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Abstract The creation and use of ontologies has become increasingly relevant for complex 

systems in recent years. This is because of the growing number of use cases that rely on real 

world integration of disparate systems; the need for semantic congruence across boundaries; 

and, the expectations of users for conceptual clarity within evolving domains or systems of 

interest. These needs are evident in most spheres of research involving complex systems but 

they are especially apparent in infrastructure and cities where traditionally siloed and sectoral 

approaches have dominated undermining the potential for integration to solve societal challenges 

such as net zero; resilience to climate change; equity and affordability.  

This paper reports on findings of a literature review on infrastructure and cities ontologies and 

puts forward some hypotheses inferred from the literature findings. The hypotheses are discussed 

with reference to literature and provide avenues for further research on (1) belief systems that 

underpin non top level ontologies and the potential for interference from them; (2) the need for a 

small number of top level ontologies and translation mechanisms between them; (3) clarity on the 

role of standards and information systems upon the adaptability and quality of datasets using 

ontologies. We also identify a gap in the extent ontologies can support more complex automated 

coupling and data transformation when dealing with different scales. 

 

1. Introduction 

Ontologies in the field of knowledge engineering are sometimes referred to as data models 

particularly in industry (West, 2011). The term ontology originates in the field of philosophy, where 

it can be described as the study of what exists, or the study of being (Simons, 2015). Ontology 
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addresses the metaphysical question of “what is there?” Metaphysicians are interested in 

differentiating the different ways that things can exist, that is, the categories of existence. Some 

have distinguished concrete objects which exist in space-time from abstract entities that do not. 

Others have claimed there are no abstract entities (Rosen, 2020) thus it is not surprising to find 

pervasive pluralism in computational ontologies.  

In the research domains of infrastructure and cities a variety of ontologies have been defined. 

Those with high specificity are mostly linked to specific use cases that address application specific 

questions often via cyber physical systems using sensors. Abstract entities can exist at all levels 

(Zhang, Silvescu, & Honavar, 2002) but in infrastructure and cities literature they are usually found 

in domain, mid or top level ontologies. 

In academic literature there are competing ontologies within energy, transport, water, waste and 

telecoms sectors, as there are for infrastructure and cities. Data sets in practice may be described 

by meta-data and/or with reference to classification schemes and standards, but this falls short of 

explicit definition of the structure and nature of the data which could be provided by ontologies. In 

practice, data sets are regularly implemented without ontological consideration. Without explicit 

top level ontological commitment it is difficult to: automate reasoning; develop inference (through 

logic); know the precision of data; differentiate between continuants and occurrents; be certain of 

data provenance (and connections to the semantic world); and, in general, achieve interoperability 

(E.g. Leal, Cook, Partridge, Sullivan, & West, 2020)  

This paper is organised as follows. The literature review methodology is presented followed by 

the review findings. The discussion presents three hypotheses deduced from literature and 

developed further to expose potential gaps and issues.  It then considers the practical implications 

for dealing with different scales. The conclusion presents the avenues for further research and 

suggestions to extend the scale, scope and methods to reduce the limitations of the work. 

2. Methodology 

The SCOPUS database was searched for articles in English which include in their title “Ontolog*” 

and any of the following terms: transport*, road, energy, water, waste, telecom*, 5g, wireless, 

internet, renewable, smart grid, network, rail, vehicle, shipping, freight, aviation, sewage, 

treatment, software, cities, infrastructure. The search string is shown in Table 1. Articles outside 
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the scope of economic infrastructure and cities, such as manufacturing, were excluded. 109 

articles remained for categorization.  

In addition to sectoral findings which are discussed below, the main finding arising from analysis 

of selected articles was the different levels of ontology. These levels include top (or foundational), 

mid, domain, application, and sensor. Top level ontologies are especially important for semantic 

reasoning and integration across domains, yet these are the least well integrated across sectors 

and domains. 

3. Review findings 

Given various institutional, regulatory and organizational divisions, it is not surprising that 

economic (energy, transport, water, waste and telecommunications) infrastructure knowledge is 

distributed among various disciplines and sectors.  For each sector we observed application 

(purposeful, use case, problem) oriented ontologies as well as domain ontologies (describing 

entities in a sector). For cyber physical systems we observe sensor ontologies. Some sensor, 

application, and domain ontologies make a commitment to a top level ontology that is sector 

agnostic. Top level ontologies  provide the generalisations for the structure and organisation of 

entities: defining different types of entity, how they are related, and allowing for automated 

reasoning when specific entities appear in lower level ontologies.  Figure 1 illustrates the levels 

of ontology detected. 

(Insert Figure 1 about here) 

The following sections describe the different types of ontology that appear in literature, exposing 

their scale and scope. The review is organised naturally by sector, then system-wise for 

infrastructure and cities.  Sectors together constitute infrastructure, so infrastructure ontologies 

will embrace multiple domain sectors. City ontologies touch all infrastructure sectors and 

infrastructure as a whole system. Figure 2 illustrates the domain ontology overlaps. 

(Insert Figure 2 about here) 

3.1 Energy ontologies 

With numerous companies involved in the supply and distribution of energy, data arises from a 

range of sources, for sharing across the sector. A common method in the energy sector is to use 

device ontologies, particularly SSN ontology (Compton et al., 2012), to bring information together 

in a common format (Corry, Pauwels, Hu, Keane, & O’Donnell, 2015; Dey, Jaiswal, Dasgupta, & 
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Mukherjee, 2015).  An example for the purpose of smart energy management in buildings is 

provided by the OPTIMUS ontology (Marinakis & Doukas, 2018). Scale of energy ontologies 

varies widely from household or building-level energy consumption, to entire cities, districts or 

urban areas. Perhaps the most extensive example of an urban energy domain ontology is 

SEMANCO which aims to make urban planning and management more energy efficient. Including 

urban space descriptors, energy and emission indicators, and socio-economic factors, this is a 

comprehensive attempt at an energy planning domain ontology, which draws on standards and 

use cases to ensure it can be applied to a range of scenarios (Madrazo, Sicilia, & Gamboa, 2012). 

SEMANCO is linked to the SUMO top level ontology, although several other top level ontologies 

have been used in the energy domain including basic formal ontology (BFO) which is in the final 

stages of review to become international standard ISO/IEC PRF 21838-2.2*, Unified Foundation 

Ontology (UFO) (Guizzardi, Wagner, Almeida, & Guizzardi, 2015),  and Business Objects 

Reference Ontology (BORO) (de Cesare & Partridge, 2016). It is relevant to consider to the 

objectives of the SEMANCO project which are to foster the use of standards in energy data 

modelling, to formulate verifiable methods to measure energy performance, to promote the 

participation of multiple stakeholders in carbon reduction planning, and to provide inputs for future 

EU policy development†.  

3.2 Water ontologies 

Water is perhaps one of the broadest and most difficult domains to define in infrastructure, with 

the social, economic, and environmental considerations and complexities of the water domain 

rendering the creation of ontologies in this sector challenging. The vertical integration of potable 

water distribution and treatment, in contrast to the many companies involved in energy 

infrastructure, could go some way to explaining the comparative lack of shared knowledge bases, 

explaining the very few domain ontologies developed for the water domain. Perhaps the broadest 

ontology attempted in this sector is the water supply ontology ‘WatERP’ which aims to coordinate 

the management of supply and demand in order to reduce water usage and associated energy 

consumption (Varas, 2013).  Most water ontologies are application oriented and delimit their 

 
* https://www.iso.org/standard/74572.html  
† http://www.semanco-project.eu/project.htm  

https://www.iso.org/standard/74572.html
http://www.semanco-project.eu/project.htm
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scope to be pertinent accordingly, such as disaster risk evaluation to identify the key influences 

behind urban flooding (Wu, Shen, Wang, & Wu, 2020), identifying and mitigating failures in the 

water distribution network (Lin, Sedigh, & Hurson, 2012), and water quality management (Ahmedi, 

Ahmedi, & Jajaga, 2013). Information describing the water bodies themselves, such as rivers, 

basins and lakes, and the chemical elements that comprise pollutants and other water quality 

indicators, can be included through the integration of the existing mid-level ontology SWEET 

(Semantic Web for Earth and Environmental Terminology).  

3.3 Transport ontologies 

Unlike other infrastructure domains, the transport sector has seen numerous attempts at domain 

ontologies, albeit varying in scope. This may be because the boundaries for what constitutes a 

transport network are much clearer than, for instance, the water domain. Such ontologies can 

span several types of private and public transport systems (Lorenz, Ohlbach, & Yang, 2005), or 

focus on a particular mode of transportation and associated infrastructure, such as vehicular and 

road ontologies (Berdier, 2011; Dardailler, 2012). The breadth of work in this field has been 

explored and analysed in a survey paper by Katsumi and Fox, who surmise that, while no single 

ontology covers the full high-level taxonomy of the transport domain, the broad scope of the 

domain is covered, even if not in a high level of granularity, by the collective ontologies surveyed 

(Katsumi & Fox, 2018). Katsumi and Fox have themselves prepared a transport planning 

ontology, as part of an ambitious project to develop a suite of ontologies to represent the urban 

domain (Katsumi & Fox, 2019). In terms of top level ontologies, Descriptive Ontology for Linguistic 

and Cognitive Engineering (DOLCE) is commonly cited (Gangemi, Guarino, Masolo, Oltramari, & 

Schneider, 2002) as is BORO mentioned earlier. Various application oriented ontologies have 

been developed: to manage and reduce congestion on public roads (Abberley, Gould, Crockett, 

& Cheng, 2017; Prathilothamai, Marilakshmi, Majeed, & Viswanathan, 2016); road accident 

identification (Dardailler, 2012); journey planning (Mnasser, Oliveira, Khemaja, & Abed, 2010), 

and traffic information (Wanichayapong, Pattara-Atikom, & Peachavanish, 2015). 

3.4 Telecoms ontologies 

The domain of telecoms is somewhat distinctive from other infrastructure sectors in that it includes 

a significant amount of digital infrastructure, which evolves much more rapidly than much of the 
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physical infrastructure of other sectors. It is perhaps for this reason, that the telecoms domain as 

a whole has not seen widespread ontology uptake. Some telecoms domain-specific ontological 

languages were proposed, predating the dominance of OWL2. Network Description Language 

(NDL) underpins an ontology for describing complex network topologies and technologies(van 

der Ham, 2010), while an adaptation of OWL has been developed for telecommunication services, 

Web Ontology Language for services (OWL-S) (Cao, Li, Qiao, & Meng, 2008). Application 

ontologies in telecoms have focused on specific types of network: to simplify the configuration of 

3G wireless networks (Cleary, Danev, & Donoghue, 2005); optical transport networks based on 

the ITU-T G.805 and G.872 recommendations (Barcelos, Monteiro, Simões, Garcia, & Segatto, 

2009); mobile ontologies as part of the SPICE project (Villalonga et al., 2009) and  for ‘linked data’ 

(Uzun & Küpper, 2012). More ambitious ontologies attempting to address the challenge of 

semantic interoperability (Qiao, Li, & Chen, 2012) include the Telecommunications Service 

Domain Ontology (TSDO). As the complexity and heterogeneity of the telecoms networks 

increases, simplifying approaches have been proposed. The TOUCAN Ontology (ToCo) asserts 

that all networks are essentially devices with interfaces with which a user can interact, networks 

of linked devices. By adopting this premise at the core of ToCo, this domain ontology is able to 

model small-scale networks such as vehicle-to-vehicle networks and smart home devices, as well 

as large-scale networks such as satellite networks (Q. Zhou, 2018) and hybrid telecommunication 

networks (Q. Zhou, Gray, & McLaughlin, 2019). Using this notion of networks as systems of 

devices that may explain the adoption of device ontologies such as the Internet of Things (IoT) 

ontologies (Steinmetz, Rettberg, Ribeiro, Schroeder, & Pereira, 2018). This shift to a sensor-

focused approach has seen device ontologies such as the IoT-Lite applied to digital twins, to 

support decision making for operational systems (Bermudez-Edo, Elsaleh, Barnaghi, & Taylor, 

2015). Taking the concept of device as a starting point, the SAREF ontology for smart appliances 

(TNO, 2015) has been extended, using GeoSPARQL to represent geospatial data, for the smart 

city domain (ETSI, 2019). Also well-established is the (OneM2M, 2021) base ontology specifically 

designed for interoperability for IOT and is built into 4G in the Service Capability Exposure 

Function (SCEF) function.  

3.5 Waste ontologies 
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Sewage is treated similarly to other linear networks in a sewage ontology as part of an urban 

description (Heydari, Mansourian, & Taleai, 1991). Perhaps a narrower domain than other 

infrastructure sectors, the use of ontologies in the waste sector is a relatively new concept. 

Nonetheless, the field of waste management offers some well-developed ontologies, which have 

demonstrated their potential through applied case studies, or rule-based reasoning in waste 

management (Kultsova, Rudnev, Anikin, & Zhukova, 2016). A waste management domain 

ontology, OntoWM, aligned with the Unified Foundational Ontology (UFO) top level ontology, has 

been used for monitoring the collection of waste bins and dumpsters (Ahmad, Badr, Salwana, 

Zakaria, & Tahar, 2018) and can benefit the broader domain of waste management (Sattar, 

Ahmad, Surin, & Mahmood, 2021).  Indeed, as the value of the circular economy model is 

recognised, the role of waste is shifting from by-product to potential asset. (Trokanas, Cecelja, & 

Raafat, 2015) created an ontology to represent the domain of industrial symbiosis (IS) (Cecelja 

et al., 2015).  The waste industry is beginning to recognise the importance of knowledge 

representation in the waste sector. While the use of ontologies remains uncommon, the creation 

of centralised databases and standards is a valuable step in establishing a solid knowledge base, 

for example using computer vision and robotics (Recycleye, 2020). Dsposal, the company behind 

an online platform that links users to a directory of licensed waste facilities, are one of several 

businesses behind the KnoWaste project, which seeks to connect separate waste systems to 

achieve greater understanding and enable regulatory oversight. One of the core objectives of the 

project is the design of an open data standard for waste, on which a central database can be 

built‡.   

3.6 Infrastructure ontologies 

The consequence of sectoral ontologies is that knowledge is not consistently represented across 

infrastructure. However there have been some attempts to produce an infrastructure domain 

ontology. The aim is to “provide an unambiguous formalized representation of domain-wide 

knowledge in an attempt to provide a shared understanding of domain processes among the 

various stakeholders for supporting integrated construction and infrastructure development” [49, 

p730]. The Infrastructure and Construction PROcess Ontology IC-PRO-Onto aims to serve as a 

 
‡ https://dsposal.uk/articles/knowaste-govtech-catalyst/ https://github.com/OpenDataManchester/KnoWaste  

https://dsposal.uk/articles/knowaste-govtech-catalyst/
https://github.com/OpenDataManchester/KnoWaste
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basis for “developing further model extensions, domain or application ontologies, software 

systems, and/or semantic web tools.” (ibid).   

3.7 City ontologies 

iCity Ontology is an ontology for smart cities (Katsumi & Fox, 2019) building on the Global City 

Indicators Ontology, which integrates over 10 ontologies from across the semantic web, including 

geonames, measurement theory, statistics, time, provenance, validity and trust. Elements of 

existing ontologies have been reused and incorporated where appropriate, including Ontology of 

Transportation Networks (Lorenz et al., 2005) and Land Based Classification Standards (LBCS) 

Ontology (Montenegro, Gomes, Urbano, & Duarte, 2012).  The iCity project is not aligned to a top 

level ontology but it leverages the key benefits of working with existing standards.  In February 

2021, Microsoft launched a Smart Cities Ontology, aligned to their Azure digital twin platform, 

which utilises ETSI’s Application Programming Interface Specification an open framework for 

context information exchange (ETSI, 2021). Microsoft also make use of ETSI’s SAREF extension 

(Saref4City) in the Smart Cities ontology framework for Topology, Administrative Area and City 

Object modeling (Russom, Collumbien, De Tant, & Mayrbäurl, 2021).   

 

 

4. Discussion 

Ontologies have the potential for system clarity, exposing biases, overcoming narrow 

perspectives, rewarding pluralism, and enabling stakeholder engagement.  The creation of 

ontologies itself is a collaborative process with the aim of achieving consensus, identifying gaps, 

and relying on congruent theories of knowledge.  Ontology development can enable discussions 

on how sustainable, resilient and inclusive outcomes are delivered by integrated engineering 

systems found in infrastructure and cities. 

In order to exploit the potential of ontologies in infrastructure systems and cities, three common 

threads are identified which are presented as hypotheses and discussed further. 

4.1 Toward explicit theories of data-driven ontologies 

A preliminary hypothesis H1 is presented in respective of data. 
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H1: Ontologies are largely driven from data itself rather than being theory-driven 

or motivated by normative views.   

Ontologies grounded in data that has been collected in the real world lead to an assumption of 

value in the data. Thus capturing the data in an ontology creates extra value since ontologies are 

shareable. Datasets themselves may be sufficient to determine their ontology (via some form of 

inference), however it is much more useful for the developer of a dataset to explicitly define or 

select the relevant ontology. Indeed, “Data structures and procedures implicitly or explicitly make 

commitments to a domain ontology” [53, p23].  Datasets are assumed to be coherent and rely on 

theories or belief systems regardless of whether or not they are provided. A dataset commits to a 

set of things whose existence is acknowledged by a particular theory of system of thought 

(Partridge et al., 2020).  But top level ontologies are different from other ontologies insofar as they 

do not describe datasets per se. Rather, they define the first order logic of the semantics of the 

data, or the grammar of the data. Top level ontologies provide the rules that are relevant for 

semantic interoperability.  They need to be formally defined and self-describing.  Even the 

mappings between entities i.e. relationships (which may be: component-to-whole (mereology), 

set-to-subset (class theory), member-to-class (set theory) and everything else (tuple)) themselves 

have ontological structure (Purao & Storey, 2005). Furthermore, without explicit top level 

ontological commitment it is difficult to: automate reasoning; develop inference (through logic); 

know the precision of data; differentiate between continuants and occurrents; be certain of data 

provenance (and connections to the semantic world); and, in general, achieve interoperability.   

H1 (revised) Non top level ontologies appear not to be theory-driven or motivated by 

normative views, but are driven by data which fit a belief system which has potential 

to be inferred. 

4.2 Toward a few top level ontologies 

A preliminary hypothesis H2 is presented on semantic interoperability. 

H2: Pluralism of top level ontologies within sectors and for infrastructure and cities as 

whole systems creates a need for translation before semantic interoperability can be 

delivered.  
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Each unique top level ontology represents different ontological commitments such as possibilia, 

materialism [54, p44] such that formal levels and universal levels of the ontology distinguish top 

level ontologies from other levels of ontology. Semantic interoperability is not a new concept 

(Heiler, 1995) and there is a long history of efforts to combine semantic web applications with 

Building Information Modeling (BIM) and other technologies specific to infrastructure and the built 

environment (Abanda, Tah, & Keivani, 2013). There is also broad recognition across the built 

environment of the need to ensure interoperability, which is reflected in standards such as 

Industry Foundation Classes (IFC) as an interoperable format for BIM data at the building level. 

Others have attempted ontologies for construction and renovation processes, but many are 

manually developed despite the need for distributed collaboration among diverse stakeholders 

and the availability of structured sources (e.g. IFC) as well as unstructured sources (such as 

safety documents)  (Z. Zhou, Goh, & Shen, 2016). In addition to BIM and IFC, (Zhong et al., 2019) 

identified automated compliance checking through use of ontology and semantic web technology 

replacing time-consuming, costly and error-prone manual processes especially given then nearly 

all building projects are modelled digitally.  

 

H2 permits development of options toward semantic interoperability.  There is a possibility that 

some top level ontologies can be abandoned since they have not been defined as thoroughly as 

others, i.e. they are less complete. However, for different sectors and systems specific top level 

ontologies appear with wildly varying degrees of adoption. If adoption signifies usefulness it may 

be possible to eliminate less useful ontologies. For those top level ontologies that remain, it may 

be possible to create a translation mechanism from one to the other. Using the analogy of 

language for a top level ontology, experts could translate Latin into Greek. This is simple since 

these languages do not evolve. For modern languages, translation would require continuous 

iteration, assuming the translation is even possible. Where translation is found impossible those 

datasets committing to different top level ontologies cannot be safely integrated. To achieve 

integration the datasets would need to be reworked to align with an agreed top level ontology. 

 

Thus there two distinct routes forward given H2 and the value of explicit definition of top level 

ontologies. The first is toward a single infrastructure and cities top level ontology which is usable 
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by all lower level ontologies and their datasets. The second is toward multiple top level ontologies 

and the development of translation mechanisms between them. Finding a superior top level 

ontology will be difficult because priorities and perspectives vary and will not be easily reconcilable 

as a single authority will be needed for decision making.  

H2 (revised) Pluralism of top level ontologies within sectors and for infrastructure and 

cities as whole systems creates a need to work toward a single top level ontology or 

a small number of top level ontologies with translation mechanisms before semantic 

interoperability can be delivered. 

 

4.3 Toward evolving standards and information management 

A preliminary hypothesis H3 is presented on standards. 

H3: An adopted standard for a particular data item in more than one infrastructure 

ontology enables precision for interoperability, however standards can constrain 

the recognition of emerging values. 

 

Classification systems, taxonomies, standards and other means to organise the potential values 

of data items provide the means to socialise options and establish validation processes. However 

this falls short of explicit definition of the structure and nature of the data which could be provided 

by ontologies. Standards enable assignment of potential types of data (integers, dates, etc.) and 

enable boundaries to be defined, e.g. not before, not greater than. When standard classification 

systems such as System International§ a value of a data item takes on more meaning than without 

the standard because based on the logic of the standard, the potential of the data can be known. 

Thus standards have a role to reduce inconsistency between ontologies and associated datasets, 

however standards have the effect of holding systems in homeostasis due to negative feedback, 

constraining adaptation. New, legitimate data values can arise in data sets based on the change, 

reform and nuance required in real-life.  When new sub-types of standard values emerge, these 

are implemented in different ways in ontologies: the standard becomes less precise when new 

values are admitted, because it is unclear how to process these new values according to the 

 
§ https://www.npl.co.uk/si-units  

https://www.npl.co.uk/si-units
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standard. Spin-out ontologies or later versions of ontologies can be created which provide for new 

data items that elaborate the nuances of the adapted item. Regardless changes in data occur 

more frequently than changes in standards. Standards are reactive. 

 

Another concern on standards is that quality may be incorrectly inferred with respect to other data 

items in the ontology. Most ontologies will have one or more data items that comply with a 

standard and very many that do not. The use of one or more important standards may ‘rub off’ 

onto the entire ontology undeservedly.  Furthermore, the use of an industry standard 

classification, for example, says nothing about the information management processes used to 

curate the data. Information management is just as critical as standard selection as it ensures 

processes of provenance, storage, validation, refresh, etc. are conducted proactively. 

H3 (revised) An adopted standard for a particular data item in more than one 

infrastructure ontology enables precision for interoperability, however the use of 

standards can have unintended and undesirable consequences for adaptation and 

reasoning about quality. 

4.4 Dealing with scale 

Infrastructure research makes use of data, models, conceptualisations and representations of 

infrastructure systems and linked human, social, economic, political, regulatory, and 

environmental systems. Objects and processes in each of these systems occur or can be 

measured, observed or represented over different extents in space and time, and with different 

levels of detail. 

4.4.1 Quantification of scale 

The concept of scale relates to orders of magnitude in lengths of space and time, and can be 

quantified in terms of numerical precision, resolution, extent and coverage. But it also relates to 

observation and representation of different objects and processes. At the human scale we might 

be interested in pedestrian flows through stations, where at the catchment scale we look at river 

flows and reservoir storage.  
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Reitsma & Bittner (2003) introduce the distinction between extent (spatial size or temporal 

duration) and granularity (fineness of distinctions or resolution). They consider both endurant 

objects and perdurant processes to construct an ontological description of scales as 

‘hierarchically structured granularity trees’ (ibid:25) where levels in the trees consist of objects or 

processes of finer granularity and lesser extent as you look further down the tree. 

 

Frank (2009) argues further that domain ontologies are scale-dependent, and observations from 

remote sensing or sensor networks must include information about their extent and resolution, 

and that this defines the phenomena that can be represented, giving the example of satellite 

images which show roads and fields if captured at high resolution, but only patches of field at low 

resolution. 

4.4.2 Scale of representation 

The formulation of simulation models and digital twins requires choices to be made about the 

scale of representation, as well as how to connect models or twins to empirically observed data 

which may be available with limited extent or resolution again. Multiscale modeling and simulation 

techniques have been well discussed and developed in computational science and engineering, 

including in communities of relevance to infrastructure research, in engineering and 

environmental science (Groen, Zasada, & Coveney, 2014). 

 

Yang & Marquardt (2009) provide an ontological conceptualisation of multiscale modeling. Here 

scale is used to refer to the multiple levels of abstraction and granularities of representation which 

are used to model the phenomena of interest, often with reference to numerical principles (finite 

element decomposition or adaptive meshes) or well-recognised orders of magnitude difference in 

lengths of space and time (where different physics might be used to model different scales, from 

quantum mechanics to fluid flow).  

 

Changes in scale of representation are not only a matter of physical sensing and measurement, 

but also cadastral, administrative and political boundaries and the governance structures that lead 

to collection of national statistics and surveys. The Office for National Statistics (2019, 2020) 

posters of the hierarchical representation of UK statistical geographies are an excellent 
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representation of the complexity of simply enumerating the officially-defined sets of areas that are 

reported against, many of which are updated annually. 

4.4.3  Ontological state of scale  

Beyond officially-defined geographical extents, there are critical questions of definition and 

representation of scale. In statistics, the modifiable areal unit problem (Openshaw, 1983) and the 

ecological fallacy (Gehlke & Biehl, 1934) state the problems of (mis-)representation of spatial 

phenomena aggregated to different areal units. In human geography, the ontological status of 

scale has been the subject of debate. Blakey (2020) outlines the moves from theorisations which 

lean on Kant’s understanding of space and time as given, with scales providing a natural ordering 

and hierarchy, to theories which emphasise politics, power and the social construction of scales 

(Marston, 2000) and arguments that scales are epistemological and provide contested, various, 

changing ways of knowing the world that are structured by networks of interaction (Jones, 1998). 

 

The notion of a single natural definition of the extents of cities is also contestable on empirical 

grounds, as in Arcaute et al., (2015) where a clustering of small areas based on population density 

and commuting thresholds is used to provide a set of realisations of urban extents in the UK. 

4.4.4  Scales in coupled modeling 

A software framework for coupling simulation models of infrastructure (smif) is presented in Usher 

& Russell (2019) along with a brief review of related frameworks, notably the OpenMI standard 

(Vanecek & Roger, 2014). The smif framework associates the notion of dimensions with model 

inputs and outputs, where these may be: spatial, comprising a set of areas covering the shared 

system of interest; temporal, comprising a set of time intervals covering or representing a sample 

of the shared modelled year; or categorical, where a quantity is represented for multiple 

categories, such as energy demand by fuel type or economic activity by industrial sector. 

Following OpenMI conventions, the smif framework introduces adaptors between models when 

the dimensions of a model output and model input do not match. 

 

Diverse data dimensions produced and required by energy and transport models, such as a 

subset of the infrastructure simulation models included in NISMOD 2 (ITRC-Mistral, 2020) 

demonstrate the need to address scale.  
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4.4.5 Conversion between scales 

The methods for converting quantities between dimensions or scales of representation vary 

according to the phenomenon modelled. For example, energy demand in NISMOD (ITRC-Mistral, 

2020) is modelled at Local Authority district regions, with 8760 hourly timesteps (over 365 days) 

to represent the year. Temperature is an important driver of heating demand and is sampled from 

a gridded climate model which outputs minimum and maximum temperatures per day.  

 

The energy demand model scales empirically observed demand curves to disaggregate daily 

minimum and maximum temperatures to get hourly demand for electricity, gas and other fuels for 

heating. The energy supply model has no notion of demand sectors, so takes demand as the sum 

across all end uses, and is computationally demanding to run, so samples four representative 

weeks from the demand time series.  

 

The sampling method aims to preserve the observed peak in demand, which is an important 

stress test of the power (electricity) supply system, as well as the mean demand for all energy, 

so that estimates of carbon intensity and total annual generation are consistent with annual 

demand.  

 

In summary, straightforward aggregation, scaling and proportional disaggregation are sometimes 

sufficient, sometimes extra information or assumptions are needed to convert values between 

modelled scales, and sometimes care is needed to preserve particular statistical quantities as 

values are transformed between scales. 

 

Ontologies for infrastructure research should support the explicit representation and reference to 

shared definitions of extent and granularity, recognising that definitions change over time, and 

that datasets and models will use different definitions, so there can be no single preferred scale. 

Explicit shared definitions are necessary but may not be sufficient to support model coupling and 

data transformations. Further research could examine to what extent ontologies can support more 

complex automated coupling and data transformation. 
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5. Conclusions 

 

This paper reports on findings of a literature review on infrastructure and cities ontologies and 

puts forward some hypotheses deduced from the literature findings. These hypotheses are 

discussed with reference to literature and provide avenues for further research on (1) belief 

systems that underpin non top level ontologies and the potential for inference from them; (2) the 

need for a small number of top level ontologies and translation mechanisms between them; (3) 

the need for evolving standards and for information systems to improve precision and quality of 

datasets using ontologies. 

These hypotheses underpin practical interventions that are needed to ensure that schemas, 

metadata, and all scales of representation of data, are organised. The hypotheses must be 

elaborated and addressed in order for federated digital twins to become a reality. In addition, it is 

not clear to what extent ontologies can support more complex automated coupling and data 

transformation when dealing with different scales. 

The scope, scale and methods all have limitations which if addressed could materially influence 

findings. For example, on scope, ontologies could be embraced from construction, buildings, 

planning, and other aspects of the built environment. On scale, older (and newer) articles could 

be included, and those with fewer citations or by relaxing quality criteria. On methods, expert 

opinion especially from the knowledge engineering discipline, use of grey literature, and data 

modeling expertise for example will add diversity to this academically focussed review.  
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