UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Modelling mechanically dominated vasculature development

Walker, Benjamin J; Dawes, Adriana T; (2022) Modelling mechanically dominated vasculature development. Frontiers in Systems Biology , 2 , Article 901210. 10.3389/fsysb.2022.901210. Green open access

[thumbnail of Published_version.pdf]
Preview
Text
Published_version.pdf - Published Version

Download (2MB) | Preview

Abstract

Vascular networks play a key role in the development, function, and survival of many organisms, facilitating transport of nutrients and other critical factors within and between systems. The development of these vessel networks has been thoroughly explored in a variety of in vivo, in vitro and in silico contexts. However, the role of interactions between the growing vasculature and its environment remains largely unresolved, particularly concerning mechanical effects. Motivated by this gap in understanding, we develop a computational framework that is tailored to exploring the role of the mechanical environment on the formation of vascular networks. Here, we describe, document, implement, and explore an agent-based modelling framework, resolving the growth of individual vessels and seeking to capture phenomenology and intuitive qualitative mechanisms. In our explorations, we demonstrate that such a model can successfully reproduce familiar network structures, whilst highlighting the roles that mechanical influences could play in vascular development. For instance, we illustrate how an external substrate could act as an effective shared memory for the periodic regrowth of vasculature. We also observe the emergence of a nuanced collective behaviour and clustered vessel growth, which results from mechanical characteristics of the external environment.

Type: Article
Title: Modelling mechanically dominated vasculature development
Open access status: An open access version is available from UCL Discovery
DOI: 10.3389/fsysb.2022.901210
Publisher version: http://doi.org/10.3389/fsysb.2022.901210
Language: English
Additional information: © 2022 Walker and Dawes. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).
Keywords: vasculature, agent-based modelling (ABM), mechanical feedback, network remodelling, Botryllus schlosseri
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Mathematics
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL
URI: https://discovery.ucl.ac.uk/id/eprint/10157451
Downloads since deposit
17Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item