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Abstract— Prosthetic limbs (and orthotic devices) have 
been used as a paradigm for the treatment and 
rehabilitation of neuropathic pain, such as phantom limb 
pain. Long-term adoption of the devices for the continued 
use in rehabilitation remains low in part due to reduced 
embodiment and the high cognitive load associated with 
controlling the device. Previous research has shown that 
incorporating sensory feedback in prostheses can provide 
proprioceptive information, increase control and 
manipulation of objects, and improve embodiment. 
However, feedback experienced by the user varies daily 
and requires constant parameter adjustments to 
maintain accurate and intuitive sensory perception, 
further preventing long term adoption. Work therefore 
needs to be explored that correlate feedback modalities to 
perception of tactile information, such as texture and 
pressure. The work presented in this paper begins to 
explore this by utilizing a deep-learning algorithm to 
classify the dissipation of vibration artefacts found in the 
EMG signals of able-bodied individuals to specific texture 
patterns. Four texture patterns were applied to 7 
participants using two vibration motors and repeated 3 
times. In post processing, a RNN network identified the 
artefact features along equidistantly spaced EMG 
electrodes and correctly classified unseen data from each 
participant.    
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I. INTRODUCTION  
Prosthetic limbs have been used in research as a rehabilitation 
paradigm in the treatment of neuropathic pain. It was found 
that long term, continued use of a hand prosthesis, as well as 
effective embodiment of the device, can lead to a reduction 

in neuropathic pain, for example, phantom limb pain [1]. 
Considerable work has been reported in the literature to 
improve embodiment and long-term adoption of prosthetic 
hand via the enhancement of effective sensory feedback from 
the device [1-5]. Somatotopically mapped feedback is often 
used in hand prostheses to provide information on grasping, 
texture, and the shape of objects [6]. The most common type 
of sensory feedback is vibration, as its versatility can elicit a 
wide range of proprioceptive information that can be applied 
to any surface on the users’ body and mapped to the 
appropriate function or feedback [6-8]. Despite success in 
robotic prosthesis control and discernable sensory feedback, 
vibrations and other modalities are often not utilized in a hand 
prosthesis, due in part to the variation of the resulting 
perceptions for the user [9, 10]. For example, perceptions of 
texture generated by vibrations would feel different to the 
user on a different day despite the consistency of the 
parameter settings and the device used. Additionally, the 
same parameters may not provide the same perception of 
texture for a different user. This results in the requirement of 
daily fine-tuned parameter adjustments to maintain accurate 
and intuitive feedback from the device. It is believed that 
individual differences and changes in the physical attributes 
of the users are the cause of these changes in the perception 
of the feedback, and thus, prevents a ubiquitous system or 
setting that will maintain accurate long-term feedback [9, 11]. 
Consequently, this prevents long term adoption of sensory 
feedback in prosthetic limbs. Peerdman et al found that easy, 
intuitive, and adjustable feedback was amongst the priorities 
for individuals with non-invasive prosthesis uses [12].  

Despite research showing an increase in control and 
embodiment with sensory feedback, more focus has been 
placed on motion control of prosthetic limbs using surface 
electromyography (sEMG). Combinations of pattern 
recognition algorithms, dimensionality reductions, and 
feature extractions have become well-known techniques in 
upper limb prosthetic control. These combinations have been 
found to help with motion control, grasping, and gesture 
classification for upper limb prosthesis [2].  Time and 
frequency domain features of muscle activity are often used 
for movement, position, and gesture classification of hand 
prostheses to varying degrees of success [13, 14]. In an 
analogous way to sensory feedback, individual differences, 
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along with sensor placement and electrical noise, affect the 
quality of the signal recorded. Modern techniques in machine 
learning and deep learning, such as recurrent neural network 
(RNN) or, in some cases, convolutional neural network 
(CNN) algorithms, have shown promising results in feature 
extraction and sequence classification of these types of 
signals [15, 16].  

Though pattern classification techniques have been explored 
greatly in the field of movement and grasping control in hand 
prostheses, they have not been explored as much in the 
context of sensory feedback and its resulting perceptions. 
This work examines the classification of texture perceptions 
induced by vibration motors on the dominant upper arm of 
the participants using sEMG with an RNN-based 
architecture. Previous work has found that vibrations produce 
distinct artefacts in the frequency spectrum of sEMG signals. 
These artefacts are distinct enough in the frequency domain 
to detect subtle differences between individuals. Thus, a 
unique dissipation trend based on the magnitude of the 
artefact at each electrode along the biceps can be produced 
[17]. These dissipation trends are unique to individuals and 
do not vary greatly over time; they can therefore be used to 
categorize and adjust sensory feedback by correlating the 
trend to specific subjective tactile experiences. This can form 
the basis of a system that can maintain a consistent perception 
of vibration irrespective of physiological differences for long 
term upper limb prosthesis use.   

II. METHODS 

A. Experimental Design and Procedure 
Design: Seven participants above the age of 18 (4 females, 3 
males) were selected and recruited from University College 
London (UCL), with approval from the UCL ethics 
committee (Project ID: 14679/001). All participants gave 
informed consent to the experimental procedure.  
 
The main objective of the study was to investigate if different 
texture perceptions could be classified using the dissipation 
patterns of vibration artifacts from EMG sensor electrodes. 
This was done by varying frequency and amplitude between 
two motors located on the dominant upper biceps and triceps 
of each participant. Different combinations of frequencies 
between the two motors elicited 4 distinct texture effects. 
This was repeated at three different voltages to vary the 
amplitude. Vibrations were controlled using an Arduino 
UNO and a L298N Motor driver. An EMG array was spaced 
equidistantly down the biceps belly of the dominant arm 
directly below the vibration source. Participants were asked 
to hold a known weight and contract or relax their arm every 
30 seconds. Dissipation of the vibration artefacts were 
analyzed in post processing.  
 
Setup: Participants stood facing a computer screen placed on 
an adjustable desk. While standing in the relaxed position, 
their dominant hand was resting parallel to their body by their 
side. In the contracted condition, participants were asked to 
lift a known weight of 1023g in their hand until the elbow 
joint was flexed at 90 degrees, as shown in figure I. While the 

elbow was flexed, the adjustable desk was raised until the 
participants’ hand, in supination, was touching the underside 
of the desk. This, in addition to lifting a known weight, 
ensured that participants would maintain the same level of 
contraction throughout the experiment. The computer screen 
displayed a simple graphical user interface to instruct the 
participant to contract or relax their biceps at the correct 
timing intervals.  
  

Two Precision Mircodrive vibration motors (model: 334-
401), were placed into a customized 3D printed case on a 
Velcro band and attached to the top of the biceps and triceps 
muscle bellies of the upper dominant arm, approximately 
15cm from the elbow crease. Four surface EMG electrodes 
were placed distally from the motor along the biceps 2.5cm 
apart from each other. EMG signals were acquired using 
TMSi porti7 amplifier, with a sampling frequency set to 
512Hz, connected via Bluetooth to a laptop running open 
vibe software for data collection. 
 
Procedure: Participants were asked to face the computer, 
holding the weight by their side with the EMG sensors and 
vibration motors correctly placed. Once the experiment 
began, the initial muscle state was a relaxed position, in 
which participants were required to hold the weight to their 
side for 30 seconds. Following this, participants contracted 
the bicep by lifting the weight to the underside of the desk, 
holding this position for 30 seconds. This cycle repeated for 
the duration of the experiment while different texture patterns 
were applied via the vibration motors.  This procedure was 
repeated three times with a ten-minute break between the 
sessions. It was repeated at 3 different voltages in the range 8 
– 11V. At a max PWM of 255 at 8, 9, 10, 11V, the vibration 
motor oscillated at approximately 50, 58, 64 and 71.5Hz 
respectively. 
 

B. Classification Methods 
Elicitation of different textures with vibration motors was 
achieved by varying the amplitude, the frequency, and the 
delay between the two parameters. Due to this, one full 
textural response occurs when the PWM signal steps through 
all values between the high and low parameter outlined in 
table I. Within that cycle the dissipation trends will 

Figure I shows the experimental setup when participant is in 
the contracted condition  
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correspondingly change along with the frequency and 
amplitude repeating as the cycle restarts.  
 

 TABLE I: Conditions of the study. Each PWM would rise by a step 
of 20 starting from the low value until the high condition was 
reached. This cycle was repeated for the duration of the condition. 

This means that a single dissipation trend is not enough to 
classify the signal but, instead, the dissipation at each 
electrode and how it changes during one full cycle is required. 
 
Standard classification methods such as SVM and KNN are 
not sufficient for this type of problem and, when tested 
against the data in this study, could not produce accuracy of 
above 20%. This is potentially due to requiring each vibration 
dissipation state to be known within a full cycle to make a 
prediction. Therefore, some memory is needed in the 
classification process to keep track of the data that has 
already occurred. For data that is time-dependent, like EMG 
waveforms, recurrent neural networks (RNN) are appropriate 
to use as they can make predictions based on recent 
information. This is suitable for our work since some past 
data is needed to make accurate predictions for texture 
classification. However, if the relevant information is too far 
back from the current state, the efficacy of RNNs decreases. 
The long short-term memory (LSTM) network is a variation 
of RNNs and can be used to classify data when the relevant 
information needs to be remembered over a period of time 
and so can deal with long-term dependent data [18, 19]. They 
are often used in time series prediction.  
 
A RNN node has a single weight and bias that loops round to 
act like a successive chain of nodes. By contrast, a LSTM 
network contains three gated layers that controls the 
information added or removed from the cell to allow long 
term dependencies to be captured. The three gates are the 
forget gate, input gate and output gate. The forget gate 
controls which data from the previous step is needed and the 
input gate controls which information from the current step 
is important. The output gate determines the value of the next 
hidden state and contains the information of previous inputs. 
In multiclass classification problems, multilayer perceptions 
(MLP) are used to predict outputs. In a fully connected layer, 
every neuron is connected to every neuron in the following 
layer with weights and biases to determine the best linear 
combination that gives the desired output. Backpropagation 
is used to repeatedly adjust the weights and biases while 

hidden layers are used to learn more complex features. In this 
work, two fully connected hidden layers are used after the 
LSTM layer to classify the input.  

III. PROPOSED ALGORITHM  

A. Data Segmentation 
Figure II presents an overview of the algorithm applied to the 
collected data. Once the data is initially collected, it is 
segmented into sections of 1 second as the motors elicit one 
full cycle of the textural perception within that time frame. 
This is based on the rising time of each motor in the 
experimental set-up and allows for at least 3 complete 
rotations of each motor for each step in one cycle of the 
textural perception. Additionally, an overlap window of 
200ms is established. Other overlap window lengths of 
500ms and 1s were tried but the best results were obtained 
with smaller window lengths. This mostly is due to most 
neural networks requiring larger amounts of data and the 
200ms overlap window length providing enough data.  
 

B. Feature Extraction 
In this study, peaks of the vibration artifacts are clearly seen 
within the frequency domain and this is used to establish a 
dissipation trend for classification. Spectrograms  are an 
efficient and convenient method of retaining both time and 
frequency information and so each segment of data is run 
through a Short-Time Fourier Transform (STFT) algorithm 
to establish the magnitude of the vibration artifact. In 
addition, the values in the spectrogram are normalized to the 
largest peak value. As shown in previous studies, other 
analysis techniques such as pwelch or wavelet analysis show 
the presence of vibration artifacts [17]; however, the Fast 
Fourier analysis provided the most consistent results when 
applied to dissipation trends. A Hamming window was 
applied to reduce the possibility of spectrum leakage. 
 

C. Classifier Architecture  
Our input is comprised of four sequences from the EMG 
recordings of the different bicep electrodes and produces one 
output based on the 10 possible categories shown in table I. 
The data for each channel was then fed into either a simple 
RNN or a Long Short-Term Memory (LSTM) layer with a 
sigmoid activation function and the outputs were 
concatenated into one layer. Following this, the data was 
passed through 2 fully connected layers and, finally, a 
softmax activation layer to give the final classification. The 
full architecture is given in Figure II.  
 

IV. RESULTS  

A. Evaluation Metrics 
We evaluate the classification performance using two 
metrics: accuracy and loss. Accuracy is defined as: 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (%) =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
 × 100 
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Where TP, TN, FP, and FN are true positive, true negative, 
false positive and false negative respectively. Loss is defined 
as the difference between the predicted and true value of the 
model. In this study, we used categorical cross entropy loss 
due to the categorical nature of the outputs. Typically, loss 
and validation curves can inform us whether the model is 
over or underfit. 
 
B. Model Parameter Optimization  
The dataset for each participant was split to a ratio of 80:20, 
where 80% of the data was used to train the model and 20% 
to test. This is a standard ratio used in training machine 
learning models. The model was trained separately for each 
participant as, in previous studies, we found that whilst 
dissipation trends were unique to each participant, they 
remained same for each individual over multiple days [16]. 
The normal hyper-parameters found in the network described 
remained the same for each model trained. The batch size for 
all participants in all conditions was kept constant at a size of 
32. 

1) An Adams optimizer was used and trained on several 
different learning rates ranging from 0.1 to 1e-7. It was found 
that, for all participants, a learning rate of 0.001 produced the 
best results. 

2) Overall, there were 5 distinct layers in the model. The 
input layer was determined by the number of EMG channels 
and passed into an LSTM or an RNN layer composed of 32 
units. This was followed by a sigmoid activation function. 
After the concatenation layer, the data was passed into two 
dense layers with 64 and 32 units respectively. Finally, an 
output layer with 10 units corresponding to the 10 categories 
of classification was established and trained with the Adams 
optimizer mentioned above.  
 

Figure III shows the log-scale spectrogram of the one second of EMG data across the four electrodes. Row A is taken when the participant 
is in the contracted condition for texture 1 while row B shows the relaxed condition for the same texture. Row C shows the contracted 
condition without any vibration. The raw values of these spectrograms were fed into the LSTM algorithm.  

Figure II: Figure showing full architecture of classification algorithm 



Figure III shows the normalized power spectrum of one 
second of data from a participant in three different conditions. 
The intensity of the vibration artifacts is clearly seen in both 
figures A and B as well as how they change over the course 
of 1 second, the time taken to complete one cycle of texture 
perception. No discernable pattern is seen in figure C as no 
distinct peaks nor pattern of behavior can be seen over the 
course of one second. The results from the experiments show 
that while accurate classification is possible with this 
architecture, there is no added benefit in using a LSTM based 
design over an RNN. This suggests that while the data is 
temporally related and requires some degree of memory, 
recent data alone is sufficient. This can be seen in the 
classification accuracy results in figure V. The accuracy in all 
conditions ranges between 75-100% in both LSTM and RNN 
architectures. Using an RNN over LSTM can be 
advantageous as it requires fewer computations and fewer 

parameters to achieve similar results. This could be beneficial 
for future studies, as reduction in computational costs makes 
translation to hardware easier. 
Figure IV shows the confusion matrix for all participants and 
that the proposed algorithm can distinguish between the 
different conditions efficiently. Though all participants are 
concatenated into a single confusion matrix, closer analysis 
shows that the biggest source of false positives was in the 
identification of C2 as C4 for multiple participants for both 
LSTM and RNN architectures. The RNN architecture also 
had trouble distinguishing between R3 and R5 while the 
LSTM model often classified R5 as C2. As the PWM range 

is relatively similar between the different conditions, shown 
in table I, this could explain why same false positives are seen 
in multiple participants across the two models. Future 
experiments will explore a wider range of textural 
perceptions on more participants to determine any limitations 
in the algorithm.  While both architectures show the same 
patterns of false positives, they still show a high degree of 
accurate classifications.  

V. DISCUSSION AND CONCLUSION 
In this paper, we proposed an algorithm based on deep 
learning techniques that can classify the vibration dissipation 
in the dominant arm of 7 healthy participants using EMG 
artifacts. The EMG signals were transformed into the 
frequency-time domain using STFT and the data from each 
electrode fed into an input of the classification algorithm. The 
results show a high degree of classification accuracy using 
this technique, with some results reaching 100% 
classification accuracy.  
How the user perceives sensory information is important for 
the rehabilitation process and the long-term hand prosthesis 
use as it might improve the control and embodiment of the 
device. However, perception of the sensory information often 
changes daily for users due to physiological differences and 
results in constant fine-tuning of the feedback parameters, 
preventing long term adoption. It is therefore important to 
understand the relationship between vibrational feedback and 
how it is perceived. This will allow a method to be devised 
that considers these differences and modulates the feedback 
accordingly to maintain perception. 
The results from previous studies suggest that patterns of 
vibration dissipation are unique to individuals [16] whilst the 
results presented in this paper show that oscillating vibration 
patterns, often used to relay proprioceptive information to  

Figure IV shows the confusion matrix for all participants 
for both LSTM (top) and RNN (bottom) architectures.  

Figure V shows the classification accuracy of the model for all 
participants in three different voltage conditions. For participants 
1 – 5, the voltages are 8v (blue), 9v(orange) and 10v(yellow) for 
participants 6 and 7 the voltages are 9,10,11v respectively. 



Upper limb prosthetic users or provide discernable feedback 
such as texture,  can be categorized using AI-based 
classification methods. This is beneficial to the field as 
correlating dissipation patterns to perceptions of tactile 
information, such as texture and pressure, can provide a 
mechanism for maintaining consistent, intuitive feedback. 
This is turn allows for long-term prosthesis use for the 
continued treatment and rehabilitation of neuropathic pain. 
Future work aims to provide a ubiquitous, autonomous 
method for tuning vibration parameters based on dissipation 
trends, with the aim of maintaining the perception of textures 
over time. 
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