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Simple Summary: Mutation of the RB1 tumor suppressor gene is fundamental in retinoblastoma
initiation and progression although its downstream mechanism has not been well elucidated. Here,
we found that expression of proline/arginine-rich end leucine-rich repeat protein (PRELP) is strongly
downregulated in human retinoblastoma and highly expressed in Müller glial cells in normal retina.
Deletion of PRELP in mice resulted in retinal dysplasia associated with enhanced proliferation.
mRNA expression profiling revealed that cancer pathways were strongly activated in PRELP−/−

retina. Additionally, cell–cell adhesion was inhibited while epithelial mesenchymal transition (EMT)
and inflammation were activated. On the other hand, application of PRELP protein to retinoblastoma
cell lines enhances cell–cell and cell–substrate adhesion and inhibits anchorage independent growth
by reversing EMT. These observations indicate that PRELP downregulation in human retinoblastoma
can contribute cancer progression through regulation of cell adhesion and EMT suggested that PRELP
application might be a novel strategy for retinoblastoma treatment.

Abstract: Retinoblastoma (RB) is the most common intraocular pediatric cancer. Nearly all cases of
RB are associated with mutations compromising the function of the RB1 tumor suppressor gene. We
previously demonstrated that PRELP is widely downregulated in various cancers and our in vivo
and in vitro analysis revealed PRELP as a novel tumor suppressor and regulator of EMT. In addition,
PRELP is located at chromosome 1q31.1, around a region hypothesized to be associated with the
initiation of malignancy in RB. Therefore, in this study, we investigated the role of PRELP in RB
through in vitro analysis and next-generation sequencing. Immunostaining revealed that PRELP is
expressed in Müller glial cells in the retina. mRNA expression profiling of PRELP−/− mouse retina
and PRELP-treated RB cells found that PRELP contributes to RB progression via regulation of the
cancer microenvironment, in which loss of PRELP reduces cell–cell adhesion and facilitates EMT. Our
observations suggest that PRELP may have potential as a new strategy for RB treatment.
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1. Introduction

RB is the most common intraocular pediatric cancer with an estimated frequency of
1 in 15,000 to 20,000 live births. RB is aggressive and if left untreated is invariably fatal.
Highly specialized clinical interventions including chemotherapy, cryotherapy localized
radiotherapy, and enucleation (eye removal) are required to treat RB [1]. These therapies
are effective at prohibiting death but often come at the cost of loss of vision in one or both
eyes. Moreover, these therapies exert deleterious physical, cognitive, and psychological
damage that persists throughout life. Therefore, there is an urgent need to develop more
effective and less invasive treatments.

Nearly all cases of RB are associated with mutations compromising the function of the
RB1 tumor suppressor gene. RB1 was one of the first tumor suppressor genes identified
following its cloning in 1986–1987 [2]. MYCN hyper amplification without RB1 mutation
has also been reported in a small subset of RB cases [3,4]. Previously, our whole genome
sequencing identified at least one RB1 allele in all 19 RB samples, with several samples
also harboring MYCN amplification. However, we could not identify any mutation other
than RB1 and MYCN [5]. Interestingly, it was thought that loss of RB1 function results in
the initial development of a benign retinoma that later develops into aggressive RB [6].
Furthermore, familial RB patients with RB1 mutation do not always initiate cancer in
both eyes. These observations of incomplete penetrance and phenotypic varaibility of the
RB1 gene indicate that other factors are also involved in RB progression. Indeed, non-
mutational epigenetic reprogramming and microenvironmental cues have been shown to
drive tumorigenesis in many cancers [7].

PRELP is a class II member of the small leucine rich proteoglycan (SLRP) family.
SLRPs are highly expressed in ocular tissues and associated with many ocular diseases
and cancer [8,9]. These proteins generally reside in the extracellular matrix (ECM) after
being secreted, where they were initially recognized to organize and maintain the structural
integrity of the ECM via collagen fibrillogenesis. Indeed, PRELP is a molecular anchor
between constituents of the ECM and the basement membrane [10]. More recent studies
have suggested that SLRPs regulate signaling pathways such as TGF-β and Wnt through
direct interaction with either ligands or receptors [8]. This can have a profound effect on
cancer-specific mechanisms, Recently, we reported that PRELP expression was profoundly
suppressed in the majority of epithelial cancers [11]. We found that PRELP−/− mice
spontaneously generated benign urothelial papillary cancer, accompanied by a reduction
in tight junctions between urothelial epithelial cells that is associated with EGF and TGF-β
pathway activation. These changes are quintessential to the EMT phenotype. As PRELP is
located on chromosome 1q31.1, a region hypothesized to be associated with the initiation
of malignancy in RB [6], we investigated the potential role of PRELP on the progression of
RB through EMT and cell adhesion in this study.

2. Materials and Methods
2.1. Materials

Antibodies used are listed in Supplemental Table S1. Y79 cells and WERI-RB1 cells
were obtained from ATCC and cultured in RPMI-1640 with 10% FBS and 5% L-glutathione.
Purified recombinant PRELP were previously reported [12]. Anti-PRELP antibodies were
a gift from the Tsumoto laboratory. Conditioned media of PRELP was obtained from
tetracycline-inducible PRELP expressed in HEK293T cells.

2.2. Human RB Data

Human RB expression profiling data were obtained in our previous paper [5].
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2.3. Mouse Experiments

Construction and analysis of the PRELP−/− mice is described previously [11]. All
experiments were covered by Home Office Animal Project Licence and performed in
accordance with University College London guidelines for animal handling.

2.4. Cell Culture Conditions

Suspension culture: Cells of Y79 or WERI-RB1 were cultured in complete medium in
non-treated tissue culture plates (Thermo Fisher Scientific, Waltham, MA, USA, #260860).
Where indicated, 1 µg/mL laminin-coated plates were used. Attached culture: Cells
were cultured using Nunclon Delta-treated tissue culture plates (Thermo Fisher Scientific,
Waltham, MA, USA, #161093).

2.5. Viability Assays

First, 0.5 × 105 cells were seeded under either suspension or attached conditions in
96-well plates and incubated at 37 ◦C for 24 h. Cells were then resuspended in a 1:1 ratio
with 0.4% trypan blue. Counting of live and dead cells was performed using a Countess II
Automated Cell Counter (Thermo Fisher Scientific, Waltham, MA, USA).

2.6. Proliferation and Adhesion Assays

For proliferation assays, 2.0 × 104 cells were cultured under either suspension or
attached conditions in 96-well plates and incubated at 37 ◦C for the indicated time. Then,
the CCK-8 assay (ab228554, Abcam, Cambridge, UK) was performed according to the
manufacturer’s instructions. A measure of 10 µL of WST-8 reagent was added per 100 µL
cell media and incubated for 2 h at 37 ◦C. Absorbance was then measured at 460 nm. For
adhesion assays, 5.0 × 104 cells were seeded in non-treated or 1.0 µg/mL laminin (Sigma,
Burlington, MA, USA, L2020) coated plates and incubated for 24 h. Cells were washed
twice in PBS and the CCK-8 assay was performed as above.

2.7. Anchorage-Independent Growth Assays

First, 0.6% 2-hydroxyethyl agarose was added as a base to 6-well plates and allowed to
solidify. In addition, 2.0 × 104 cells were dissociated and suspended in 0.3% 2-hydroxyethyl
agarose. Cells were incubated for up to 14 d to form colonies which were imaged at regular
intervals using a phase-contrast microscopy. At the end of the experiment, 0.05% crystal
violet was used to stain colonies.

2.8. Immunostaining

PRELP−/− retina: Perfusion through direct cardiac approach was used. To analyze
dysplasia and other phenotypes, we isolated eye from PRELP−/− mice and wild type mice
at ages of 18–25 weeks as indicated. The isolated eyes were fixed with 4% PFA at room
temperature for 1 h and embedded in OCT compound (Tissue Tek, Sakura Finetek, Alphen
aan den Rijn, The Netherlands). Then, 10 µm sections were used for X-gal staining and
immunohistochemistry as reported [11].

Cultured cells: Cells were fixed for 10 min in methanol for ZO-1 antibody, or in
4% PFA against E-cadherin, N-cadherin, paxillin, and β–catenin and incubated with the
primary antibody. Then, cells were stained with the AlexaFluor 488 secondary antibody
and visualized by Zeiss LSM 710 confocal microscope.

2.9. mRNA Expression Profiling

PRELP−/− mouse retina: Female wild-type and PRELP−/− mice aged approximately
13 weeks (n = 3) were terminated. RNA was isolated from retinas using RNeasy kits
(Qiagen, Manchester, UK). Isolated RNA was assessed using a Nanodrop spectrophotome-
ter (NanoDrop, Wilmington, DE, USA) and an Agilent 4200 Tape Station (Agilent, Santa
Clara, CA, USA). mRNA expression profiling of PRELP−/− mice retina was performed as
previously described [11].
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Whole cell RNA expression profiling of Y79 cells: 2.0 × 106 Y79 cells were seeded into
6-well plates under suspension conditions. After 24 h culture with 50 µg/mL PRELP, RNA
was extracted using RNeasy kits and processed as described for the PRELP−/− mRNA
expression profiling.

Single cell expression profiling of WERI-RB1 cells: 0.1 × 106 cells were seeded under
suspension conditions in 96-well plates and treated with 50 µg/mL PRELP for 16 h. Cells
were then dissociated. A total of 12,000 cells from each sample were processed through the
10× Genomics Chromium platform pipeline according to the manufacturer’s instruction.
Gel beads in Emulsion were barcoded by oligonucleotides. After RNA quantification with
a Qubit 2.0 Fluorometer, sequencing was performed by Illumina NextSeq 2000. Single cell
RNA-sequencing was done in duplicate for both control and PRELP-treated cells and single
cell data were combined to produce a pooled mRNA expression profile to obtain the robust
result [13,14].

DESeq2 was used to identify differentially expressed genes which was uploaded to
Qiagen Ingenuity Pathway Analysis (IPA) for ontological analysis.

2.10. Quantification and Statistical Analysis

Error bars in all graphs indicate standard error of mean. Student t-test was used to per-
form statistical analysis unless stated otherwise. Student t-test vales are * = p-value < 0.05,
** = p-value < 0.005, and *** = p-value < 0.001. For in vitro and in vivo experiments, n > 3.
At least three fields of view were analyzed for each immunofluorescence assay and five
fields of view for anchorage-independent growth assay. Statistical analysis was performed
using SPSS 27 (version 27.0.1; IBM, New York, NY, USA).

3. Results
3.1. PRELP Expression Is Strongly Suppressed in RB

Recently, we have performed whole genome and mRNA expression profiling of human
RB [5] and investigated the expression of PRELP and other members of the SLRP family in
human RB (Table 1).

Table 1. Expression levels of SLRP family in human RB.

SLRP Member Normal Retina
Expression (n = 3)

RB Expression
(n = 3) Fold Change p-Value

Osteoglycin (OGN) 1584.3 7.8 −203.1 1.1 × 10−97

Opticin (OPTC) 5104.3 0.6 −8507.2 3.4 × 10−41

Osteomodulin (OMD) 318.7 1.8 −177.0 8.7 × 10−32

Proline/arginine-rich end leucine-rich repeat
Protein (PRELP) 4102.7 25.2 −162.8 1.5 × 10−22

Nyctalopin (NYX) 80.0 0.8 −100.0 5.6 × 10−14

Podocan−like protein 1 (PODNL1) 190.0 7.4 −25.7 7.0 × 10−10

Tsukushi (TSKU) 983.3 219.6 −4.5 1.4 × 10−7

Biglycan (BGN) 1361.7 123.0 −11.1 6.1 × 10−7

Fibromodulin (FMOD) 620.3 31.8 −19.5 6.5 × 10−7

Asporin (ASPN) 38.3 7.4 −5.2 4.6 × 10−5

Extracellular matrix protein 2 (ECM2) 203.3 14.6 −13.9 1.4 × 10−4

Decorin (DCN) 1785.7 87.0 −20.5 1.8 × 10−4

Chondroadherin (CHAD) 12.0 0.8 −15.0 2.5 × 10−3

Keratocan (KERA) 12.7 1.0 −12.7 5.7 × 10−2

Lumican (LUM) 98.0 20.2 −4.9 1.1 × 10−1

Podocan (PODN) 163.0 123.4 −1.3 NA
Epiphycan (EPYC) 0 0 NA NA
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Almost all members of the SLRP family are suppressed in RB compared with the
normal retinal tissue. In particular, PRELP expression was reduced 163-fold (p-value of
1.46 × 10−22). We also confirmed low expression of PRELP in RB cell lines of Y79 and
WERI-RB1 as observed in other cancer cell lines [11]. Our whole genome sequencing
analysis confirmed that gene mutations or alternations are largely limited to RB1 and
NMYC and SLRP family genes are not mutated [5], indicating that PRELP suppression is a
consequence of RB1 mutation in RB.

3.2. PRELP Is Highly Expressed by Glial Cells in the Retina

After confirmation of PRELP suppression in RB, we examined expression patterns
of PRELP in healthy tissues using PRELP−/+ mice [11]. We first examined endogenous
expression of PRELP by X-gal staining using a Lac reporter gene cloned into PRELP−/+

mice. Expression patterns between the LacZ reporter gene in PRELP−/+ mouse and the
PRELP transcript using in situ hybridization in their wild type equivalents was almost
identical [11]. In adult retina, X-gal staining was mainly observed in the retinal ganglion
cell layer, the outer plexiform layer, and the basal side of the outer nuclear layer around
inner limiting and outer limiting membranes as stripe pattern from apical to basal retina,
mimicking Müller glial cell processes (Figure 1A).

The X-gal staining pattern was further confirmed by β-galactosidase antibody staining
(Figure 1B). In the peripheral retina, PRELP is also expressed at non-pigmented layer of
the ciliary body (Figure 1C). To confirm cell types that express PRELP, double staining
of anti-β-galactosidase monoclonal antibody with Müller glial cell-specific marker GFAP
was performed (Figure 1D–I). To determine the Müller glial cell subtypes expressing SLRP
family members in the retina, we performed single cell mRNA expression profiling analysis
of mouse retina (Figure 1J). Clustering of cell markers identified four subtypes of Müller
glial cells. All Müller glial cell clusters expressed PRELP (Figure 1K), while other SLRP
members were expressed in specific clusters (Figure 1L–N). This is consistent with the
literature [15]. PRELP localization was determined using monoclonal PRELP antibodies [12].
We found that PRELP antibody stained the whole retina with the strongest expression in
the RGC layer and outer side of photoreceptor cells, which is consistent with our mRNA
expression (Figure 1O,P).

Other cell types were also examined, using markers for micoglia (IBA-1), pericytes
(NG-2), and vascular endothelial cells (isolectin or green-tomato lectin). We found that in
addition to Müller glial cells, a small population of microglia (Figure 2A–F) and pericytes
(Figure 2G–L) expressed PRELP while no expression was detected in endothelial cells.

3.3. PRELP−/− Mice Exhibit Dysplasia in the Retinal Cell Layers

We examined the effects of PRELP inactivation in the developing retina by comparing
retinal morphology in wild type and PRELP−/− mice. Wild type mice presented discrete
borders between each retinal layers throughout the entire retina (Figure 3A,B). However,
architecture in the PRELP−/− mouse retina was disrupted (Figure 3C–G). All PRELP−/−

mice had localized regions of severe dysplasia. This occurred in the outer nuclear layer
(Figure 3C–E), inner nuclear layer (Figure 3F), and ganglion cell layer (Figure 3G). Although
dysplasia was observed in PRELP−/− retina (Figure 3H), most prominently in the outer
nuclear layer. We then quantified cell number in these cell layers (Figure 3I–K). No sig-
nificant differences in cell number at non-dysplastic sites were found. On the other hand,
cell number was significantly increased in dysplastic areas, associated with the widening
of plexiform layers in some cases. These observations suggest that decreasing cell–cell
integrity may enhance proliferative potential, inducing dysplasia.
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Figure 1. PRELP is expressed in Müller glial cells. The blue color indicates DAPI staining: (A–C) β-

galactosidase staining of PRELP−/+ mouse retina at central area (A,B) and peripheral retina (C). (A) 

and (C) X-gal staining; (B) β-galactosidase antibody staining. Scale bar: 50 μm. The staining was 

Figure 1. PRELP is expressed in Müller glial cells. The blue color indicates DAPI staining:
(A–C) β-galactosidase staining of PRELP−/+ mouse retina at central area (A,B) and peripheral
retina (C). (A,C) X-gal staining; (B) β-galactosidase antibody staining. Scale bar: 50 µm. The staining
was seen in around GCL, OPL, basal side of ONL, and OLM in the retina. A stripe staining
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pattern similar to Müller glial cells was observed. (GCL: Ganglion cell layer, IPL: Inner plexiform
layer, INL: Inner nuclear layer, OPL: Outer plexiform layer, ONL: Outer nuclear layer, OLM: Outer
limiting membrane, PL: Photoreceptor layer. (C) PRELP expressed in non-pigmented side of the
ciliary body. (D–I) Double staining of β-galactosidase antibody and anti-GFAP antibody on PRELP−/+

mouse retina. (D) Anti-GFAP staining; (E) β-galactosidase antibody staining; (F) overlapped image;
(G–I) enlarged image indicated in Figure (D–F). Scale bar: 10 µm. Clear co-localization was seen on
the Müller glial cells on the apical side of the retina; (J) Single cell analysis of PRELP expression in
mouse retina; (K) PRELP expression in Müller glial cell subtypes; (L) opticin expression in Müller glial
cell subtypes; (M) fibromodulin expression in Müller glial cell subtypes; (N) osteoglycin expression
in Müller glial cell subtypes; (O,P) anti-PRELP antibody staining of mouse retina (O) wild type and
(P) PRELP−/−. Anti-PRELP antibody staining was seen in almost entire retina. Ganglion cell layer
showed intense staining. Scale bar: 50 µm.
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Figure 2. PRELP expression in mouse. The blue color indicates DAPI staining: (A-F) Double staining 

of (A) anti IBA-1 antibody and (B) β-galactosidase antibody on PRELP+/LacZ mouse; (C) merged im-

age. Scale bar: 50 μm. (D–F) Magnified images. Scale bar: 10 μm. IBA-1 clearly marked microglia in 

the OPL. Scale bar: 50 μm. (G–L) Double staining of (G) anti-NG-2 antibody and (H) β-galactosidase 

Figure 2. PRELP expression in mouse. The blue color indicates DAPI staining: (A–F) Double staining
of (A) anti IBA-1 antibody and (B) β-galactosidase antibody on PRELP+/LacZ mouse; (C) merged
image. Scale bar: 50 µm. (D–F) Magnified images. Scale bar: 10 µm. IBA-1 clearly marked microglia in
the OPL. Scale bar: 50 µm. (G–L) Double staining of (G) anti-NG-2 antibody and (H) β-galactosidase
antibody on PRELP+/− mouse retina; (I) merged image. Scale bar: 50 µm. (J–L) Magnified images.
Scale bar: 10 µm. NG-2 staining marked pericytes tube formation.

Abnormalities were also seen in the structure around both inner limiting membrane
and outer limiting membrane in PRELP−/− mice. In the wild type retina, the structure
of the inner limiting membrane was uniform. In the PRELP−/− retina, this structure was
thinner, more cystic, either hypoplastic or hyperplastic, and often detached (Figure 3C,D).
Detachment of the idiopathic epiretinal membrane, which is located at the apical end
feet of Müller glial cells and caused by Müller glial cell–mesenchymal transition, was
observed in many cases (Figure 3C–E,L) [16]. We stained mouse retina with Laminin A
to elucidate ECM structure. Laminin A staining, corresponding to basal membrane, was
strongly disrupted in PRELP−/− retina (Figure 3M–O). We also stained the tight junction
marker, ZO-1, on the outer limiting membrane. In the PRELP−/− retina, ZO-1 staining
was relatively diffused and disrupted, suggesting that tight junctions in the outer limiting
membrane in PRELP−/− retina are impaired (Figure 3P–R). These observations indicate
that cell–cell adhesion and cellular microenvironment are damaged in PRELP−/− retina.
Diagnostic hallmarks associated with human RB, such as Flexner–Winersteiner rosetta
were not found in PRELP−/− mice. This suggests that there is no malignant development
of RB in PRELP−/− mouse retina as observed in human RB.
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test was performed: *** = p < 0.001. 

Abnormalities were also seen in the structure around both inner limiting membrane 

and outer limiting membrane in PRELP−/− mice. In the wild type retina, the structure of 

Figure 3. PRELP knockout resulted in dysplasia of the retina. The blue color indicates DAPI
staining: (A–G) Hematoxylin and eosin (H&E) staining of retinal section in (A,B) wild type and
(C–G) PRELP−/−. Scale bar: 100 µm. In PRELP−/− retina, dysplasia was observed in various retinal
layers ((C–E) ONL, (F) INL, (G) GL). (H) Average total dysplasia depth per retina. Retinal dysplasia
in wild type and PRELP−/− retina was quantified. (I–K) The cell numbers in dysplasia areas and
non-dysplasia areas in (I) ONL, (J) INL, and (K) GL were compared; (L) detachment of inner limiting
membrane/ganglion cell layer in PRELP−/− retina. Scale bar: 50 µm. This is similar to idiopathic
epiretinal membrane, also observed in (C–E); (M–O) Laminin A staining of (M) wild type and (N,O)
PRELP−/− retina; (P–R) ZO-1 staining of (P) wild type and (Q) PRELP−/− retina. Scale bar: 100 µm.
Gap in outer limiting membrane is indicated as arrow. (R) The number of gaps in outer limiting
membrane per mm is counted. N ≥ 3. At least three fields of view were analyzed in each experiment.
Student’s t-test was performed: *** = p < 0.001.
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3.4. mRNA Expression Profiling Analysis of PRELP−/− Mouse Retina Revealed That PRELP Is
Involved in Cancer, Adhesion, and Inflammation

To determine the comprehensive effects of the inactivation of PRELP, we performed
mRNA expression profiling using retinal samples of wild type and PRELP−/− mice (n = 3,
female, age 8–12 weeks). Ontological analysis using IPA identified 2051 differentially
expressed genes (DEGs) and 276 pathways significantly affected by PRELP suppression
(p-value < 0.01) (Supplemental Data S1). Among these, 42 pathways (19.6%) were directly
related to cancer (Figure 4A), including “Molecular mechanisms of cancer” we discuss
later (Figure 5), “Colorectal cancer metastasis signaling”, and “Glioblastoma multiform
signaling”. In addition to RB1, major cancer related genes such as Ras, NFKB, EGFR,
AKT1, JUN/FOS, MYC, APC/TCF3, TP53, MET, PTEN, and SRC were affected (Figure 4B).
A further 32 pathways (15.0%, Figure 4B) and 39 pathways (18.2%, Figure 4C) were
involved in EMT/cell adhesion and inflammatory processes, respectively. Adhesion
pathways potentially contributing to EMT include “Sertoli cell–sertoli cell junction
signaling”, “Epithelial adherens junction signaling”, and “Tight junction signaling”,
while those related to inflammation include “Neuroinflammation signaling pathway”,
“Role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis”, and
“IL-8 signaling”.

Our recent studies showed that PRELP directly binds multiple extracellular proteins
such as TGF-β, EGF receptor, IGFI receptor, and p75NTR components [11,12]. These
pathways are known to regulate cell cycle, EMT, cell adhesion, and inflammation. Our
expression profiling of PRELP−/− retina shows that these pathways are significantly
affected (Figure 4D), supporting that PRELP-mediated regulation of these pathways
are involved in the mouse retina as observed in bladder. To estimate the contribution
of PRELP downregulation in human cancer, we biostatistically compared expression
profiling data of PRELP−/− mouse retina with publicly available data using the Analysis
Match function of IPA software (QIAGEN). Figure 4E shows that PRELP−/− mouse
retina shows very high similarity with publicly available deposited cancer data in all
four analysis methods of Canonical Pathways (CP), Upstream Regulations (UR), Causal
Networks (CN), and Diseases and Function (DE), indicating that PRELP suppression in
almost all cancers has significant contribution to the cancer initiation or progression.

3.5. PRELP Application Reduces RB Cancer Cell Viability in Association with Enhanced Cell
Adhesion, Inhibition of Anchorage Independent Growth, and Facilitation of MET

Our observations suggest that suppression of PRELP potentiates RB progression
through EMT mechanisms, especially those associated with cell adhesion, as observed
in bladder cancer. Thus, we hypothesized that application of PRELP protein to RB
cells is likely to inhibit RB progression by reversing EMT via mesenchymal epithelial
transition (MET). To elucidate the roles of PRELP in RB progression, we examined the
effect of purified recombinant PRELP protein [12] on Y79 and WERI-RB1 RB cell lines.
RB cells are known to grow as adhesive or suspension cultures depending on cell culture
substrates. We used two substrates: Nunclon Delta-treated plates (attached culture) and
non-treated plates (suspension culture). Approximately 18.1% or 25.5% of either Y79 or
WERI-RB1 cells attached to non-treated plates, respectively. Almost all RB cells attach to
Delta-treated plates.
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Figure 4. Expression profiling analysis of PRELP−/− mouse retina: (A) Highly affected
cancer−related biological events/pathways in ontological analysis of PRELP−/− retina expression
profiling data; (B) highly affected EMT/cell adhesion−related biological events/pathways; (C) highly
affected inflammation−related biological events/pathways; (D) highly affected ligand−induced
signaling pathways; (E) search of publicly available datasets that shows similarity with PRELP−/−

mouse retina. Similar datasets were researched using Analysis Match function of IPA software.
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Figure 5. Molecular mechanism of cancer: Schematic drawing of “Molecular Mechanism of Can-
cer” obtained by ingenuity canonical pathway analysis of PRELP−/− mouse retina. Loss of PRELP
activated the majority of cancer pathways in the mouse retina. Red = upregulated; green = downreg-
ulated; orange = predicted upregulation; blue = predicted downregulation.

We examined the effect of PRELP on live RB cell numbers on non-treated plates or
Delta-treated plates. Figure 6A,B shows that, on non-treated plates, PRELP treatment
significantly reduced the number of live cells in both Y79 and WERI-RB1. On the other
hand, on Delta-treated plates, effect of PRELP on live cell number was weak (Figure 6C,D),
suggesting that the effect of PRELP depends on cell environment or adhesion status. Next,
we examined the effect of PRELP on the ratio of live cells to dead cells by trypan blue
exclusion. PRELP application significantly reduced the ratio of live cells on both non-treated
plates and Delta-treated plates (Figure 6E,F), indicating that PRELP has negative effect
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on RB cell survival. Then, we examined the effect of PRELP on cell–substrate adhesion.
PRELP application to Y79 or WERI-RB1 cells strongly enhanced cell adhesion to non-treated
plates. A 1 µg/mL laminin treatment enhanced cell adhesion to the substrate and PRELP
application further enhanced adhesion (Figure 6G,H). The enhancement of adhesion by
PRELP must be related by its biological function because addition of BSA (50 µg/mL)
did not alter the adhesion. The observation that PRELP can enhance adhesion of Y79 and
WERI-RB1 cells to non-treated or laminin-treated plates suggests that PRELP treatment may
inhibit cancer cell growth through inhibition of anchorage-independent growth. Therefore,
we examined the effect of PRELP under anchorage-independent growth conditions. In the
absence of PRELP, Y79 cells and WERI-RB1 cells developed many large colonies. Addition
of PRELP strongly inhibited colony formation (Figure 6I,J). We counted the number of
colonies and single cells (Figure 6K,L). These observations indicate that PRELP inhibits
anchorage independent growth of solo RB cells. Furthermore, we quantified relative size of
colonies (Figure 6M,N), indicating that PRELP reduces the colony size. These corroborate
our recent study in bladder cancer using EJ28 bladder cell lines [11]. Our results suggest
that PRELP has tumor suppressor-like properties through regulation of EMT and cell
adhesion in many types of cancer.

Anchorage-independent growth has been previously shown to produce distinct colony
types, which correspond to EMT states and contribute to metastatic potential. As observed
in breast cancer [17], there were three distinct colony types of RB cells in our anchorage-
independent growth assays (Figure 6O). Round colonies were highly organized, with a
discrete boundary. Mass colonies displayed a lack of organization while clustered colonies
were disseminated. These phenotypes have been previously demonstrated to be spaced
along the EMT spectrum, with round colonies presenting epithelial-like qualities and clus-
tered colonies demonstrating mesenchymal-like qualities. Application of PRELP to RB
cell lines increased the proportion of round colonies (Figure 6P,Q) whilst decreasing the
number of clustered colonies (Figure 6R,S), indicating that PRELP application resulted
in MET. Next, we examined the effect of PRELP application on expression of adherens
junctions (β-catenin, E-cadherin, N-cadherin) and tight-junction (ZO-1). PRELP applica-
tion enhanced β-catenin, E-cadherin, and N-cadherin staining at the plasma membrane
(Figure 7A–U). ZO-1 staining was also enhanced by PRELP application (Figure 7V–BB),
indicating that PRELP indeed activate cell–cell adhesions. We also examined the effect
of PRELP on paxillin and actin. PRELP treatment resulted in diffused paxillin staining
(Figure 7CC–II). In control, long and clear actin fibers were observed, which were reduced
with PRELP treatment (Figure 7JJ–PP) PRELP application clearly enhanced epithelial type
staining and weakens mesenchymal type staining.

3.6. Expression Profiling after Application of PRELP Revealed That PRELP Suppresses Various
Tumor Related Pathways and Enhances Cell-Cell Adhesion

To elucidate comprehensive action mechanism of PRELP on RB, we applied PRELP
protein to Y79 or WERI-RB1 cells and performed mRNA expression profiling. In the case of
WERI-RB1, the cells were cultured as suspension condition and then the effect of PRELP (50
µg/mL) was examined by single-cell based bulk mRNA expression profiling as indicated
in Experimental Procedures (Supplemental Data S2). Firstly, we examined expression
of EMT-related genes and cancer-related genes. Many of EMT-related genes and cancer-
related genes were strongly suppressed after PRELP application (Figure 8A,B). Then, we
performed ontological analysis using IPA software. Cell adhesion pathways are strongly
activated, while EMT related pathways are inhibited, supporting our in vitro observations
(Figure 8C). Cancer pathways are strongly inhibited by PRELP (Figure 8D).
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Figure 6. PRELP application enhances cell adhesion and inhibits anchorage-independent growth
of RB cells: (A–D) Effect of PRELP application on RB cancer cell progression. (A) Y79 cells in
suspension culture; (B) WERI-RB1 cells in suspension culture; (C) Y79 cells in attached culture;
(D) WERI-RB1 cells in attached culture. (E,F) Effect of PRELP on ration of live/dead cells of (E) Y79
cells or (F) WERI-RB1; (G,H) Effect of PRELP on cell adhesion. (G) Y79 or (H) WERI-RB1 were
cultured in suspension conditions. The effect of PRELP and laminin A on cell adhesion was
examined. (I,J) Crystal violet staining of (I) Y79 cells or (J) WERI-RB1 after anchorage-independent
conditions. Scale bar: 4 mm. (K,L) Effect of PRELP on ratio of single cells to colonies. (K) Y79 cells
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or (L) WERI-RB1; (M,N) Effect of PRELP on colony size in anchorage-independent conditions.
(M) Y79 cells. (N) WERI-RB1. (O–S) Effect of PRELP on formation of three types of colonies (round,
mass, and clustered colonies) in anchorage-independent growth conditions. (O) Three types colonies.
Scale bar: 25 µm. (P,Q) Percentage of round colonies. (P) Y79 cells or (Q) WERI-RB1. (R,S) Percent-
age of cluster colonies under anchorage-independent conditions. ® Y79 cells or (S) WERI-RB1. At
least five fields of view were analyzed for anchorage-independent growth studies (n = 3). Student’s
t-test was performed: * = p-value < 0.05; ** = p-value < 0.01; *** = p < 0.001.
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Figure 7. Application of PRELP resulted in conversion from mesenchymal cells to epithelial cells
and change of adhesive properties: Y76 cells were cultured in suspension conditions and then the
effect of PRELP application on various cell adhesion and EMT markers. (A–G) Effect on β-catenin
staining. (H–N) Effect on E-cadherin staining. (O–U) Effect on N-cadherin staining. (V–BB) Effect
on ZO-1 staining. (CC–II) Effect on Paxillin staining. (JJ–PP) Effect on Actin staining. N = 3. At
least five fields of view were analyzed for each experiment (n = 3). Student’s t-test was performed:
*** = p < 0.001. Scale bar: 10 µm.
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Figure 8. PRELP protein application to WERI−RB1 RB cells and the expression profiling analy-
sis: (A,B) Sorted by fold change. (A) Strongly affected EMT−related genes by PRELP application;
(B) strongly affected cancer−related genes; (C–F) sorted by p−value. (C) Strongly affected cell
adhesion/EMT-related pathways; (D) strongly affected cancer−related pathways; (E) strongly af-
fected cell cycle/apoptosis−related pathways; (F) strongly affected inflammation−related pathways;
(G) comparison of WERI-RB1 analysis with Y79 analysis by Analysis Match function of IPA software.

Figure 9 shows a drawing of “Molecular Mechanism of Cancer”, indicating that many
oncogenic pathways such as RAS, NFκB, and AKT are negatively regulated by PRELP.
Furthermore, cell cycle is inhibited, while apoptosis is activated. TGF-β pathway and
growth factor pathways are inhibited by PRELP as observed in biochemical analysis on
bladder cancer cells [11]. Figure 9 shows strong contrast to that of PRELP−/− mouse
retina analysis (Figure 5), confirming the role of PRELP in cancer progression. Figure 8E
shows that PRELP inhibits cell cycle and potentiates cell death. PRELP also inhibits
inflammation-related pathways (Figure 8F). We also performed standard bulk expression
profiling analysis using Y79 cells as indicated in Experimental Procedures (Supplemental
Data S3). As expected, PRELP application to Y79 cells affected cell adhesion, EMT-related
pathways, cancer pathways, cell cycle, and inflammation as observed in WERI-RB1 cells.
We compared similarity between WERI-RB1 cell analysis and Y79 cell analysis by Analysis
Match. Figure 8G clearly indicates high similarity of these two analyses.
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Figure 9. Molecular mechanism of cancer: Schematic drawing of “Molecular Mechanism of Cancer”
obtained by ingenuity canonical pathway analysis of PRELP application to WERI-RB1 cells. The
majority of cancer-associated pathways were downregulated in PRELP-treated WERI-RB1 cells.
Red = upregulated; green = downregulated; orange = predicted upregulation; blue = predicted
downregulation.

4. Discussion

Enhanced proliferative capacity and remodeling of cell adhesive property are ma-
jor characteristics of cancers. Here, our analysis of human RB expression profiling and
subsequent analysis of PRELP−/− mouse retina identified that suppression of PRELP con-
tributes to weakening cell adhesive property and facilitating EMT in RB, which enhances
progression of RB. Furthermore, we demonstrated that PRELP application activates cell–cell
adhesion and MET and suppresses viability of RB cell lines. These observations indicate
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the importance of regulation of cell adhesive property by controlling microenvironment
in cancer. PRELP may have a fundamental role in the microenvironment and seems to
function as a novel type of a tumor suppressor against RB.

4.1. PRELP Secreted from Müller Glial Cells Has Function to Maintain Rigid Retinal Structure

The retina is an immune privileged tissue and is against tumor development even
when exposed to UV radiation in daily life, which is a strong carcinogen. The retina is
rigidly packed into distinct layers, which are important for the highly coordinated retinal
functions. This rigid layered structure of the retina is maintained by a wide range of
mechanisms. In particular, Müller glial cells have important roles through providing
structural frameworks in the retina and also providing secreted proteins that contribute
to cell–cell adhesion [18–20]. Our results indicate that PRELP is selectively expressed by
Müller glial cells. Furthermore, deletion of PRELP in mice clearly leads to retinal dysplasia
and down regulation of many adhesion-related biological events. Moreover, we observed
that detachment of inner limiting membrane as observed in idiopathic epiretinal membrane
in PRELP−/− mouse retina. Idiopathic epiretinal membrane is located around the apical
end feet of Müller glial cells and is caused by TGF-β-Snail pathway-mediated Müller glial
cell–mesenchymal transition [16], suggesting that PRELP deletion induced EMT in Müller
glial cells themselves. Interestingly, idiopathic epiretinal membrane is associated with
myopia [16]. Since PRELP is highly expressed in sclera [21] and regulated EMT [11], PRELP
might be aassociated with myopia [22]. These observations indicate that PRELP is one of
the molecules that contribute to maintenance of retinal structure.

How does the dysplasia of retina with localized activation of proliferation occur?
There are two potential explanations; (1) the damage of cell–cell adhesion firstly initiated
dysplasia and then localized proliferation was activated around the dysplasia or (2) abnor-
mal proliferation resulted in dysplasia. We observed that the increased number of cells
is only observed in dysplasia regions, suggesting that defect of cell adhesion damage is
required for activation of proliferation. Our analysis of molecular mechanism indicates that
PRELP can regulate at least three signaling pathways of TGF-β, EGF, and the canonical Wnt
pathways [11]. Our expression profiling analysis indicate that all these signaling seems
to be affected in PRELP−/− retina and human RB. These pathways are major pathways in
the regulation of EMT [23,24]. Indeed, EMT is strongly affected in PRELP−/− retina. In
addition, these pathways are well known as major oncogenic pathways [25–28]. These
observations indicate that the defect of PRELP mediated activation of cell–cell adhesion
and MET through regulation of TGF-β, EGF, and the canonical Wnt pathways is the major
cause of dysplasia in PRELP−/− retina.

4.2. Role of PRELP-Depleted Microenvironment in RB Progression

We have found that PRELP expression is strongly downregulated in RB (Table 1)
and that downregulation of PRELP revealed important roles in progression of RB as we
demonstrated in this study. We previously discovered the downregulation of PRELP in
many different cancers, including retinoblastoma [11]. We revealed that loss of PRELP
is an important prerequisite for bladder cancer onset using PRELP−/− mouse. In this
study, only four SLRPs had a fold change less than −100. Of these, NYX and OGN
expression levels were 80.0 and 1584.3, respectively. PRELP and OPTC expression levels
were 4102.7 and 5104.3 respectively, indicating that these proteins could be more important
in normal retina function. Additionally, the PRELP gene is located on chromosome 1q31.1,
which is a site frequently perturbed in cancer. The comparison of expression profiling
data of PRELP−/− retina and human cancers has revealed that influenced mechanisms
and genes in PRELP−/− retina are highly conserved with cancer progression mechanisms
in other cancers (Figure 4E), indicating that the PRELP downregulation in human RB
contributes to the progression through regulation of the pathways regulated by PRELP. In
addition, expression profiling analysis of PRELP−/− mouse retina indicated that PRELP
itself has ability to regulate cancer-related pathways, cell adhesion, and EMT without
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RB1 abnormality. Regulation of cell–cell adhesion in cancer is fundamental. Anchorage
independent growth is a hallmark of cancer cells [29,30]. EMT, which contains loss of
cell–cell adhesion, is required for cancer initiation and progression [31]. In general, less
adhesive cancer is more malignant. RB is a very malignant type of cancer. Reflecting this,
cancer cell lines originated from RB are not adhesive, requiring suspension culture. The
importance of regulation of cell–cell adhesion in RB progression is clearly demonstrated in
this study, in which PRELP has fundamental roles in the regulation of cell–cell adhesion
and inhibiting RB cell progression.

In RB, the importance of cell–cell adhesion was previously demonstrated by CDH11
study [32]. CDH11 is a type II classical cadherins family, which regulate cell–cell adhesion.
Marchong et al. showed that CDH11 gene copy number and expression are frequently lost
in human RB. Crossing of Cdh11 null mice with TAg-RB, RB model mice, resulted in faster
tumor growth than Tag-RB alone through downregulation of tumor cell death, proposing
that CDH11 works as a tumor suppressor through activation of cell–cell interaction. CDH11
is reported to inhibit the canonical Wnt pathway through downregulation of β-catenin [33].
However, our expression profiling data of human RB shows that CDH11 is not significantly
suppressed in RB [5]. Furthermore, in seven RB that we analyzed, we did not identify
mutation or amplification of CDH11 [5]. In addition, our expression profiling analyses
of PRELP−/− mice and PRELP overexpression show that the expression of CDH11 was
not significantly affected, indicating that PRELP and CDH11 are important for cell–cell
adhesion through interaction with the canonical Wnt pathways but work under distinct
mechanisms in tumor suppression.

Moreover, the molecular function of PRELP as a regulator of major cancer-related
pathways of TGF-β, EGF, and Wnt also strongly indicates that PRELP suppression is not
just consequence of RB development. PRELP is located at 1q31.1, where it is associated with
transition from retinoma to RB [6]. Our study strongly suggests that PRELP downregulation
may have an important role in RB progression. We found that the upregulation of both
N-cadherin and E-cadherin in PRELP-treated cells indicated that the two cadherins are
regulated by PRELP. Although the upregulation of N-cadherin is associated with EMT,
our in vitro assays demonstrated that PRELP application enhanced cell adhesion and
suppressed anchorage-independent growth of RB cells. These findings suggest that PRELP
altered oncogenic and tumor suppressive cadherin expression coincidentally, but tumor
suppressive roles are dominant.

To link these processes to RB1 mutation, genes directly under expression control of
RB1 or E2Fs (de-repressed by RB1 mutation) were analyzed. RB1 loss-of-function directly
reduced expression of a cadherin family member, CELSR1, linked to adherens junction
stability [34]. E2F1 de-repression also induced ECT2 expression; an oncogene encoding a
RhoA-activating GEF linked to NSCLC cell proliferation and invasion [35]. RB1 mutation
may directly impair immune cell recruitment and contribute to reduced inflammation,
as several immune cell adhesion molecules were reduced by E2F1 de-repression (SELE,
ICAM1, TAPBP). Several additional regulators of chromatin structure and transcription
were directly enhanced by RB1 loss-of-function and/or E2F activation, including RBBP4,
a ubiquitous component of histone deacetylase complexes that was upregulated in an
RB1-mutation-driven embryonic brain tumor model in zebrafish [36] and is known to
enhance mesenchymal marker expression and invasion in human cervical and colon cancer
cell lines [37,38].

4.3. Difference between PRELP−/− Mouse Retina and Human RB

Our analysis of PRELP−/− mouse retina showed dysplasia-associated activation of
proliferation. However, mice did not develop malignancies, as observed with human
RB. This observation indicates that RB1 mutation and/or MYCN amplification can reg-
ulate PRELP-independent mechanisms that are important for proper development of
malignant RB.
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4.4. Generation of PRELP-Depleted Microenvironment in RB

Our results indicate that PRELP suppression is important for RB progression. However,
there are two possible explanations of how the low expression is established. (1) PRELP
expression is indeed suppressed in the cancer cells during RB progression. If so, this
suppression must be under transcriptional control because our previously published whole
genome sequencing did not identify any mutations or deletion of the PRELP gene [5].
Interestingly, RBBP4, a downstream regulator of RB1, is upregulated by RB1 mutation [36]
and enhances mesenchymal marker expression in human cervical and colon cancer cell
lines [37,38]. (2) If RB is not formed from Müller glial cells, exclusion of Müller glial cells
from cancer tissue because of expansion of cancer cells might be the mechanism as reduction
of PRELP expression in RB. To identify which mechanism is correct, the cell of origin for RB
is important. However, the cell of origin has not been clearly determined [39]. Amacrine
neurons and horizontal neurons are reported to initiate RB-like cancer in RB1/p107 mouse
model and RB1/p130 mouse model, respectively [40–42]. PRELP is expressed largely in
Müller glial cells in mice. In RB1/p107 and RB1/p130 models, some cancer cells were positive
to Müller glial cell markers. Müller glial cells have proliferative potential properties [43,44].
Cone photoreceptor cells are reported as a candidate of cell of origin in human iPS cell-based
model [7]. Recently, Norrie et al. demonstrated that iPS cells originated from RB patients
can initiate RB after xenograft into mouse eyes. Single cell analysis of RB development
process shows that the RB had mixed cell type properties [45]. This is consistent with
expression profiling of human RB. Furthermore, our PRELP−/− retina caused dysplasia in
both the INL and ONL. Further study is required to determine RB cell of origin. Although
cell of origin is important for understanding RB, understanding of the autonomous PRELP
suppression mechanisms may not be very important because PRELP is a secreted protein
and influences cancer progression via microenvironment.

4.5. ECM in Cancer

Secreted PRELP protein distributes largely around the apical side of Müller glial cell
end-feet but widely defuses over the retina. ECM proteins have fundamental roles in
various aspects in cancer initiation and progression [46,47]. In particular, they create a
complex microenvironment for cancer progression [48]. The importance of ECM proteins
was clearly observed when overexpression of MMP3 in mice induced mammary carcinoma,
despite having cancer-associated gene mutation [49]. Some SLRP family members are
known substrates of MMPs [50,51], and Type-I SLRPs, such as Decorin and Biglycan have
been reported to affect cancer progression [52]. This paper demonstrates that the Type-II
SLRP member, PRELP, is involved in RB progression. ECM proteins, including PRELP are
important in regulating ocular tissues This paper and our previous paper [11] propose that
PRELP is an important ECM protein in the initiation and progression of various cancers
through control of cell–cell. PRELP-mediated improvement of the cancer microenvironment
might be a better strategy for treatment of RB.

5. Conclusions

In this paper, we demonstrated the functional roles of PRELP, which are the association
with the inhibitory effects for RB through regulating cell–cell adhesion, EMT, and inflamma-
tory signaling. Moreover, exogenously supplied PRELP protein to RB cells showed enhance-
ment of cell-cell and cell-substrate adhesion and the inhibition of anchorage-independent
growth by reversing EMT. Therefore, PRELP may have potential as an anti-cancer drug to
treat RB patient in the future.
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