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SUMMARY
Goal-directed navigation requires learning to accurately estimate location and select optimal actions in each
location. Midbrain dopamine neurons are involved in reward value learning and have been linked to reward
location learning. They are therefore ideally placed to provide teaching signals for goal-directed navigation.
By imaging dopamine neural activity as mice learned to actively navigate a closed-loop virtual reality corridor
to obtain reward, we observe phasic and pre-reward ramping dopamine activity, which are modulated by
learning stage and task engagement. A Q-learning model incorporating position inference recapitulates
our results, displaying prediction errors resembling phasic and ramping dopamine neural activity. The model
predicts that ramping is followed by improved task performance, which we confirm in our experimental data,
indicating that the dopamine ramp may have a teaching effect. Our results suggest that midbrain dopamine
neurons encode phasic and ramping reward prediction error signals to improve goal-directed navigation.
INTRODUCTION

In naturalistic environments, animals navigate in order to harvest

rewards. Successful goal-directed navigation requires learning

to accurately estimate location and select optimal actions in

each location. Midbrain dopamine neurons are known to play a

key role in reward value learning by encoding temporal difference

(TD) error in their phasic activity (Schultz et al., 1997; Bayer and

Glimcher, 2005; Cohen et al., 2012; Kim et al., 2012; Steinberg

et al., 2013; Stauffer et al., 2016; Lak et al., 2016, 2020; Parker

et al., 2016; Sharpe et al., 2017; Coddington and Dudman,

2018; Mohebi et al., 2019). While the majority of studies on dopa-

mine have been performed in non-navigation contexts, several

lines of evidence indicate that dopamine neurons could play

important roles in navigation. For example, it is established that

midbrain dopamine neurons play causal roles in producing place

preference (Tsai et al., 2009; Stamatakis et al., 2013) and that

dopamine neurons enhance spatial memory through their effects

onhippocampalplasticity, placefields,andensemble reactivation

(Martig and Mizumori, 2011; Ghanbarian and Motamedi, 2013;

McNamara et al., 2014; Rosen et al., 2015; Gomperts et al., 2015).

Recently, studies of freely moving animals have observed

dopamine ramps as the animal progresses toward the reward

location (Collins et al., 2016; Gao et al., 2021; Guru et al., 2020;

Hamid et al., 2016; Howe et al., 2013; Kremer et al., 2020; Mo-

hebi et al., 2019; Phillips et al., 2003; Roitman et al., 2004;
This is an open access article und
Syed et al., 2016). In these studies, ramping dopamine has

been interpreted as tracking value, goal proximity, or motivation.

However, in freely moving animals, it is difficult to precisely

define the stimuli that animals use for navigation or when they

are attended to, making it difficult to examine how they might

be encoded in neuronal activity. Virtual reality (VR) overcomes

this limitation, as it allows for control over visual stimuli observed

by animals during navigation. A recent study using ‘‘teleports’’ in

a virtual corridor proposed that pre-reward dopamine ramping

reflected reward prediction error as opposed to value (Kim et

al., 2020). However, this study did not necessitate goal-directed

navigation, as animals did not need to learn the reward location

and actively report it.

A similar VR experiment requiring animal locomotion toward

reward showed that a subset of dopamine neurons displayed

pre-reward ramping (Engelhard et al., 2019), although they did

not explore the development or function of these ramps, limiting

their interpretation of the ramps to encoding of spatial position in

fully trained mice. It is therefore unknown whether dopamine

ramps reflect reward prediction error during goal-directed navi-

gation, where progression toward the goal is dependent on the

animal’s actions, how these ramps arise, and what their func-

tional role is in the learning and performance of goal-directed

navigation tasks.

To address this, we imaged dopamine neural activity longitu-

dinally as head-fixed mice learned to perform a goal-directed
Cell Reports 41, 111470, October 11, 2022 ª 2022 The Authors. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://twitter.com/karolinafarrell
mailto:karolinajhfarrell@gmail.com
https://doi.org/10.1016/j.celrep.2022.111470
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2022.111470&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Article
ll

OPEN ACCESS
navigation task in closed-loop VR. This required animals to loco-

mote to proceed through the corridor and estimate the location

of a hidden reward zone. The task also differentiated between

when the animal was actively engaged in finding the reward loca-

tion or not, allowing a comparison between active navigation and

passive viewing of VR.

Across learning, phasic dopamine responses developed that

resembled reward prediction errors and indicated the animal’s

estimate of the reward location. We also observed the develop-

ment of pre-reward ramping activity, the slope of which was

modulated by both learning stage and task engagement. The

slope of the ramp was correlated with the accuracy of reward

estimation in the next trial, suggesting that the ramp played a

teaching role in the selection of accurate location-specific

action during navigation. We further devised a Q-learning model

incorporating belief state inference, which could simultaneously

produce phasic and ramping TD error, matching the dopamine

neural activity recorded in the task. Our results indicate that

midbrain dopamine neurons, through both their phasic and

ramping activity, encode reward prediction error, which may

provide teaching signals for goal-directed navigation.

RESULTS

Mice perform goal-directed navigation in VR
To examine the activity of midbrain dopamine neurons during

goal-directed navigation, we designed a task in a VR corridor.

Head-restrained mice of both sexes were free to self-pace their

locomotion on a treadmill, which accordingly updated visual

scenes in a closed-loop system (Saleem et al., 2018) (Figure 1B;

Video S1). A specific region of the virtual corridor had a hidden

reward zone, where a lick triggered the delivery of sweetened

water (Figure 1D). The reward zone was not explicitly marked

by cues, and therefore themice had to learn to estimate the loca-

tion based on visual cues passed in the corridor and their own

locomotion. If mice licked within the reward zone, they actively

triggered reward delivery (active trial), whereas if mice did not

lick in the reward zone, reward was delivered at the end of the

reward zone (passive trial). Active trials indicated that the mouse

had learned the reward location and reported their subjective es-

timate of it by licking accurately within the reward zone. We as-

sessed the effects of learning by dividing training sessions into

three stages: ‘‘early,’’ ‘‘mid,’’ and ‘‘late’’ per animal (see STAR

methods). We found that mice performed more active trials

and fewer passive trials with increased training (Figure 1E; n =

8, p = 0.0078, Mann-Whitney U test; see Table S1), consistent

with them learning the location of the reward zone. Early in

training, passive trials indicate that the animal has not yet learned

the reward location, whereas later in training, they may indicate

task disengagement, erroneous estimation of reward location, or

attentional lapses. Mice also increased their licking frequency in

the reward zone over training (Figures 1F and S2), indicating that

their estimation of the reward location improves over training and

that they successfully learn to perform the goal-directed naviga-

tion task.

As mice learned to perform the task, we measured the global

activity of midbrain dopamine neurons. We expressed a geneti-

cally encoded calcium indicator (GCaMP6m; Chen et al., 2013)
2 Cell Reports 41, 111470, October 11, 2022
using viral transfection in the ventral tegmental area (VTA) of

DAT-cre transgenic mice. We implanted a GRIN lens above the

VTA and measured global calcium indicator fluorescence using

aMiniscope (Ghosh et al., 2011) (Figures 1 and S1).We observed

robust phasic responses that followed the reward delivery in in-

dividual trials (Figure 1G). Early in learning, dopamine responses

mainly appeared after the reward delivery, while later in learning,

we observed elevated activity both prior to as well as following

the reward delivery, consistent with previous studies (Bayer

and Glimcher, 2005; Coddington and Dudman, 2018; Cohen

et al., 2012; Kim et al., 2012; Lak et al., 2016, 2020; Mohebi

et al., 2019; Parker et al., 2016; Schultz, 2015; Schultz et al.,

1997; Sharpe et al., 2017; Stauffer et al., 2016; Steinberg et al.,

2013).

Phasic reward prediction error coding in VTA dopamine
neuron activity
Dopamine activity showed sharp, transient increases and de-

creases following rewarded and unrewarded licks, respectively

(Figures 2A and 2B; see Figure S3A for example lick positions).

We calculated themagnitude of phasic responses as the change

in activity from the time of lick to the peak of the response (Fig-

ure S3D). Averaged across all sessions, rewarded licks had pos-

itive responses (Figure 2A; p < 0.0001, Wilcoxon signed rank

test), which were larger in active trials compared with passive tri-

als (Figure 2C; p = 0.0155, Wilcoxon signed rank test). In

contrast, unrewarded licks just before reward delivery were

followed by a transient suppression in activity (Figure 2B; p <

0.0001, Wilcoxon signed rank test). This suppression was fol-

lowed by a positive phasic response later in the trial, when

reward was eventually delivered. The magnitude of suppression

was similar in both active and passive trials (Figure 2C) but

different from responses following rewarded licks (p < 0.0001,

Mann-Whitney U test and linear mixed modeling [LMM] Model4,

see Table S2). The suppression was consistent with activity sup-

pression we observed in trials where we omitted rewards late in

training (Figures S3B and S3C). Licks far from the reward zone

did not display such suppression (Figures S3H–S3J), indicating

that the suppression was regulated by expectation of reward

rather than resulting from the licking action itself.

We also examined how these phasic dopamine responses

changed over learning (Figures 2D–2I). In the time axis, phasic

activity following rewarded licks did not change significantly

over learning (Figure 2F). For unrewarded licks, we saw the

post-lick suppression increase across training in active trials

(Figure 2I; early versus late stage: p = 0.0078, Mann-Whitney U

test; see Table S1) but not in passive trials. These results are

confirmed by LMM, which showed that neither trial type nor

session had significant effects on post-rewarded lick change in

fluorescence (p > 0.05), but there was a significant effect of

session on post-unrewarded lick change in fluorescence

(Model1: p = 0.0020, b = �0.0305, 95% confidence interval

[CI] [�0.0497,�0.0112], t = �3.1205; see Table S2). Measured

along corridor position (Figures 2J and 2K), we observed the

magnitude of reward responses decrease over training in active

trials (Figure 2L; e.g., early- versus late stage: p = 4.0522e�04,

Mann-Whitney U test; LMM Model3: p =0.0378, b = �0.0216,

95% CI [�0.0421,�0.00123], t = �2.08435; see Tables S1 and



Figure 1. Mice learn to navigate in virtual reality and report the reward location

(A) DAT-cre mice were injected with AAV9.Syn.Flex.GCaMP6m in the VTA and implanted with a GRIN lens over the VTA for imaging dopamine activity.

(B) Head-restrained mice performed a navigation task by running on a cylindrical treadmill and virtual corridor displayed on three screens.

(C) Example histological image showing GCaMP6m expression (green) in VTA TH+ neurons (red) and lens track.

(D) Example behavioral performance shown on a schematic of the corridor with the position of the cues and reward zone, with the licks (circles) and reward

delivery (asterisks) on example trials shown in rows. Licking within reward zone results in active reward delivery (green), and not licking within reward zone results

in passive reward delivery (purple).

(E) Mean percentage of passive and active trials across training stages (late stage, p = 0.0078, n = 8 animals, Mann-Whitney U test). Error bars indicate standard

error.

(F) Comparison of pre-reward lick rate in the reward zone (60–67 cm) versus pre-reward zone (50–59 cm) at different training stages.

(G) Global fluorescence over several trials from a single animal from early-stage (top) and late-stage (bottom) training stages. Passive (purple) and active (green)

reward deliveries (lines), licks (black circles), and intertrial intervals (ITIs; brown shaded regions) are indicated along the timeline.

See also Figure S2.
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S2). This reduction in magnitude was mainly reflected in the

altered pre-reward activity, which we explore in more detail in

the next section.

In summary, the learning-related changes in peri-lick phasic

neural activity, particularly when examined in the spatial dimen-

sion, are broadly consistent with the reward prediction error term

of TD reinforcement learning (RL) models (Sutton and Barto,

2018; Schultz et al., 1997). The activity suppression at the time

of unrewarded lick close to the reward zone further implies that

mice in this task have an expectation of reward at the time of

lick, reflecting their subjective estimate of the reward location.

Phasic cue responses and pre-reward ramping activity
develop over training
Prior to reward delivery, we observed the development of phasic

dopamine activity across training in response to reward-predic-
tive cues, as well as a slow ramp in the pre-reward activity lead-

ing up to the reward zone location (Figure 3). Phasic dopamine

responses to cues increased over training for both passive and

active trials (Figure 3B; e.g., early versus late stage: p <

0.0001, Mann-Whitney U test). We next examined the slow

ramp in pre-reward activity leading up to the reward zone loca-

tion. Strikingly, we saw that the gradient of pre-reward ramping

activity increased over learning in both passive and active trials

(Figure 3C; early versus late stage: p < 0.0001, Mann-Whitney

U test). We saw the same patterns of neural activity emerge

over training in trials in which mice did not lick prior to the reward

zone, indicating that pre-reward ramping activity was not caused

by licks prior to the reward location (Figure S4).

As it has been suggested that increased dopamine activity

could reflect increased motor vigor (Beierholm et al., 2013; Ha-

mid et al., 2016; Ikemoto and Panksepp, 1999; Niv et al., 2007;
Cell Reports 41, 111470, October 11, 2022 3
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Figure 2. Phasic VTA dopamine activity reflects reward prediction errors

(A and B) VTA dopaminergic activity as a function of time following rewarded (A) and unrewarded (B) licks for passive (purple) and active (green) trials, with SEM

shown by semi-transparent areas. Rewarded licks were taken from trials with no licks prior to reward, and the aligned lick is the first lick following reward delivery.

Unrewarded licks were taken from trials with one lick >0.5 s prior to reward delivery.

(C) Boxplots of change in fluorescence following rewarded (left) and unrewarded (right) licks, measured asmaximum difference in the window of 0–0.6 s following

the lick. Boxplots indicate median across recording sessions (white), 25th and 75th percentiles as edges, and whiskers indicate most extreme points (outliers not

shown). Asterisks directly above boxplots indicate significant difference from zero when Bonferroni corrections are applied such that ***p < 0.0003, **p < 0.0033,

*p < 0.0167; Wilcoxon signed rank test, see Table S1). LMM analysis indicated that rewarded versus unrewarded condition is significant (Model4: p < 0.0001,

b = �1.4713, 95% CI [�1.7371,�1.2056], t = �10.874).

(D–I) Same as (A)–(C), split by training stage. Bonferroni corrections are applied to comparisons across training stages in I) such that ***p < 0.0003, **p < 0.0033,

*p < 0.0167. LMM analysis confirmed that neither trial type nor session had a significant effect on post-rewarded lick change in fluorescence but that session did

have a significant effect on post-unrewarded lick change in fluorescence (Model1: p = 0.0020, b = �0.0305, 95% CI [�0.0497,�0.0112], t = �3.1205).

(J–L) Mean dopamine activity as a function of position in the corridor, focused on 49–150 cm,with SEM shown by semi-transparent areas. Change in fluorescence

in (L) is calculated as the maximum value in the reward window (60–90 cm) minus the mean value in the pre-reward window (50–60 cm; see Figure 3 for

explanation of differences). Change in fluorescence decreases over learning (p < 0.05, Mann-Whitney U test, see Table S1). Bonferroni corrections are applied to

(L). LMM analysis confirmed that session had a significant effect on the post-reward change in fluorescence (Model3: p = 0.0378, b = �0.0216, 95% CI

[�0.0421,�0.00123], t = �2.08435, see Table S2).

See also Figure S3.
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Figure 3. Phasic RPEs and slower pre-re-

ward ramping dopamine activity develop

over training

(A) Activity as a function of position in the corridor,

split into passive (top) and active (bottom) trials and

different training stages, with SEM shown by semi-

transparent areas.

(B) Boxplots of the mean change in fluorescence in

the cue windows indicated by the black bars in (A).

All distributions are significantly larger than zero

(p < 0.001, Wilcoxon signed rank test). Change in

fluorescence increases over training (e.g., p =

1.0094e�05 for passive early-late, p = 5.3701e�05

for active early-late, Mann-Whitney U test, see

Table S1).

(C) Boxplots of pre-reward ramp gradient, calcu-

lated by fitting a line to activity in the 0–60-cm

window. Median values for mid- and late-stage

training are indicated above the white median line.

Asterisks indicate distribution is significantly

different from zero (p < 0.02, Wilcoxon signed rank

test, see Table S1). Pre-reward ramp gradient in-

creases over learning (e.g., p = 2.7530e�08 active

early-late, Mann-Whitney U test, see Table S1).

(D–F) Data shown in (A)–(C), directly comparing

passive and active per training stage. Significant

differences are found between active and passive

ramp gradients at all training stages (Figure 4F, p =

0.0243, p < 0.0001, p = 0.0426, respectively, Wil-

coxon signed rank test). See also Figure S4. LMM

analysis confirmed that session had a significant

effect on mean cue response (Model1: p < 0.001,

b = 0.0083, 95% CI [0.00404,0.0125], t = 3.8491),

while both trial type and session had significant

effects on ramp gradient (Model2: p = 0.0146,

b = �0.00206, 95% CI [�0.00371,�0.000408],

t = �2.4529, and p < 0.0001, b = 0.00047, 95% CI

[0.00028,0.00066], t = 4.8613, respectively, see

Table S2).
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Salamone and Correa, 2012; Salamone et al., 2003; da Silva

et al., 2018), we also examined whether locomotor speed could

explain the ramping activity. However, ramping dopamine activ-

ity did not reflect general locomotor vigor, as mice in our task

generally slowed down on approach to the reward location, while

dopamine activity ramped up instead (Figure S2). This resulted in

the ramp gradient and change in speed leading up to the reward

zone being anti-correlated or uncorrelated (Figure S2C). Overall,

analysis of individual trials indicated that pre-reward ramping

was not dependent on pre-reward slowing (Figure S2D).

To examine the effect of trial type, we compared cue re-

sponses and ramping activity between active and passive

trials across the different training stages (Figure 3D). We

found that the slope of the pre-reward ramp in active trials

was larger than in passive trials at all training stages (Figure 3F;

p = 0.0243, p < 0.0001, p = 0.0426 for early, mid, and late

stages, respectively, Wilcoxon signed rank test), while mean
C

cue responses remained similar (Fig-

ure 3E). This suggests that the gradient

of the ramp was modulated by task

engagement.
To confirm that both learning and task engagement impacted

ramp gradient, we implemented LMM (see STAR methods) that

either modeled the ramp gradient as a function of session or a

function of session and trial type, with independent random ef-

fects terms for intercept and slope with animal identity as the

grouping. The model including both session and trial type

(Model2) had a significantly better goodness of fit compared

with the reduced model (Model1) (p = 0.031033, Akaike informa-

tion criterion [AIC] �2,781.8 [Model2] versus �2,779.1 [Model1],

likelihood ratio test) where the fixed effects of trial type and ses-

sion were both significant (Model2: p = 0.0146, b = �0.00206,

95% CI [�0.00371,�0.000408], t = �2.4529, and p < 0.0001,

b = 0.00047, 95%CI [0.00028,0.00066], t = 4.8613, respectively;

see Table S2). When the samemodels were applied for themean

cue response, we found that Model2 was no better than Model1

(p = 0.1719, AIC �470.01 [Model2] versus �470.49 [Model1],

likelihood ratio test) and that Model1 showed a significant effect
ell Reports 41, 111470, October 11, 2022 5
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of session (p < 0.001, b = 0.0083, 95% CI [0.00404,0.0125], t =

3.8491). Together, thes LMM analyses matche the findings

from non-parametric tests.

While ramping dopamine signals have been observed under

certain conditions (Collins et al., 2016; Engelhard et al., 2019;

Fiorillo et al., 2003; Gao et al., 2021; Guru et al., 2020; Hamid

et al., 2016; Hamilos et al., 2021; Howe et al., 2013; Kim et al.,

2020; Kremer et al., 2020; Mohebi et al., 2019; Phillips et al.,

2003; Roitman et al., 2004; Syed et al., 2016; Wang et al.,

2021), their functional role is yet to be agreed upon. Suggested

functions include encoding of goal proximity (Engelhard et al.,

2019; Guru et al., 2020; Howe et al., 2013), uncertainty (Fiorillo

et al., 2003), goal-directed action encoding (Hamilos et al.,

2021; Kremer et al., 2020; Syed et al., 2016), motivation or

value (Collins et al., 2016; Gao et al., 2021; Hamid et al.,

2016; Howe et al., 2013; Lloyd and Dayan, 2015; Mohebi

et al., 2019; Niv et al., 2007; Wang et al., 2021), and reward

prediction error (Kim et al., 2020). Given our observations

that the gradient of ramping was modulated by learning and

task engagement, in a similar way to phasic dopamine re-

sponses (Figures 2C and 2F), we hypothesized that the dopa-

mine ramp might reflect reward prediction error (RPE). We

therefore opted to test whether pre-reward ramping TD errors

could be produced in an RL framework designed to match the

strategies and performance of the animals in the behavioral

task.

Q-learning model recapitulates behavioral and neural
data
As phasic cue and reward responses readily fit into a standard

TD learning framework but ramping does not, we devised a

model to investigate whether ramping could be explained as

RPE. As Q-learning is a model-free algorithm that learns action

values per state rather than state values (Sutton and Barto,

2018), we considered it more appropriate for use in a navigation

context, where goal approach is dependent on selected actions.

We devised a Q-learning algorithm that incorporated a posi-

tion inference and an eligibility trace to simulate the animals’

learning in the task (i.e., where in the corridor to lick and where

to refrain from licking) and the activity of their dopamine neurons

(Figures 4, S5, and S6; for full details, see STAR methods). In

designing the model, we opted for the simplest representations

required to perform this task that could also reasonably be en-

coded by our mice during task performance. The model environ-

ment consisted of 30 discrete states, where each state simulates

5 cm of the VR corridor. In our experiment, mice have two infor-

mation sources: visual (cues and optic flow) and self-motion,

which we presume they use to inform their behavioral strategy.

Cues can be readily incorporated into RL models using an eligi-

bility trace (c) to keep a transient ‘‘memory’’ of the visual cues

that passed. Position inference (based on visual and self-motion

information) can then be incorporated via estimation of current

state (bsT ) (which can be noisy) and the construction of a ‘‘belief’’

distribution (4!s) of current position relative to the environment,

weighted by uncertainty related to the absence of nearby cues.

Importantly, the peak of this distribution is taken as the ‘‘belief

state’’ (sB; see STAR methods), which is then used for subse-

quent updating. These two representations of position (4!s)
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and cues (c) then weight the action values of licking (QL) or not

licking (QN) at each state. Action selection is then performed

by comparing QL and QN, and an outcome (r) is received. The

outcome is then used to calculate the prediction error (d), which

updates the value of the chosen action. The algorithm then iter-

ates to the next state and repeats the process. For simplicity, we

designed the algorithm such that if the agent chooses to lick in

the reward state, it receives a reward value r of 1 but no reward

if it does not lick. Similar to the behavioral task, we imposed a

threshold of 2 licks prior to the reward state to prevent contin-

uous licking, such that if the agent exceeded this threshold, it

received a reward value of �0.1, and the trial terminated.

We ran 100 agents for 4,000 trials each and found that the

agents learned to perform the task in a similar manner to our

mice, slowly improving the ratio of rewarded to unrewarded trials

over learning (Figures 4F and 4G). Over learning, the agents

learned to have higher belief values maxð4!Þ, particularly when

in the cue states (and neighboring states) compared with others

(Figure S5A). Both the values of licking (QL) and not licking (QN)

increasingly ramp prior to the reward state, with the value of

licking spiking and the value of not licking plummeting at the

reward state (Figures S5D and S5E). This competition between

the two ramping action values can represent the need to inhibit

an action until the correct location has been reached. TD error

(d) develops phasic spikes at pre-reward cue states over learning

as well as a ramp over the pre-reward states that elevate over

learning (Figures 4B and S6B). This is similar to the dopamine

neuron activity recorded in our experiment (Figures 4E and

S6A), with some differences in early-stage training. Specifically,

TD error was seen to ramp, but not show cue responses, in the

model in early-stage learning,while VTA dopamine neuron activity

showed cue responses but little ramping. These differences may

result from the high salience of visual cues in the behavioral task

and faster learning of state information in the model compared

with in mice, and we explore this further in our discussion.

TD error allows learning prior to reward delivery because it is

calculated by comparing the values of consecutive states due

to its method of bootstrapping from predictions of value of the

current and subsequent states. In TDmodels, this TD error signal

moves backwards to assign credit to reward-predictive stimuli,

producing cue responses (Schultz et al., 1997). Why, then, do

we see sustained ramping along the states that precede the

reward location? Given the relationship between TD error and

value in TD learning models, ramping TD error can occur when

value also ramps (Gershman, 2014). In the model, both the

Q-values for licking and not licking (QL and QN) ramp across

pre-reward states (Figure S5). To explain this, consider a trial

where themodel correctly believes it is in the reward state, choo-

ses to lick, receives reward, andQL is updated accordingly. On a

future trial where the agent does not lick in a state (and QN is still

low at this point) but believes that the next state is the highly

valued reward state (high Qmaxðs + 1Þ), TD error will be the dis-

counted (but still large) difference between these two values

(g Qmaxðs + 1Þ � QNðsÞ), which is then also used to update QN.

If, on the subsequent trial, the model similarly does not lick in

the state that it believes is prior to one with high value, this value

can propagate backwards across trials. With further trials, this

increase in value can also bleed into QL. While this can lead to
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Figure 4. Model design and qualitative outputs

(A) Relationship between experimental and model environments.

(B) Mean of 100 agents’ d over early, mid, and late training stages. Inset shows mean ramp gradient per learning stage (E, early; M, mid; L, late).

(C) Example model run TD error (d) output, showing trials where the agent licked in the reward state. Reward delivery is indicated with an asterisk, and licks are

shown as black dots.

(D) Summary of model architecture.

(E) Top: mean calcium fluorescence for active trials from 8 animals for each training stage, with SEM shown by semi-transparent areas. Data taken from Figure 3A

and recolored to match the model’s learning stages. Inset shows mean ramp gradient per training stage (see Figure 3C). Bottom: individual active trials from an

example late-stage session from one animal.

(F) Agents perform more rewarded (green) compared with unrewarded (purple) trials, i.e., licking in the reward state and receiving reward for each learning stage

(Mann-Whitney U test).

(G) Mean performance (licking in the reward state) smoothed over 10 trials across agents for the first 500 trials. Dashed red lines indicate the end of the early trials

and mid trials, respectively.

See also Figures S5–S7.
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more licks prior to reward, a pre-reward lick threshold can help

reduce pre-reward QL with respect to QN, and therefore we

include it tomore closelymatch the conditions our animals expe-

rienced in the goal-directed navigation task. (If there is no lick

threshold then this will not occur, but there is also a greater

chance that they will proceed to the reward state and therefore

will have more rewarded trials, so the backwards propagation

of QN is also facilitated [Figure S7B]).

The phasic cue responses in TD error can then be explained as

a consequence of the reduction in uncertainty in position infer-

ence when a cue is passed. In the model, there is uncertainty

of which state is being occupied, but this uncertainty is reduced

when in the presence of a reward-predictive cue: these locations
provide more certainty that this is not the state to lick in. There-

fore, the estimated current value of not licking (QNðsÞ) in those

states is increased, and when this is subtracted from the dis-

counted Qmaxðs + 1Þ, it results in peaks in TD error for the states

before the cue states.

In summary, themodel recapitulatesmuch of our experimental

data, providing a theoretical explanation for why dopamine ac-

tivity ramps during goal-directed navigation.

Pre-reward ramp improves task performance on
subsequent trial
Having established that ramping activity can be explained as

prediction error in conjunction with classical phasic RPEs to
Cell Reports 41, 111470, October 11, 2022 7
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cues and reward, we posited that this ramping prediction error

should have a teaching function similar to phasic RPEs. On

examination of individual trials in the model’s late-stage learning

(where mean pre-reward TD error slope was maximal), we

found a distribution of slopes (Figure 5A, left). We classed the

highest third as a ‘‘positive slope’’ group and the lowest third

below zero as a ‘‘negative slope’’ group and observed that

the TD error traces for these groups both had phasic responses

to cues and reward, but, as expected, only the positive slope

group had a clear ramp prior to the reward state (Figure 5A,

left inset).

The model predicted that a positive slope in pre-reward TD

error (on trial n) should be followed by increased licking in the

reward state on the subsequent trial (trial n + 1) compared with

the negative slope trials (Figures 5A, right, and 5B). This can be

explained as a result of a higher pre-reward ramping of QN

compared with QL, such that not licking is favored in pre-

reward states, which facilitates reaching the reward state on

that trial but also increases the likelihood that similar not-

licking actions are chosen for the pre-reward states on the

next trial. Given this model prediction, we therefore performed

the same analysis on our experimental data. As in the model,

we found distributions of pre-reward dopamine neuron activity

ramp slopes that averaged to a positive gradient, in both pas-

sive and active trials. When we looked at the licking distribu-

tions on the subsequent trial, we saw the same effect: positive

ramp slope trials are followed by increased licking in the

reward zone compared with negative ramp slope trials, both

in passive and active trials (Figures 5C and 5D; p < 0.05,

Mann-Whitney U test). Interestingly, the exact positions in

the reward zone where this effect was significant differ be-

tween active and passive trials and may reflect different

learning needs to refine licking behavior. For example, passive

trials indicate that the animal licked too late and missed the

reward zone, so on the subsequent trial, the animal should

lick earlier, at the start of the reward zone. Conversely, in

active trials, the animal licked in the correct location, so the

ramp slope effect reinforces licking in the center of the reward

zone. To clarify that this effect was not the result of slow fluc-

tuations in behavior across trials, we also normalized the lick

distribution on trial n + 1 by subtracting the lick distribution

of trial n � 1 and still saw a subtle but significant effect of

the positive slope pre-reward ramp on reward zone licking

(Figures 5E–5G). The same analysis for negative ramp slope

trials did not yield significant effects on reward zone licking

(p > 0.05 in both active and passive trials, across all reward

zone bins tested), indicating that this effect was limited to pos-

itive pre-reward ramp slopes rather than ramping in general.

Interestingly, the same analysis on the effects of reward

response sizes on subsequent trials showed that a small

reward response on trial n was followed by increased reward

zone licking on trial n + 1 when trial n was active, but not pas-

sive, although this was not found to be significant (Figure S8).

Together, these data and the model suggest that a positive

pre-reward ramp slope is a form of RPE that may reflect a

teaching signal to improve the accuracy and frequency of

reward location reporting on the subsequent trial, serving to

optimize behavior even in late-stage training.
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DISCUSSION

Our results indicate that both phasic as well as slower ramping of

dopamine activity may reflect RPE teaching signals that can

improve the accuracy of goal-directed navigation. We observed

the development of positive phasic responses to reward and

reward-predictive cues and negative phasic responses following

unrewarded licks. In addition, we observed a ramping of dopa-

mine activity leading up to the reward location, the gradient of

which was increased with learning and task engagement. We

show that a Q-learning model could explain both phasic and

ramping RPEs and could predict improved task performance

following the pre-reward ramp, which we also saw in our exper-

imental data.

Dopamine neurons are known to play a key role in learning by

signaling RPE, as established in the temporal domain in tasks

such as Pavlovian conditioning, and recapitulated in TD learning

models (Sutton and Barto, 2018; Schultz et al., 1997). However,

their activity has been less well studied in spatial tasks. This is in

part due to the use of freely moving animals, where there is

limited control over when the animal perceives features of the

task, and precise readouts of location estimation. By using VR,

we were able to create a navigation task with high temporal pre-

cision and a precise readout of the animal’s estimate of the

reward location through licking (Fournier et al., 2020; Saleem

et al., 2018). This allowed us tomeasure neural responses to pre-

cise events such as cues, rewards, and licks and establish the

presence of RPEs during spatial learning.

Our implementation of VR also has the advantage of being

closed loop and requiring active navigation. If progression

through the virtual corridor was simply presented as a video of

movement at a predefined speed, irrespective of the animal’s

own movements (i.e., open loop), spatial encoding could not

be differentiated from an equivalent passive approach temporal

task (Kim et al., 2020). In contrast, our closed-loop task gives

control of movement (and corresponding visual scenes) to the

animal, simulating more naturalistic navigation. In addition, the

requirement for the animal to report the hidden reward location

ensures that the animal is actively navigating to a goal rather

than passively running through an environment (Kim et al.,

2020). We were therefore able to characterize neural activity as

a function of spatial position, which revealed ramping activity

of VTA dopaminergic activity along the corridor until the reward

location, similar to dopamine signals observed in animals navi-

gating real environments (Collins et al., 2016; Gao et al., 2021;

Guru et al., 2020; Hamid et al., 2016; Howe et al., 2013; Kremer

et al., 2020; Mohebi et al., 2019; Phillips et al., 2003; Roitman

et al., 2004; Syed et al., 2016).

We observed two patterns of activity: phasic and ramping. The

observed patterns of phasic responses to reward-predictive

cues and reward delivery were to be expected, as shown in

many previous experiments (Bayer and Glimcher, 2005; Cod-

dington and Dudman, 2018; Cohen et al., 2012; Kim et al.,

2012; Lak et al., 2016, 2020; Mohebi et al., 2019; Parker et al.,

2016; Schultz et al., 1997; Sharpe et al., 2017; Stauffer et al.,

2016; Steinberg et al., 2013) and predicted by TD learning

models (Sutton and Barto, 2018; Schultz et al., 1997). It has

further been shown that phasic RPE dopamine signals are
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Figure 5. Positive dopamine ramp slope improves task performance on subsequent trial

(A) Left: Q-learning model predicts a distribution of ramp slopes in trials late in learning that have no licks prior to the reward state (to avoid negative RPEs). The

highest third of ramp slopes define the group of ‘‘positive slope’’ trials (red), and the lowest third below zero define the ‘‘negative slope’’ trials (blue). Intermediate

trials are shown in gray, and the mean gradient across all trials is shown by the black dashed line. Inset: mean TD error trace for the grouped trials. Pre-reward is

shown in red or blue, and the rest are shown in gray. Right: the mean licks per state of the trials following those indicated in the left panel (trial n + 1). The reward

state is indicated in light blue.

(B) The difference between the lick distributions shown in the right panel of (A).

(C and D) The same analysis as in (A) and (B) but using experimental data from eight animals and licks per cm. Light blue bars indicate the reward zone. Black bars

above the lick distributions indicate significant differences (p < 0.05, Mann-Whitney U test, see Table S1).

(E) Schematic of trial-to-trial effect calculation, indicating how the lick distribution of trial n� 1 is used as a baseline for normalization of the positive ramp slope’s

effect on the lick distribution for the subsequent trial.

(F) Lick distributions for the trials preceding (black, dashed) and following (red) a positive ramp slope trial.

(G) Difference between the lick distributions in (F).

See also Figure S8.
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modulated by inferred belief state, such as subjective estimates

of sensory signals (Lak et al., 2017) or the timing of reward deliv-

ery (Starkweather et al., 2017). Our results showing that RPE

follows rewarded and unrewarded licks suggest that phasic

dopamine signals can also represent belief about estimated

reward location given the visual and self-motion information

available in our navigation task.

Pre-reward ramping dopamine has been observed in many

studies (Collins et al., 2016; Engelhard et al., 2019; Fiorillo

et al., 2003; Gao et al., 2021; Guru et al., 2020; Hamid et al.,

2016; Hamilos et al., 2021; Howe et al., 2013; Kim et al., 2020;

Kremer et al., 2020;Mohebi et al., 2019; Phillips et al., 2003; Roit-

man et al., 2004; Syed et al., 2016; Wang et al., 2021) but without

a clear consensus on its function or whether it originates in dopa-

mine neuron activity or is an epiphenomenon in downstream

striatum as a result of synaptic modulation. We find that pre-

reward ramping is observable in the global calcium imaging of

dopamine neurons in the VTA even in head-fixed, goal-directed

navigation. Given that dopamine ramping appears fixed to the

reward location, as shown in freely moving navigation (Howe

et al., 2013), we inferred that the ramp might convey a spatially

relevant signal, similar to a successor representation place field

tied to reward position (Sosa and Giocomo, 2021; Stachenfeld

et al., 2017). We find that the ramp develops and increases in

slope over learning and also has a consistently greater slope dur-

ing trials where the animal is actively engaged in reporting the

reward location as opposed to when they are more disengaged.

These characterizations are similarly applied to phasic RPEs

(Lak et al., 2016; Parker et al., 2016; Schultz et al., 1997; Tanaka

et al., 2019).

The finding that the ramp slope increases across learning has

been observed previously in a fixed-distance locomotor task

(Guru et al., 2020), and this feature appears to depend on the na-

ture of the task at hand (or the strategy required), as ramping

ceases to exist with extended training in other tasks. From

similar studies, it can be observed that dynamic sensory cues

that are indicative of goal proximity appear to be sufficient to

induce ramping prior to ‘‘distant’’ rewards (Kim et al., 2020)

(although they are not required [Gao et al., 2021]), but ramping

seems to only persist in tasks that require some form of internal

model or ongoing computation for adequate behavioral perfor-

mance (Guru et al., 2020). For example, in tasks that require

reward approach in the absence of clear landmark cues (as in

our task; Collins et al., 2016; Guru et al., 2020), the ramp persists

across learning. In tasks where a strategy can be learned such

that a particular cue is sufficient to fully predict reward delivery

with certainty and without requiring strategic action on the part

of the animal, a pre-reward ramp can fade with extended training

(Guru et al., 2020) (and this could explain apparently conflicting

results regarding the relationship between ramping and action

initiation [Gao et al., 2021; Syed et al., 2016]) In this respect,

our results match with the conclusions of Guru and colleagues

(Guru et al., 2020): that ramps persist when ongoing within-trial

calculations are required for task performance. One difference

between our results and those of Guru and colleagues’ fixed dis-

tance task (Guru et al., 2020) is that in our task we find that ramp

slope actually increases rather than just persists, which could

reflect the increased precision required in state estimation and
10 Cell Reports 41, 111470, October 11, 2022
action selection (i.e., licking within the 6.5-cm virtual reward

zone compared with stopping wheel movement and going to

the reward port after 5–9 turns [Guru et al., 2020], a compara-

tively larger and less precise target).

Our model can further explain why ramping occurs in different

tasks with different time courses and gradients: goal-directed

navigation necessitates state estimation under conditions of un-

certainty and therefore produces ramping TD error. In some

tasks, this uncertainty may be reduced so that ramps decay

with extended learning (Guru et al., 2020) (Figures S7D and

S7E), for example if the animal learns that a cue fully predicts

reward delivery or develops habitual responding to minimize

mental computation (Syed et al., 2016; Guru et al., 2020). How-

ever, other conditions may require trial-by-trial state estimation

(e.g., spatial or internal state) (Gao et al., 2021; Guru et al.,

2020; Wang et al., 2021) where uncertainty cannot be reduced

and therefore the ramps persist. This may correspond with the

proposal from Guru and colleagues that ramps may reflect the

use of an internal model (Guru et al., 2020). Our model can there-

fore explain the heterogeneous ramps observed in previous

studies: the ramping of TD error depends on the behavioral strat-

egy required by the task at hand (Figure S7).

Finally, while dopamine has been suggested to play a role in

vigor and motivation (Collins et al., 2016; Hamid et al., 2016;

Howe et al., 2013; Lloyd and Dayan, 2015), we find that this

ramp is unrelated to licking prior to the reward zone (Figure S4)

and is inversely correlated or uncorrelated with speed (Fig-

ure S2), suggesting that it does not reflect action vigor

(although this does not refute the possibility of the ramp en-

coding cognitive effort [Westbrook and Braver, 2016] or the

specific goal-directed motivation to slow down in a speed-ac-

curacy trade-off).

Given the similarities in the characterization of phasic and

ramping signals and that the ramp did not reflect increased loco-

motor vigor, we asked whether the ramp could represent RPE

using a Q-learning model. The model was given the basic infor-

mation required to navigate to reward: a representation of self-

location and a representation of visual cues observed. While

simplistic, our model nevertheless recapitulated our experi-

mental data, capturing how mice learned to lick in the reward

location but not lick prior to that. The model reproduced both

pre-reward ramping and also phasic responses to reward-pre-

dictive cues and reward delivery, as we saw in our calcium

imaging data. Moreover, the model predicted that a positive

pre-reward slope would be followed by increased reward loca-

tion licking on the subsequent trial, which we also found in our

experimental data. Together, this supports the idea that pre-

reward ramping is a form of RPE that may provide a teaching

effect to improve goal-directed navigation. To caveat this, the

model was not designed to explain the difference between active

and passive trials but rather to explain how a pre-reward ramp in

TD error could arise.

Limitations of the study
Firstly, our neurophysiological results are based on observation

of global dopamine neuron activity, averaged across the entire

field of view of neurons. Single-cell resolution could provide

further information about whether ramping activity is a feature
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of all or subsets of neurons, as suggested by previous studies

(Engelhard et al., 2019; Kremer et al., 2020).

Secondly, the Q-learning model presented is optimized for the

behavioral task that our animals performed andwould likely have

to be altered to capture particular features of different tasks.

Specifically, we used selective weighting of the two Q-values

by the belief of being in the reward state and the eligibility trace,

respectively. A more generalizable model would allow the

weighting to come about over training rather than being hard

coded. Another aspect is that we impose a negative reward

value for the model if the pre-reward licking threshold is ex-

ceeded, whereas the mice just have the reward opportunity

loss when the trial terminates. The inclusion of a small negative

reward value was simplistic and allowed the model to learn

that trial termination was a negative outcome to speed learning

(Figure S7), although a more sophisticated model could instead

use a state transition cost function to provide a similar reward

opportunity loss to the agent when a trial terminated to parallel

the opportunity cost the mice experience.

Finally, while the model mostly recapitulates our experimental

data, there is a difference in VTA dopamine neuron activity and

TD error in the early learning stage, where the model predicts

ramping TD error, but our data instead show cue responses

with minimal or no pre-reward ramping. This may be due to

dopamine neurons responding to salient visual features, a

feature that is reported in animals (Cai et al., 2020; Horvitz

et al., 1997; Ljungberg et al., 1992; Menegas et al., 2018; Taka-

hashi et al., 2017) but that is not accounted for in our Q-learning

model, but could also reflect the differential timescales of

learning processes, such that dopamine neurons place heavier

weighting on discrete salient cues in an environment compared

with learning the sequence of pre-reward states that are less

easily delimited and identified in a real environment compared

with a model one. The other discrepancy between the simulated

TD error and our data is that in our imaging data, there appears to

be a response to the final, non-reward predicting cue toward the

end of the corridor. We were surprised to find this phasic activity

just before the end of the corridor in our data, but we note two

possible explanations: the response could reflect the upcoming

opportunity for reward in the form of predicting the next trial,

thereby reflecting a cross-trial cue response, or the response

could simply reflect the salient end of the corridor and transition

to gray screen that the mouse is approaching.

Conclusions
From our results, we find substantial evidence that ramping

dopamine encodes RPE. As many studies that have observed

dopamine ramping have done so in tasks that require animals

to navigate to goals, we posit that ramping might result from a

need to integrate spatial and temporal information to perform

the correct actions in the correct locations to obtain reward.

This ramping further matches the characterizations and func-

tions of RPE given the development over learning, the depen-

dence on task engagement, and improved performance on the

subsequent trial.

Overall, our data show a ramping of VTA dopamine neuron ac-

tivity that is most consistent with encoding of RPE. The model

unifies both phasic and ramping activity as a single RPE signal,
and our analysis indicates the potential teaching effect of dopa-

mine ramping signals in improving reward localization. Together,

we conclude that VTA dopamine neurons, through both their

phasic and slower ramping activity, signal RPE during the

learning of goal-directed navigation.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-TH ImmunoStar Cat # 22941; RRID: AB_572268

Alexa Fluor 594 Goat anti-mouse BioLegend Cat # 405326; RRID: AB_2563308

Bacterial and virus strains

AAV9-Syn-FLEX-GCaMP6m Addgene #100838; RRID: Addgene_100838

Experimental models: Organisms/strains

Mouse: DAT-IRES-cre (Slc6a3tm1.1(cre)Bkmn) The Jackson Laboratory JAX006660; RRID: IMSR_JAX:006660

Mouse: C57BL/6 Charles River Laboratories Strain code: 027; RRID: IMSR_CRL:027

Software and algorithms

Bonsai Lopes et al., 2015 https://bonsai-rx.org/; RRID: SCR_017218

UCLA Miniscope Bonsai node Jonathan Newman https://github.com/jonnew/

Bonsai.Miniscope

MATLAB 2018a MathWorks https://www.mathworks.com/;

RRID: SCR_001622

Custom MATLAB VR code Saleem et al., 2013;

Saleem et al., 2018

https://github.com/amansaleem/

SaleemLab-VR https://doi.org/

10.5281/zenodo.7074768

LAS X (Leica Application Suite)

confocal microscopy software

Leica Microsystems https://www.leica-microsystems.

com/; RRID: SCR_013673
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Dr Karolina

Farrell (karolinajhfarrell@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data reported in this paper will be shared by the lead contact upon request.

All original code has been deposited onGitHub (see key resources table) and is publicly available as of the date of publication. DOIs

are listed in the key resources table.

Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

All procedures were conducted in accordance with the UK Animals Scientific Procedures Act (1986). Experiments were performed

at University College London under personal and project licenses released by the Home Office following appropriate ethics review.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse line creation and maintenance
The DAT-cre transgenic mouse line was started by breeding one male DAT-IRES-cre (Slc6a3tm1:1ðcreÞBkmn) mice (JAX006660, The

Jackson Laboratory) with a female C57BL6 mouse (Charles River, Strain 027). Following genotypic identification (Transnetyx) of

DAT-cre offspring, heterozygous DAT-cre breeders were selected and subsequently paired with C57BL6 breeders in order to main-

tain the colony. Following pregnancy confirmation, males were separated out. Pups were weaned three weeks after birth, earmarked

for genotyping, and group-housed in single-sex cages. Mice were 8–16 weeks old at the start of behavioural training.

All mice were given environmental enrichment, standard chow and water ad libitum prior to the experiment. Mice were housed in a

colony room at 21.5�C, 45%humidity on a 12 h/12 h light/dark cycle. Selected experimental micewere single-housed and underwent

implant and baseplating surgeries. Following at least 7 days recovery, water-restriction was initiated to increase motivation, with free
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access to water overnight once every two weeks. Mice were weighed each day, received HydroGel� (ClearH2O) in their home cage

following behavioural training to ensure sufficient hydration (>40 mL/kg), and had free access to standard chow to maintain their

weight between 85–90% of their predicted unrestricted weight. Data from eight mice are presented (5 female, 3 male). Analysis of

sex differences was not investigated as the sample size was insufficient for meaningful analysis.

METHOD DETAILS

Surgeries
Experimental mice underwent two surgeries. In the first surgery, mice were induced with 3% isoflurane and maintained at 1.5%. Eye

moisture and body temperature were maintained, analgesia (5% carprofen) was administered, and the head was shaved. In six an-

imals, 5 mg/kg of 2%w/v dexamethasone was administered intramuscularly to reduce inflammation and brain swelling. Surgery was

performed on a heated pad to maintain body temperature at 37�C. A craniotomy was performed directly over the VTA of one hemi-

sphere (2 left, 6 right). 600 nL of AAV9-Syn-FLEX-GCaMP6m (Addgene Plasmid #100838) diluted 1:3 in aCSFwas injected at a rate of

50 nL/min into the VTA (AP -3 mm,ML 0.5 mm, DV -4.6 mm from dura) and the pipette was left in place for 10minutes. Following this,

for six of the mice, a blunt needle was inserted and lowered between 1.5 and 2 mm from dura before being removed. The GRIN lens

(Inscopix 1050-002179) was then inserted, at an approximate rate of 400–500 mm/min to a depth around �4.3 mm and secured in

place using dental cement (Super-Bond C&B, Sun Medical). A custommetal headplate was cemented behind the lens, and a plastic

cap (cut-off end of Eppendorf� tube) was cemented over the lens for protection. 0.2 mL of warmed saline was administered subcu-

taneously per hour of surgery to maintain hydration. Following recovery, mice were closely monitored and given 20 mL meloxicam in

condensed milk and high-protein wet food for 3 days post-surgery.

The second surgery was performed 2–3 weeks after the first, to allow for viral expression and inflammation reduction. The mouse

was similarly induced, maintained and monitored. Following head-fixation, the protective cap was drilled out and the lens was

cleaned. A modified UCLA Miniscope (Ghosh et al., 2011) with an incorporated GRIN lens and with an attached baseplate was low-

ered to around 100–300 mm above the implanted lens, and the field of view explored using Bonsai software (Lopes et al., 2015) and

the UCLAMiniscope node (see key resources table). When the optimal field of viewwas found, the baseplate was carefully cemented

to the skull over the implanted lens. TheMiniscope was removed and a protective Delrin cap (S. Stiteler,miniscope.org) was secured

to the baseplate using a set screw.

Behavioural training
All behavioural training was performed during the dark cycle, and in a dark room. Mice were handled, water-restricted, and accli-

matised to head-fixation on a custom Styrofoam wheel (Saleem et al., 2018) and Miniscope attachment for a few days prior to

behavioural testing. Mice were also offered rewards (�1.5-2 mL cherry-flavoured Kool-Aid, Kraft Foods), pseudo-randomly

delivered, through a lick spout to encourage running and identify putative dopamine reward responses, while monitoring licks using

a custom infrared sensor. Mice were free to run in the task as much as they desired for about 30 minutes during the dark cycle each

day (�5 days/week) on a custom rig, where they were presentedwith a virtual corridor on three screens (Figure 1B and Video S1). The

three 9.7’’ screens (LP097QX1-SPAVwith 4:3 aspect ratio, controlled byHDMI driver boards) were fixed in portrait mode at 120� from
each other, such that they formed half a hexagon, and the mouse was placed at the centre of the hexagon. The mouse’s movements

on the wheel were yoked to the visual display using a rotary encoder such that they could only navigate towards the end of the virtual

corridor by moving in a forward direction (closed-loop system) (Saleem et al., 2013, 2018) (see key resources table). The rotary

encoder, infrared lick detector, and reward valve (225P011-21, NResearch, USA) interfaced with the VR code through an Arduino

Leonardo board. The task used a 150-cm long corridor, with a low-contrast white noise pattern along the ceiling, walls and floor

(8-cm width and height). The visibility of the corridor was limited to 70 cm ahead. A full traversal through the corridor is considered

a completed trial. Reaching the end (or timing out) initiated an ITI where the corridor was replaced with isoluminant grey. The ITI was

chosen randomly between 4 and 6s, to ensure that timing between spatial features could not carry past each trial.

As the mice travelled down the corridor, they would pass two distinct patterned cues (8-cm wide) on the walls, centred at 20 cm

and 45 cm along the corridor respectively. An unmarked reward zone spanned 60.5 cm to 67 cm in the corridor. On each trial, a

reward was delivered to a spout in front of them. The spout incorporated an infrared sensor to detect licking. The exact location

of the reward zone was not indicated by any cue and instead had to be estimated by the mouse based on prior cues and actions.

If themouse did not lick in the reward zone, then it would passively receive the reward at the end of the zone (passive trials). However,

if it licked within the zone, then reward delivery was actively triggered (active trials), and therefore delivered earlier than in the passive

trials (Figure 1D). The delay from the triggering lick to reward delivery was short but could allow formultiple licks to occur in the reward

zone in quick succession prior to reward delivery in active trials. When reward was delivered, an audible click (muffled to reduce

salience) could be heard as the solenoid valve opened (Video S1). The mouse could then continue down the virtual corridor and

pass a final, non-reward-predictive patterned cue (centred at 140 cm) before the end of the corridor was reached (grey screen). If

the mouse did not reach the end of the corridor within 30 seconds, the trial was terminated (timed out). A pre-reward licking threshold

was also imposed to reduce licking and indicate the mouse’s estimation of the reward location. This was gradually reduced over

training (following the mouse’s natural inhibition of excessive licking in incorrect locations) to approximately 8–10 licks in late-stage

training. If the mouse exceeded this threshold prior to reward delivery, the trial was terminated.
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For comparison of data across training, training sessions were split into three stages: early, mid and late training. Early and late

stageswere defined as the first and last quartile of sessions respectively for each animal, with the rest being classified asmid-training.

Calcium imaging
Calcium fluorescence was detected using a Miniscope through an implanted GRIN lens (Figure 1A) which acted as a proxy for dopa-

mine neuron activity. A custom Bonsai workflow (Lopes et al., 2015) and Miniscope node (see key resources table) were used to

acquire images (at 15 Hz) and calculate global calcium signal. Mice had a mean of 24 training sessions over the course of the exper-

iment. In early to mid-training, active trials were incentivised by offering slightly larger rewards (�2-3 mL) until the mice demonstrated

the ability to repeatedly perform active trials (as judged by the experimenter), at which point the active trial reward volume was

decreased to be the same as the passive trial reward volume. Later in training, 6 of the 8 mice had reward omission trials introduced

pseudo-randomly in 5–7% of the trials in each session, where no reward was delivered but the mouse still traversed the corridor.

Data preprocessing
Imaging data collected using Bonsai was imported into Matlab R2018a (MathWorks, Natick, MA, USA) for pre-processing. Rarely,

unstable signal was produced by Miniscope movement or power surges or lapses. Two types of signals were considered unstable.

The first type was fluorescence that exceeded or fell below a threshold of 1.5 standard deviations away from the mean fluorescence

across the whole training session. The second type was when fluorescence surrounding the first type (±100 ms) exceeded half of the

difference between the maximal fluorescence and mean fluorescence, therefore constituting an ‘upswing’ or ‘downswing’ of a large

transient. Following removal of these two types of unstable signal, a photobleaching curve was fitted across the entire session using

Matlab polyfit (2nd order) and subtracted from the fluorescence trace. The trace was then corrected for baseline variation by sub-

tracting the lower 10% quantile baseline using a 60s window. The resulting signal was then aligned to the virtual corridor times. Trials

with unstable signals were removed from subsequent analysis.

Tobe included in furtheranalysis, trials, sessionsandanimalshad to fulfil certaincriteria.Aborted trials (time-outs, toomany licksbefore

reward or experimenter-terminated), and trials with unstable signal were excluded from analysis. Sessions were included if they had >

50% trials with at least one lick, and >10% active trials. Four animals were excluded from further training as they did not show visible

reward responses to random reward, and were later confirmed to have mistargeted GRIN lens placement. One animal was excluded

due to a visual defect (cataract), and another one was excluded as it did not learn the task (based on having <50% of the sessions con-

taining active trials). Subsequent analysis was performed on data that met these conditions (eight animals). Fluorescence was z-scored

across each session. Figures 2 and 3 show data across sessions, Figure 5 shows data across trials from late-stage learning.

Data analysis
Behaviour during training was assessed through binnedmean licks/cm across the virtual corridor, as well as through the speed of the

wheel rotation. Phasic responses to the cues were calculated as the maximum minus the minimum values within each 12-cm cue

window (10–22 cm, 32–44 cm and 132–144 cm respectively). Phasic responses to the reward were calculated as themaximum value

in the reward window (60–90 cm)minus the mean of the activity within the pre-reward window (50–60 cm). Ramp gradient was calcu-

lated as the gradient of a fitted linear line (Matlab polyfit, 1st order) to the fluorescence in the window 0–60 cm.

Rewarded lick traces (Figure 2) included only trials that did not have any licks before the reward zone, to avoid contamination of the

signal by prior licks. Rewarded lick traces were also averaged across each animal before averaging over all animals to counter the

appearance of an electrical artifact that was presented in two animals when reward was delivered during active trials. Unrewarded

lick traces included only trials that had only one lick prior to the reward zone that was at least 0.5s before reward delivery. For com-

parison with reward omission trials, the data in Figures S3B and S3C only includes sessions that contained omission trials. Suppres-

sion gradient was calculated as the mean of the gradients of fitted lines (Matlab polyfit, 1st order) between the fluorescence at zero

and the minimum fluorescence in the second half of the window of fluorescence being examined (here �2.5 to 3s around the lick, so

minimum value between 0.25 and 3s) for each trial. Paired data was tested for differences using the Mann-Whitney U test (Matlab

ranksum), as were tests of difference from zero, while the Wilcoxon signed rank test (Matlab signrank) was used to test for

differences between different training stages. These results were then confirmed using linear mixedmodelling (Matlab fitlme), which

accounts for repeated measures in our longitudinal experimental dataset.

Ramp slopeswere classified as positive or negative by considering all ramp slopes across all trials, sessions and animals and taking

themostpositive third as ‘positive’ and themost negative third (belowzero) as ‘negative’. For analysis of theeffect of rampslopeon trial

n on lick distribution on trial n+ 1, only trials with no licks before the reward zone were considered to eliminate any contamination of

signal by licks. Experimental lick distributions in Figures 5C, 5D and 5F and 5Gwere calculated as licks/cm smoothed from 2 cm bins.

Histology
Mice were deeply anaesthetised using 3.5% isoflurane, injected with a lethal dose of pentobarbital (Euthatal, Boehringer Ingelheim)

intraperitoneally, and transcardially perfused with 1X PBS followed by 10% formalin solution. Following perfusion, the brain was ex-

tracted and placed in 10% formalin for short-term storage. Prior to sectioning, the brain was placed into a 30% sucrose solution until

it sank, for cryoprotection. The brain was thenmounted upright in OCT (Sakura FineTek) and 40 mmslices weremade using a cryostat

(LeicaCM1850 UV). Slices were washed five times in 1X PBS before overnight incubation on a rotating platform at room temperature
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in primary solution: 1:5000mouse anti-TH (ImmunoStar, Cat #22941) in PBS-T (0.4%Triton in 1X PBS), to label TH-positive (including

dopamine) cells. The following day, slices were washed five time in 1X PBS before a 2-hour secondary incubation, in 1:1000 Alexa

Fluor 594-goat anti-mouse (Biolegend, Cat #405326) in PBS-T. Slices were then washed five times in 1X PBS before being mounted

and allowed to dry. Mounting mediumwith DAPI (Vectashield, Vector Laboratories) was added to stain cell bodies, before adding the

coverslip and sealing with nail polish. Slices were then imaged at 10x magnification using a confocal microscope (Leica DMi8) and

LAS X software (Leica).

Q-learning model
Our Q-learning model was implemented using Matlab 2018a (Mathworks). The model considered a corridor of 30 discrete states

where an agent would move sequentially through the states in each trial (t), and could choose to ‘lick’ or ‘not lick’ in each state

(s). Cue states were defined as C˛ ½4; 9; 28� and the reward state sR = 14. If the agent chose to lick in the reward state, it would

receives a reward with value = 1. A threshold of licks allowed prior to the reward state was set to 2. If the agent exceeded this

threshold prior to reaching the reward state, it received a reward value (r) of�0.1 and the trial was terminated such that it progressed

to the first state of the next trial.

For each ‘true’ state ðsTÞ visited, the agent estimated the state as: bsT = sT +Nð0; s2f Þ using the standard normal distribution to

inject a noise term using constant variance s2f set to 0.3, in order to simulate noisy visual observation (Lak et al., 2017, 2020). This

estimate was used to construct a subjective normally-distributed belief 4!s of the agent’s position in the environment, weighted

by uncertainty u that decreased in a Gaussian around the cue states, and a linear scale z
!

that simulated learning about the environ-

ment structure across the first 400 trials, such that each element of 4!s was calculated as: 4sðsÞ = zðtÞ,
2
4e�

ðs�bsT Þ2
2s2

f ,½1 � uðsÞ�
3
5 where

u! confers the uncertainty relative to cue states. This is defined as uðsÞ = h � P
ihciðsÞ where ciðsÞ = e

� ðs�Ci Þ2
2s2g if js � Cji < 4 and

ciðsÞ = 0 otherwise. Ci is a cue state where i is the index of cue states, and c! is the sum of the Gaussian distributions around

each cue state with amplitude h and standard deviation sg (see Table S3). The belief state sB was then defined as the state where

the belief distribution was maximal: sB = arg maxsð4!sÞ. Intuitively, this means that the belief is weighted by the relative certainty of

the inference for that particular state due to presence or absence of nearby cues to inform/confirm its exact position.

Following determination of the belief state,Q-values for licking ðQLÞ and not licking ðQNÞwereweighted by the learning ratea, discount

factor g, and either the belief that the agent was in the reward state4sðsRÞ or the eligibility tracejðsBÞ respectively such thatQLðsB; tÞ =
ag QLðsB; t � 1Þ 4sðsRÞ andQNðsB; tÞ = ag QNðsB; t � 1Þ jðsBÞ. The reasonwechoose thisweighting is because intuitively, the value

of licking shouldbe higherwhen youbelieve you are in the reward state, but conversely the valueof not licking should be higherwhen you

have just passeda cue,because thatmeans you are not in the rewardstate. Theeligibility tracewas initialisedat 0.5 and updatedaccord-

ing to jðsÞ = minf1; gljðsÞ +4sðsBÞg if s˛C or jðsÞ = gljðsÞ if s;C or jðsÞ = 0 if s = sR, where l is the trace decay parameter.

Action (a) selection was performed in an ε-greedy manner where ε = 0.1, such that there was a 1 � ε (90%) chance that action

selection was performed by comparing the Q-values of licking and not licking and selecting whichever had a higher value: either

a = L if QLðsB; tÞ>QNðsB; tÞ or a = N if QLðsB; tÞ<QNðsB; tÞ. For the remaining ε (10%) probability, or if QL and QN were

equal, actions were chosen randomly. The agent then received the outcome of the chosen action in that state. The expectedmaximal

reward in the subsequent state,Qmax, was calculated using the cached values from the nearest preceding trial that had reached that

state: QmaxðsB + 1; tÞ = max½QLðsB + 1; t � 1Þ; QNðsB + 1; t � 1Þ�. The TD error could then be calculated as dðsB; tÞ = rðsÞ+
g QmaxðsB + 1; tÞ � QaðsB; tÞ and used to update the Q-value for the chosen action ðQaÞ: Q 0

aðsB; tÞ)QaðsB; tÞ+adðsB; tÞ. The
model then repeats this cycle for the next state, unless it exceeded the threshold of licks allowed prior to the reward state, in which

case it moves to state 1 of the next trial.

We trained 100 agents for 4000 trials, where a = 0.9, g = 0.95, l = 0.92, 0% z% 1.Q-values were initialised at 0.1. ‘Early’ trials were

defined as the first 30, ‘mid’ trials were the next 70, and the rest were ‘late’. See Table S3 for full list of parameters and variables.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data presented include trials, sessions, and animals that met the criteria for analysis, detailed in the Data preprocessing section

above. All fluorescence was z-scored across each session prior to analysis.

Continuous variables are shown as means with SEM. Boxplots indicate median in white, 25th and 75th percentiles as edges, and

whiskers indicate most extreme points not considered outliers (outliers not shown). All statistical analyses are detailed in Table S1.

Significance level achieved as indicated in figures is ***: p < 0.001, **: p <0.01, *: p < 0.05 except where Bonferroni corrections are

applied for comparisons across training stages, in which case ***: p < 0.0003, **: p < 0.0033, *: p < 0.0167. Much of the data was not

normally distributed (as indicated by cursory Shapiro-Wilk tests, not reported) so non-parametric tests were used. Where session

averages are tested for significant difference from zero, unpaired Wilcoxon signed-rank tests were used. Where session averages

of active and passive trial types were being compared, paired Wilcoxon signed-rank tests were used. Where session averages for

each training stage were being compared, Mann-Whitney U tests were used and Bonferroni corrections applied.
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Mean percentage trial type (Figure 1E) is an average over each training stage’s sessions for each of the eight animals. A Mann-

Whitney U test was used to examine the difference between active and passive trial percentages for each learning stage, showing

significant difference in late-stage training (p = 0.0078, n = 8). Comparison of pre-reward and reward zone mean licks/cm (Figure 1F)

shows eachmean values for each session plotted as individual points, with lines indicating best fit for all sessions in that training stage.

Data shown in Figures 2 and 3 show averages over sessions regardless of animal.Wilcoxon signed-rank tests (unpaired) were used

to test whether data was significantly different from zero.Wilcoxon signed-rank tests (paired) are used to compare active and passive

conditions, and Mann-Whitney U tests are used to compare different training stage data, followed by Bonferroni corrections for mul-

tiple comparisons. Linear mixed models are detailed in the text and figure legend (see STAR methods section and Table S2).

Model performance as shown by percentages of rewarded and unrewarded trials (Figure 4F) is averaged over all trials for each

learning stage for 100 agents. Mann-Whitney U tests are used to compare trial type percentages for each training stage. Compar-

isons of lick distributions for late-stage trials following positive or negative slope trials (pooled across late-stage sessions and ani-

mals) (Figures 5C, 5D, 5F, and 5G) were performed using Mann-Whitney U tests for each spatial bin of 2 cm.

In Figure S2B, speed profiles are shown as averages over sessions regardless of animal. Wilcoxon signed-rank tests (paired) were

performed on each 2 cm spatial bin to show significant differences between active and passive trials. In Figure 2C, each point shows

averagedata for each session regardless of animal, with a line of best fit for each of the six combinations of training stage and trial type.

Linear regressionmodels (Matlab fitlm)were used to comparemean rampgradient andmean rate of speed change for each condition.

Data in Figures S3 and S4 are shown over sessions regardless of animal. Wilcoxon signed-rank tests (unpaired) were used to test

whether data was significantly different from zero. Wilcoxon signed-rank tests (paired) are used to compare active and passive con-

ditions, and Mann-Whitney U tests are used to compare different training stage data with Bonferroni corrections. Linear mixed

models are detailed in the figure legend.

Comparisons of lick distributions for late-stage trials following large positive, small positive, or negative reward response trials

(pooled across late-stage sessions and animals) (Figure S8) were performed usingMann-Whitney U tests for each spatial bin of 2 cm.

Linear mixed models
Linear mixed modelling (LMM) with random intercepts and slopes was additionally implemented in Matlab (fitlme) to examine the

dependence of the data on task variables such as trial type and session and account for repeated measures such that there were

independent random effects terms for intercept and slope with animal identity as the grouping. Figures 2F, 2I, 2L, 3, S3F, S3G,

S3J, and S4 used Models 1–3 to examine the effect of trial type and learning across sessions, while Figures 2C, S3C and S3E

used Models 4–7 to examine the effects of trial type (being active vs passive or omission vs unrewarded) and condition (being

pre- vs post-lick gradient or rewarded vs unrewarded). Models are denoted in Wilkinson notation where y is the variable of interest:

Model1 : y� session+ ð1janimalÞ+ ð � 1 + sessionjanimalÞ+ ð � 1 + trialtypejanimalÞ
Model2 : y� trialtype+ session+ ð1janimalÞ+ ð � 1 + sessionjanimalÞ+ ð � 1 + trialtypejanimalÞ
Model3 : y� trialtype � session+ ð1janimalÞ+ ð � 1 + sessionjanimalÞ+ ð � 1 + trialtypejanimalÞ
Model4 : y� condition+ ð1janimalÞ+ ð � 1 + sessionjanimalÞ+ ð � 1 + trialtypejanimalÞ+ ð � 1 + conditionjanimalÞ
Model5 : y� trialtype+ ð1janimalÞ+ ð � 1 + sessionjanimalÞ+ ð � 1 + trialtypejanimalÞ+ ð � 1 + conditionjanimalÞ
Model6 : y� condition+ trialtype+ ð1janimalÞ+ ð � 1 + sessionjanimalÞ+ ð � 1 + trialtypejanimalÞ

+ ð � 1 + conditionjanimalÞ
Model7 : y� condition � trialtype+ ð1janimalÞ+ ð � 1 + sessionjanimalÞ+ ð � 1 + trialtypejanimalÞ

+ ð � 1 + conditionjanimalÞ
Models were compared using a likelihood ratio test (Matlab compare) to ascertain which model best described the data. Table S2

indicates the results of these models.
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