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Background: Gait is an essential manifestation of depression. However, the gait characteristics of daily walking and their
relationships with depression have yet to be fully explored.

Objective: The aim of this study was to explore associations between depression symptom severity and daily-life gait
characteristics derived from acceleration signals in real-world settings.

Methods: We used two ambulatory data sets (N=71 and N=215) with acceleration signals collected by wearable devices and
mobile phones, respectively. We extracted 12 daily-life gait features to describe the distribution and variance of gait cadence and
force over a long-term period. Spearman coefficients and linear mixed-effects models were used to explore the associations
between daily-life gait features and depression symptom severity measured by the 15-item Geriatric Depression Scale (GDS-15)
and 8-item Patient Health Questionnaire (PHQ-8) self-reported questionnaires. The likelihood-ratio (LR) test was used to test
whether daily-life gait features could provide additional information relative to the laboratory gait features.

Results: Higher depression symptom severity was significantly associated with lower gait cadence of high-performance walking
(segments with faster walking speed) over a long-term period in both data sets. The linear regression model with long-term

daily-life gait features (R2=0.30) fitted depression scores significantly better (LR test P=.001) than the model with only laboratory

gait features (R2=0.06).

Conclusions: This study indicated that the significant links between daily-life walking characteristics and depression symptom
severity could be captured by both wearable devices and mobile phones. The daily-life gait patterns could provide additional
information for predicting depression symptom severity relative to laboratory walking. These findings may contribute to developing
clinical tools to remotely monitor mental health in real-world settings.

(JMIR Mhealth Uhealth 2022;10(10):e40667) doi: 10.2196/40667
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Introduction

Depression affects the lives of over 300 million people
worldwide [1] and is associated with many adverse outcomes,
including decreased quality of life, loss of occupational function,
disability, premature mortality, and suicide [2-5]. While early
treatment can be effective and prevent more serious adverse
outcomes [6], more than half of depressed people do not receive
timely treatment [7,8]. Current questionnaire-based depression
assessments may be affected by recall bias and may not be able
to collect dynamic information [9,10]. Therefore, several recent
studies have attempted to explore the associations between
depression and changes in individuals’ behaviors using mobile
technologies [11].

Changes in gait are essential manifestations of depression
[12,13]. The main hypothesis linking gait with depression is a
bidirectional interaction between the brain motor system and
cortical and subcortical structures, which are related to emotions
and cognitive functions [14-16]. Many studies have explored
the relationships between depression and gait characteristics
based on “gold-standard” laboratory walking tests. Longer gait
cycles, reduced stride length, and slower gait cadence were
observed in participants with depression compared with healthy
controls, which have been consistently shown in several studies
[17-25]. Other gait abnormalities such as reduced gait force
[21], increased double support time [22], reduced swing time
variability [23], slumped postures [24], and increased body
sway [25] have been reported, but with less consistency across
studies.

Laboratory gait tests are hard to be applied in real-world settings
because of the need for expensive equipment (eg, video camera
and force plates), specialized laboratories, and the inconvenience

of wearing sensors on the knees and ankles, for example [14,26].
Some researchers have suggested that people’s daily-life activity
characteristics should have stronger links to their health
conditions than laboratory tests [27-29]. Therefore, it is
necessary to monitor and evaluate daily-life walking using
efficient methods.

In recent years, several studies have used mobile technologies
to measure daily-life walking patterns and explored their
associations with depression. However, most of these studies
only measured the number of cumulative steps of daily-life
walking [30-32], which is more related to individuals’ mobility
and physical activity than to gait patterns (eg, gait cadence and
gait force). To our knowledge, there have been only a few
studies exploring the associations between daily-life gait patterns
and depression directly. Adolph et al [33] found that depressed
participants had reduced walking speed, reduced vertical
up-and-down movements, and more slumped postures compared
with controls by placing two accelerometers on the participant’s
trunk and right leg for 2 days [33]. However, wearing multiple
sensors on the body may not be suitable for long-term
monitoring. With the development of sensors, the mobile phone
provides a cost-effective, continuous, and unobtrusive means
to measure individuals’ behaviors, including daily walking.
Therefore, the mobile phone may be a potential tool for
long-term gait monitoring.

The aim of this study was to explore the value of daily-walking
monitoring for improving the evaluation of depression symptom
severity. Our first objective was to design and extract gait
features from raw acceleration signals to describe the
characteristics of daily walking. The second objective was to
explore the associations between gait features and depression
symptom severity, and to test whether these associations could
be captured by different acceleration devices. The third objective

JMIR Mhealth Uhealth 2022 | vol. 10 | iss. 10 | e40667 | p. 2https://mhealth.jmir.org/2022/10/e40667
(page number not for citation purposes)

Zhang et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://dx.doi.org/10.2196/40667
http://www.w3.org/Style/XSL
http://www.renderx.com/


was to test whether daily-life walking could provide additional
information for predicting depression relative to laboratory
walking. To achieve the second and third objectives, we
performed our analyses on two ambulatory data sets, the Long
Term Movement Monitoring (LTMM) and Remote Assessment
of Disease and Relapse–Major Depressive Disorder
(RADAR-MDD) data sets [34,35], with acceleration signals
collected by a wearable device and mobile phone, respectively.
Importantly, the LTMM data set contains data related to both
laboratory and daily walking, which could address the third
study objective.

Methods

Data Sets

LTMM Data Set
The LTMM data set includes demographics (age and gender),
depression scores (15-item Geriatric Depression Scale [GDS-15]
[36]), and raw acceleration signals (100 Hz) of laboratory
walking tests and 3-day activities for 71 elderly adults [34],
which can be downloaded at PhysioNet [37]. Participants were
included if they did not have any cognitive or gait/balance
disorders [34]. Participants were asked to walk at a self-selected
and comfortable speed for 1 minute in the laboratory while
wearing a 3-axis accelerometer on their lower back [34]. The
GDS-15 questionnaire contains 15 easy-to-understand, yes/no
format questions, which is suitable for depression screening in
the older population [38,39]. After the laboratory walking test,
all participants were asked to wear the accelerometer for the
next 3 consecutive days to record daily activities [34].

Ethics Considerations
RADAR-MDD was conducted per the Declaration of Helsinki
and Good Clinical Practice, adhering to principles outlined in
the National Health Service (NHS) Research Governance
Framework for Health and Social Care (2nd edition). Ethical
approval has been obtained in London from the Camberwell St
Giles Research Ethics Committee (REC reference 17/LO/1154),
in Spain from the CEIC Fundació Sant Joan de Deu (CI
PIC-128-17), and in the Netherlands from the Medische Ethische
Toetsingscommissie VUms (METc VUmc registratienummer
2018.012–NL63557.029.17).

RADAR-MDD Data Set
The EU research program RADAR-MDD aimed to investigate
the utility of mobile technologies for the long-term monitoring
of participants with depression in real-world settings [35,40].
Adult participants with a depression history were included in
the study if they did not meet the following criteria: (1) have
other psychiatric disorders (eg, bipolar disorder, schizophrenia,
and dementia), (2) have received treatment for drug or alcohol
use in the past 6 months, (3) a major medical diagnosis that
affects daily activities, and (4) pregnancy [35]. A detailed study
protocol was published previously [35]. In this study, we used
a subset of RADAR-MDD data collected from a study site in

the United Kingdom (King’s College London [KCL]) between
November 2017 and April 2021, because the KCL site was the
only site to acquire ethical approval for collecting the phone’s
acceleration signals. We hereafter denote this subset as the
RADAR-MDD-KCL data set for convenience. The phone’s
acceleration signals were collected at 50 Hz and uploaded to an
open-source platform, RADAR-base [41]. The participants’
depression symptom severity was assessed by the 8-item Patient
Health Questionnaire (PHQ-8) [42] self-reported through mobile
phones every 2 weeks. A patient advisory board comprising
service users co-developed the study. They were involved in
the choice of measures, timing, and issues of engagement, and
have also been involved in developing the analysis plan.

Step Detection Algorithm
Since we needed to respectively detect steps on the acceleration
signals collected by wearable devices and mobile phones, we
chose to use the step detection algorithm [43], which was based
on mobile phones (Figure 1). Given a segment of 3-axis
acceleration signals (xi, yi, zi), the magnitude of the acceleration
of the segment of acceleration signals was calculated to combine

3D signals to a single series, ri, where . The magnitude
of the acceleration signals does not depend on the orientation
and tilt of the mobile phone during walking [43]. Subsequently,
ri was filtered by a weighted moving-average filter to remove
noise (Equation 1, w=150 milliseconds). Next, the filtered ri

was subtracted by the mean of r̄i to make r̄i symmetric to the
x-axis. We calculated two new series, B1i and B2i, based on two
thresholds to detect the walking swing phase and stance phase,
respectively (see Equations 2 and 3). If a swing phase ends and
a stance phase starts, we can identify a step that occurred. The
formal detection rule of a step Si at sample i is that the following
two conditions must be satisfied: (1) a change from –0.5 to 0
in B1 (B1i=0 and B1i–1=0.5); (2) there is at least one detection
of B2=–0.5 in a window of size w=150 milliseconds in sample
i (Min(B2i:i+w)=–0.5).

Then, the gait cycle series could be derived by calculating time
intervals between consecutive steps, which was denoted as
Cycles. During each gait cycle, the amplitude from the peak to
the valley of the magnitude of the acceleration signals was used
to reflect the gait force of each step. The force of all steps in
the given acceleration signal was denoted as the series Force.
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Figure 1. Step detection algorithm. ACC is the 3-axis acceleration signal; B1 and B2 are two series calculated by thresholds to detect walking swing
and stance phase, respectively; and pink dashed lines represent the detected steps.

Feature Extraction

Feature Window Size
Since the PHQ-8 score is used to estimate depression symptom
severity for the past 2 weeks [42], we extracted gait features
from a 14-day time window prior to each PHQ-8 record from
the RADAR-MDD-KCL data set. For the LTMM data set, we
extracted gait features from 3-day activities to link daily-life
walking with the GDS-15 score.

Step Detection Window and the Continuous Walking
Segment
Daily-life walking in real-world settings is complex and contains
some intermittent walking segments (such as walking in a

crowded environment or a walking-rest transition status). These
intermittent walking segments may not fully reflect a
participant’s normal walking patterns. Therefore, to distinguish
between continuous and intermittent walking, we used a
1-minute sliding window [44] to detect steps from the long-term
raw acceleration signals. If the participant was walking most of
the time in this minute, we considered this minute as the
continuous walking segment. Based on our experience, we set
50 seconds as the threshold for selecting the continuous walking
segment; that is, the segment with more than 50 seconds of
walking time (sum of all gait cycles in the minute) was selected
for further analysis (Figure 2b).
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Figure 2. Schematic diagram of long-term gait feature extraction for the Long-Term Movement Monitoring data set. (a) Three-axis acceleration signals
of 3 consecutive days; (b) examples of continuous and discontinuous walking segments and three short-term gait features (definitions in Table 1) were
extracted from each continuous walking segment; (c) long-term gait feature extraction: 25th percentile, median, 75th percentile, and standard deviation
of short-term gait feature values of all continuous walking segments over 3 days for each participant.

Gait Features

Overview

The performance of walking varies over time due to several
factors such as mood, energy, and environment. Therefore, the
long-term gait features need to represent the distribution and
variance of walking patterns over the feature window. We first

extracted three short-term gait features from every detected
continuous walking segment in the feature window. Then, for
each short-term gait feature, we calculated four statistical
second-order features (long-term features) across all values of
continuous walking segments. In total, 12 long-term gait features
were extracted in this study, and a summary of these features
is shown in Table 1. A schematic diagram of long-term gait
feature extraction is shown in Figure 2.
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Table 1. Short-term and long-term gait features extracted and their short descriptions.

DescriptionGait feature

Short-term gait features

Median of gait cycles in the 1-minute walking segmentMedian cycle (seconds)

Peak frequency in the PSDa of the magnitude of 1-minute acceleration signalsPeak frequency (Hz)

Median of gait force in the 1-minute walking segmentMedian force (m/s2)

Long-term gait features

25th percentile of median gait cycle values of all walking segmentsb25th percentile of median cycle

Median of median gait cycle values of all walking segments50th percentile of median cycle

75th percentile of median gait cycle values of all walking segments75th percentile of median cycle

Standard deviation of median gait cycle values of all walking segmentsSD of median cycle

25th percentile of peak frequency values of all walking segments25th percentile of peak frequency

Median of peak frequency values of all walking segments50th percentile of peak frequency

75th percentile of peak frequency values of all walking segments75th percentile of peak frequency

Standard deviation of peak frequency values of all walking segmentsSD of peak frequency

25th percentile of median gait force values of all walking segments25th percentile of median force

Median of median gait force values of all walking segments50th percentile of median force

75th percentile of median gait force values of all walking segments75th percentile of median force

Standard deviation of median gait force values of all walking segmentsSD of median force

aPSD: power spectral density (from 0.5 Hz to 3 Hz).
bAll detected continuous walking segments (defined in the Methods section) in a feature window (3 days for the Long Term Movement Monitoring
data set and 14 days for the Remote Assessment of Disease and Relapse–Major Depressive Disorder data set).

Short-Term Gait Features From the 1-Minute Continuous
Walking Segment

Gait cadence and gait force are essential characteristics of
walking. Gait cadence is the rate at which the individual feet
contact the ground [45]. Gait force reflects the ground reaction
force during walking [46]. For every continuous walking
segment, the median of the gait cycle series (Cycles) was
calculated to reflect the gait cadence of this minute from the
time domain, which was denoted as median cycle. To assess
the gait cadence from the frequency domain, the power spectral
density (PSD) of walking was obtained by applying the fast
Fourier transformation to the filtered magnitude (r̄i) of the
acceleration signals of every continuous walking segment. The
peak frequency [47] of the 0.5-3–Hz band (reflecting walking)
[34] of the PSD was used to reflect the main rhythm of steps
from the frequency domain, which was denoted as peak
frequency. For gait force, we calculated the median of the Force
series (median force) to represent the average power of all steps
in the minute.

Long-Term Gait Features

For each of the short-term gait features (median cycle, peak
frequency, and median force), we calculated four statistical
second-order features (25th percentile, median, 75th percentile,
and SD) from all detected continuous walking segments during
a feature window.

Previous studies suggested that the extreme values of gait
characteristics over the long term could reflect the optimal or

worst walking performance of the participant, which could in
turn reflect physical or mental conditions better than the median
value [29]. Therefore, we used 25th percentile, median, and
75th percentile second-order statistics to represent three levels
of walking performance (low, medium, and high) during a
feature window. For example, faster walking during a feature
window could represent high-performance walking, which may
not be affected by other factors such as fatigue and the crowded
environment. High-performance walking could be represented
by the 75th percentile of peak frequency and the 25th percentile
of median cycle in a feature window, which is expected to be
closely associated with depression status. The variance of
daily-life walking in a feature window was measured by the
SD.

Laboratory Gait Features Extracted From Laboratory
Walking Tests in the LTMM Data Set

We also extracted median cycle, peak frequency, and median
force from the 1-minute acceleration signals of laboratory
walking tests in the LTMM data set. For reading convenience,
we denoted these as laboratory gait features.

Inclusive Criteria for Data Missingness in the
RADAR-MDD-KCL Data Set
The raw acceleration signals were remotely collected by mobile
phones in the RADAR-MDD-KCL study. Possibly due to the
high battery consumption and network traffic for uploading the
raw signal, the missing rate of acceleration signals was relatively
high. To reduce the impact of missingness, a PHQ-8 period (14
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days) included in this study should have at least 3 days (aligned
with the LTMM data set) with more than 50% acceleration
signals [48,49].

Statistical Analyses
For the LTMM data set, Spearman coefficients [50] were
calculated to assess associations between the GDS-15 score and
gait features (3 laboratory gait features and 12 long-term gait
features). As the data in the RADAR-MDD-KCL data set are
longitudinal (repeated PHQ-8 measurements for each
participant), a series of pairwise linear mixed-effects regression
models [51] with random participant intercepts were performed
to explore the association between the PHQ-8 score and each
of the 12 long-term gait features (no laboratory tests were
included in the RADAR-MDD-KCL data set). Age, gender,
and the number of comorbidities (see Table S1 in Multimedia
Appendix 1) were considered as covariates. The
Benjamini-Hochberg method was used for multiple-comparison
corrections in both data sets [52].

To test whether long-term gait features could explain additional
data variance in depression scores relative to laboratory gait
features, we built two nested multivariate linear regression
models without and with long-term gait features for the GDS-15
score (denoted as Model A and Model B; Equations 4 and 5)
in the LTMM data set. Specifically, predictors of Model A are
age, gender, and the 3 laboratory gait features, while predictors
of Model B are age, gender, the 3 laboratory gait features, and
the 12 long-term gait features. The coefficient of determination

(R2) was calculated for both models to estimate how much data
variance was explained by predictors. Then, the likelihood ratio
test [53] was used to test whether Model B fit the GDS-15 score
better than Model A. Since the laboratory walking test was not

included in the RADAR-MDD-KCL data set, the likelihood
ratio test was only performed in the LTMM data set.

Model A: GDS-15=Age+Gender+3 laboratory gait
features (4)

Model B: GDS-15=Age+Gender+3 laboratory gait
features+12 long-term gait features (5)

Results

Data Summary
The 71 participants in the LTMM data set have a mean age of
78.36 (SD 4.71) years with 18 (25%) participants having
potential depressive disorders (GDS-15≥5) and 69.82 (SD 9.65)
hours of acceleration signals per participant. The
RADAR-MDD-KCL data set, according to the data inclusion
criteria, contains 659 PHQ-8 records collected from 215
participants and corresponding 99,445 hours (average 463 hours
per participant). The cohort in the RADAR-MDD-KCL data
set has a mean age of 43.36 (SD 15.12) years with the majority
being women (75%), and half of the PHQ-8 records indicated
potential depression symptoms (PHQ-8≥10). The average
missing rate of acceleration signals collected by phones in the
RADAR-MDD-KCL data set (70.60%) was significantly higher
than that of the acceleration signals collected by the wearable
device in the LTMM data set (3.03%). A summary of the
demographics, and distributions of depression scores and
available acceleration signals for participants in the LTMM and
the RADAR-MDD-KCL data sets is shown in Table 2. The
heatmaps of correlations between the 12 long-term gait features
of the LTMM and RADAR-MDD-KCL data sets are presented
in Figure 3.
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Table 2. Demographics and distributions of depression scores and available acceleration signals of participants in the two data sets.

RADAR-MDD-KCLb (N=215)LTMMa (N=71)Characteristic

43.36 (15.12)78.36 (4.71)Age (years), mean (SD)

162 (75%)46 (65%)Female, n (%)

PHQ-8d: 9.67 (5.84)GDS-15c: 3.18 (2.81)Depression score, mean (SD)

330 (50%)18 (25%)Potential depressive episode (GDS-15≥5) and PHQ-8≥10), n (%)e

65971Number of completed depression questionnairesf

3.09 (2.76)1 (0)Number of completed depression questionnaires per participant, mean (SD)

99,4454817Length of total available acceleration signals (hours)

98.77 (105.20)69.82 (9.65)Length of available acceleration signals (hours) for each GDS-15/PHQ-8 recordg, mean
(SD)

70.603.03Average missing rate of acceleration signals (%)

113.24 (170.48)73.48 (66.98)Number of continuous walking segmentsh detected from each GDS-15/PHQ-8 record,
mean (SD)

aLTMM: Long Term Movement Monitoring.
bRADAR-MDD-KCL: subset of the Remote Assessment of Disease and Relapse–Major Depressive Disorder data set collected from King’s College
London, United Kingdom.
cGDS-15: 15-item Geriatric Depression Scale.
dPHQ-8: 8-item Patient Health Questionnaire.
eBased on the total number of completed questionnaires.
fThe RADAR-MDD-KCL data set has multiple PHQ-8 records for each participant, which was conducted every 2 weeks.
gWe regarded acceleration signals in the 14 days before a PHQ-8 record. For the GDS-15 record, we considered acceleration signals of all 3-day activities
after enrollment.
hContinuous walking segment was defined as 1-minute acceleration signals with at least 50 seconds of walking (see Methods section).

Figure 3. Heatmaps of correlations between 12 long-term gait features of the Long-term Movement Monitoring data set (a) and Remote Assessment
of Disease and Relapse–Major Depressive Disorder King's College London data set (b).

Associations Between Gait Features and the GDS-15
Score in the LTMM Data Set
The Spearman correlations between the GDS-15 score and gait
features (both laboratory and long-term gait features) in the
LTMM data set are shown in Table 3. We found that a higher
GDS-15 score was significantly correlated with a larger median

of gait cycles, lower peak frequency, and smaller median gait
force in the 1-minute laboratory walking test. For the long-term
period, a higher GDS-15 score was significantly correlated with
lower variance of gait force and slower cadence of
high-performance walking and 75th percentile of peak frequency
during 3-day activities.
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Table 3. Spearman correlations between the 15-item Geriatric Depression Scale score and gait features, including laboratory and long-term gait features,
in the Long-Term Movement Monitoring data set.

P valuebρFeaturea

Laboratory gait features extracted from the 1-minute laboratory walking test

.0010.39Median cycle

.01–0.32Peak frequency

.04–0.25Median force

Long-term gait feature extracted from 3-day activities

.010.3125th percentile of median cycle

.290.1350th percentile of median cycle

.860.0275th percentile of median cycle

.06–0.24SD of median cycle

.85–0.0225th percentile of peak frequency

.45–0.0950th percentile of peak frequency

.03–0.2775th percentile of peak frequency

.33–0.12SD of peak frequency

.850.0225th percentile of median force

.98–0.0150th percentile of median force

.41–0.1075th percentile of median force

.02–0.30SD of median force

aDefinitions of gait features in this table are provided in Table 1 and the Methods section.
bP values were adjusted by the Benjamini-Hochberg method for correction of multiple comparisons.

Associations Between Long-Term Gait Features and
the PHQ-8 Score in the RADAR-MDD-KCL Data Set
The pairwise linear mixed-effects models performed in the
RADAR-MDD-KCL data set revealed a significant and negative
link between the PHQ-8 score and the gait cadence of
high-performance walking during the 14 days before submitting
PHQ-8 records. Specifically, the 25th percentile of median cycle
was positively associated with the PHQ-8 score; that is, for
every increase of 0.1 seconds in the median gait cycle of

high-performance walking, the PHQ-8 score increased by 0.606
points. Likewise, the 75th percentile of peak frequency was
negatively associated with the PHQ-8 score, indicating that a
reduction of 0.1 Hz in the peak frequency of high-performance
walking was associated with an increase of 0.26 PHQ-8 points.
Other long-term gait features were not found to be significantly
associated with the PHQ-8 score in the RADAR-MDD-KCL
data set. A summary of all 12 linear mixed-effects regression
models is provided in Table 4.
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Table 4. Twelve pairwise linear mixed-effects models for exploring associations between long-term gait features and depression symptom severity

(8-item Patient Health Questionnaire) in the RADAR-MDD-KCL data set.a

P valuect valuedfSEEstimateLong-term gait featureb

.032.23648.752.726.0625th percentile of median cycle

.111.59639.412.513.9850th percentile of median cycle

.231.20653.722.082.4975th percentile of median cycle

.520.65631.114.412.87STD of median cycle

.15–1.46656.441.02–1.5025th percentile of peak frequency

.07–1.83650.761.05–1.9350th percentile of peak frequency

.01–2.60634.701.01–2.6275th percentile of peak frequency

.910.12600.501.860.21SD of peak frequency

.80–0.25637.462.24–0.5725th percentile of median force

.620.49655.771.790.8850th percentile of median force

.790.26656.371.660.4475th percentile of median force

.590.54602.903.782.05SD of median force

aRADAR-MDD-KCL: Subset of Remote Assessment of Disease and Relapse–Major Depressive Disorder collected from King’s College London.
bDefinitions of daily-life gait features are provided in Table 1 and the Methods section.
cP values were adjusted by the Benjamini-Hochberg method for correction of multiple comparisons.

Results of the Likelihood Ratio Test in the LTMM
Data Set
The regression model with long-term gait features (Model B)

achieved better performance (R2=0.30) than the model without

long-term gait features (Model A) (R2=0.06). We found that the
12 long-term gait features extracted from 3-day activities could

explain an extra 24% data variance (an increase of 0.24 in R2)
of GDS-15 scores relative to the laboratory gait features and
participants’ demographics. The likelihood ratio test showed
that Model B fitted GDS-15 scores significantly better than

Model A (χ2=32.91>χ2
0.05(12), P=.001). The detailed results

of the two nested regression models are shown in Table S2 of
Multimedia Appendix 1.

Discussion

Principal Findings
This study retrospectively used two ambulatory data sets for
exploring the associations between depression symptom severity
and daily-life gait characteristics. We extracted 12 long-term
gait features to describe the distribution and variance of gait
cadence and force over a long-term period and link daily-life
gait patterns with a self-reported depression score. The main
findings of this study are (1) higher depression symptom severity
is significantly associated with lower gait cadence of
high-performance walking (faster walking in all continuous
walking segments) over a long-term period; (2) long-term
daily-life walking has the potential to provide additional
information for predicting depression symptom severity relative
to laboratory gait characteristics and demographics; and (3)
wearable devices and mobile phones both have potential to
capture the associations between daily gait and depression.

The results of Spearman correlations between laboratory gait
features and the GDS-15 score in the LTMM data set are
consistent with previous studies [17-25]; that is, the participants
with more severe depression symptoms were more likely to
have slower gait cadence (longer median of gait cycles and
lower gait frequency) and smaller gait force in laboratory
walking tests.

For daily-life walking, this study used the faster walking (75th
percentile of peak frequency and 25th percentile of median
cycle) in all detected continuous walking segments to represent
high-performance walking during a feature window (3 days for
LTMM and 14 days for RADAR-MDD-KCL). Only gait
cadence of high-performance walking was found to be
significantly and negatively associated with depression symptom
severity, whereas gait patterns under medium/low-performance
walking were not significantly associated with the depression
score. This finding was consistent in both the LTMM and
RADAR-MDD-KCL data sets. A potential reason is that the
walking performance in real-world scenarios may be affected
by multiple factors (such as walking during the day or at night,
walking under fatigue or walking after rest, and walking to a
destination or navigating a crowded supermarket) [29];
therefore, the lower walking performance may not fully reflect
the participant’s physical or mental conditions. Therefore, from
the main finding of this study, we speculated that faster steps
over a long-term period could represent the high performance
of participants’walking, which could be closely associated with
their depression status.

In the LTMM data set, we found that the variance of gait force
(SD of median force) in 3-day activities was significantly and
negatively associated with the depression symptom severity,
indicating that participants with higher depression symptom
severity were likely to have relatively monotonous walking over
3 days. However, the feature was not significantly associated
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with the PHQ-8 score in the RADAR-MDD-KCL data set. One
reason is that the magnitude (ri) (explained in the Step Detection
Algorithm section) of the acceleration signals depends on the
location of the accelerometers attached to the body [54]. As
acceleration signals in the RADAR-MDD-KCL data set were
collected by mobile phones, the variable locations of phones
when attached to participants’ bodies (such as in the hand,
handbag, and pocket) affected the magnitude of acceleration
signals. Therefore, the magnitude of phone-collected
acceleration signals cannot fully reflect the gait force.

Results of regression models and the likelihood test in the
LTMM data set illustrated the importance of monitoring
daily-life gait in real-world settings. Laboratory gait features
and demographics in LTMM data only explained a small

proportion of data variance of the GDS-15 score (R2=0.06),
whereas long-term gait features extracted from 3-day activities

could explain an extra 24% of data variance (R2=0.30). This
finding supported that long-term daily-life walking has the
potential to provide additional information for predicting
depression symptom severity relative to laboratory gait
characteristics and demographics. Further, this finding also
indicated that the laboratory walking test may be affected by
several factors such as subjective psychological factors and
laboratory-controlled conditions, which may not fully reflect
the condition of a participant’s mental health [27,29]. Since
there were no laboratory tests in the RADAR-MDD-KCL data
set, the comparison between laboratory gait features and
long-term daily-life gait features was not performed in the
RADAR-MDD-KCL. We will consider adding laboratory tests
at enrollment in future digital depression studies.

Limitations
Although we found that wearables and mobile phones have the
potential to capture the associations between depression and
daily-life gait patterns, both devices have some limitations.
Wearables could collect relatively complete walking data;
however, wearing sensors may not be suitable for long-term
monitoring. Mobile phones could be used for long-term
monitoring without user burden, but the missing rate of mobile
phone acceleration signals is relatively high. The findings of
this study support that the links between gait and depression
could still be revealed from the limited and sparse daily-life
walking acceleration signals. Missingness is a common
challenge in remote digital studies [55], which may be caused
by high battery consumption, network traffic for uploading the

raw acceleration signals, and the Android operating system
moderation of resources. According to the findings of this study,
a possible solution to reduce missingness is uploading gait cycles
instead of uploading raw acceleration signals in future long-term
monitoring research. This is not difficult to implement, as most
current smartphones have real-time step detection functions or
apps [56,57]. Furthermore, the self-reported PHQ-8 data may
be subject to recall bias. We may consider implementing
ecological momentary assessments with passive gait data
collection in future research.

The hyperparameters in step detection and feature extraction
need further investigation. We considered using a 1-minute
window size for step detection and 50 seconds for continuous
walking segment selection based on previous studies [34,44]
and our experience. The feature window sizes for the two data
sets are different due to the different study designs. However,
the optimal hyperparameters are still unclear and will be
investigated in future research.

Gait features extracted in this study were simple and statistically
based, which were used to illustrate the importance of daily
walking in our initial analysis. More features such as nonlinear
features will be considered in future research.

Gait characteristics could be affected by some physical diseases,
neurological disorders, and age [58-60]. Although none of the
participants had any cognitive or gait/balance disorders in the
LTMM data set and the number of comorbidities and age were
considered as covariates in the RADAR-MDD-KCL data set,
physical comorbidities and other comorbidities may have
different impacts on the gait characteristics. We will consider
a wider range of comorbidities and investigate them further in
future research.

Conclusion
In summary, the findings of this study showed that significant
links between depression symptom severity and daily-life gait
characteristics could be captured in different data sets and by
different accelerometer devices. Long-term daily-life walking
patterns could provide additional value for understanding
depression manifestations relative to gait patterns in laboratory
walking tests, which illustrated the importance of long-term
gait monitoring. The gait cadence of high-performance walking
in daily life has the potential to be an indicator for monitoring
depression severity, which may contribute to developing clinical
tools to remotely monitor mental health in real-world settings.
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