this work we only require the vector com-
mitment to satisfy binding i.e. that an adversary
cannot open a commitment to more than one value
at any evaluation point. It does not necessarily
need to be hiding.

• Correctness. ∀ vectors v, ∀ positions i, we have

OpenVerify(Commit(v), vi, i,OpenProve(c, v, i))

= 1.

• Binding. No adversary can compute a commit-
ment c, an evaluation point i, two values vi and
wi with vi ̸= wi, and two proofs πv and πw such
that

OpenVerify(c, vi, i, πv) =

= OpenVerify(c, wi, i, πw) = 1.

3 Verifiable Gather

As part of our proposal election protocol we
require a “reliable gather”. Throughout the pro-
tocol, parties reliably broadcast values, which are
later used to choose a winning proposal from
among them. Ideally, we would like the parties to
agree on an exact set of parties and broadcasted
values in order to make sure that they all elect a
value from the same set. However, exactly agreeing
on the set is non-trivial and potentially expensive.
Therefore we slightly relax our requirements: there
exists some core C of size n − f or greater such
that the output of every nonfaulty party contains
C. Furthermore, we would like parties to be able
to prove that they “acted correctly” and included
C in their output.

Throughout the protocol, parties broadcast
messages using the Reliable Broadcast protocol
RB and validated broadcast messages using the
Validated Reliable Broadcast protocol V RB. In
a slightly inaccurate high-level view, the protocol
takes place in three rounds. In the beginning, all
parties broadcast their inputs and wait to receive
n− f broadcasts from other parties. After receiv-
ing those broadcasts, they broadcast sets of tuples
containing values and the parties who sent them in
the previous round. They then wait to receive n−f
such sets, checking if the sets report the correct
values. After receiving n − f of those sets, every
party broadcasts the union of all of the reported
sets. Finally, after receiving n−f such unions and
checking that the reported sets are correct, every
party outputs the union of those sets. However,
when dealing with large inputs, broadcasting sets
of O(n) values can be an unnecessarily expensive
operation. In order to avoid this overhead, parties
only actually broadcast their values in the first
round. In any subsequent round, parties only refer
to the broadcasted value by the party who sent

Springer Nature 2021 LATEX template

ADKG 11

the relevant broadcast, requiring only one word
per value.

More accurately the protocol can be broken
into three rounds:
Round 1: In the first round, party i validated
broadcasts its input value xi and waits to receive
n − f valid values from all parties. Party i stores
the parties from whom it received broadcasts in
a set Si, and tuples of the form (j, xj) indicating
that it received the value xj from j in a set Ri.

Round 2: After receiving n − f values, each i
broadcasts Si, which we think of as sets of the
values xj referenced only by the party who sent
each value. Party i then waits to receive n − f
S sets from other parties, and accepts such a
message after seeing that it received a value from
each party in S. After accepting a message with
the set S from j, i adds j to Ti. We think of Ti as
containing all of the S sets received from different
parties, while it actually only references each set
by the party who sent it.

Round 3: Finally, once Ti is of size n−f , i broad-
casts Ti as well and waits to receive n − f such
sets. Similarly to before, i only accepts a message
with a set T if it accepted all of the S messages
it refers to. After accepting a set Tj , i explicitly
computes the union of all of the S sets Tj is refer-
ring to in the following manner: Vj =

⋃
k∈Tj

Sk,

and stores (j, Vj) in Ui. Once i accepts n − f
different messages containing T sets and updates
Ui, it outputs Ri which contains tuples of values
and the parties who sent them. It is important to
note that when outputting Ri it contains all of
the element in all of the sets referred to by any
accepted T set, because parties wait to receive all
relevant information before accepting a T or an S
set. Every party continues updating its internal
state even after outputting a value.

In the verification protocol for an index-set I,
party i checks whether X includes all of the values
referred to by at least n − f of the T sets that it
received and accepted. In the following discussion
we show that there exists some index i∗ that is
included in at least f+1 of the T sets broadcasted
by parties. Since every party waits to receive T
sets from at least n−f parties before terminating,
it will see at least one with that index, and thus

include Si∗ in its output. This is true for any non-
faulty party, so Si∗ can serve as a common-core in
the output of all nonfaulty parties. Similarly, when
verifying an index-set I, i makes sure that it con-
tains the values referenced by the T sets received
from at least n− f parties, and thus also includes
Si∗ in it. Afterwards, the values corresponding to
each index can easily be returned because they
have been previously received by broadcast.

Algorithm 1 Gatheri(xi)

1: Ri ← ∅, Si ← ∅, Ti ← ∅, Ui ← ∅
2: validated broadcast ⟨1, xi⟩ with external

validity function returning 1 on ⟨t,m⟩ iff
validate(m) = 1

3: upon receiving ⟨1, xj⟩ from j, do
4: Ri ← Ri ∪ {(j, xj)}, Si ← Si ∪ {j}
5: if |Si| = n− f then
6: broadcast ⟨2, Si⟩
7: end if
8: upon receiving ⟨2, Sj⟩ from j such that |Sj | ≥

n− f , do
9: upon Sj ⊆ Si, do

10: Ti ← Ti ∪ {j}
11: if |Ti| = n− f then
12: broadcast ⟨3, Ti⟩ ▷ T sets

reference S sets
13: end if
14: upon receiving ⟨3, Tj⟩ from j such that |Tj | ≥

n− f , do
15: upon Tj ⊆ Ti, do ▷ relevant S sets and

values are received
16: Ui ← Ui ∪ {(j,

⋃
k∈Tj

Sk)} ▷ save all
parties in the S sets referenced by Tj

17: if |Ui| = n− f then
18: output Ri, but continue updating

internal sets and sending messages
19: end if

Algorithm 2 GatherVerifyi(I)

1: upon |{j|∃(j, Vj) ∈ Ui, Vj ⊆ I}| ≥ n−f ∧I ⊆
Si, do

2: X ← {(j, x) ∈ Ri|j ∈ I}
3: output X and terminate

Springer Nature 2021 LATEX template

12 ADKG

3.1 Security Analysis

Lemma 1. Assume some nonfaulty party com-
pleted the protocol. There exists some i∗ such that
at least f + 1 parties sent broadcasts of the form
⟨3, T ⟩ with i∗ ∈ T .

Proof Assume some nonfaulty party completed the
protocol. Before completing the protocol, it found that
|Ui| ≥ n− f , and thus it received n− f broadcasts of
the form ⟨3, Tj⟩ such that

∣∣Tj∣∣ ≥ n − f . Let I be the
set of parties who sent those broadcasts. Now assume
by way of contradiction that every index k appears
in at most f of the broadcasted sets Tj such that
j ∈ I. Since there are a total of n possible values, this
means that the total number of elements in all sets
is no greater than nf . On the other hand, there are
n − f such sets, each containing n − f elements or
more, resulting in at least (n − f)2 elements overall.
Combining these two observations:

(n− f)2 ≤ nf

n2 − 2nf + f2 ≤ nf

n2 − 3nf + f2 ≤ 0

However, by assumption n > 3f , and thus:

0 ≥ n2 − 3nf + f2

= n2 − n · (3f) + f2

> n2 − n2 + f2

= f2 ≥ 0

reaching a contradiction. Therefore, there exists at
least one value i∗ such that for at least f + 1 of the
⟨3, T ⟩ broadcasts sent, i∗ ∈ T . □

Lemma 2. If for some nonfaulty party i (j, Vj) ∈
Ui, then i received a ⟨1, xk⟩ broadcast from every
k ∈ Vj such that validate(xk) = 1.

Proof Observe some (j, Vj) ∈ Ui and k ∈ Vj . Before
adding (j, Vj) to Ui, i saw that Tj ⊆ Ti. This means
that for every l ∈ Tj , i first received a ⟨2, Sl⟩ broadcast
from l such that Sl ⊆ Si. By definition, Vj =

⋃
l∈Tj

Sl

and thus Vj ⊆ Si. Before adding k to Si, i must have
received a ⟨1, xk⟩ validated broadcast checking that
validate(xk) = 1, completing the proof. □

Theorem 1. The pair (Gather,GatherVerify) is a
verifiable reliable gather protocol resilient to f < n

3
Byzantine parties.

Proof Each property is proven separately.
Termination of Output. Assume that

validate(xi) = 1 for every nonfaulty i and that all non-
faulty parties participate in the Gather protocol. The
first thing they do is send a ⟨1, xi⟩ message using a
validated broadcast. By assumption, validate(xi) = 1
for every nonfaulty i, and thus every nonfaulty j
receives the broadcast and updates Ri and Si. After
receiving a ⟨1, xj⟩ message from every nonfaulty j,
|Si| = n − f , so party i sends the message ⟨2, Si⟩.
Afterwards, every nonfaulty party receives ⟨2, Sj⟩
from every nonfaulty j. Note that since j sent Sj , it
must have received a ⟨1, xk⟩ validated broadcast from
every k ∈ Sj . The message was received by validated
broadcast, so i eventually receives the same message
and adds k to Si as well. Therefore i eventually sees
that Sj ⊆ Si and adds j to Ti. Finally, after n − f
such updates, i broadcasts Ti. Using similar argu-
ments, every nonfaulty party eventually adds some
tuple of the form (j, Vj) to Ui for every nonfaulty j.
Then i sees that |Ui| = n− f and outputs some value.
A nonfaulty party i only adds pairs of the form (j, x)
to Ri after receiving a validated broadcast of the
form ⟨1, x⟩ from party j. This message was received
by validated broadcast, so validate(x) = 1, and thus
x ∈ M as well. Every party can send only one such
broadcast, and thus at all times throughout the pro-
tocol, Ri consists of pairs (j, x) such that j ∈ [n] and
x ∈ M and the index j appears in Ri at most once.
In other words, Ri is a gather-set throughout the
protocol, including when i outputs the set X = Ri.

Completeness. Assume some nonfaulty party i
completes the Gather protocol and outputs Xi. Before
adding (k, xk) to Ri and k to Si, party i first receives
a ⟨1, xk⟩ validated broadcast from k. Every nonfaulty
j eventually receives the same broadcast and adds
(k, xk) to Rj and k to Sj as well. Therefore, eventu-
ally Si ⊆ Sj for every nonfaulty j. Before adding k to
Ti, i receives a broadcast ⟨2, Sk⟩ such that Sk ⊆ Si

and |Sk| ≥ n − f . Since every nonfaulty j eventually
receives the same broadcast and Si ⊆ Sj , j also adds k
to Tj . Using similar arguments, before adding (k, Vk)
to Ui, i receives a broadcast ⟨3, Tk⟩ such that Tk ⊆ Ti
and |Tk| ≥ n−f . Party j eventually receives the same
message, sees that the Tk ⊆ Ti ⊆ Tj and |Tk| ≥ n−f ,
and then computes Vk using the exact same S sets i
used when computing the set, because all values were
received by broadcast. Therefore at that point j adds
(k, Vk) to Uj . Now, at the time i outputs a value from
the Gather protocol, it sees that |Ui| ≥ n − f , and
outputs Ri. From Lemma 2, at that time for every
(j, Vj) ∈ Ui and k ∈ Vj , i received some ⟨1, xk⟩ broad-
cast from party k and thus k ∈ Si. In other words, for
every (j, Vj) ∈ Ui, Vj ⊆ Si. At all times in the proto-
col, Indices(Ri) = Si because an index k is added to

Springer Nature 2021 LATEX template

ADKG 13

Si at the same time a tuple (k, x) is added to Ri. This
means that if we observe Indices(Xi), which equals Si

at the time i outputs Xi, for every (k, Vk) ∈ Ui, Vk ⊆
Si = Indices(Xi). Combining those two observations,
every nonfaulty party j eventually sees that for every
(k, Vk) ∈ Ui ⊆ Uj , Vk ⊆ Indices(Xi). At the time i
outputs a value from the Gather protocol, |Ui| ≥ n−f
so there are eventually n−f such tuples in Uj as well.
Furthermore, Indices(Xi) = Si ⊆ Sj , which means
j eventually proceeds to the next line. At that time,
j computes X = {(j, x) ∈ Rj |j ∈ Indices(Xi)}. As
stated above, Xi equals Ri at the time i output Xi

from the Gather protocol, and Indices(Xi) equals Si

at that time. When j sees that Indices(Xi) ⊆ Sj , it
has already received a validated broadcast ⟨1, xk⟩ from
every party k ∈ Indices(Xi) and added (k, xk) to Rj .
Rj is a gather-set at all times, so this is the same tuple
that j added to its output from the GatherVerify pro-
tocol, X. This is the same broadcast i received, so it
added the same tuple (k, xk) to Ri before outputting
Xi. In other words, j added the same tuple (k, xk) to
X that i added to its output Xi. Party j only adds
tuples of the form (k, xk) if k ∈ Indices(Xi), so those
are all the tuples in X.

Agreement on Verification. Assume that some
nonfaulty party i completes protocol GatherVerifyi(I)
on an index-set I and outputs a set X, and that all
nonfaulty parties participate in the Gather protocol.
At the time i completed the protocol, I ⊆ Si and
|{k|∃(k, Vk) ∈ Ui, Vk ⊆ I}| ≥ n−f . Let j be some non-
faulty party that runs the protocol GatherVerifyj(I).
Before i added some element (k, xk) to Ri and k to
Si, it received a validated broadcast of the message
⟨1, xk⟩ from k. From the Termination and Correct-
ness properties of the Validated Reliable Broadcast
protocol, j eventually receives that message from k as
well and thus (k, xk) ∈ Rj and k ∈ Sj as well. In
other words, eventually Ri ⊆ Rj and Si ⊆ Sj . Before
adding an element k to Ti, i received a broadcast of
a set Sk from k such that |Sk| ≥ n − f and Sk ⊆ Si.
From the Termination and Correctness properties of
the Reliable Broadcast protocol, j eventually receives
the same message from k. As shown above, eventually
Si ⊆ Sj , and at that time j adds k to Tj as well. There-
fore, eventually Ti ⊆ Tj . Using similar arguments, if
there exists some (k, Vk) in Ui, then eventually j adds
some element (k, V ′

k) to Uj as well. From the Correct-
ness property of the Reliable Broadcast protocol, i and
j receive the same sets Sl from all parties, and thus
when computing Vk and V ′

k, they both do so with the
same values. This in turn means that they add the
same tuple (k, Vk) to their Ui and Uj sets and thus
eventually Ui ⊆ Uj as well. Combining all of those
observations, eventually I ⊆ Si ⊆ Sj . In addition,
for every (k, Vk) ∈ Ui such that Vk ⊆ I, eventually

(k, Vk) ∈ Uj as well. Since there are at least n−f such
tuples in Ui, there are eventually n − f such tuples
in Uj as well. When both of those conditions hold, j
proceeds to the next line of the GatherVerify protocol.
When i completed the protocol, it saw that I ⊆ Si

and thus it received a ⟨1, xk⟩ from every k ∈ I, and
added a tuple (k, xk) to Ri. Using the same reason-
ing, j received broadcasts from the same parties, and
from the Agreement property of the validated reliable
broadcast protocol, it received the same messages and
added the same tuples to Rj . In other words, j com-
puted X using the same values as i, so it output the
same set X.

Agreement. Let i, j be two nonfaulty parties
and I, J be two sets such that GatherVerifyi(I) and
GatherVerifyj(J) eventually terminate with the out-
puts X and Y respectively. Since GatherVerify termi-
nates in both cases, I ⊆ Si, J ⊆ Sj . From the way i
calculates X and j calculates Y , X ⊆ Ri and Y ⊆ Rj .
Observe a pair of tuples (k, x) ∈ X ⊆ Ri, (k, y) ∈
Y ⊆ Rj . Party i only adds (k, x) to Ri after receiv-
ing a broadcast of ⟨1, x⟩ from k, and party j adds the
tuple (k, y) to Rj after receiving a broadcast of ⟨1, y⟩
from k. From the Agreement property of the validated
reliable broadcast protocol, both i and j received the
same broadcast of the form ⟨1, z⟩, and thus x = y.

Binding Core. Assume the first nonfaulty party
that completes the Gather protocol is p∗, and observe
the index i∗ as defined in Lemma 1. Party p∗ only adds
a tuple (k, Vk) to Up∗ after receiving a ⟨3, Tk⟩ mes-
sage from party k. Before completing the protocol, p∗

received n − f such broadcasts, and from Lemma 1,
f + 1 of the parties broadcast some message ⟨3, Tk⟩
such that i∗ ∈ Tk. Therefore for some (k, Vk) ∈ Up∗ ,
i∗ ∈ Tk. Note that Tk ⊆ Tp∗ , so i∗ ∈ Tp∗ . Before
adding i∗ to Tp∗ , p∗ received a ⟨2, Si∗⟩ broadcast from
party i∗ such that Si∗ ⊆ Sp∗ and |Si∗ | ≥ n− f . Sim-
ilarly, before adding k ∈ Si∗ to Sp∗ , p∗ first receives
a ⟨1, x∗k⟩ broadcast from k. Let the binding-core X∗

be defined as follows: X∗ = {(k, x∗k)|k ∈ Si∗}, i.e.
pairs consisting of a party in Si∗ and the value that
p∗ received from that party via broadcast. Clearly
|X∗| ≥ n− f because |Si∗ | ≥ n− f . The fact that X∗

is a subset of every nonfaulty party’s output from the
protocol is a direct corollary of the Completeness and
Includes Core properties of the Gather protocol.

Internal Validity. Let p∗ be the first nonfaulty
party that completed the Gather protocol, as defined
in the Binding Core property. Let j be some party
that was nonfaulty at that time such that there exists
a tuple (j, x) ∈ X∗. Let i∗ be defined as it is in the
Binding Core property and Lemma 1. By definition, if
(j, x) ∈ X∗, then j is in the set Si∗ that p∗ received
from party i∗. As shown in the Binding core property,
at the time that p∗ completed the Gather protocol, it

Springer Nature 2021 LATEX template

14 ADKG

already received a ⟨1, x∗j ⟩ message from party j, and
x is defined to be x∗j . Now, since j was nonfaulty at
that time, it broadcasted the message ⟨1, xj⟩, with xj
being its input to the protocol. Therefore, x = xj as
required.

Include Core. Let i be some nonfaulty party
and I be some index set such that GatherVerifyi(I)
terminates with the output X. Party i found that∣∣{k|∃(k, Vk) ∈ Uj , Vk ⊆ I

}∣∣ ≥ n − f . As discussed
above, party i only adds (j, Vj) to Ui after receiving
a ⟨3, Tj⟩ message from j. Let i∗ be defined as it is in
Lemma 1 and in the Binding Core property. Seeing as
there are at least f +1 parties that sent broadcasts of
the form ⟨3, T ⟩ with i∗ ∈ T and n − f parties j such
that (j, Vj) ∈ Ui and Vj ⊆ I, for at least one of those
parties i∗ ∈ Tj . By definition, Vj =

⋃
k∈Tj

Sk, and
thus Si∗ ⊆ Vj ⊆ I. Therefore, for every k ∈ Si∗ ⊆ I,
party i adds a tuple (k, x) to its output X. Finally,
X ⊆ Ri, and i only adds (j, x) to Ri after receiving a
⟨1, x⟩ broadcast from j. Let p∗ be the first nonfaulty
party that completed the Gather protocol as defined in
the Binding Core property. Since k ∈ Si∗ , p

∗ received
a ⟨1, x∗k⟩ broadcast from k, so it must be the case that
x = x∗k as defined in the Binding Core Property. In
other words, for every k ∈ Si∗ , (k, x

∗
k) ∈ X, and thus

X∗ ⊆ X.
External Validity. Assume that for some non-

faulty i, GatherVerifyi(I) terminates. When i com-
pleted protocol it outputs {(j, x) ∈ Ri|j ∈ I} ⊆
Ri Party i adds (j, x) to Ri only after receiving a
validated broadcast of ⟨1, x⟩ from j checking that
validate(x) = 1. □

4 Proposal Election

In this section we construct a verifiable weak pro-
posal election, which is related to the idea of
a weak common coin. With constant probabil-
ity all nonfaulty parties output the proposal of a
nonfaulty party, but in other cases parties might
output different values. The protocol is also exter-
nally validated, meaning that every party’s output
is externally valid. In addition, the protocol is ver-
ifiable. Like in the case of the Verifiable Gather
protocol, this means that parties can prove to each
other that the value they output is indeed a viable
output from the protocol. In the case that a sin-
gle nonfaulty party’s input is chosen, this means
that this is the only value that will pass verifica-
tion. Our construction uses techniques inspired by
Katz and Koo’s synchronous weak leader election
[28]. They use verifiable secret sharing in order
to determine the leader through a random coin

whose value can only be obtained at the end of
the protocol i.e. after reconstruction. We extend
their results to the asynchronous setting by mak-
ing use of a threshold verifiable random function
(VRF) instantiated using a (local) DKG. There
is a VRF public key associated to every player,
and this public key is entirely determined by that
player (provided it contains sufficient secret key
shares). Parties cannot trivially reach consensus
about a single DKG because they do not know if
there are DKG transcripts that have been received
by other parties, but not by them.

The protocol proceeds in four rounds and pseu-
docode is provided in Algorithm 3. In the first
round, every party sends a VRF-DKG share to
every other party. If some party wishes their
proposal to be considered it must input a pair
consisting of their proposal and an aggregated
VRF-DKG transcript into the Gather protocol.
This essentially forces parties to commit to
those values because only one tuple of the form
(j, (propj , vrf dkgj)) may appear in any of the out-
puts from Gather for any given j. After outputting
the gather set X from the Gather protocol, every
party broadcasts Indices(X), which is the set
of indices with tuples in X. After receiving an
index-set for which GatherVerify terminates with
the output X, parties send VRF evaluation shares
for all tuples in X, if they haven’t done so ear-
lier. Note that at this time all of the tuples in X
have already been committed to because of the
Agreement property of the Gather protocol. After
receiving n − f evaluation shares for each of the
tuples in the output from the Gather protocol,
every party evaluates the VRF at the appropriate
values, and chooses the proposal with the highest
corresponding VRF evaluation. We think of the
PE protocol as succeeding if the maximal evalu-
ation corresponds to a tuple in the binding core
that corresponds to a value input by a nonfaulty
party. As will be shown below, this happens with
a constant probability, and when that happens all
parties output the corresponding proposal.

The protocol proceeds in a few conceptual
rounds described below:

Round 1: In Round 1, each party samples and
sends a VRF-DKG share for every other party.
The VRF will later be used to assign a number
to each party. Party i waits to receive n − f
valid contributions from all other parties. It then

Springer Nature 2021 LATEX template

ADKG 15

aggregates these VRF-DKG contributions into a
verifying VRF-DKG transcript vrf dkgi.

Round 2: In Round 2 party i calls the Gather
protocol providing its original input propi and
the aggregated VRF-DKG transcript vrf dkgi as
input. From the properties of the Gather protocol,
each party will eventually output a set of tuples
(j, (propj , vrf dkgj)) indicating that j input the
pair propj and vrf dkgj to the protocol.

Round 3: After outputting a gather-set from the
Gather protocol, parties can start calculating the
number assigned to each party. Ideally, each party
would send the gather-set they output from the
protocol to all other parties, and they will help
in evaluating all of the relevant values. However,
having another all-to-all communication round
where parties send sets of O(n) tuples containing
O(m) words each would incur an overhead of
O(mn3) words to be sent. Instead of doing that,
every party only broadcasts the indices of tuples
in its gather-set, which we think of as a request
to start evaluating the VRF for each index.

Round 4: After receiving an index-set I, every
nonfaulty party calls the GatherVerify protocol on
the set, and waits to output the tuples correspond-
ing to those indices. After that happens parties
send their evaluation share for each tuple they
haven’t seen yet. This is done by maintaining a
set start eval which stores all of the seen tuples.
When a party completes the GatherVerify proto-
col with the output X, it first sends an evaluation
share for every tuple in X \ start eval, and only
then updates start eval to contain X.

Crucially, the proposal and aggregated VRF-
DKG transcript are sent together, and parties
start sending the VRF evaluation shares only after
seeing the relevant aggregated VRF-DKG tran-
script included in a gather-set received as output
from the GatherVerify. By sending the proposal
and VRF-DKG transcript together, parties have
to commit to their values before knowing which
party’s proposal is going to ”win” the election.
From the properties of the Gather protocol, once a
tuple (j, (propj , vrf dkgj)) is in a gather-set output
from GatherVerify, no other party ever outputs a
gather-set from GatherVerify with a different tuple
corresponding to the index j. By sending evalua-
tion shares only then, nonfaulty parties guarantee

that the faulty parties committed to their aggre-
gated VRF-DKG transcript before knowing what
number it evaluates to. This guarantees that those
evaluations cannot be biased by the faulty parties.

After receiving enough evaluation shares
to compute ϕ(vrf dkgj , ⟨j⟩) for every
(j, (propj , vrf dkgj)) in their output from the
Gather protocol, party i chooses the index ℓ with
the maximal value ϕ(vrf dkgℓ, ⟨ℓ⟩) and outputs
propℓ. In addition, i outputs the indices of parties
in their gather-set as proof.

Intuitively, every party outputs a gather-set
from the Gather protocol which determines the
VRF evaluations taken into consideration. If the
VRF evaluation with the maximal value among
all outputs from the Gather protocol corresponds
to a tuple (ℓ∗, (propℓ∗ , vrf dkgℓ∗)) in the binding
core of the Gather protocol that was input by a
nonfaulty party, then all nonfaulty parties will see
that evaluation and pick propℓ∗ as their output.
Since the evaluations are sampled uniformly in
an unbiased manner, this means that every party
has the same probability of having the maximal
evaluation being associated with it. When count-
ing the number of nonfaulty parties with tuples
in the common core, we find that the probability
of the aforementioned event is at least 1

3 . This
mechanism also allows to check whether a given
proposal could have been the correct output from
the PE protocol. In order to convince a nonfaulty
party that a value is a correct output from the
PE protocol, it is enough to provide one’s out-
put from the Gather protocol. Parties will then
be able to check if that is a verifying gather-set
and if the correct proposal was elected based on
that output. Instead of actually using the whole
gather-set as proof, only the indices of tuples in it
are sent as proof in order to reduce communica-
tion. If the maximal evaluation is associated with
a tuple in the binding-core, then only gather-sets
containing that tuple will verify, which means
that only propℓ∗ as defined above will verify.

Verification: The verification algorithm is given
in Algorithm 5. As stated above, in order for a
value x to verify with a proof π, parties require
the indices of the gather-set with which it was
computed. They then check if the index-set veri-
fies, if all the relevant tuples have been previously
received, and if the evaluation of the VRF has

Springer Nature 2021 LATEX template

16 ADKG

been computed at all relevant points. If all of those
conditions hold, parties then make sure that x is
the proposal with the maximal associated VRF
evaluation.

4.1 Security Analysis

The following lemmas show that the start eval
and evals sets of different parties are eventually
consistent with each other.

Lemma 3. If all nonfaulty parties participate
in the PE protocol, and some nonfaulty party
i outputs the set Xi from the Gather proto-
col, then for every nonfaulty j eventually Xi ⊆
start evalj. Furthermore, if for two nonfaulty
parties i, j, (k, (propk, vrf dkgk)) ∈ start evali
and (k, (prop′k, vrf dkg

′
k)) ∈ start evalj, then

(propk, vrf dkgk) = (prop′k, vrf dkg
′
k).

Proof If some nonfaulty party output Xi

from the gather protocol, then it broadcasts
⟨indices, Indices(Xi)⟩. Every nonfaulty j receives
that message, calls GatherVerify(Indices(Xi)) and
from the Completeness property of the Gather proto-
col, eventually outputs Xi. After that time, j performs
some local computations and updates start evalj to
start evalj ∪Xi.

Now observe two nonfaulty parties i, j such
that (k, (propk, vrf dkgk)) ∈ start evali and
(k, (prop′k, vrf dkg′k)) ∈ start evalj . Before adding
(k, (propk, vrf dkgk)) to start evali, i output some set
X from GatherVerify with (k, (propk, vrf dkgk)) ∈ X.
Similarly, before adding (k, (prop′k, vrf dkg′k)) to
start evalj , i output some set Y from GatherVerify
with (k, (prop′k, vrf dkg′k)) ∈ Y . Therefore,
(propk, vrf dkgk) = (prop′k, vrf dkg′k) from the Agree-
ment property of the Gather protocol. □

Lemma 4. If (k, (propk, vrf dkgk)) ∈ start evali
for some nonfaulty i, then eventually for
every nonfaulty j, there exists a tuple
(k, ϕ(vrf dkgk, ⟨k⟩)) ∈ evalsj. Further-
more, if (k, evaluationk) ∈ evalsi for some
nonfaulty i, then there exists some tuple
(k, (propk, vrf dkgk)) ∈ start evali such that
evaluationk = ϕ(vrf dkgk, ⟨k⟩).

Proof If (k, (propk, vrf dkgk)) ∈ start evali, then i
added that tuple after receiving some broadcast
⟨indices, I⟩ for which GatherVerifyi(I) terminated
with an output X such that (k, (propk, vrf dkgk)) ∈

X. From the Termination and Agreement proper-
ties of the broadcast protocol, every other nonfaulty
j eventually receives the same message. From the
Agreement on Verification property of the Gather
protocol, eventually j outputs the same X from
GatherVerifyj(I), and then adds (k, (propk, vrf dkgk))
to start evalj . A tuple (k, (propk, vrf dkgk)) is
added to start evalj only after already sending
⟨eval, k, eval sharek,j , πk,j⟩, so all nonfaulty parties
send such a message for every (k, (propk, vrf dkgk)) ∈
start evali. Therefore, for every (k, (propk, vrf dkgk)) ∈
start evali, every nonfaulty party j receives a mes-
sage ⟨eval, l, eval sharek,l, πk,l⟩ from every nonfaulty
l, and sees that (k, (propk, vrf dkgk)) ∈ start evalj .
Since a nonfaulty l computed the share correctly,
EvalShareVerify(vrf dkgk, pkl, ⟨k⟩, eval sharek,l, πk,l) =
1. Party j then adds the tuple (eval sharek,l, πk,l) to
eval sharesj [k]. After adding such a tuple for every
nonfaulty party, j sees that

∣∣eval sharesj [k]∣∣ = n−f , it
computes ϕ(vrf dkgk, ⟨k⟩), πk using Eval and adds the
tuple (k, ϕ(vrf dkgk, ⟨k⟩)) to evalsj .

Now, let (k, evaluationk) ∈ evalsi for some non-
faulty i. Before adding that tuple to evalsi, party
i saw that ∃(k, (propk, vrf dkgk)) ∈ start evali and
added n−f shares to eval sharesi[k]. It then computed
(evaluationk, πk) = Eval(vrf dkgk, ⟨k⟩, eval sharei[k])
and added (k, evaluationk) to evalsi. From the defini-
tion of the VRF, evaluationk = ϕ(vrf dkgk, ⟨k⟩). □

Corollary 1. Let i, j be two nonfaulty par-
ties such that (k, evaluationk) ∈ evalsi and
(k, evaluation′k) ∈ evalsj. Then evaluationk =
evaluation′k.

Proof From Lemma 4, there exists a tuple
(k, (propk, vrf dkgk)) ∈ start evali such that
evaluationk = ϕ(vrf dkgk, ⟨k⟩). Similarly, there
exists a tuple (k, (prop′k, vrf dkg′k)) ∈ start evalj
such that evaluation′k = ϕ(vrf dkg′k, ⟨k⟩). From
Lemma 3, (propk, vrf dkgk) = (prop′k, vrf dkg′k), so
evaluationk = evaluation′k. □

Theorem 2. The pair (PE,PEVerify) is a veri-
fiable weak proposal election protocol resilient to
f < n

3 parties with α = 1
3 .

Proof Each property is proven separately.
Termination of Output. If all nonfaulty par-

ties participate in the PE protocol, then they all
send a ⟨dkg, sharei,j⟩ message to every other party,
with sharei,j being generated using DKGSh. Every
nonfaulty party i eventually receives at least n −
f shares from the nonfaulty parties such that

Springer Nature 2021 LATEX template

ADKG 17

Algorithm 3 PEi(propi)

1: dkg sharesi ← ∅, Xi ← ∅,∀j ∈ [n] eval sharesi[j]← ∅, evalsi ← ∅, start evali ← ∅
2: (sharei,1, . . . , sharei,n)

$←− DKGSh(ski), . . . ,DKGSh(ski)
3: for every j ∈ [n] send ⟨dkg, sharei,j⟩ to j
4: upon receiving the first ⟨dkg, sharej,i⟩ from j message such that DKGShVerify(pkj , sharej,i) = 1, do
5: dkg sharesi ← dkg sharesi ∪ {sharej,i}
6: if |dkg sharesi| = n− f then
7: vrf dkgi ← DKGAggregate(dkg sharesi)
8: call Gatheri(propi, vrf dkgi) with the external validity function checkValidity
9: end if

10: upon Gatheri outputting the set X = {(j, (propj , vrf dkgj))}, do ▷ continue updating state
according to Gather

11: Xi ← X
12: Ii ← Indices(Xi) = {k|∃(k, (propk, vrf dkgk)) ∈ Xi}
13: broadcast ⟨indices, Ii⟩
14: upon receiving the first ⟨indices, Ij⟩ message from j, do
15: upon GatherVerifyi(Ij) terminating with output Xj and Gather outputting some value, do
16: for all (k, propk, vrf dkgk) ∈ Xj \ start evali do
17: (eval sharek,i, πk,i)← EvalSh(vrf dkgk, ski, ⟨k⟩)
18: send ⟨eval, k, eval sharek,i, πk,i⟩ to every party
19: end for
20: start evali ← start evali ∪Xj

21: upon receiving the first ⟨eval, k, eval sharek,j , πk,j⟩ broadcast from j for any given k, do
22: upon ∃(k, (propk, vrf dkgk)) ∈ start evali, do
23: if EvalShareVerify(vrf dkgk, pkj , ⟨k⟩, eval sharek,j , πk,j) = 1 then
24: eval sharesi[k]← eval sharesi[k] ∪ {(eval sharek,j , πk,j)}
25: if |eval sharesi[k]| = n− f then
26: (evaluationk, πk)← Eval(vrf dkgk, ⟨k⟩, eval sharesi[k])
27: evalsi ← evalsi ∪ {(k, evaluationk)}
28: end if
29: end if
30: upon ∀(k, (vrf dkgk, propk)) ∈ Xi ∃(k, evaluationk) ∈ evalsi and Xi ̸= ∅, do
31: ℓ← argmaxk{evaluationk|(k, (propk, vrf dkgk)) ∈ Si} ▷ i.e. ℓ has the maximal evaluationℓ
32: πi ← Indices(Xi) = {k|∃(k, (propk, vrf dkgk)) ∈ Xi}
33: output (propℓ, πi), but continue updating internal sets and sending messages

Algorithm 4 checkValidity(prop, vrf dkg)

1: if validate(prop) = 1 and
DKGVerify(vrf dkg) = 1 then

2: return 1
3: else
4: return 0
5: end if

DKGShVerify(pki, sharej,i) = 1 and adds sharej,i to
dkg sharesi. After that, i sees that |dkg sharesi| = n−
f , it aggregates those shares into vrf dkgi, and inputs
(propi, vrf dkgi) to the Gather protocol. From the Cor-
rectness property of the DKG, DKGVerify(vrf dkgi) =

Algorithm 5 PEVerifyi(x, π)

1: upon ∀k ∈ π ∃(k, evaluationk) ∈ evalsi ∧
∃(k, (propk, vrf dkgk)) ∈ start evali, do

2: upon GatherVerifyi(π) terminating, do
3: ℓ← argmaxk{evaluationk|k ∈ π}
4: if x = propℓ then
5: terminate
6: end if

1, because vrf dkgi is an aggregation of n − f ver-
ifying DKG shares. By assumption, all nonfaulty
parties have externally valid inputs (i.e. for every non-
faulty i, validate(propi) = 1), so for every nonfaulty

Springer Nature 2021 LATEX template

18 ADKG

i checkValidity(propi, vrf dkgi) = 1. By the Termi-
nation of Output property of the Gather protocol,
every nonfaulty party i eventually outputs some set
Xi from the protocol. From Lemma 3, every nonfaulty
party j eventually has Xi ⊆ start evalj . In addi-
tion, from Lemma 4, for every (k, (propk, vrf dkgk)) ∈
Xi ⊆ start evali eventually there exists a tuple
(k, evaluationk) ∈ evalsi. At that point, i preforms
some local computations and outputs a value from the
protocol.

Completeness. Assume some nonfaulty party
i outputs the value x and proof π from PE.
The way i computes π is by taking its output
from the Gather protocol, Xi, and computing π =
Indices(Xi). Observe some nonfaulty party j that
calls PEVerifyj(x, π). From Lemma 3, eventually Xi ⊆
start evalj , so for every k ∈ π = Indices(Xi) there
exists some tuple (k, (propk, vrf dkgk)) ∈ start evalj .
From Lemma 4, eventually for every such k, there also
exists a tuple (k, evaluationk) ∈ evalsj . Therefore even-
tually j proceeds past the first condition of PEVerify.
Afterwards, j calls GatherVerifyj(π). By definition
π = Indices(Xi), so GatherVerifyj(π) eventually ter-
minates because of the Completeness property of the
Gather protocol. Before terminating, i also saw that
for every k ∈ π there existed a tuple (k, evaluationk) ∈
evalsi. It then computed the index ℓ with the maxi-
mal evaluationℓ and output propℓ. From Corollary 1,
j has the same tuples (k, evaluationk) ∈ evalsj so
it computes the same ℓ. Similarly, from Lemma 3,
when j checks if x = propℓ it does so with the
tuple (k, (propk, vrf dkgk)) ∈ Xi ⊆ start evalj , and
thus from the way i computes x, j sees that x is
indeed propℓ. Note that Lemma 3 and Corollary 1
also imply that the start eval and evals sets have only
one tuple of the form (k, (propk, vrf dkgk)) for any
given k, meaning that the values above are unique and
well-defined.

α-Binding. At the time the first nonfaulty party
completes the Gather protocol, there exists a binding-
set X∗ of tuples (j, (propj , vrf dkgj)) that must be
included in any output of the GatherVerify protocol.
Now, observe all of the sets X which are the out-
put of GatherVerifyi for any nonfaulty i throughout
the rest of the protocol, and let outputs =

⋃
X be

the set of all tuples (j, (propj , vrf dkgj)) in those sets.
From the Agreement property of the Gather proto-
col, for any given j ∈ [n] there can be no more than
one such tuple (j, (propj , vrf dkgj)) ∈ outputs. Fur-
thermore, from the External Validity property of the
Gather protocol, checkValidity(propj , vrf dkgj) = 1 for
every such j, and thus DKGVerify(vrf dkgj) = 1. In
other words, every such vrf dkgj is an aggregation of
correct shares from at least f+1 different parties, and
at least one of those parties is nonfaulty.

Since each aggregated VRF-DKG transcript
vrf dkgj contains shares from at least one nonfaulty
party, before some nonfaulty party sends its evaluation
share of vrf dkgj , the value ϕ(vrf dkgj , ⟨j⟩) is dis-
tributed uniformly and independently from the view
of the adversary or any single nonfaulty party. That
is true because of the Unbiasability property of the
threshold verifiable random function. No nonfaulty
party i sends its evaluation share of any of the aggre-
gated VRF-DKGs vrf dkgj (or their respective non-
aggregated shares) before completing the GatherVerify
protocol and outputting a set X from GatherVerifyi
such that (k, (propk, vrf dkgk)) ∈ X. At that point,
(k, (propk, vrf dkgk)) is already set and every non-
faulty party that outputs a set X from GatherVerify
that contains a tuple with the index k, does so with
the tuple (k, (propk, vrf dkgk)). Combining the fact
that no nonfaulty party sends an evaluation share for
(k, (propk, vrf dkgk)) before outputting a gather-set
containing it from GatherVerify, and that before that
happens the value is distributed uniformly and inde-
pendently from the adversary’s view, ϕ(vrf dkgk, ⟨k⟩)
is distributed uniformly and independently for every
(k, (propk, vrf dkgk)) ∈ outputs. In particular, each
one of those values has the same probability of being
the maximal one, regardless of the adversary’s actions.

Now, if ℓ∗ =
argmaxj{ϕ(vrf dkgj , ⟨j⟩)|(j, (propj , vrf dkgj)) ∈
outputs} for some (ℓ∗, (propℓ∗ , vrf dkgℓ∗)) ∈ X∗, and
party ℓ∗ is nonfaulty at the time the first nonfaulty
party completes the Gather protocol, define x∗ to be
propℓ∗ , otherwise define x∗ =⊥. Note that X∗ is at
least of size n−f , so at least n−2f of the parties j such
that there exists a tuple (j, (propj , vrf dkgj)) ∈ X∗

are nonfaulty at the time the first nonfaulty party
completes the Gather protocol. From the Internal
Validity property of the Gather protocol, for any
party j that was nonfaulty at the time the first non-
faulty party completed the Gather protocol, the tuple
(j, (propj , vrf dkgj)) includes the values propj and
vrf dkgj that j input to the protocol. Each one of

those parties has a 1
n probability of having the max-

imal value, and thus the probability that x∗ is the
input of one of the parties that was nonfaulty at that
time is at least n−2f

n ≥ (n3 + 1) · 1
n = 1

3 + 1
n . Clearly,

since they are nonfaulty at that time, they must have
also acted in a nonfaulty manner when starting the
PE protocol. This analysis ignores the probability
of two parties having the same maximal value. The

probability of this event can be bounded by n2

2λ
since

there are 2λ different possible values for outputs of ϕ.
For the probability to remain at least 1

3 even when
taking the possibility of a collision into consideration,
it is enough that the security parameter is at least
3 log(n).

Springer Nature 2021 LATEX template

ADKG 19

Agreement on Verification Let i, j be two
nonfaulty parties and x, π be two values such
that PEVerifyi(x, π) terminates. The first thing i
does in PEVerify is wait until ∀k ∈ π, there
exists a tuple (k, evaluationk) ∈ evalsi and a tuple
(k, (propk, vrf dkgk)) ∈ start evali. Party i only
updated its start evali set after receiving a broadcast of
the form ⟨indices, I⟩ and seeing that GatherVerifyi(I)
terminates and outputs the set X. When that hap-
pens, i updates start evali to be start evali ∪X. From
the Termination and Agreement properties of the
broadcast protocol, j eventually receives the same
message. It then runs GatherVerifyj(I) and eventually
outputs the same set X because of the Agreement
on Verification property of Gather. Afterwards, it also
updates start evalj to be start evalj ∪ X. In other
words, for every (k, (propk, vrf dkgk)) ∈ start evali,
eventually (k, (propk, vrf dkgk)) ∈ start evalj as well.
From Lemma 4, eventually for every k ∈ π there also
exists a tuple (k, evaluation′k) ∈ evalsj . Recall that
there also exists a tuple (k, evaluationk) ∈ evalsi, and
evaluationk = evaluation′k because of Corollary 1. By
Lemma 3 and Corollary 1, i and j only have one such
tuple in their respective start eval and evals sets, and
thus all of the calculations in the rest of the pro-
tocol are well defined. Before terminating, i called
GatherVerifyi(π), which eventually terminated. From
the Agreement on Verification property of the Gather
protocol, GatherVerifyj(π) also eventually terminates.
Afterwards, i and j perform the same deterministic
non-interactive computation which only depends on
the values in evals and start eval. We’ve shown that i
and j have the same values in the relevant tuples, so
since i eventually completed the PEVerify protocol, so
does j.

Binding Verification. If x∗ as defined in the
α-Binding property equals ⊥, the property trivially
holds. Assume that x∗ ̸=⊥ and that PEVerifyi(x, π)
terminates for some nonfaulty i. Before PEVerify ter-
minated, i checked that for every k ∈ π there
exists a tuple (k, evaluationk) ∈ evalsi and a tuple
(k, (propk, vrf dkgk)) ∈ start evali. From Lemma 4
if (k, evaluationk) ∈ evalsi then there exists a
tuple (k, (propk, vrf dkgk)) ∈ start evali such that
ϕ(vrf dkgk, ⟨k⟩) = evaluationk, and from Corollary 1
there is only one tuple with the index k in evalsi. Com-
bining these observations, for every k ∈ π, there exists
a tuple (k, (propk, vrf dkgk)) ∈ start evali and a tuple
(k, ϕ(vrf dkgk, ⟨k⟩)) ∈ evalsi (and no other tuple with
the index k).

Afterwards, i calls GatherVerifyi(π), which even-
tually terminates with an output X such that
Indices(X) = π. In addition, from the Includes Core
property of the Gather protocol, X∗ ⊆ X, and thus
Indices(X∗) ⊆ Indices(X) = π. Now, note that i

only adds a tuple (k, (propk, vrf dkgk)) to start evali
if it outputs a gather-set from GatherVerify that
includes (k, (propk, vrf dkgk)), and thus start evali ⊆
outputs. By definition, ℓ∗ is the index with the
maximal evaluation ϕ(vrf dkgk, ⟨k⟩) among all tuples
(k, (propk, vrf dkgk)) ∈ outputs. Also, by definition,
ℓ∗ ∈ Indices(X∗) ⊆ π. Therefore, when i com-
putes ℓ = argmaxk{evaluationk|k ∈ π}, it sees that
the index corresponding to the maximal such value
must be ℓ∗, and so it checks that x = propℓ∗ for
the tuple (ℓ∗, (propℓ∗ , vrf dkgℓ∗)) ∈ start evali. As dis-
cussed above, this is the same (ℓ∗, (propℓ∗ , vrf dkgℓ∗))
tuple in outputs, so propℓ∗ = x∗. Party i eventually
terminated, and thus it found that x = propℓ∗ = x∗,
as required.

External Validity. Observe some nonfaulty
party i, value x and proof π such that PEVerifyi(x, π)
terminates. Since PEVerify terminates, i must have
found that x = propℓ for some (ℓ, (propℓ, vrf dkgℓ)) ∈
start evali. Party i only updates start evali by adding
all elements in Xj after GatherVerifyi outputs the
set Xj . From the External Validity property of the
Gather protocol, for every (k, (propk, vrf dkgk)) ∈
Xj , checkValidity(propk, vrf dkgk) = 1, which in turn
means that validate(propk) = 1. This is true for propℓ
as well. □

5 No Waitin’ HotStuff

We present a new primary-backup based con-
sensus protocol for the asynchronous model: No
Waitin’ Hotstuff (NWH). As the name suggests,
many of the techniques and inspiration for this
protocol originated in HotStuff [20]. Unlike basic
HotStuff which requires eventual synchrony, NWH
obtains liveness using the PE protocol described in
Section 4, and thus avoids depending on a leader.
The purpose of NWH is to determine whether or
not the PE protocol was successful, and if not to
allow parties to repeat the PE until consensus is
reached. Recall that with probability α (in this
implementation α = 1

3), all parties output the
input of a party that was nonfaulty when starting
PE. On the other hand, with probability 1 − α,
the parties might output the value that a faulty
party input, or even different values from different
parties. Using NWH we can amplify our con-
stant probability of agreement to an overwhelming
probability of agreement.

NWH proceeds in virtual rounds called
“views”, which are attempts to achieve consen-
sus on the output of the PE protocol. NWH

Springer Nature 2021 LATEX template

20 ADKG

uses a “Key-Lock-Commit” paradigm that helps
maintain safety and liveness.

• Key: Parties set a local key field that indi-
cates that no other value was committed
to in previous rounds. The keys help main-
tain liveness: if at any point some party
sets a lock in a view where no commit-
ment takes place, then they will eventually
see a key from that view (or a later view),
that will convince them to participate in
the current view.
A key consists of three values: key, which
is a view number, key val which is a value
and π, which is a proof that the key was
set correctly in that view.

• Lock: Before committing to a value in a
given view, parties will wait to hear that
enough other parties have set a lock on
the same value in that view. Before parties
set a lock in a given view, they make sure
that enough other parties have set a local
key field that indicates that no other value
was committed to in previous rounds. Par-
ties that are locked on a value won’t be
willing to participate in any later view
with a different value. They will ignore the
lock if and only if enough proof, in the
form of a key from a later view, is pro-
vided that no commitment actually took
place in the view where the lock was set.
This mechanism helps in guaranteeing the
safety of decision values. If a commitment
took place, then there will be a large num-
ber of nonfaulty parties that are locked on
that value. Those parties won’t be will-
ing to participate in views with different
values, which will prevent any party from
setting a key in a later view with a differ-
ent value. This in turn will guarantee that
no party will be able to provide erroneous
proof that the locks can be opened.
A lock looks much like a key and consists
of three values: lock, which is a view num-
ber, lock val which is a value and π, which
is a proof that the lock was set correctly
in that view.

• Commit: If a nonfaulty party commits
to a value no other nonfaulty party ever
commits to another value. The locking

mechanism guarantees that nonfaulty par-
ties cannot commit to different values.
In order to help other parties terminate,
nonfaulty parties send commit messages
to all other parties with proof that the
commitment is correct and that they can
terminate and output the same value.

Algorithm 6 formally describes NWH. It relies
on three protocols: viewChange (Algorithm 8) for
the first round of interaction in each view and
the PE protocol, and on processMessages (Algo-
rithm 10) and processFaults (Algorithm 9) for all
subsequent rounds in each view.

Almost all the work takes place in
processMessages (Algorithm 10), in which parties
process echo, key and lock messages. Algorithms 7
and 9 are utilities for processing commit, blame
and equivocate messages if they are received and
either terminating or continuing to the next view
if needed.

Finally, the algorithms for checking that key,
lock and commit messages are correct are pro-
vided in Algorithms 11, 12 and 13 respectively.
This is done by checking that the provided proof
contains signatures from n−f parties on a message
from the previous round. For example, a correct
key message must contain n − f signatures on
echo messages from the same view with the same
value. Keys and locks are considered automati-
cally correct if they are from before the first view.
In addition, when checking if a key is correct, par-
ties also check that the key’s value is externally
valid.

Below we provide an overview of each of the
rounds. The parties proceed in 5 rounds. The
general idea is that parties will first confirm that
they all agree on the output of the PE protocol,
set a lock to the output and confirm that they
are all locked, commit to the lock and terminate.
If at any point they see that the PE failed, then
they move onto a new view and announce that
they are doing so (with proof).

Round 1: The first round in each view begins
with a viewChange protocol. The viewChange pro-
tocol determines which keys parties input into
the PE protocol. To begin, send the current key
to all other parties in a suggest message. Upon
receiving n − f keys, choose the key from the

Springer Nature 2021 LATEX template

ADKG 21

most recent view and input it to the PE protocol.

Round 2: The second round proceeds differently
depending on which messages parties receive. This
is the round where parties determine whether the
PE was successful or not.

• Upon receiving a value output from another
party from the PE protocol, if that value is
correct then echo that message to all other
parties.

• If that value is incorrect then send a blame mes-
sage and proof to all other parties, including a
proof that the value was the output from the
PE protocol and that it is incorrect and pro-
ceed to the next view. The PE protocol uses an
external-validity function that guarantees that
all outputs are well-formed and provide correct
proofs of their keys. However, checking whether
the message should be accepted using the local
lock fields cannot be modeled as an external
validity function, since it is dependent on the
running party’s local state. Therefore, blame
messages inform other parties that the PE pro-
tocol output a key which was insufficient to open
the local lock, and include the local lock fields
with proofs that they have been correctly set. If
the PE protocol was successful then the output
values should always be correct and open any
lock.

• Upon receiving a correct blame message and
proof, send the blame message to all parties and
proceed to the next view.

• Upon receiving echomessages with two different
correct values and proofs that they were outputs
of the PE protocol, send an equivocate message
and proof to all parties, and proceed to the next
view. If the PE protocol was unsuccessful then
there could be two parties with different correct
values, and thus the next view will be necessary
to reach agreement.

• Upon receiving an equivocate message with dif-
ferent values and correct proofs, forward that
message, and proceed to the next view.

Round 3: In this round parties are confirming
that they believe that the PE protocol terminated
successfully. Upon receiving n− f echo messages,
update the key field before sending a key message
to all parties.

Round 4: Upon receiving n − f key messages,
update the lock field before sending a lock mes-
sage to all parties. Setting a lock is the main way
the protocol guarantees safety. As will be stated
in the next round, before committing to a value,
every party waits to see that at least n−f parties
set their locks. This guarantees that at least f +1
nonfaulty parties will have set their locks. These
parties will act as sentinels and won’t let any
other value get past the echo phase in any future
view. This in turn will make sure that no correct
key is set in later views that might allow one
of those sentinels to open their lock. Crucially,
before setting a lock, every party makes sure that
at least f + 1 nonfaulty parties set their keys
to the current value. By doing that, every party
guarantees that when choosing which value and
key to input to the PE protocol, all nonfaulty
parties will hear of the current value and will be
capable of opening any older lock a nonfaulty
party might have.

Round 5: If a single honest party begins the final
round then the protocol will eventually terminate.
There are two means of termination: either you
see that enough parties are locked, or you see that
one other party is (correctly) committed. Upon
receiving n − f lock messages, send a commit
message to all parties and terminate. Upon receiv-
ing a commit message with proof that it was sent
after receiving enough lock messages, forward
that message to all other parties and terminate.

In the NWH protocol, it is important to note
that we explicitly run the checkTermination pro-
tocol before line 7, but the processMessages and
processFaults protocols after it. This means that
the checkTermination protocol always runs in the
background, whereas once cur view ̸= viewi

party i stops processing messages from cur view
in processMessages and processFaults (and thus
don’t update their key or lock fields according to
messages received in older views).

5.1 Security Analysis

Our main theorem for demonstrating the security
of NWH is given in Theorem 3 where we show
correctness, validity, termination and quality. The
proof of this theorem relies on several lemmas.

Springer Nature 2021 LATEX template

22 ADKG

Algorithm 6 NWH(xi)

1: keyi ← 0, key vali ←⊥, key proofi ←⊥
2: locki ← 0, lock vali ←⊥, lock proofi ←⊥
3: viewi ← 1
4: continually run checkTermination()
5: while true do
6: cur view ← viewi

7: as long as cur view = viewi, run
8: delay any message from any view v such that v > viewi

9: call viewChange(viewi) ▷ perform first lines in viewChange before continuing to next line
10: continually run processMessages(viewi) and processFaults(viewi)

11: end while

Algorithm 7 checkTermination()

1: upon receiving the first ⟨commit, v, πcommit, view⟩ message from j, do
2: if commitCorrect(view, v, πcommit) = 1 then
3: send ⟨commit, v, πcommit, view⟩ to every party j ∈ [n]
4: output v and terminate
5: end if

Algorithm 8 viewChange(view)

1: suggestions← ∅ ▷ suggestions is a multiset
2: send ⟨suggest, keyi, key vali, key proofi, view⟩ to every party j ∈ [n]
3: upon receiving the first ⟨suggest, k, v, πkey, view⟩ message from party j, do
4: if keyCorrect(k, v, πkey) = 1 and k < view then
5: suggestions← suggestions ∪ {(k, v, πkey)}
6: if |suggestions| = n− f then
7: (k, v, πkey)← argmax(k,v,πkey)∈suggestions{k} ▷ break ties arbitrarily
8: if k = 0 then
9: (k, v, πkey)← (0, xi,⊥)

10: end if
11: call PEi,view((k, v, πkey)) with the external validity function keyCorrect
12: end if
13: end if

Algorithm 9 processFaults(view)

1: upon receiving the first ⟨blame, k, v, πkey, πelection, l, lv, πlock, view⟩ message from j, do
2: if lockCorrect(l, lv, πlock) = 1 and view ≤ k ∨ k < l then
3: upon PEVerifyi,view((k, v, πkey), πelection) terminating, do
4: send ⟨blame, k, v, πkey, πelection, l, lv, πlock, view⟩ to every party j ∈ [n]
5: viewi ← viewi + 1

6: end if
7: upon receiving the first ⟨equivocate, k, v, πkey, πelection, k

′, v′, π′
key, π

′
election, view⟩message from j, do

8: if (k, v, πkey) ̸= (k′, v′, π′
key) then

9: upon PEVerifyi,view((k, v, πkey), πelection) and PEVerifyi,view((k
′, v′, π′

key), π
′
election) terminat-

ing, do
10: send ⟨equivocate, k, v, πkey, πelection, k

′, v′, π′
key, π

′
election, view⟩ to every party j ∈ [n]

11: viewi ← viewi + 1

12: end if

Springer Nature 2021 LATEX template

ADKG 23

Algorithm 10 processMessages(view)

1: echoes← ∅, keys← ∅, locks← ∅
2: upon PEi,view outputting (k, v, πkey), πelection, do ▷ continue updating state according to PEi,view

3: if view > k ≥ locki then
4: σ ← sign(ski, ⟨echo, v, view⟩)
5: send ⟨echo, k, v, πkey, πelection, σ, view⟩ to every party j ∈ [n]
6: else
7: send ⟨blame, k, v, πkey, πelection, locki, lock vali, lock proofi, view⟩ to every party j ∈ [n]
8: viewi ← viewi + 1
9: end if

10: upon receiving the first ⟨echo, k, v, πkey, πelection, σ, view⟩ message from j, do
11: if verifySignature(pkj , ⟨echo, v, view⟩, σ) = 1 then
12: upon PEVerifyi,view((k, v, πkey), πelection) terminating, do
13: if ∃(k′, v′, π′

key, π
′
election, σ

′, j′) ∈ echoes s.t. (k, v, πkey) ̸= (k′, v′, π′
key) then

14: send ⟨equivocate, k, v, πkey, πelection, k
′, v′, π′

key, π
′
election, view⟩ to every party j ∈ [n]

15: viewi ← viewi + 1
16: else
17: echoes← echoes ∪ (k, v, πkey, πelection, σ, j)
18: if |echoes| = n− f then
19: sigs← {(σ, j)|(k, v, πkey, πelection, σ, j) ∈ echoes}
20: keyi ← view, key proofi ← sigs, key vali ← v
21: σ ← sign(ski, ⟨key, v, view⟩)
22: send ⟨key, v, sigs, σ, view⟩ to every party j ∈ [n]
23: end if
24: end if
25: end if
26: upon receiving the first ⟨key, v, πkey, σ, view⟩ message from j, do
27: if verifySignature(pkj , ⟨key, v, view⟩, σ) = 1 and keyCorrect(view, v, πkey) = 1 then
28: keys← keys ∪ {(σ, j)}
29: if |keys| = n− f then
30: locki ← view, lock proofi ← keys, lock vali ← v
31: σ ← sign(ski, ⟨lock, v, view⟩)
32: send ⟨lock, v, lock proofi, σ, view⟩ to every party j ∈ [n]
33: end if
34: end if
35: upon receiving the first ⟨lock, v, πlock, σ, view⟩ message from j, do
36: if verifySignature(pkj , ⟨lock, v, view⟩, σ) = 1 and lockCorrect(view, v, πlock) = 1 then
37: locks← locks ∪ {(σ, j)}
38: if |locks| = n− f then
39: send ⟨commit, v, locks, view⟩ to every party j ∈ [n]
40: output v and terminate
41: end if
42: end if

Correctness depends on Lemma 6 where we
show that whenever there exists a correct com-
mitment, nonfaulty parties will not send echo
messages with values that are inconsistent with
this commitment in future views. The proof of cor-
rectness also uses Lemma 5 which argues that all

nonfaulty parties only send correct messages, and
that all correct messages in a given view contain
the same value.

Termination depends on Lemmas 8 and 10.
Lemma 8 proves that provided no commitment is

Springer Nature 2021 LATEX template

24 ADKG

Algorithm 11 keyCorrect(view, v, πkey)

1: if validate(v) = 0 then
2: return 0
3: end if
4: if view = 0 then
5: return 1
6: end if
7: if |{j|∃(σ, j) ∈ πkey}| ≥ n − f and ∀(σ, j) ∈

πkey verifySignature(pkj , ⟨echo, v, view⟩, σ) =
1 then

8: return 1
9: else

10: return 0
11: end if

Algorithm 12 lockCorrect(view, v, πlock)

1: if view = 0 then
2: return 1
3: end if
4: if |{j|∃(σ, j) ∈ πlock}| ≥ n − f and ∀(σ, j) ∈

πlock verifySignature(pkj , ⟨key, v, view⟩, σ) = 1
then

5: return 1
6: else
7: return 0
8: end if

Algorithm 13 commitCorrect(view, v, πcommit)

1: if |{j|∃(σ, j) ∈ πcommit}| ≥ n−f and ∀(σ, j) ∈
πcommit verifySignature(pkj , ⟨lock, v, view⟩, σ) =
1 then

2: return 1
3: else
4: return 0
5: end if

reached in prior views, honest parties will even-
tually progress onto the next view. The proof
depends on Lemma 7 which argues that nonfaulty
parties’ local key and lock fields are always cor-
rect, and thus will be accepted when received in
any message. Lemma 10 proves that whenever all
non-faulty parties begin a view with valid inputs,
the protocol has a constant probability of termi-
nating. The proof depends on 9 which argues that
nonfaulty parties will not get successfully blamed
for their honest inputs. The proof also depends
on the correctness lemmas and Lemma 7. Validity

follows from Correctness and the external validity
of the PE. Quality follows from Termination and
the α-Binding property of the PE.

We start by defining what it means for a key,
lock, or commit to be correct.

Definition 3. A key message of the form
⟨key, v, π, σ, view⟩ is said to be correct if
keyCorrect(view, v, π) = 1. Similarly, a lock mes-
sage of the form ⟨lock, v, π, σ, view⟩ is said to be
correct if lockCorrect(view, v, π) = 1. Finally, a
commit message of the form ⟨commit, v, π, view⟩
is said to be correct if commitCorrect(view, v, π) =
1. In addition, the value of each such message is
said to be the field v.

The following two lemmas help prove that the
protocol maintains safety conditions. By that we
mean that if some nonfaulty party commits to a
value, then there will be f + 1 parties that will
act as sentinels in all future views and won’t let
any other value receive enough echo messages to
proceed to late stages of the protocol.

Lemma 5. If two messages from a given view are
correct, they both have the same value v. In addi-
tion, if a nonfaulty party sends a key, a lock or a
commit message, then that message is correct.

Proof First, observe two correct key messages
⟨key, v, π, σ, view⟩ and ⟨key, v′, π′, σ′, view⟩. Since the
messages are correct, keyCorrect(view, v, π) = 1,
which means that π contains n − f pairs of the
form (σ, j) with different values j ∈ [n] such that
verifySignature(pkj , ⟨echo, v, view⟩, σ) = 1. In other
words, π contains signatures from n − f parties
on the message ⟨echo, v, view⟩. Similarly, π′ con-
tains signatures from n − f parties on the message
⟨echo, v′, view⟩. Every nonfaulty party sends only one
such signature in each view to all parties in an echo
message. Now, since 2(n − f) = n + (n − 2f) ≥
n + f + 1, there are at least f + 1 parties whose sig-
natures are contained in both π and π′, and out of
those parties at least one is nonfaulty. That nonfaulty
party sends only one such message, so v = v′. Now,
before sending a key message, a nonfaulty party i
finds that |echoes| ≥ n− f . Party i only adds a tuple
(k, v, πkey, πelection, σ, j) to echoes after receiving the
first ⟨echo, k, v, πkey, πelection, σ, view⟩ message from
j such that verifySignature(pkj , ⟨echo, v, view⟩, σ) = 1
and PEVerify((k, v, πkey), πelection) terminates. Since
PEVerify terminated, keyCorrect(k, v, πkey) = 1, and

Springer Nature 2021 LATEX template

ADKG 25

thus validate(v) = 1. Otherwise the first condition
in keyCorrect would be true and the output would
be 0 instead. If at any point i sees that two such
tuples would be added with different values v ̸= v′, i
sends an equivocate message instead and doesn’t send
a key message. Therefore, when sending a message
⟨key, v, π, view⟩ it does so with π containing n − f
pairs of the form (σ, j) with different values j such
that verifySignature(pkj , ⟨echo, v, view⟩, σ) = 1 and
validate(v) = 1, and thus the message is correct.

Now observe two messages ⟨lock, v, π, σ, view⟩
and ⟨lock, v′, π′, σ′, view⟩ such that
lockCorrect(view, v, π) = 1 and
lockCorrect(view, v′, π′) = 1. Similarly to the case
above, π contains signatures from at least n − f
parties on the message ⟨key, v, view⟩. Out of those
n − f parties, at least f + 1 are nonfaulty. Every
nonfaulty party i sends only one such signature per
view in a key message, and as stated above each
key message sent by a nonfaulty party is correct.
Since the key message is correct, its value is the
same as the value of all correct key messages sent in
view. Therefore, comparing the two values v and v′

to the value of all correct key messages v′′, it must
be the case that v = v′′ = v′. In addition, before
sending a message ⟨lock, v, π, σ, view⟩, a nonfaulty
party i finds that |keys| ≥ n − f . Party i only add
a pair (σ, j) to keys after receiving the first correct
⟨key, v, π, σ, view⟩ message from party j such that
verifySignature(pkj , ⟨key, v, view⟩, σ) = 1. As shown
above, all correct key messages in a given view
have the same value v, so at that point in time
keys contains n − f tuples with signatures on the
message ⟨key, v, view⟩, and thus i’s lock message is
correct as well. The exact same arguments can be
made for showing that commit messages have the
same value v, and that if a nonfaulty party sends a
commit message in line 39 then the message is cor-
rect. Finally, if a nonfaulty party sends the message
⟨commit, v, π, view⟩ message in line 3, then it first
verified that commitCorrect(view, v, π) = 1, and thus
the message is correct as well. □

Lemma 6. If some party sends a
⟨commit, v, π, view⟩ message such that
commitCorrect(view, v, π) = 1, then for
any view′ ≥ view there exist f + 1
nonfaulty parties that never send an
⟨echo, k′, v′, π′

key, π
′
electionσ

′, view′⟩ message with
v′ ̸= v .

Proof We will prove inductively that for any view′ ≥
view, there must exist f + 1 such nonfaulty par-
ties. First observe view′ = view. Since some

party sends a ⟨commit, v, π, view⟩ message such that
lockCorrect(view, v, π) = 1, π contains n − f tuples
(σ, j) with different values j ∈ [n] such that
verifySignature(pkj , ⟨lock, v, view⟩, σ) = 1. Out of
those parties at least one was nonfaulty. A nonfaulty
party j only sends such a signature σ in a lock mes-
sage. Before sending a lock message, j receives n − f
correct key messages, and at least one of those was
sent by a nonfaulty party l. From Lemma 5, all of
those messages contained the same value v. Before
sending that key message, l found that |echoes| ≥
n − f . Party l only adds a tuple to echoes after
receiving the first echo message from each party.
Before adding a tuple (k, v, πkey, πelection, σ, j) to
echoes, l verifies that there does not exist a tuple
(k′, v′, π′

key, π
′
election, σ

′, j′) in echoes with v ̸= v′. If
such a tuple exists, l finds that the condition in line 13
is true and it sends an equivocate message instead.
Since it didn’t do so, all n−f echo messages it received
had the same value v that l sent in its key message.
Out of those n− f messages, at least f + 1 were sent
by nonfaulty parties. Every nonfaulty party sends no
more than one echo message to all parties in each
view, and thus those f + 1 parties never send an echo
message with any value v′ ̸= v in view.

Assume the claim holds for every view′′

such that view′ > view′′ ≥ view. Since
lockCorrect(view, v, π) = 1, π contains n − f tuples
(σ, j) with different values j ∈ [n] such that
verifySignature(pkj , ⟨lock, v, view⟩, σ) = 1. Out of
those n−f parties, at least f +1 are nonfaulty. Every
nonfaulty party j only sends such a signature σ in a
lock message. In addition, before sending a lock mes-
sage, every one of those parties sets its lockj field
to view. Let the set of those nonfaulty parties be
I. It is important to note that the field lockj only
grows throughout the protocol, so every one of the
parties j ∈ I has lockj ≥ view from that point on.
Now assume by way of contradiction that some party
j ∈ I sent an ⟨echo, k′, v′, π′

key, π
′
electionσ

′, view′⟩
message with v′ ̸= v. Before doing that, it out-
put (k′, v′, π′

key), π
′
election in PEi,view such that

view > k′ ≥ lockj ≥ view. From the
Completeness and External Validity properties of
the PE protocol, keyCorrect(k′, v′, π′

key) = 1,

so π′
key contains n − f pairs (σ, l) such that

verifySignature(pkl, ⟨echo, v′, k′⟩, σ) = 1. As discussed
above, each nonfaulty party only sends such a signa-
ture in an echo message in view k′. However, view′ >
k′ ≥ view, so by assumption there exist f + 1 par-
ties that never send such a message in view k′. Any
set of n − f parties that sent the relevant signatures
must have at least one party in common with the f+1
parties that never send such a signature, reaching a
contradiction. □

Springer Nature 2021 LATEX template

26 ADKG

The following lemmas show that the system
retains liveness and makes progress. This is done
in two parts. First of all, the first two lemmas
show that if some party doesn’t terminate in a
given view, it eventually reaches the next view.
The next two lemmas then show that if in any
view the binding value of the PE protocol is set to
be the input of a party that was nonfaulty when
calling the protocol, then if all parties reach that
view they terminate in it as well. The aforemen-
tioned event takes place with constant probability,
so these two ideas can be combined to show that
some party eventually terminates with high prob-
ability. This is done by showing that until this
happens, parties advance through different views,
and in each one they have a constant probability
of terminating. It is then left to show that once
the first nonfaulty party completes the protocol,
eventually all nonfaulty parties do as well.

Definition 4. A nonfaulty party i is said to reach
a view if at any point its local viewi field equals
view. Similarly, a nonfaulty party i is said to be
in view if its local viewi field equals view at that
time.

Lemma 7. Let xi be the input of a
nonfaulty party i. If validate(xi) = 1,
then at any point in the protocol
keyCorrect(keyi, key vali, key proofi) = 1. In
addition, lockCorrect(locki, lock vali, lock proofi)
= 1 at all times in the protocol.

Proof If i hasn’t updated its local
keyi, key vali, key proof fields, then keyi =
0, key vali = xi and key proofi =⊥.
By assumption validate(xi) = 1, so
keyCorrect(keyi, key vali, key proof i) doesn’t return
0 when checking whether the value is externally
valid and returns 1 when checking if key = 0. If
i updated its local keyi, key vali, key proofi fields
in some view′, then after doing so it sent the mes-
sage ⟨key, v, πkey, σ, view′⟩, where v = key vali,
πkey = key proofi and view′ = keyi. From
Lemma 5, the message is correct which means
that keyCorrect(keyi, key vali, key proofi) = 1.
Similarly, if i hasn’t updated its locki, lock vali
and lock proofi fields, then locki = 0 and thus
lockCorrect(locki, lock vali, lock proofi) = 1. On the
other hand, if i updated these local fields, then it sent
the message ⟨lock, v, πlock, σ, view⟩ afterwards with
v = lock vali, πlock = lock proofi and view′ = locki.

From Lemma 5, the message is correct and thus
lockCorrect(locki, lock vali, lock proofi) = 1. □

Lemma 8. If every nonfaulty party i has an input
xi such that validate(xi) = 1, all nonfaulty parties
participate in the protocol, and no nonfaulty party
terminates during any view′ such that view′ <
view, then all nonfaulty parties reach view.

Proof We will prove the claim inductively on view.
First, all nonfaulty parties start in view = 1. Now
observe some view > 1 and assume no nonfaulty party
sends a ⟨commit, v, π, view′⟩ message in line 39 for
any view′ < view. If some nonfaulty party did send
such a message in line 39, then it did so in view′, and
terminated immediately afterwards, contradicting the
conditions of the lemma. By the induction hypothesis,
all nonfaulty parties reach view−1. If some nonfaulty
party i sends the message ⟨blame, k, v, πkey, πelection,
locki, lock vali, lock proofi, view−1⟩ in line 7, it incre-
ments viewi from view−1 to view. Party i only sends
such a message if it outputs (k, v, πkey), πelection in
PEi,view and finds that view − 1 ≤ k ∨ k < locki.
Every nonfaulty party j that receives that message
sees that the same condition holds in the processFaults
algorithm. From Lemma 7, j also sees that
lockCorrect(locki, lock vali, lock proofi) = 1. Finally,
from the Completeness property of PE, eventually
PEVerifyj,view((k, v, πkey), πelection) terminates. At
that point j forwards the message to all parties and
advances viewj from view−1 to view. In addition, if i
sends a ⟨blame, k, v, πkey, πelection, l, lv, πlock, view −
1⟩ message in line 4, it first received the same mes-
sage and found that lockCorrect(l, lv, πlock) = 1, and
that view − 1 ≤ k ∨ k < locki. Furthermore, at
some point, PEVerifyi,view((k, v, πkey), πelection) ter-
minates. After sending the message, i increments
viewi. Every nonfaulty j that receives the message sees
that the same conditions hold. From the Agreement
on Verification property of PE j eventually also sees
that PEVerifyj,view((k, v, πkey), πelection) terminates,
and increments viewj .

On the other hand, if at any point i sends
an equivocate message with two sets of val-
ues k, v, πkey, πelection and k′, v′, π′

key, π
′
election

in line 14, then it first received two echo mes-
sages ⟨echo, k, v, πkey, πelection, view − 1⟩ and
⟨echo, k′, v′, π′

key, π
′
election, view − 1⟩ such that

(k, v, πkey) ̸= (k′, v′, π′
key). That is because i only

sends such a message after trying to add a tuple
(k, v, πkey, πelection, σ, j) to echoes and finding that
there exist some tuple (k′, v′, π′

key, π
′
election, σ

′, j′)

with (k, v, πkey) ̸= (k′, v′, π′
key). Party i only

Springer Nature 2021 LATEX template

ADKG 27

reaches that point in the algorithm after find-
ing that PEVerifyi,view((k, v, πkey), πelection) and

PEVerifyi,view((k
′, v′, π′

key), πelection) terminated.
Every nonfaulty party j that receives the mes-
sage also sees that (k, v, πkey) ̸= (k′, v′, π′

key)
in the processFaults algorithm. From the
Agreement on Verification property of PE, even-
tually PEVerifyj,view((k, v, πkey), πelection) and

PEVerifyj,view((k
′, v′, π′

key), πelection) terminate as
well. At that point, j forwards the message and
advances viewi from view − 1 to view. In addition,
if some party i sends an equivocate message in
line 10, it first receives the same message with the
values k, v, πkey, πelection and k′, v′, π′

key, π
′
election

such that (k, v, πkey) ̸= (k′, v′, π′
key) and at

some point PEVerifyi,view((k, v, πkey), πelection)

and PEVerifyi,view((k
′, v′, π′

key), π
′
election) termi-

nate. After sending the message, i increments
viewi. Every nonfaulty j that receives the mes-
sage sees that the same conditions hold, and from
the Agreement on Verification property eventually
sees that PEVerifyj,view((k, v, πkey), πelection) and

PEVerifyj,view((k
′, v′, π′

key), π
′
election) terminate, and

increments viewj as well.
Now it is left to show that there exists some

nonfaulty party that sends either a blame mes-
sage or an equivocate message. Assume by way of
contradiction no nonfaulty party sends either one
of those messages. Every nonfaulty party i starts
view− 1 by calling viewChange(view− 1) and sending
⟨suggest, k, v, πkey, view − 1⟩ to all parties with k =
keyi, v = key vali and πkey = key proofi. Every non-
faulty party receives that message, and from Lemma 7,
keyCorrect(k, v, πkey) = 1 for every one of those mes-
sages. In addition, no nonfaulty i has keyi ≥ view− 1
at that time because i would only update keyi to some
value view′ ≥ view − 1 during view′. After receiving
those messages, all nonfaulty parties add an element
to suggestions and then find that |suggestions| =
n − f , at which point they perform some local com-
putation and participate in PEi,view−1. Nonfaulty
parties only add a tuple (k, v, πkey) to suggestions
if keyCorrect(k, v, πkey) = 1, so the same holds for
the value they input to PEi,view−1. In other words,
all nonfaulty parties participate in PE with externally
valid inputs, so from the Termination of Output prop-
erty of PE, they eventually output some value. Observe
some nonfaulty i that outputs (k, v, πkey), πelection
from PEi,view−1. Since i doesn’t send a blame mes-
sage, it sends an ⟨echo, k, v, πkey, πelection, σ, view−1⟩
message with σ = sign(ski, ⟨echo, v, view − 1⟩). This
must mean that view − 1 > k ≥ locki, because oth-
erwise i would have sent a blame message. Every
nonfaulty party receives that message and sees that
verifySignature(pki, ⟨echo, v, view⟩, σ) = 1 since σ is

i’s signature on that message. From the Complete-
ness property of PE, for every nonfaulty j eventu-
ally PEVerifyj,view((k, v, πkey), πelection) terminates,
at which point j checks the conditions for sending an
equivocate message in line 13. By assumption, party
j doesn’t send an equivocate message, so it adds an
element to echoes. After adding such an element for
every nonfaulty party, j sees that |echoes| ≥ n − f
and it sends a key message. From Lemma 5, every
key message sent by a nonfaulty party is correct. A
nonfaulty party also adds a signature σ for the mes-
sage ⟨key, v, view−1⟩ to every key message. Therefore
every nonfaulty party receives those messages and
adds at least n−f elements to keys. Following similar
logic every nonfaulty party then sends a lock message,
and every nonfaulty party adds at least n−f elements
to locks. At that point, every nonfaulty party sends a
commit message in view−1 and terminates. However,
that is a contradiction to the conditions of the lemma,
completing the proof. □

Lemma 9. If a nonfaulty party i inputs
(k, v, πkey) to PEi,view, then no party sends a mes-
sage ⟨blame, k, v, πkey, πelection, l, lv, πlock, view⟩
such that lockCorrect(l, lv, πlock) = 1 and
view ≤ k or k < l.

Proof Assume by way of contradiction some party j
sends such a message. First of all, note that i only
adds a tuple (k, v, πkey) to suggestions if k < view.
Then, when choosing the tuple with the maximal k,
it chooses one with k < view. Every nonfaulty party
inputs a tuple (k, v, πkey) with k ≥ 0, and thus if
l = 0, k ≥ l. Otherwise, j sent a message with some
l > 0. Now, if lockCorrect(l, lv, πlock) = 1, then πlock
contains n− f pairs (σ, j) with different values j ∈ [n]
such that verifySignature(pkj , ⟨key, lv, l⟩, σ) = 1. Out
of those signatures, at least f + 1 are from non-
faulty parties. Let the set of those nonfaulty parties
be I. Nonfaulty parties only send such a signature
in key messages. Before sending a key message, each
one of the parties m ∈ I sets its local keym field
to l. Note that nonfaulty parties only increase their
local keym fields, so from this point on, keym ≥ l
for every m ∈ I. Now, before i inputs (k, v, πkey) to
PEi,view, it sees that |suggestions| ≥ n − f . Party
i only adds elements to suggestions after receiving
the first ⟨suggest, k, v, πkey, view⟩ message from each
party. Therefore, i adds tuples to suggestions as a
result of receiving such a message from at least n− f
parties. There are f + 1 parties in I, and i received
suggest messages from n − f different parties, so at
least one of the parties from which it received suggest
messages is in I. Let m ∈ I be that party. Party m

Springer Nature 2021 LATEX template

28 ADKG

sends its local fields keym, key valm and key proofm
in its suggest message. As shown above, keym ≥ l, so
when computing which value to input to PEi,view, i
has at least one tuple (k, v, πkey) ∈ suggestions such
that k ≥ l. When choosing which value to input, i
takes the tuple with the largest value k, so its choice
(k, v, πkey) must have k ≥ l, completing the proof.

□

Lemma 10. If all nonfaulty parties start view
and every nonfaulty i has input xi such that
validate(xi) = 1, then with constant probability all
nonfaulty parties terminate during view.

Proof If at any point some nonfaulty party terminates,
it must have sent a commit message to all parties.
From Lemma 5 that message is correct, so all non-
faulty parties receive the message and terminate as
well. From this point on we will not deal some of
the parties terminating early in view and some not
terminating at all. The first thing that a nonfaulty
party does in view is calling viewChange and send-
ing a suggest message to every party with the local
fields keyi, key vali and key proofi. From Lemma 7,
keyCorrect(keyi, key vali, key proofi) = 1. Therefore,
when a nonfaulty party j receives that message, it
adds a tuple to suggestions. After receiving such
a message from every nonfaulty party, j finds that
|suggestions| ≥ n − f , and it starts participating in
PEi,view after choosing a tuple from suggestions as
an input. Before a nonfaulty party sends a blame or
an equivocate message it must either output a value
from PEi,view, or find that PEVerifyi,view terminates
for some value. Both of those things only happen after
completing PEi,view. In other words, all nonfaulty par-
ties participate in PE and wait for it to terminate
before any of them proceed to the next view. Before
adding a tuple (k, v, πkey) to suggestions, every non-
faulty i checks that keyCorrect(k, v, πkey) = 1, and
since all nonfaulty parties participate in the PE pro-
tocol with inputs they chose from suggestions, their
input is externally valid. Combining those two obser-
vations, from the Termination of Output property of
PE, all nonfaulty parties eventually output some value
when running PE. Now the lemma is proven by prov-
ing a closely related claim. If in view the binding
value x∗ of PE as defined in the α-Binding prop-
erty of the PE protocol is the input of some party
that acted in a nonfaulty manner when it started the
PE protocol, then all parties terminate during view.
From the α-Binding property of PE this event happens
with probability α (α = 1

3 in our implementation),
so all parties terminate during view with a constant
probability.

If the the binding value is indeed the input of a
party that acted in a nonfaulty manner when it started
PE, then from the Binding Verification property of
PE there is exactly one tuple (k, v, πkey) for which it
is possible that PEVerifyi,view((k, v, πkey), πelection)
terminates for a nonfaulty i. This prevents a non-
faulty party from sending an equivocate message
in line 14 because only tuples with those values
could be in echoes. In addition, this prevents a
nonfaulty i from sending an equivocate message in
line 10 because then if the tuples (k, v, πkey) and
(k′, v′, π′

key) are different, PEVerifyi,view would not
terminate for at least one of the tuples. If the afore-
mentioned event take place, from the Completeness
and Binding Verification properties of PE every non-
faulty party outputs the tuple (k, v, πkey), with some
proof πelection, such that (k, v, πkey) was the input of
a nonfaulty party j to PE. We would now like to show
that no nonfaulty party i sends a blame message in
view. Before sending a blame message in line 7, i
makes sure that view ≤ k ∨ k < locki. Also, from
Lemma 7, lockCorrect(locki, lock vali, lock proofi) =
1. This means that if i sends a
⟨blame, k, v, πkey, πelection, l, lv, πlock, view⟩ message
in line 7 it does so with view ≤ k ∨ k < locki and
lockCorrect(locki, lock vali, lock proof) = 1. Since
(k, v, πkey) was some nonfaulty party’s input to the PE
protocol, this contradicts Lemma 9. Similarly, no non-
faulty party i sends a blame message in line 4, because
before doing so it checks that the same conditions hold
and that PEVerifyi,view((k, v, πkey), πelection) termi-
nates. As stated above, PEVerify only terminates on
the tuple (k, v, πkey) which is some nonfaulty party’s
input to PEVerify, reaching the same contradiction.

Nonfaulty parties only proceed to view + 1 after
sending either a blame or an equivocate message,
so no nonfaulty party proceeds to view + 1. Since
no nonfaulty party sends a blame message, each
one sends an ⟨echo, k, v, πkey, πelection, σ, view⟩ mes-
sage after completing the PEi,view call, with σ being
a signature on the message ⟨echo, v, view⟩. When
receiving the message, every nonfaulty party j sees
that σ is indeed a signature on ⟨echo, v, view⟩.
Then, from the Completeness property of PE,
PEVerifyj,view((k, v, πkey), πelection) eventually termi-
nates. Since j doesn’t send an equivocate message
in view, it then adds a tuple to echoes. After such
a tuple is added for every nonfaulty party, j sees
that |echoes| = n − f and it sends a message
⟨key, v, πkey, σ, view⟩ to all parties with σ being a sig-
nature on ⟨key, v, view⟩. From Lemma 5, that message
is correct. Therefore, when receiving that message,
every nonfaulty party sees that the message is correct
and that σ is a signature on ⟨key, v, view⟩, and adds a
pair (σ, i) to keys. After adding such a pair for every

Springer Nature 2021 LATEX template

ADKG 29

nonfaulty party, j has |keys| = n − f and it sends
a lock message. Using identical arguments, eventually
every nonfaulty party sends a commit message and
terminates if it hasn’t done so earlier. □

Theorem 3. Protocol NWH is a Validated Asyn-
chronous Byzantine Agreement protocol resilient
to f < n

3 Byzantine parties.

Proof Each property is proven individually.
Correctness. If some nonfaulty party out-

puts the value v in view, it first sends a
⟨commit, v, π, view⟩ message. Let view be the first
view (i.e. the one with the lowest value) such that
some nonfaulty party sends a ⟨commit, v, π, view⟩
message. First of all, from Lemma 5, nonfaulty
parties only send correct commit messages, so
⟨commit, v, π, view⟩ is a correct commit message.
Now observe some message ⟨key, v′, π′, σ′, view′⟩ such
that keyCorrect(view′, v′, π′) = 1 and view′ ≥ view.
Since keyCorrect(view′, v′, π′) = 1, π′ contains n −
f pairs (σ, j) with different values j ∈ [n] such
that verifySignature(pkj , ⟨echo, v′, view′⟩, σ) = 1. Non-
faulty parties only send such a signature σ in an echo
message. From Lemma 6, in any view′ ≥ view there
exist f + 1 nonfaulty parties that never send an echo
message with any value v′ ̸= v. Out of the n− f par-
ties whose signatures are in π′, at least one is from
one of the f +1 parties that never sends an echo mes-
sage with any value v′ ̸= v in view′. Therefore, it must
be the case that v′ = v. Now, assume some nonfaulty
party i sends a commit message in view′. Before doing
so it receives n− f correct lock messages, at least one
of which was sent by a nonfaulty party. Before sending
that lock message, the nonfaulty party receives n− f
correct key messages. As discussed above, that key
message has the value v. From Lemma 5, i sends a cor-
rect commitmessage because it is nonfaulty, and every
correct commit message sent in view′ has the same
value v. Finally, after sending the commit message,
i outputs v and terminates. Therefore, all nonfaulty
parties that output some value must output the value
v.

Validity. If some nonfaulty party i outputs a value
v, it first sends a ⟨commit, v, π, view⟩ message. As dis-
cussed in the proof of the Correctness property, at
least n− f parties sent key messages in view with the
value v as well. At least one of those parties is non-
faulty. Party i only sends a ⟨key, v, π, σ⟩ message after
receiving an ⟨echo, k, v, πkey, πelection, σ, view⟩ mes-
sage such that PEVerifyi,view((k, v, πkey), πelection)
terminates. From the External Validity property of
PE, this means that keyCorrect(k, v, πkey) = 1. Now, if

validate(v) = 0, keyCorrect(k, v, πkey) = 0, so it must
be the case that validate(v) = 1.

Termination. If at any point a nonfaulty party
terminates it sends a ⟨commit, v, π, view⟩ message.
From Lemma 5 the message is correct, so all nonfaulty
parties eventually receive the message and terminate
as well. Now assume that every nonfaulty party i has
an input xi such that validate(xi) = 1 and that all
nonfaulty parties participate in the protocol. Observe
some view, and assume no nonfaulty party terminated
during view′ for any view′ < view. In that case, from
Lemma 8 all nonfaulty parties eventually reach view.
Then, from Lemma 10, with constant probability all
nonfaulty parties terminate during view. In order for
a nonfaulty party not to terminate by view, that con-
stant probability event must not have happened in
each one of the previous views. The nonfaulty parties
run the PE protocol with independent randomness in
each view and thus for any adversary’s strategy, there
is an independent constant probability of terminating
in each view. Therefore, the probability of reaching a
given view decreases exponentially with the view num-
ber and thus approaches 0 as view grows. In other
words, all nonfaulty parties almost-surely terminate.

Quality. Assume some nonfaulty party completed
the protocol, otherwise the claim holds trivially. This
means that it at least completed the PE protocol in
view = 1. From the α-Binding property of PE, with
probability α or greater the binding value is the input
of some party that behaved in a nonfaulty manner
when starting PE. Let i be that party and (k, v, π)
be its input to the protocol. Using the same argu-
ments as the ones made in Lemma 10, in that case
no nonfaulty party sends a blame or an equivocate
message during view. Then, following similar logic
to the one in Lemma 10, every nonfaulty party that
hasn’t committed due to a message from an earlier
view eventually terminates after sending a commit
message with the value v proposed by party i. No
party can commit due to a message from an ear-
lier view because there is no earlier view. Therefore,
every nonfaulty party that participates in view and
outputs a value from PE, terminates and outputs
the value v that i proposed. Before sending its pro-
posal, i sees that |suggestions| = n − f . Party i
only adds a tuple to suggestions after receiving the
first ⟨suggest, k, v, π, view⟩ message from each party
j ∈ [n]. Each of those tuples must have k < view = 1.
At that point no nonfaulty party updated its keyj ,
key valj and key proofj fields, so they send messages
with k = 0. Since at least one of the n − f mes-
sages was sent by a nonfaulty party, there exists some
(k, v, π) ∈ suggestions such that k = 0, and as shown
above there is no such tuple with k > 0. Therefore,
when computing its input to PEi,1, i sees that the

Springer Nature 2021 LATEX template

30 ADKG

tuple with maximal k in suggestions has k = 0. Party
i then uses (0, xi,⊥) as input to PE, with xi being its
input to the NWH protocol. As shown above, with con-
stant probability all nonfaulty parties that start view
output xi, completing the proof. □

6 Asynchronous Distributed
Key Generation

The protocol is a simple construction of an Asyn-
chronous Distributed Key Generation protocol
using a Validated Asynchronous Byzantine Agree-
ment protocol. Parties start off by sending each
other DKG shares. After receiving such a share
from at n− f parties, every party aggregates the
shares, and inputs the aggregated DKG transcript
into the NWH protocol. The protocol is called with
an external validity function checking whether a
DKG transcript is valid. After completing the
NWH protocol with some output dkg, all parties
complete the ADKG protocol, outputting the same
value. From the properties of the NWH protocol,
all parties eventually output the same DKG tran-
script, and since it must be externally valid, that
transcript verifies.

Algorithm 14 ADKGi

1: shares← ∅ ▷ shares is a multiset
2: for all j ∈ [n] do
3: sharei,j ← DKGSh(ski)
4: send ⟨sharei,j⟩ to party j
5: end for
6: upon receiving the first ⟨sharej,i⟩ message

from j, do
7: if DKGShVerify(pkj , sharej,i) = 1 then
8: shares← shares ∪ {sharej,i}
9: if |shares| = n− f then

10: prop← DKGAggregate(shares)
11: call NWH with input prop and

external validity function DKGVerify
12: end if
13: end if
14: upon NWH terminating with output dkg, do
15: output dkg and terminate

Theorem 4. Protocol ADKG is an Asynchronous
Distributed Key Generation protocol resilient to

f < n
3 Byzantine parties for threshold signature

schemes with group elements as public keys.

Proof Each property is proven individually.
Security Preservation. We see that if

(DKGSh,DKGShVerify,DKGAggregate,DKGVerify)
satisfies security preservation with regard to a concur-
rent adversary for some threshold application, then
ADKG also satisfies security preservation for the same
application. Indeed, should our adversary expect to
receive an honest DKG share at any point in the
protocol, then this can be modelled as an adversary
making concurrent requests to a DKGSh oracle.

Correctness. Follows imme-
diately from the correctness of
(DKGSh,DKGShVerify,DKGAggregate,DKGVerify).

Agreement. If two nonfaulty parties i, j complete
the protocol with the outputs dkg, dkg′, then they
first completed the NWH protocol with that same out-
put. By the Agreement property of the NWH protocol,
dkg = dkg′. Furthermore, from the Validity property
of the NWH protocol, DKGVerify(dkg) = 1.

Termination. If all nonfaulty parties participate
in the protocol, they all send a share of a DKG to all
parties. Every nonfaulty party i then receives a mes-
sage ⟨sharej,i⟩ from every nonfaulty party j, sees that
DKGShVerify(pkj , sharej,i) = 1 and adds it to shares.
After adding such a value for every nonfaulty party, i
sees that |shares| = n−f , it aggregates the shares to a
single proposal, and starts participating in NWH with
that proposal. Note that prop is an aggregation of n−f
shares sharej,i such that DKGShVerify(pkj , sharej,i) =
1, and thus DKGVerify(prop) = 1. All nonfaulty par-
ties use DKGVerify as their external validity function,
so every nonfaulty party has an externally valid input.
Therefore, from the Termination property of NWH,
all parties almost-surely complete NWH, output some
value, and terminate.

□

6.1 On Constructing an A-DKG
with Field Element Private Keys

The work of Das et al. [37] achieves an A-DKG
protocol with a field element as a private key.
Unfortunately, this construction requires O(log n)
rounds in expectation. In this section we show
how to construct an A-DKG protocol with O(1)
expected rounds which has a field element as a
private key. In broad strokes, in their construc-
tion each party acts as a dealer and shares a
random value using an Asynchronous Complete
Secret Sharing protocol (ACSS). They then agree

Springer Nature 2021 LATEX template

ADKG 31

on at least f + 1 invocations of the ACSS proto-
col which at least one nonfaulty party completed.
After that, all nonfaulty parties wait to complete
the agreed upon ACSS invocations (which they
are guaranteed to do), and use them to derive the
DKG to be used. In total, the protocol requires
O(λn3) words to be sent and O(log n) expected
rounds. The only part of the protocol that actu-
ally requires O(log n) expected rounds is agreeing
on the set of f + 1 completed ACSS invocations,
and the rest of the protocol requires a constant
number of rounds. As such, in Algorithm 15, we
suggest an alternative way for agreeing on f + 1
such completed ACSS invocations, using the NWH
protocol. For the purposes of the discussion below,
it is enough to know that all nonfaulty parties
complete all ACSS invocations with a nonfaulty
dealer. In addition, if some nonfaulty party com-
pletes an ACSS invocation with a certain dealer,
all nonfaulty parties are guaranteed to eventually
complete it as well.

As stated above, every nonfaulty party even-
tually completes the ACSSj invocation for every
nonfaulty j. Therefore, eventually every nonfaulty
party i will send a ⟨request, indicesi⟩ message to
all parties such that indicesi includes the indices
of parties j for which i completed ACSSj . Every
other nonfaulty party will eventually complete
ACSSj for every such j and reply with a signature
message containing a signature on the set indicesi.
After receiving a verifying signature from f + 1
parties, i will participate in NWH with the input
(indicesi, sigsi) such that sigsi includes f + 1 pairs
(j, σj,i) for which SignVerify(pkj , indicesi, σj,i) =
1. In other words, every nonfaulty party even-
tually participates in NWH with an externally
valid input. Finally, every nonfaulty party even-
tually completes NWH with the same externally
valid pair (indices, sigs), and outputs indices. Since
(indices, sigs) is externally valid, indices contains
f+1 indices and sigs contains verifying signatures
from f + 1 parties on the set indices. At least one
of those parties is nonfaulty, and nonfaulty parties
only send such a message if they completed ACSSj
for every j ∈ indices. In other words, all nonfaulty
parties output the same set of f + 1 indices such
that they will all eventually complete ACSSj , as
required.

Note that in the above explanation, we
assumed that parties will continue sending
signature messages even after completing the

ACSS− Agree protocol in order to make sure that
they all start participating in the NWH proto-
col. In order to allow parties to stop responding
to messages after outputting values, a standard
termination-gadget can be added as well.

In the described ACSS− Agree protocol, each
party calls NWH once on inputs of size O(λn),
requiring O(λn3) words to be sent in expecta-
tion and O(1) rounds in expectation. In addition,
the protocol has a constant number of rounds in
which each party sends a messages of size O(λn)
words to every other party, requiring another
O(λn3) words and O(1) rounds. Combined with
the O(1) expected rounds and O(λn3) expected
words required by the NWH protocol, our protocol
achieves the desired expected complexity of O(1)
expected rounds and O(λn3) expected words.

7 Efficiency of our Protocols
Assuming Concrete
Cryptography Algorithms

In this section we make suggestions as to which
cryptography algorithms to instantiate our Broad-
cast, Gather, Proposal Election, No Waitin’ Hot-
Stuff, and A-DKG protocols with. We then anal-
yse the efficiency of our protocols under the
suggested cryptography algorithms. Unlike in the
introduction we will keep track of a cryptographic
security parameter λ which is the number of bits
required to ensure the cryptographic algorithm is
secure against computational adversaries.

7.1 Broadcast

All our protocols rely on the use of an asyn-
chronous broadcast protocol. A recent work by
Das et al. shows a construction of a Reliable
Broadcast protocol requiring O(nm+ λn2) words
to be sent for messages of size m. For the sake
of completeness, this work also provides a slight
adaptation to the protocol of Cachin and Tessaro
[15] in Appendix A. Using Merkle-Trees for vector
commitments, this protocol, we can instantiate a
broadcast protocol for a message ofm words where
the total number of words sent in all messages is
O(n2 log(n)λ+m · n).

Merkle trees have commitment size c = O(λ),
opening proof size p = O(log(n)λ), and concretely
are very fast to prove and verify. Theoretically it is

Springer Nature 2021 LATEX template

32 ADKG

Algorithm 15 ACSS− Agree

1: indicesi ←⊥, sigsi ←⊥
2: uniformly sample si ∈ F and participate in ACSSi as a dealer sharing si
3: participate in the ACSSj invocations with j as dealer for every party j ∈ [n]
4: upon completing the ACSS invocations initiated by f + 1 different dealers, do
5: indicesi ← {j ∈ [n]|ACSSj has been completed}
6: send ⟨request, indicesi⟩
7: upon receiving the first ⟨request, indicesj⟩ message from j, do
8: upon completing ACSSk for every k ∈ indicesk, do
9: σi,j ← Sign(ski, indicesj)

10: send ⟨signature, σi,j⟩ to j

11: upon receiving the first ⟨signature, σj,i⟩ message from j, do
12: if SignVerify(pkj , indicesi, σj,i) = 1 then
13: sigsi ← sigsi ∪ {(j, σj , i)}
14: end if
15: upon |sigsi| = f + 1, do
16: participate in NWH with input (indicesi, sigsi) and external validity function ACSS− Validate

17: upon NWH terminating with output indices, sigs, do
18: output indicesi and terminate

Algorithm 16 ACSS− Validate(x)

1: parse x as indices, sigs
2: if indices isn’t a set of f + 1 indices in [n] then
3: return 0
4: end if
5: if sigs isn’t a set of f + 1 pairs (j, σj) such that j ∈ [n] and σj is a signature then
6: return 0
7: end if
8: if ∃(j, σj), (j, σ

′
j) ∈ sigs, s.t.σj ̸= σ′

j then
9: return 0

10: end if
11: if ∃(j, σj) s.t. Verify(pkj , indices, σj) = 0 then
12: return 0
13: end if
14: return 1

possible to reduce the opening proof size down to
O(1) using SNARKs, but this comes at the cost of
a trusted setup and concretely high proving time.
The protocol requires a constant number of rounds
(3 overall). The following theorem is proven in
Appendix A.2.

Theorem 5. To broadcast a message M of size
m, the total number of words sent in all messages
is O(n2·(c+p)+m·n) words, where c is the number
of words in a commitment and p is the number of
words in a proof.

7.2 Verifiable Gather

The Gather protocol from Section 3 relies solely on
the existence of a broadcast protocol. We instan-
tiate Gather such that the total number of words
sent overall is O(λn3 +mn2).

We use the broadcast protocol evaluated in
Section 7.1 which has complexity b(m) = O(λn2+
m · n). Using the result from Theorem 6:

O(nb(m)) = O(λn3 +m · n2).

Springer Nature 2021 LATEX template

ADKG 33

The implementation in this paper requires 3
broadcast rounds, and each one of those requires
a constant number of rounds. Therefore, overall
the Gather protocol requires a constant number of
rounds.

Theorem 6. If protocol Gather is run with inputs
of size m then O(nb(m)) words are sent overall
where b(m) is the complexity of a broadcast for m
words.

Proof Overall in the protocol, each party broadcasts
its input once and vectors of size n = O(m) twice.
There are O(n) such broadcasts throughout the proto-
col, so overall the number of words sent is O(nb(m)).

□

7.3 Proposal Election

The PE protocol from Section 4 relies on the exis-
tence of a gather protocol and a threshold VRF.
We instantiate PE such that the total number of
words send overall is O(λn3 +mn2).

We use the broadcast protocol evaluated in
Section 7.1 which has complexity b(m) = O(λn2+
m·n). In addition, we use the gather protocol eval-
uated in Section 7.2 which has complexity g(m) =
O(λn3+m·n2). For the threshold VRF we suggest
the use of the threshold VUF by Gurkan et al. [9].
In the random oracle model we can then instan-
tiate a threshold VRF by hashing the function
evaluation. This threshold VRF has ds = O(λn)
sized dkg shares, d = O(λn) sized dkgs, es =
O(λ) sized evaluation shares (with their respective
proofs), and e = O(λ) sized evaluations. Using the
result from Theorem 7

O(n3 · es + n2ds + g(m+ d) + b(n)) =

= O(n3 · λ+ n2λn+ n3λ+ (m+ λn) · n2 + λn3+

+ n3) = O(λn3 +mn2).

The implementation in this paper requires two
rounds of point-to-point messages, as well as a sin-
gle Gather round and a single broadcast round.
Both the Gather and broadcast protocols require
a constant number of rounds, so this yields a
constant-round PE protocol.

Theorem 7. If protocol PE is run with inputs of
size m then O(n3 ·es+n2ds+g(m+d)+b(n)) words

are sent overall, where g(m) is the complexity of
a gather for m words, b(m) is the complexity of a
broadcast for m words, ds is the size of the DKG
shares, d is the size of the DKGs, and es is the
size of the VRF evaluation shares (and proofs).

Proof Every party starts the protocol by sending DKG
shares of size O(ds) to every other party, totalling
in O(n2ds) words overall. Afterwards, all parties par-
ticipate in a Gather protocol with inputs of size
O(m + d) which requires a total of O(g(m + d))
words to be sent. Following that, parties broadcast
sets containing O(n) indices, each requiring a single
word. Overall, this requires O(b(n)) words to be sent.
Finally, every party i sends messages with an index,
an evaluation share, and a proof to every party. This
is done whenever i outputs a set X with a tuple
(k, (propk, vrf dkgk)) from the GatherVerify protocol
such that (k, (propk, vrf dkgk)) ∈ X /∈ start evali.
Immediately after sending such a message, i updates
start evali to contain X. As shown in Lemma 3, there
is only one such tuple for every k ∈ [n] in start evali,
so i sends no more than n such messages. Therefore,
this requires a total of O(n3) messages, each contain-
ing O(es) words. Summing all of those terms gives the
result. □

7.4 No Waitin’ HotStuff

The NWH protocol from Section 5 relies on the
existence of a proposal election protocol and a
signature scheme. We instantiate NWH such that
the expected total number of words sent overall is
O(λn3+mn2). The below theorem shows that the
total number of words per view is O(λn3 +mn2),
and that the total expected number of views is
O(1), resulting in an expected O(λn3+mn2) word
complexity overall. The theorem also shows that
each view consists of a constant number of rounds,
resulting in a constant expected number of rounds
overall.

We use the PE protocol evaluated in
Section 7.3 which has complexity p(m) = O(λn3+
mn2). For the signature scheme we suggest the use
of Schnorr signatures which have size s = O(λ).
Using the result from Theorem 8:

O(sn3 +mn2 + p(m)) =

= O(n3 · λ+mn2 + λn3 +mn2) =

= O(λn3 +mn2).

Springer Nature 2021 LATEX template

34 ADKG

Theorem 8. If protocol NWH is run with inputs
of size m using the PE protocol described in
Section 4, then all nonfaulty parties terminate in
O(1) expected views, where each view consists of a
constant number of rounds. In addition, the total
number of words sent in each view is O(sn3 +
mn2 + p(m)) where p(m) is the complexity of a
proposal election for O(m) words and s is the size
of the signatures.

Proof As shown in the proof of the Termination prop-
erty of the protocol, there is a constant probability α
that all nonfaulty parties terminate in view or before
it for any one view. Note that when following the proof
of the Termination property, the proof of Lemma 10
can actually be used to show that with constant prob-
ability no nonfaulty party will ever reach a late view.
Those probabilities are independent, and thus the
number of required views is described by a geometric
random variable. From well known properties of such
variables, the expected number of views required is 1

α ,
which is constant.

In each view all nonfaulty parties send a con-
stant number of all-to-all messages in the suggest,
echo, key, lock and commit rounds, totalling in O(n2)
messages overall (and possibly blame and equivocate
messages). Each message contains m words containing
a value to be agreed upon, a constant number of addi-
tional words and a constant number of proofs. Each
proof contains O(n) signatures and indices of parties.
Note that the proof output in our implementation of
the PE protocol also consists of O(n) indices of par-
ties. Overall, when not counting the complexity of the
PE protocol, each view in the NWH protocol requires
O(n3+(m+sn)n2) = O(sn3+mn2) words. Our result
is obtained when we add p(m) the complexity of the
PE protocol.

Each view consists of a round of point-to-
point communication for sending suggest, echo, key,
lock and commit messages (and possibly blame or
equivocate messages). In addition, all parties call the
PE protocol once per view. In the implementation
provided above, the PE protocol requires a constant
number of rounds, resulting in a constant number of
rounds per view. □

7.5 Asynchronous Distributed Key
Generation

The A-DKG protocol from Section 6 relies on
the existence of a Validated Asynchronous Byzan-
tine Agreement protocol and DKG algorithms
DKGSh, DKGShVerify, DKGAggregate, DKGVerify.

We instantiate A-DKG such that the expected
total number of words send overall is O(λn3).

We use the NWH protocol evaluated in
Section 7.4 which has expected word complexity
v(m) = O(λn3 + n2 ·m) and the DKG algorithms
DKGSh, DKGShVerify, DKGAggregate, DKGVerify
from the synchronous DKG of Gurkan et al. [9].
This DKG has Ds = O(λn) sized dkg shares and
D = O(λn) sized dkgs. Using the result from
Theorem 8:

O(n2Ds + v(D)) =

= O(n3 · λ+ λn3 + n2 · (λn)) =
= O(λn3).

The protocol requires a single round of point-to-
point communication for sending DKG shares, and
a single call to the NWH protocol. Since the NWH
protocol requires a constant expected number of
rounds, so does the ADKG protocol.

Theorem 9. If protocol ADKG is run using the
NWH protocol described in Section 5, then all non-
faulty parties terminate in O(1) expected views. In
addition, the total number of words sent in each
view is O(n2Ds + v(D)) where v(m) is the com-
plexity of a NWH protocol for O(m) words, DS is
the size of the DKG shares and D is the size of
the DKGs.

Proof In the beginning of the protocol, all parties send
a DKG share of size O(DS) to all parties, requiring a
total of O(Dsn

2) words. The parties then call NWH
with an aggregated DKG of size O(D) words. The
NWH protocol requires an expected v(D) words to be
sent overall, which gives us our result. □

References

[1] Kokoris Kogias, E., Malkhi, D., Spiegel-
man, A.: Asynchronous Distributed Key
Generation for Computationally-Secure
Randomness, Consensus, and Threshold
Signatures. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer
and Communications Security. CCS’20,
pp. 1751–1767. Association for Computing
Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3372297.3423364.
https://doi.org/10.1145/3372297.3423364

https://doi.org/10.1145/3372297.3423364

Springer Nature 2021 LATEX template

ADKG 35

[2] Syta, E., Jovanovic, P., Kokoris-Kogias, E.,
Gailly, N., Gasser, L., Khoffi, I., Fischer,
M.J., Ford, B.: Scalable Bias-Resistant Dis-
tributed Randomness. In: 38th IEEE Sympo-
sium on Security and Privacy (2017)

[3] Abraham, I., Malkhi, D., Spiegelman,
A.: Asymptotically Optimal Validated
Asynchronous Byzantine Agreement. In:
Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pp.
337–346. ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3293611.3331612.
https://doi.org/10.1145/3293611.3331612

[4] Kokoris-Kogias, E., Alp, E.C., Gasser, L.,
Jovanovic, P., Syta, E., Ford, B.: CALYPSO:
Private Data Management for Decentralized
Ledgers. Cryptology ePrint Archive, Report
2018/209. To appear in VLDB 2021 (2018)

[5] Kate, A., Huang, Y., Goldberg, I.: Dis-
tributed Key Generation in the Wild. Cryp-
tology ePrint Archive, Report 2012/377.
https://eprint.iacr.org/2012/377 (2012)

[6] Feldman, P.N.: Optimal algorithms for
byzantine agreement. PhD thesis, Mas-
sachusetts Institute of Technology (1988)

[7] Canetti, R., Rabin, T.: Fast asyn-
chronous byzantine agreement with
optimal resilience. In: Proceedings of the
Twenty-Fifth Annual ACM Symposium
on Theory of Computing. STOC ’93,
pp. 42–51. Association for Computing
Machinery, New York, NY, USA (1993).
https://doi.org/10.1145/167088.167105.
https://doi.org/10.1145/167088.167105

[8] Abraham, I., Amit, Y., Dolev, D.: Opti-
mal resilience asynchronous approximate
agreement. In: Proceedings of the 8th
International Conference on Principles of
Distributed Systems. OPODIS’04, pp. 229–
239. Springer, Berlin, Heidelberg (2004).
https://doi.org/10.1007/11516798 17.
https://doi.org/10.1007/11516798 17

[9] Gurkan, K., Jovanovic, P., Maller, M., Meik-
lejohn, S., Stern, G., Tomescu, A.: Aggregat-
able Distributed Key Generation. Cryptology

ePrint Archive, Report 2021/005. https://
eprint.iacr.org/2021/005 (2021)

[10] Cachin, C., Kursawe, K., Petzold, F., Shoup,
V.: Secure and Efficient Asynchronous Broad-
cast Protocols. In: Kilian, J. (ed.) Advances
in Cryptology — CRYPTO 2001, pp. 524–
541. Springer, Berlin, Heidelberg (2001)

[11] Feldman, P., Micali, S.: An optimal prob-
abilistic protocol for synchronous byzantine
agreement. SIAM J. Comput. 26(4), 873–933
(1997)

[12] Backes, M., Datta, A., Kate, A.: Asyn-
chronous Computational VSS with Reduced
Communication Complexity. In: Dawson, E.
(ed.) Topics in Cryptology – CT-RSA 2013,
pp. 259–276. Springer, Berlin, Heidelberg
(2013)

[13] Dolev, D., Reischuk, R.: Bounds on infor-
mation exchange for Byzantine Agreement.
In: Proceedings of the First ACM SIGACT-
SIGOPS Symposium on Principles of
Distributed Computing - PODC '82, pp. 132–
140. ACM Press, New York, NY, USA (1982).
https://doi.org/10.1145/800220.806690.
https://doi.org/10.1145/800220.806690

[14] Bracha, G.: An asynchronous [(n - 1)/3]-
resilient consensus protocol. In: Proceedings
of the Third Annual ACM Symposium
on Principles of Distributed Computing,
pp. 154–162. Association for Computing
Machinery, New York, NY, USA (1984).
https://doi.org/10.1145/800222.806743.
https://doi.org/10.1145/800222.806743

[15] Cachin, C., Tessaro, S.: Asynchronous veri-
fiable information dispersal. In: Distributed
Computing, 19th International Conference,
DISC 2005, Cracow, Poland, September 26-
29, 2005, Proceedings, pp. 503–504. Springer,
Berlin, Heidelberg (2005)

[16] Bracha, G.: Asynchronous byzantine agree-
ment protocols. Inf. Comput. 75(2), 130–143
(1987)

https://www.ieee-security.org/TC/SP2017/papers/413.pdf
https://www.ieee-security.org/TC/SP2017/papers/413.pdf
https://doi.org/10.1145/3293611.3331612
https://eprint.iacr.org/2018/209
https://eprint.iacr.org/2018/209
https://eprint.iacr.org/2018/209
https://eprint.iacr.org/2012/377
https://doi.org/10.1145/167088.167105
https://doi.org/10.1007/11516798_17
https://eprint.iacr.org/2021/005
https://eprint.iacr.org/2021/005
https://doi.org/10.1145/800220.806690
https://doi.org/10.1145/800222.806743

Springer Nature 2021 LATEX template

36 ADKG

[17] Cachin, C., Kursawe, K., Shoup, V.: Ran-
dom Oracles in Constantinople: Practi-
cal Asynchronous Byzantine Agreement
Using Cryptography. Journal of Cryptology
18(3), 219–246 (2005). https://doi.org/10.
1007/s00145-005-0318-0

[18] Cachin, C., Kursawe, K., Lysyanskaya, A.,
Strobl, R.: Asynchronous verifiable secret
sharing and proactive cryptosystems. In:
Proceedings of the 9th ACM Conference on
Computer and Communications Security.
CCS ’02, pp. 88–97. Association for Comput-
ing Machinery, New York, NY, USA (2002).
https://doi.org/10.1145/586110.586124.
https://doi.org/10.1145/586110.586124

[19] Zhou, L., Schneider, F.B., Van Renesse,
R.: Apss: Proactive secret sharing in asyn-
chronous systems. ACM Trans. Inf. Syst.
Secur. 8(3), 259–286 (2005). https://doi.org/
10.1145/1085126.1085127

[20] Yin, M., Malkhi, D., Reiter, M.K., Gueta,
G.G., Abraham, I.: Hotstuff: Bft consensus
with linearity and responsiveness. In: Pro-
ceedings of the 2019 ACM Symposium on
Principles of Distributed Computing. PODC
’19, pp. 347–356. Association for Computing
Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3293611.3331591.
https://doi.org/10.1145/3293611.3331591

[21] Lu, Y., Lu, Z., Tang, Q., Wang, G.: Dumbo-
mvba: Optimal multi-valued validated
asynchronous byzantine agreement, revisited.
In: Proceedings of the 39th Symposium on
Principles of Distributed Computing. PODC
’20, pp. 129–138. Association for Computing
Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3382734.3405707.
https://doi.org/10.1145/3382734.3405707

[22] Abraham, I., Stern, G.: Information theo-
retic hotstuff. In: OPODIS. LIPIcs, vol. 184,
pp. 11–11116. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, Dagstuhl, Germany
(2020)

[23] Fischer, M.J., Lynch, N.A., Paterson, M.S.:
Impossibility of distributed consensus with
one faulty process. Journal of the ACM

32(2), 374–382 (1985). https://doi.org/10.
1145/3149.214121

[24] Ben-Or, M.: Another advantage of
free choice (extended abstract): Com-
pletely asynchronous agreement protocols.
In: Proceedings of the Second Annual
ACM Symposium on Principles of
Distributed Computing. PODC ’83,
pp. 27–30. Association for Computing
Machinery, New York, NY, USA (1983).
https://doi.org/10.1145/800221.806707.
https://doi.org/10.1145/800221.806707

[25] Patra, A., Choudhary, A., Pandu Rangan,
C.: Simple and efficient asynchronous byzan-
tine agreement with optimal resilience. In:
Proceedings of the 28th ACM Symposium on
Principles of Distributed Computing. PODC
’09, pp. 92–101. Association for Computing
Machinery, New York, NY, USA (2009).
https://doi.org/10.1145/1582716.1582736.
https://doi.org/10.1145/1582716.1582736

[26] Abraham, I., Dolev, D., Halpern, J.Y.: An
almost-surely terminating polynomial pro-
tocol for asynchronous byzantine agreement
with optimal resilience. In: Proceedings of
the Twenty-Seventh ACM Symposium on
Principles of Distributed Computing. PODC
’08, pp. 405–414. Association for Computing
Machinery, New York, NY, USA (2008).
https://doi.org/10.1145/1400751.1400804.
https://doi.org/10.1145/1400751.1400804

[27] Bangalore, L., Choudhury, A., Patra, A.:
Almost-surely terminating asynchronous
byzantine agreement revisited. In: Pro-
ceedings of the 2018 ACM Symposium on
Principles of Distributed Computing. PODC
’18, pp. 295–304. Association for Computing
Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3212734.3212735.
https://doi.org/10.1145/3212734.3212735

[28] Katz, J., Koo, C.: On expected constant-
round protocols for byzantine agreement.
Electron. Colloquium Comput. Complex.
13(028) (2006)

[29] Ben-Or, M., Canetti, R., Goldreich, O.:

https://doi.org/10.1007/s00145-005-0318-0
https://doi.org/10.1007/s00145-005-0318-0
https://doi.org/10.1145/586110.586124
https://doi.org/10.1145/1085126.1085127
https://doi.org/10.1145/1085126.1085127
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3382734.3405707
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/1582716.1582736
https://doi.org/10.1145/1400751.1400804
https://doi.org/10.1145/3212734.3212735

Springer Nature 2021 LATEX template

ADKG 37

Asynchronous secure computation. In: Pro-
ceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing. STOC
’93, pp. 52–61. Association for Computing
Machinery, New York, NY, USA (1993).
https://doi.org/10.1145/167088.167109.
https://doi.org/10.1145/167088.167109

[30] Ben-Or, M., Kelmer, B., Rabin, T.:
Asynchronous secure computations with
optimal resilience (extended abstract).
In: Proceedings of the Thirteenth Annual
ACM Symposium on Principles of Dis-
tributed Computing. PODC ’94, pp.
183–192. Association for Computing
Machinery, New York, NY, USA (1994).
https://doi.org/10.1145/197917.198088.
https://doi.org/10.1145/197917.198088

[31] Beerliová-Trub́ıniová, Z., Hirt, M.: Simple
and efficient perfectly-secure asynchronous
mpc. In: Proceedings of the Advances in Cry-
potology 13th International Conference on
Theory and Application of Cryptology and
Information Security. ASIACRYPT’07, pp.
376–392. Springer, Berlin, Heidelberg (2007)

[32] Hirt, M., Nielsen, J.B., Przydatek, B.:
Asynchronous multi-party computation with
quadratic communication. In: Aceto, L.,
Halldorsson, M.M., Ingolfsdottir, A. (eds.)
Automata, Languages and Programming —
ICALP 2008. Lecture Notes in Computer Sci-
ence, vol. 5126, pp. 473–485. Springer, Berlin,
Heidelberg (2008)

[33] Choudhury, A., Patra, A.: Optimally
resilient asynchronous mpc with linear com-
munication complexity. In: Proceedings
of the 2015 International Conference on
Distributed Computing and Networking.
ICDCN ’15. Association for Computing
Machinery, New York, NY, USA (2015).
https://doi.org/10.1145/2684464.2684470.
https://doi.org/10.1145/2684464.2684470

[34] Gagol, A., Lesniak, D., Straszak, D., Swi-
etek, M.: Aleph: Efficient Atomic Broadcast
in Asynchronous Networks with Byzantine
Nodes (2019)

[35] Das, S., Xiang, Z., Ren, L.: Asynchronous

data dissemination and its applications. In:
Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications
Security, pp. 2705–2721 (2021)

[36] Gao, Y., Lu, Y., Lu, Z., Tang, Q.,
Xu, J., Zhang, Z.: Efficient Asyn-
chronous Byzantine Agreement without
Private Setups. arXiv (2021). https:
//doi.org/10.48550/ARXIV.2106.07831.
https://arxiv.org/abs/2106.07831

[37] Das, S., Yurek, T., Xiang, Z., Miller, A.,
Kokoris-Kogias, L., Ren, L.: Practical
Asynchronous Distributed Key Generation.
Cryptology ePrint Archive, Paper 2021/1591.
https://eprint.iacr.org/2021/1591 (2021).
https://eprint.iacr.org/2021/1591

https://doi.org/10.1145/167088.167109
https://doi.org/10.1145/197917.198088
https://doi.org/10.1145/2684464.2684470
https://doi.org/10.48550/ARXIV.2106.07831
https://doi.org/10.48550/ARXIV.2106.07831
https://arxiv.org/abs/2106.07831
https://eprint.iacr.org/2021/1591
https://eprint.iacr.org/2021/1591

Springer Nature 2021 LATEX template

38 ADKG

A Background: Reliable
Broadcast for asynchronous
systems

Throughout our agreement protocol we shall use
a reliable broadcast protocol. It is possible to use
the recent reliable broadcast protocol of Das et
al. [35] to achieve an efficiency of O(λn2 + |M |n),
where |M | is the number of words in the broad-
casted messages and λ is a security parameter. For
completeness, we also provide a slight adaptation
of the reliable broadcast of Cachin and Tessaro
[15] which applies error correcting codes to Bracha
broadcast [16]. The broadcast protocol has com-
munication complexityO(n2 log(n)+|M |n). It can
tolerate up to f < n

3 Byzantine adversaries and
works in the asynchronous setting.

A.1 Construction

The protocol is extremely similar to Bracha’s
famous reliable broadcast protocol [16]. In
Bracha’s protocol, the dealer first sends a message
⟨value,m⟩ to all parties. After receiving the first
message from the dealer, every nonfaulty party
responds with an ⟨echo,m⟩ message. Then, after
receiving n − f ⟨echo,m⟩ messages, the parties
respond with a ⟨ready,m⟩ message. In addition, if
some party receives f+1 ⟨ready,m⟩ messages and
it did not send a ready message yet, it also sends a
⟨ready,m⟩ message. Finally, after receiving n− f
⟨ready,m⟩ messages, every party outputs m and
terminates.

Unfortunately, when sending a large message
M , every message sent by the parties contains all
of M , yielding large communication costs. Cachin
et al.’s clever approach to reducing the communi-
cation costs was employing error correction codes
in the form of Reed-Solomon encoding. Instead
of just sending the message M = (m0, . . . ,mℓ),
the dealer treats the message as coefficients of a
polynomial p(x) =

∑ℓ
k=0 mk · xk. Then for every

nonfaulty party j the dealer computes a set P j

of ⌈ ℓ+1
f+1⌉ values on the polynomial p(x). Then the

dealer commits to to the vector P = (P i, . . . , Pn),
and sends each party j the commitment com, the
set P j , and a proof πj that the j’th element in
the committed vector is P j . Then, similarly to
Bracha’s protocol, after receiving a message and
checking that the proof is correct, every party

sends an echo message with the same informa-
tion. Now, after receiving n − f echo messages
with the same commitment and correct proofs,
every nonfaulty party j should send a ready mes-
sage with the same commitment, with a set P j

values and with a proof πj . However, j might
not have received the set P j and the proof πj ,
so in order to be able to compute those values,
it interpolates the points in f + 1 of the sets it
received (k, yk) to a polynomial p of degree ℓ or
less, checks that the commitment is indeed a com-
mitment to a vector P = (P 1, . . . , Pn) such that
each P k is a set of ⌈ ℓ+1

f+1⌉ points on the polyno-

mial p(x), and then computes the set of points P j

that it should have received, as well as a proof
πj that the j’th element in the committed vec-
tor is P j for each one of its points. After doing
that, j sends a ready message with all of that
information to all parties. The exact same proce-
dure takes place when sending a ready message
after receiving f+1 ready messages (except at this
point it is not necessary to check that the com-
mitment is correct). Finally, after receiving n− f
ready messages, every nonfaulty party interpolates
the corresponding points to a polynomial p, com-
putes its coefficients m0, . . . ,mℓ, and outputs the
message M ′ = (m0, . . . ,mℓ).

Lemma 11. When a nonfaulty party tries to
interpolate ℓ+1 pairs in either the set echoes[com]
or readies[com], there are indeed ℓ + 1 pairs in
those sets. Furthermore, for any nonfaulty party,
if (x, y), (x′, y′) ∈ echoes[com] or (x, y), (x′, y′) ∈
readies[com], then either x ̸= x′ or (x, y) =
(x′, y′).

Proof The proof only deals with the set echoes[com].
The exact same arguments can be made for
readies[com]. A nonfaulty party tries to interpolate
ℓ + 1 pairs in the set echoes[com] when it finds that
|echoes[com]| ≥ (n− f) · c ≥ (f +1) · c, for c = ⌈ ℓ+1

f+1⌉.
Substituting c: |echoes[com]| ≥ (f + 1) · ⌈ ℓ+1

f+1⌉ ≥
(f+1)· ℓ+1

f+1 = ℓ+1. For the second part of the lemma,
a nonfaulty party only adds elements of the form
((j − 1) · c + k, pj,k) to echoes[com] such that k ∈ [c]
after receiving an echo message from party j. However,
for any pair j, j′ ∈ N such that j ̸= j′ and k, k′ ∈ [c],
it cannot be the case that (j−1) ·c+k = (j′−1) ·c+k′

because the distance between (j− 1) · c and (j′ − 1) · c
is at least c. □

Springer Nature 2021 LATEX template

ADKG 39

Algorithm 17 RB

Code for party i:

1: echoes[com]← ∅, readies[com]← ∅ for each possible commitment com
2: c← ⌈ ℓ+1

f+1⌉
3: if i = d then
4: define the ℓ-degree polynomial p as follows: p(x) =

∑ℓ
k=0 mi · xi

5: ∀j ∈ [n] Pj ← (p((j − 1) · c+ 1), . . . , p(j · c))
6: P ← (P1, . . . , Pn)
7: com← Commit(P)
8: for all j ∈ [n] do
9: πj ← OpenProve(P, j)

10: send party j the message ⟨value, com, Pj , πj⟩
11: end for
12: end if
13: upon receiving the first message of the form ⟨value, com, Pi, πi⟩ from d s.t. |Pi| = c, do
14: if OpenProve(com,Pi, i, πi) = 1 then
15: send ⟨echo, com,Pi, πi⟩ to every party
16: end if
17: upon receiving the first ⟨echo, com,Pj , πj⟩ messages from j s.t. |Pj | = c, do
18: if OpenVerify(com,Pj , j, πj) = 1 then
19: let Pj = (pj,1, . . . , pj,c)
20: echoes[com]← echoes[com] ∪ {((j − 1) · c+ k, pj,k)}k∈[c]

21: if i hasn’t sent a ready message and |echoes[com]| ≥ (n− f) · c then
22: interpolate ℓ+ 1 pairs from the set echoes[com] to a polynomial p′

23: ∀j ∈ [n] P ′
j ← (p′((j − 1) · c+ 1), . . . , p′(j · c))

24: P ′ ← (P ′
1, . . . , P

′
n)

25: if Commit(P ′) = com then
26: πi ← OpenProve(P ′, i)
27: send ⟨ready, com, P ′

i , πi⟩ to every party
28: end if
29: end if
30: end if
31: upon receiving the first ⟨ready, com, Pj , πj⟩ messages from j s.t. |Pj | c, do
32: if OpenVerify(com,Pj , j, πj) = 1 then
33: let Pj = (pj,1, . . . , pj,c)
34: readies[com]← readies[com] ∪ {((j − 1) · c+ k, pj,k)}k∈[c]

35: if i hasn’t sent a ready message and |readies[com]| ≥ (f + 1) · c then
36: interpolate ℓ+ 1 pairs from the set readies[com] to a polynomial p′

37: ∀j ∈ [n] P ′
j ← (p′((j − 1) · c+ 1), . . . , p′(j · c))

38: P ′ ← (P ′
1, . . . , P

′
n)

39: πi ← OpenProve(P ′, i)
40: send ⟨ready, com, P ′

i , πi⟩ to every party
41: end if
42: if |readies[com]| ≥ (n− f) · c then
43: interpolate ℓ+ 1 pairs from the set readies[com] to a polynomial p′

44: let m′
j be the j′th coefficient in p′ and let m′ = (m′

0, . . . ,m
′
ℓ)

45: output m′ and terminate
46: end if
47: end if

Springer Nature 2021 LATEX template

40 ADKG

Lemma 12. If two nonfaulty parties i, j
send the messages ⟨ready, com, Pi, πi⟩ and
⟨ready, com′, Pj , πj⟩, then com = com′.

Proof Let i′, j′ be the first nonfaulty parties that sent
messages with the values com, com′ respectively. Since
i′ is the first nonfaulty party to send such a message,
it couldn’t have received a ⟨ready, com,P k, πk⟩ mes-
sage from any party other than the f faulty parties
before sending such a message. The only other way
for i′ to send such a message is after finding that
|echoes[com]| ≥ (n − f) · c. Since i′ adds c elements
to echoes[com] after receiving an ⟨echo, com, Pk, πk⟩
from party k, this means it received such echo mes-
sages from n − f parties. Similarly, j′ received an
⟨echo, com′, Pk, πk⟩ message from n− f parties. Since
2(n− f) = n+(n− 2f) ≥ n+ f +1, i′ and j′ received
those ready messages from at least f+1 common par-
ties, and at least one of those parties is nonfaulty.
Note that if some nonfaulty party sends an echo mes-
sage it sends the same one to all parties, and thus
com = com′. □

Lemma 13. Let c = ⌈ ℓ+1
f+1⌉ be defined as it is

in the protocol. If a nonfaulty party i sends the
message ⟨ready, com, Pi, πi⟩, then |Pi| = c and
OpenVerify(com,Pi, i, πi) = 1.

Proof Party i only sends the message
⟨ready, com,Pi, πi⟩ if it finds that |echoes[com]| ≥
(n−f) ·c or if it finds that |readies[com]| ≥ (f +1) ·c.
This can only happen as a result of receiving mes-
sages of the form ⟨echo, com, Pj , πj⟩ from n − f
parties, or messages of the form ⟨ready, com,Pj , πj⟩
from f + 1 parties which pass verification tests. This
is because whenever i updates either of its echoes or
readies sets, it adds exactly c elements to them. If
i sent the message after receiving n − f echo mes-
sages, then i first interpolates ℓ + 1 of the points
(k, yk) ∈ echoes[com] to a polynomial p′, for every
j ∈ [n] computes P ′

j = (p((j − 1) · c+ 1), . . . , p(j · c)),
sets P ′ = (P ′

1, . . . , P
′
n), and then checks

that Commit(P ′) = com. It then computes
πi = OpenProve(P ′, i) and sends the mes-
sage ⟨ready, com,P ′

i , πi⟩. Note that in that
case, com is indeed a commitment to P ′, so
OpenVerify(com,P ′

i , i, πi) = 1. On the other hand,
if i sent the message after receiving f + 1 ready
messages, then at least one of those messages was
received from a nonfaulty party. Observe the first
nonfaulty party j that sent a ⟨ready, com,Pj , πj⟩
message. No nonfaulty party has sent a ready message
with the value com at the time j sent the message,

so it could have only received ready messages with
the value com from the f faulty parties, and thus
|readies[com]| ≤ f · c. This means that before sending
the message, it received n − f messages of the form
⟨echo, com, Pk, πk⟩, interpolated ℓ + 1 of the values
in its echoes[com] set to a polynomial p′, for every
l ∈ [n] computed P ′

l = (p′((l − 1) · c + 1), . . . p′(l · c))
and found that Commit((P ′

1, . . . , P
′
n)) = com. Since

interpolating ℓ + 1 points always yields a polyno-
mial of degree ℓ or less, this means that com is a
commitment to n sets of c points on the polyno-
mial p′, which is of degree ℓ or less. Now, before
sending the ready message, i receives f + 1 mes-
sages of the form ⟨ready, com,Pj , πj⟩ such that
∀OpenVerify(com,Pj , j, πj) = 1, and thus each such
Pj is a set of c points on the polynomial p′. More pre-
cisely, Pj = (p′((j−1)·c+1), . . . , p′(j ·c)). Party i then
interpolates ℓ+1 of the pairs (k, p′(k)) ∈ readies[com]
to a polynomial, and since p′ is of degree ℓ or less,
that polynomial must be p′. Finally, i computes
P ′
j = (p′((j − 1) · c+1), . . . , p′(j · c)) for every j ∈ [n],

P ′ = (P ′
1, . . . , P

′
n) and πi = (OpenProve(P ′, i)). After

computing those values, i sends ⟨ready, com,P ′
i , πi⟩

to all parties. Clearly, in this case
∣∣P ′

i

∣∣ = c. In addi-
tion, since com is a commitment to P ′, it is also the
case that OpenVerify(com,P ′

i , i, πi) = 1. □

Theorem 10. Protocol RB is a reliable broadcast
protocol resilient to f < n

3 Byzantine parties.

Proof We will prove each property separately. In the
proof, let c = ⌈ ℓ+1

f+1⌉, as defined in the protocol.
Validity. If the dealer is nonfaulty, it computes

p(x) =
∑ℓ

k=0 mk · xk, computes Pj = (p((j −
1) · c + 1), . . . p(j · c)) for every j ∈ [n] and sets
P = (P1, . . . Pn). Afterwards, the dealer computes
com = Commit(P) and then for every party j it
computes πj = OpenProve(P, j), and sends j the
message ⟨value, com, Pj , πj⟩. Every nonfaulty party
j that sends an echo message does so after receiv-
ing the previous message and sends the message
⟨echo, com, Pj , πj⟩. The nonfaulty parties send only
one echo message, so every nonfaulty party receives no
more than f messages of the form ⟨echo, com′, Pk, πk⟩
with com′ ̸= com. Assume by way of contradic-
tion some nonfaulty party sends a ready message
⟨ready, com′, P ′, π′⟩ with com′ ̸= com, and let j be
the first nonfaulty party that doe so. Since j is the
first nonfaulty party to send such a message, at the
time it sent the message it could have only received
⟨ready, com′, Pk, πk⟩ message with com′ ̸= com from
the f faulty parties. Note that i can either add exactly
c elements to echoes[com′] or no elements at all after
receiving each of those messages, and thus at that

Springer Nature 2021 LATEX template

ADKG 41

time
∣∣echoes[com′]

∣∣ ≤ f · c < (n − f) · c. This means
j must have sent the message as a result of finding
that |echoes[com]| ≥ (n − f) · c, which could only
happen after receiving ⟨echo, com′, Pj , πj⟩ messages
from n − f parties. However, n − f ≥ f + 1, so at
least one of those parties is nonfaulty. As discussed
above, every nonfaulty party that sends an echo mes-
sage sends one with the value com ̸= com′, reaching
a contradiction. Now observe some nonfaulty party i
that completes the protocol. Before doing so, it found
that for some com′ ∣∣readies[com′]

∣∣ ≥ (n − f) · c.
Party i adds exactly c elements to readies[com′] after
receiving ⟨ready, com′, Pj , πj⟩ from some party j that
passes some verification tests. As shown above, no
more than f such messages could have been sent for
any com′ ̸= com, in which case

∣∣readies[com′]
∣∣ ≤

c · f < (n − f) · c, so com′ = com. Any pair
((j − 1) · c+ k, pj,k) that i added to readies[com] was
added after finding that OpenVerify(com,Pj , j, πj) = 1
and parsing Pj as (pj,1, . . . , pj,c). Seeing as com is a
commitment to (Pi, . . . , Pn), it must be the case that
pj,k = p((j − 1) · c + k). Now, before completing the
protocol i interpolates ℓ + 1 points (m, p(m)) on the
polynomial p of degree ℓ or less, and thus it com-
putes p, then computes its coefficientsm0, . . . ,mℓ, and
finally outputs M = (m0, . . . ,mℓ).

Agreement. Let i, j be two nonfaulty par-
ties that output the messages M,M ′ respectively.
Before outputting those messages, i found that for
some value com |readies[com]| ≥ (n − f) · c.
This means that i received a message of the form
⟨ready, com,Pk, πk⟩ from n − f parties such that for
each one OpenVerify(com,Pk, k, πk) = 1. The same
can be said about j having received similar messages
with some value com′. Since 2(n−f) = n+(n−2f) ≥
n + f + 1, i and j received the aforementioned mes-
sages from at least f +1 common parties, at least one
of which is nonfaulty. Note that every nonfaulty party
sends only one ready message to all parties throughout
the protocol (with the same content), so com = com′.

Observe the first nonfaulty party i∗ that sent a
ready message with the commitment com. At that
time, i∗ could have received no more than f ready
messages with the commitment com, and as discussed
in the proof of the Validity property, this means that
|readies[com]| ≤ f · c < (f + 1) · c. This means
that i∗ decided to send the message after finding
that |echoes[com]| ≥ (n − f) · c, interpolated ℓ + 1
of the values (k, yk) ∈ echoes[com] to a polynomial
p′, computed P ′

k = (p′((k − 1) · c + 1), . . . , p′(k · c))
for every k ∈ [n]. It then set P ′ = (P ′

1, . . . , P
′
k) and

found that Commit(P ′) = com. Since interpolating
ℓ + 1 points always yields a polynomial of degree ℓ
or less, this means that com is a commitment to n
sets of c points on a polynomial of degree ℓ or less.

Now, before outputting M and M ′, i and j found
that |readies[com]| ≥ (n − f) · c. Again, as discussed
above, this could only happen after receiving n − f
messages of the form ⟨ready, com,Pk, πk⟩ such that
|Pk| == c and OpenVerify(com,Pk, k, πk) = 1. Pk

is a commitment to a vector of c points on p′, and
thus Pk = (p′((j − 1) · c + 1), . . . , p′(j · c)). There-
fore, after receiving those messages, both i and j add
((k−1)·c+l, p′((k−1)·c+l)) to readies[com] for every
l ∈ [c]. Those are the only values added to the set read-
ies, so for every (k, yk) ∈ readies[com], yk = p′(k).
Choosing any ℓ + 1 points (k, yk) ∈ readies[com],
both i and j then compute the same polynomial
p′(x) =

∑ℓ
i=0 m

′
i · x

i, and output the same message
(m′

0, . . . ,m
′
ℓ).

Termination. If the dealer is nonfaulty, it com-
putes p(x) =

∑ℓ
k=0 mk · xk and computes Pj =

(p((j − 1) · c + 1), . . . , p(j · c)) for every party j ∈
[n]. The dealer then sets P = (P1, . . . , Pn), com-
putes com = Commit(P) and then for every party j
it computes πj = OpenProve(P, j) and sends j the
message ⟨value, com, Pj , πj⟩. Every nonfaulty party

then receives that message, finds that
∣∣∣P j

∣∣∣ = c

and OpenVerify(com,Pj , j, πj) = 1 and sends an
⟨echo, com, Pj , πj⟩ message to all parties. Every non-
faulty eventually receives an ⟨echo, com, Pj , πj⟩ mes-
sage from every nonfaulty party, finds that the same
conditions hold, parses Pj as (pj,1, . . . , pj,c) and adds
((j − 1) · c + k, pj,k) to echoes[com] for every k ∈ [c].
After doing that, every nonfaulty party j finds that
|echoes[com]| ≥ (n − f) · c, and if it hasn’t sent
a ready message yet, it interpolates ℓ + 1 points in
echoes[com] to a polynomial p′ and sends a ready mes-
sage. From Lemma 12, all of the ready messages sent
by nonfaulty parties have the same value com, and
from Lemma 13, if a nonfaulty party sends a message
⟨ready, com,Pj , πj⟩ then OpenVerify(com,Pj , j, πj) =
1 and

∣∣Pj

∣∣ = c for every one of those messages. There-
fore, after receiving each of those messages, every
nonfaulty party updates its readies[com] set and adds
c elements to it. After adding c such elements for
every nonfaulty j, every nonfaulty party finds that
|readies[com]| ≥ (n − f) · c, performs some local
computations, and completes the protocol.

For the second part of the property, if some non-
faulty party completes the protocol it received n − f
messages of the form ⟨ready, com,Pj , πj⟩ with the
same value com such that OpenVerify(com,Pj , j, πj) =

1 and
∣∣∣P j

∣∣∣ = c. Out of those n − f messages, at

least n − 2f ≥ f + 1 were sent by nonfaulty par-
ties. Every nonfaulty party eventually receives those
f + 1 messages, finds the same conditions hold,
and adds c elements to readies[com]. After adding
c elements for every one of those f + 1 parties,

Springer Nature 2021 LATEX template

42 ADKG

every nonfaulty i sees that |readies[com]| ≥ (f +
1) · c, performs some local computations and sends
a message ⟨ready, com,Pi, π − i⟩ itself, if it hasn’t
done so earlier. From Lemma 12, every nonfaulty
party that sent a ready message previously also sent
one with the same value com. From Lemma 13,

OpenVerify(com,Pi, i, πi) = 1 and
∣∣∣P i

∣∣∣ = c, so after

receiving those messages, every nonfaulty party adds
c elements to readies[com]. Finally, after adding c ele-
ments to readies[com] for every nonfaulty party, every
nonfaulty party finds that |readies[com]| ≥ (n− f) · c,
performs some local computations, and completes the
protocol. □

A.2 Proof of Theorem 5

Proof Let the number of words in the message be ℓ+1.
Throughout the protocol, the dealer starts by sending
a single message to every party containing a commit-
ment and O(ℓ

n) words and proofs. Then, every party
sends at most one echo message and one ready message
containing a commitment, a proof and a set contain-
ing O(ℓ

n) words. Overall, there are O(n2) messages,
each containing c words for the commitment, p words
for the proof and O(ℓ

n) additional words. This yields

a total of O(n2 · (c+p)+ ℓ
n ·n2) = O(n2 · (c+p)+ℓ ·n)

words. □

The protocol can trivially be turned into a Val-
idated Reliable Broadcast protocol, V RB, by only
having parties output m′ in line 45 after check-
ing that validate(m′) = 1. This clearly makes the
additional part of the Validity property hold, and
doesn’t change the rest of the proof for the Valid-
ity and Correctness properties. In the proof of the
Termination property, first we can note that if
some nonfaulty party were to output a messageM ′

when the dealer is nonfaulty, then from the Valid-
ity property it must be the case that M ′ = M .
This means that if the dealer does have an input
M such that validate(M) = 1, all nonfaulty par-
ties would reach that point in the protocol, see
that validate(M) = 1, and terminate. In addition,
if some nonfaulty party completes the protocol,
it must have output some value some M ′ such
that validate(M ′) = 1. Using the exact same argu-
ments as the one in the proof of the Termination
property, all nonfaulty parties eventually reach
the end of the protocol. From the Correctness
property, they reach the end of the protocol with
the same message M ′, and thus when checking if
validate(M ′) = 1 they all see that the condition
holds and output M ′.

	Introduction
	Our Contributions:
	Our techniques
	Related Work

	Definitions and Assumptions
	Network and Threat Model
	Reliable Broadcast
	Verifiable Gather
	Proposal Election
	Validated Asynchronous Byzantine Agreement
	Cryptographic Abstractions
	Distributed Key Generation
	Threshold Verifiable Random Function
	Vector commitment

	Verifiable Gather
	Security Analysis

	Proposal Election
	Security Analysis

	No Waitin' HotStuff
	Security Analysis

	Asynchronous Distributed Key Generation
	On Constructing an A-DKG with Field Element Private Keys

	Efficiency of our Protocols Assuming Concrete Cryptography Algorithms
	Broadcast
	Verifiable Gather
	Proposal Election
	No Waitin' HotStuff
	Asynchronous Distributed Key Generation

	Background: Reliable Broadcast for asynchronous systems
	Construction
	Proof of Theorem 5

