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Abstract
Abstract argumentation frameworks (AAFs), introduced by Dung (1995, Artif. Intell., 228, 321–357), enabled a new way of
reasoning with arguments, which does not take into account the internal structure of arguments but only how they are related
to each other. The only form of relation considered in AAFs is a binary attack relation on the set of arguments. From the
definitions of acceptability semantics of AAFs, it is obvious that attacks actually have a dual role: on the one hand, they
generate conflicts; on the other hand, they can defend other arguments from attacks. In this paper, we propose a framework,
where the modeller can explicitly specify the role of each attack. For this purpose, we define a set of conflict-generating
attacks RC and a set of defending attacks Rd , as well as a family of semantics that considers the role of each attack while
determining which arguments are attacked, which are defended and which will be included in each extension. We study the
formal properties of the proposed framework and semantics, show that our framework is a generalization of AAFs and assess
its semantics against a set of principles. Finally, we present a web application that provides an interface for creating custom
argumentation frameworks and uses ASP to compute their extensions.
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1 Introduction

Abstract argumentation frameworks (AAFs), introduced by Dung [11], enabled a new way of
reasoning with arguments, which does not take into account the internal structure of arguments
but only how they are related to each other. The simplicity and intuitiveness of AAFs, along with
their ability to capture various types of non-monotonic reasoning, led to their wide adoption by
the knowledge representation and reasoning community. The only form of relation considered in
AAFs is a binary attack relation on the set of arguments. From the definitions of acceptability
semantics of AAFs, which provide a solid mechanism for selecting acceptable sets of arguments
(called extensions), it is obvious that attacks actually have a dual role: on the one hand, they generate
conflicts, i.e. they disallow two arguments that attack each other to be in the same extension; on
the other hand, they can defend other arguments from attacks, thereby allowing arguments to be
included in extensions, even if attacked, provided that all attacks are defended by other arguments in
the extension.

Based on this observation, in previous work, we considered semantics where (some of the) attacks
in the framework could be treated as having one of the two roles only. For example, consider the
following exchange of arguments, a, b, followed by one of c1, c2 and c3.

a: I will take antibiotic X for my dental infection. It was recommended by my dentist.
b: X contains penicillin and you are allergic to it, so better take Y.

c1: I read in its label that X does not contain penicillin and X is more effective than Y.
c2: Y has serious and frequent side effects, so I would better avoid it.
c3: I was allergic to penicillin when I was a child, I think it has now faded away.

It is obvious that b attacks a and each of c1, c2 and c3 attacks b. However, the nature and effect
of each of these attacks is different. If one accepts c1, its attack to b should completely invalidate
b, and, as a result, a should be accepted. This is captured by all acceptability semantics of AAFs
that satisfy admissibility, i.e. they accept arguments that are not in conflict with any other accepted
argument and are defended by the accepted arguments against all attacks.

Now, let us consider c2, which is also in conflict with b and, if accepted, b should be rejected.
However, c2 does not defend a from b, in the sense that the information it conveys is not relevant to
the attack from b to a (which relies on the claim that the person is allergic to penicillin and X contains
penicillin). In other words, the attack from c2 to b has the single role of invalidating b (creating a
conflict among b and c2).

Finally, the attack from c3 to b has a different effect. It does not invalidate b but leaves some
doubt about it. Given this attack, it would be reasonable to accept c3 and a and reject b (if one feels
that the belief that the allergy has faded away is strong enough to disregard the advice not to take
the antibiotic), but it would also be reasonable to accept c3 and b and reject a (if the belief that the
allergy has faded away is not strong enough to disregard the advice not to take the antibiotic).

The effect of the latter two types of attack (e.g. from c2 or c3 to b) cannot be captured by any of the
existing acceptability semantics of AAFs. To address this aim, we recently proposed a new abstract
model of arguments, called multi-attack argumentation frameworks (MAAFs) [21], which allows
each attack to be associated with a type, and we defined three types of semantics: firm, restricted
and loose. In MAAFs, a set of attack types is considered to have the ‘normal’ behaviour, i.e. both
conflict generating and defending, whereas the rest are assumed to have only one (for firm or loose
semantics), or neither of the two roles (for restricted semantics).

A shortcoming of MAAFs is that conflict-generating and conflict-defending attacks cannot co-
exist. In other words, a MAAF can only support two different ‘classes’ of attacks: ‘normal’ and

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/2/192/7005682 by C
atherine Sharp user on 03 M

arch 2023



194 Argumentation frameworks with attack classification

‘abnormal’ ones, where the exact behaviour of ‘abnormal’ attacks is determined by the type of
semantics considered (firm, restricted or loose). In this paper, we generalize the idea of [21] by
allowing the modeller to specify explicitly, and independently, what will be the role of each attack.
For this purpose, we define a set of conflict-generating attacks Rc and a set of defending attacks
Rd , as well as a family of semantics that takes into account the role of each attack while determining
which arguments are attacked, which are defended and which will be included in each extension.

This paper is based on and significantly extends our previous work presented in [21] by providing
(i) a more generalized framework that extends MAAF with the capability to explicitly specify the
role of each attack; (ii) a principle-based analysis of the semantics of this framework; (iii) a formal
study of the properties of the framework and its semantics, including its relation to AAFs; and (iv)
a declarative implementation, in the context of a Web App,1 where a user can develop their own
instantiations of the argumentation framework and access the reasoning that our framework offers.

In the remainder of the paper, we define our new proposed framework, called AAFs with attack
classification, along with some properties of the framework and its semantics (Section 3). We study
the behaviour of the semantics with respect to a standard set of principles proposed for AAFs
(Section 4). To better illustrate our approach, we present a use case on argumentation schemes
(Section 5). Next, we describe an implementation of the framework based on the language of ASP
(Section 6). Finally, we discuss the related work (Section 7) and conclude (Section 8). A detailed
introduction to MAAFs (as defined in [21]), proofs of formal properties of the new framework, as
well as ASP encodings for the Web App are provided in the appendix.

2 AAFs with Attack Classification

In this section, we define the notions of conflict-generating, normal, defending and irrelevant
attacks, as well as the notion of classification of attacks for an AAF, and we define the standard
extension classes for the new argumentation framework.

2.1 Framework

We recall that an argumentation framework is defined as a pair F = 〈A,R〉, where A is the set of
arguments and R ⊆ A × A is the set of attacks.

An attack classification over an AAF is a structure that determines which attacks should be treated
as conflict-generating and which attacks should be treated as defending.

DEFINITION 1
Consider an AAF F = 〈A,R〉. An attack classification over F is a pair 〈Rc,Rd〉, such that Rc ⊆ R,
Rd ⊆ R.

An example of an AAF equipped with an attack classification is shown in Figure 1. Note that
an attack classification essentially breaks down the attacks into four disjoint classes, or types, as
follows.

• Normal attacks, i.e. attacks that behave in the classical manner. Such attacks are both conflict-
generating and defending and are the ones that belong in Rc ∩Rd . In our example, (a, b) is the
only such attack.

1http://139.91.183.45:8070/
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FIGURE 1. Running example.

• Conflict-generating attacks, i.e. attacks that can generate conflicts but cannot defend against
one. Such attacks are the ones that belong in Rc \ Rd . In our example, (a, c) is conflict
generating.

• Defending attacks, i.e. attacks that can defend but do not generate conflicts. Such attacks are
the ones that belong in Rd \ Rc. In our example, (b, c) and (d, a) are defending.

• Irrelevant attacks, i.e. attacks that are neither conflict generating nor defending. These attacks
play no role in our semantics and are essentially ignored. These are the attacks that belong in
R \ (Rc ∪ Rd). In our example, (b, d) is an irrelevant attack.

Note that symmetric attacks between two arguments a and b need not be of the same type, e.g. it
is possible that (a, b) ∈ Rc and (b, a) ∈ Rd . For a given AAF F = 〈A,R〉, equipped with an attack
classification 〈Rc,Rd〉, we write a → b whenever (a, b) ∈ R, a →c b whenever (a, b) ∈ Rc and
a →d b whenever (a, b) ∈ Rd .

We extend notation to sets of arguments, and, for B, C ⊆ A, we write B → C if and only if
∃b ∈ B, c ∈ C such that b → c (analogously for B →c C, B →d C). For singleton sets, we often
write b → C and B → c instead of {b} → C and B → {c}, respectively (analogously for →c, →d).

2.2 Semantics

We will now recast the definitions associated with the standard extension classes (already known
from the work of Dung [11]) for our setting. In the following, we use shorthands to refer to the various
types of semantics. In particular, we use cf for conflict-free, ad for admissible, co for complete, pr
for preferred, gr for grounded and st for stable. We also use σ as a catch-all symbol to indicate any
of these extension types.

To define our semantics, following the tradition of Dung [11], we first refine the notion of defense,
in a way that takes into account the role of attacks in the attack classification.

DEFINITION 2
Consider an AAF F = 〈A,R〉 and some attack classification 〈Rc,Rd〉. Given an argument a ∈ A
and a set E ⊆ A, we say that E defends a w.r.t. 〈Rc,Rd〉 (or simply E defends a, when 〈Rc,Rd〉 is
obvious from the context), if and only if E →d b whenever b →c a.

Returning to our running example and the chosen attack classification, we observe that {b, d}
defends c because there is only one conflict-generating attack targeting c (namely (a, c), i.e. a →c
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196 Argumentation frameworks with attack classification

c), and there is a respective defending attack (d, a) that originates from {b, d} and targets a (i.e.
{b, d} →d a).

Now, we can recast the standard definitions for the different types of semantics given in [11],
using the above ideas.

DEFINITION 3
Consider an AAF F = 〈A,R〉 and some attack classification 〈Rc,Rd〉. A set E ⊆ A is conf lict-free
w.r.t. 〈Rc,Rd〉 (or simply cf, when 〈Rc,Rd〉 is obvious from the context) if and only if it is not the
case that E →c E .

In our running example, {b, d} is a cf-extension; indeed, note that, although b → d, (b, d) is not a
conflict-generating attack.

The same ideas are applied to admissible and complete extensions, whose definition essentially
mimics the one typically used in AAFs but considers the attack classification through the alternative
notion of defense (Definition 2).

DEFINITION 4
Consider an AAF F = 〈A,R〉 and some attack classification 〈Rc,Rd〉. A set E ⊆ A is an
admissible extension w.r.t. 〈Rc,Rd〉 (or ad-extension for short, omitting 〈Rc,Rd〉 when obvious
from the context) if and only if

• E is cf;
• if a ∈ E , then E defends a.

DEFINITION 5
Consider an AAF F = 〈A,R〉 and some attack classification 〈Rc,Rd〉. A set E ⊆ A is a complete
extension w.r.t. 〈Rc,Rd〉 (or co-extension for short, omitting 〈Rc,Rd〉 when obvious from the
context) if and only if

• E is an ad-extension;
• if E defends a and E ∪ {a} is cf, then a ∈ E .

Note that, in the above definition (Definition 5), instead of only requiring that a ∈ E whenever E
defends a, we have included the additional requirement that E∪{a} is cf, thereby deviating somewhat
from the definition pattern used in AAFs for co-semantics [11]. This additional requirement is
redundant in the AAF setting because it results as a corollary of the weaker definition. However,
it is necessary here, for reasons that will be clarified below through an example.

In our running example, {b, d} is an ad-extension because although a →c b, it is also the case that
d →d a, so b is defended by {b, d}; and d is not attacked by a conflict-generating attack. However,
{b, d} is not a co-extension because c is defended by {b, d} but not included.

Further, it can be shown that {b, c, d} is a co-extension. Indeed, {b, c, d} is cf, as there is no
conflict-generating attack among its members. Also, it is an ad-extension, as it defends its members,
as explained above. Moreover, although a is also defended by {b, c, d} (in a trivial manner, as a
is not attacked by a conflict-generating attack), it is also the case that {a, b, c, d} is not cf; thus,
by definition, {b, c, d} is a co-extension. This example also shows why the extra requirement in
Definition 5 was necessary (as was also in MAAFs [21]); without the extra requirement, neither
{b, c, d} nor {a, b, c, d} would be co-extensions, which would be absurd. Moreover, without this extra
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requirement, no co-extension would exist in the above example because any such extension should
include a, d, and, since d is included, b, c should be included too, leading to a non-cf set.

Grounded and preferred semantics are defined analogously.

DEFINITION 6
Consider an AAFF = 〈A,R〉 and some attack classification 〈Rc,Rd〉. A set E ⊆ A is a grounded
extension w.r.t. 〈Rc,Rd〉 (or gr-extension for short, omitting 〈Rc,Rd〉 when obvious from the
context) if and only if E is a minimal with respect to set inclusion co-extension.

DEFINITION 7
Consider an AAF F = 〈A,R〉 and some attack classification 〈Rc,Rd〉. A set E ⊆ A is a preferred
extension w.r.t. 〈Rc,Rd〉 (or pr-extension for short, omitting 〈Rc,Rd〉 when obvious from the
context) if and only if E is a maximal with respect to set inclusion ad-extension.

In our running example, as already shown above, {b, c, d} is a maximal ad-extension (because
{a, b, c, d} is not cf-extension); thus, it is also a pr-extension. Interestingly, {b, c, d} is also a gr-
extension because, we can easily verify that none of its subsets are co-extensions (d is trivially
defended and d defends both b and c). Moreover, {a, d} is also a gr-extension. This shows that the
gr-extension is not necessarily unique in our setting (as also was the case in MAAFs [21]), in contrast
to the standard Dung [11] semantics.

Stable semantics also follow a similar pattern.

DEFINITION 8
Consider an AAF F = 〈A,R〉 and some attack classification 〈Rc,Rd〉. A set E ⊆ A is a
stable extension w.r.t. 〈Rc,Rd〉 (or st-extension for short, omitting 〈Rc,Rd〉 when obvious from
the context) if and only if

• E is maximally cf (i.e. a cf set that is maximal w.r.t. the subset relation among all other cf sets);
• E →d a whenever a /∈ E .

Note that Definition 8 also deviates somewhat from the definition pattern of st semantics in
standard AAFs. In particular, instead of requiring that E is cf, we have required that it is maximally
cf. Moreover, we have required that a defending attack against all arguments not in E exists.

This alternative definition is necessary to capture the underlying intuition behind the respective
definition in [11], namely that a st-extension attacks all arguments not in the extension; therefore,
(i) the addition of any further argument will render it conflicting—thus, it is maximally cf; (ii) it
defends itself against any attack from such arguments even if such an attack does not really exist.

This will become clearer if we analyse the examples illustrated in Figure 2. In the left example,
{a} is a stable extension in the respective AAF, whereas in the right example it is not, which shows
that a stable extension needs to defend itself from all external arguments, even if they do not attack
the extension itself. In the setting with the attack classification, this is captured by the requirement
that there should exist a defending attack (a, b) to ensure that {a} is stable. In our running example
(Figure 1), note that {b, c, d} is a st-extension, but {a, d} is not.
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198 Argumentation frameworks with attack classification

FIGURE 2. Two AAFs motivating our definition of stable extensions.

3 Formal Properties

In this section, we study various properties of AAFs with an attack classification. Most of the results
below are reformulations of the respective propositions that apply for AAFs, although there are
exceptions. The proofs are given in Section B of the appendix.

3.1 Initial results and special cases

We start by showing the analogous of Dung’s fundamental lemma (Lemma 10 in [11]).

PROPOSITION 1
Consider an AAFF = 〈A,R〉, some attack classification 〈Rc,Rd〉 and some E ⊆ A. Then,

1. if E is an ad-extension, E defends a and E ∪ {a} is cf, then E ∪ {a} is an ad-extension;
2. if Rd ⊆ Rc, E is an ad-extension and E defends a, then E ∪ {a} is an ad-extension.

Notice that Dung’s fundamental lemma is not generally true for AAFs with attack classification,
except from the special case where there are no attacks which are defending but not conflict-
generating (case #2 of Proposition 1).

Using the second bullet of Proposition 1, we can show that Definitions 5 and 8 can be formulated
more simply (i.e. using the pattern of [11]), when Rd ⊆ Rc.

PROPOSITION 2
Consider an AAF F = 〈A,R〉, some attack classification 〈Rc,Rd〉, such that Rd ⊆ Rc and some
E ⊆ A. Then,

1. E is a co-extension if and only if E is an ad-extension and a ∈ E whenever E defends a;
2. E is a st-extension if and only if E is cf and E →d a whenever a /∈ E .

3.2 Reductions of AAFs with an attack classification

The following two propositions show how AAFs with attack classification reduce to standard AAFs
[11] and MAAFs [21] for special cases. We omit further details on MAAF here, but the interested
reader can see [21] or Subsection A of the appendix in this paper.

PROPOSITION 3
Consider an AAF F = 〈A,R〉 and some attack classification 〈Rc,Rd〉 such that Rc = Rd = R.
Then, for any σ , E is a σ -extension w.r.t. 〈Rc,Rd〉 if and only if E is a σ -extension in the AAF F .

PROPOSITION 4
Consider an AAF F = 〈A,R〉 and some attack classification 〈Rc,Rd〉. Consider also a MAAF
FM = 〈AM , TM ,RM 〉 and some T0 ⊆ TM . Then, for any σ -extension, the following hold.

1. If Rc = R, Rd = {(a, b) | (a, b, τ) ∈ RM , τ ∈ T0}, then E is a σ -extension w.r.t. 〈Rc,Rd〉 if
and only if E is a fr-σ -extension w.r.t. T0 in the MAAF FM .
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2. If Rc = Rd = {(a, b) | (a, b, τ) ∈ R[M], τ ∈ T0}, then E is a σ -extension w.r.t. 〈Rc,Rd〉 if
and only if E is a re-σ -extension w.r.t. T0 in the MAAF FM .

3. If Rd = R, Rc = {(a, b) | (a, b, τ) ∈ R[M], τ ∈ T0}, then E is a σ -extension w.r.t. 〈Rc,Rd〉
if and only if E is a lo-σ -extension w.r.t. T0 in the MAAF FM .

3.3 Hierarchy and existence in extensions

Initially, we show that a hierarchy of extensions, similar to the one shown in [11], holds for AAFs
with attack classification.

PROPOSITION 5
Consider an AAFF = 〈A,R〉, some attack classification 〈Rc,Rd〉 and some E ⊆ A. Then,

1. if E is an ad-extension, then E is a cf-extension;
2. if E is a co-extension, then E is an ad-extension;
3. if E is a gr-extension, then E is a co-extension;
4. if E is a pr-extension, then E is a co-extension;
5. if E is a st-extension, then E is a pr-extension.

Existence results are also analogous to [11]; in particular, for any AAF equipped with an attack
classification, all types of extensions exist, except maybe st-extensions. To show this, we will first
need an intermediate result, showing that we can ‘incrementally’ construct minimally complete
extensions starting from an ad one. The proof uses an iterative function, similar to the function
FAF used by Dung [11]. However, for AAFs with an attack classification, there are two subtleties.

First, FAF (as defined in [11]) adds all acceptable arguments in each iteration. In our case, this
could lead to a set that is not cf. For example, consider Figure 1, where we observe that each of
the arguments a, b, c is accepted by {d}, and adding any one of them in {d} would result in an ad-
extension; however, adding them all at the same time would result in a set that is not cf (and thus not
ad). Therefore, Dung’s construction is inappropriate for our purposes, and a more elaborate one is
needed.

Second, for infinite frameworks (i.e. argumentation frameworks with an infinite set of arguments),
the existence of a minimal fixpoint for FAF (in [11]) is guaranteed by the implicit use of the Knaster–
Tarski theorem [18], which requires an order preserving function. Although FAF is order-preserving,
our alternative is not.

To overcome these problems, our proof uses a more complex iterative function, employing
ordinals. Our proof is analogous to the one employed in [21,Proposition 7]; as a matter of fact, the
proof of Proposition 7 in [21] is a special case of our proof here (see also Proposition 4). Importantly,
our construction applies also to standard AAFs, so it can be viewed also as an alternative proof for a
well-known property of AAFs. Note also that the proof employs the axiom of choice.

PROPOSITION 6
Consider an AAF F = 〈A,R〉, some attack classification 〈Rc,Rd〉 and some E∗ ⊆ A such that E∗
is an ad-extension. Then, there exists some E such that E ⊇ E∗, and the following hold:

1. E is a co-extension;
2. for any E ′ such that E∗ ⊆ E ′ ⊂ E , there exists a ∈ E \ E ′ which is defended by E ′ and E ′ ∪ {a}

is cf;
3. for any E ′ such that E∗ ⊆ E ′ ⊂ E , E ′ is not a co-extension.
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200 Argumentation frameworks with attack classification

FIGURE 3. Properties of extensions for AAFs with an attack classification.

Now we are ready to show our existence result, namely that all extensions (except st-extensions)
exist in any AAF equipped with any attack classification.

PROPOSITION 7
Consider an AAF F = 〈A,R〉 and some attack classification 〈Rc,Rd〉. Then, for any σ ∈
{cf, ad, co, gr, pr}, there exists a σ -extension.

The fact that st-extensions are not guaranteed to exist is an obvious corollary of the fact that AAFs
are special cases of AAFs equipped with an attack classification (see Proposition 3). Propositions 5
and 7 are summarized in Figure 3.

In AAFs, a gr-extension is unique. The counter-example of Figure 1 shows that this is not the case
here. However, in the special case where Rd ⊆ Rc, the uniqueness of gr-extensions is guaranteed.

PROPOSITION 8
Consider an AAF F = 〈A,R〉 and some attack classification 〈Rc,Rd〉, such that Rd ⊆ Rc. Then,
there exists a unique gr-extension.

3.4 Studying the effect of attack classifications

We will now show some results considering the effect of the attack classification on the various
extensions. Our first result shows that, as expected, irrelevant attacks (i.e. those that are neither
conflict-generating nor defending) have no effect.

PROPOSITION 9
Consider two AAFs F − 1 = 〈A1,R1〉,F2 = 〈A2,R2〉 and some attack classification 〈Rc,Rd〉,
such that A1 = A2 and Rc ∪ Rd ⊆ R1 ⊆ R2. Then, for any σ ∈ {cf, ad, co, pr, gr, st} and any
E ⊆ A1 = A2, it holds that E is a σ -extension in F1 w.r.t. 〈Rc,Rd〉 if and only if E is a σ -extension
in F2 w.r.t. 〈Rc,Rd〉.

Another relevant question is what happens if we change the status of some attacks, e.g. if a
‘normal’ attack becomes conflict-generating or if a defending attack becomes ‘normal’. Towards
this, a series of results can be shown, summarized in the following proposition.
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PROPOSITION 10
Consider an AAF F = 〈A,R〉 and two attack classifications 〈R1

c ,R1
d〉, 〈R2

c ,R2
d〉, such that R2

c ⊆
R1

c ⊆ R and R1
d ⊆ R2

d ⊆ R. Then, for any E ⊆ A, the following hold.

1. If E is cf w.r.t. 〈R1
c ,R1

d〉, then it is cf w.r.t. 〈R2
c ,R2

d〉.
2. If a ∈ A and E defends a w.r.t. 〈R1

c ,R1
d〉, then E defends a w.r.t. 〈R2

c ,R2
d〉.

3. If E is an ad-extension w.r.t. 〈R1
c ,R1

d〉, then it is an ad-extensions w.r.t. 〈R2
c ,R2

d〉.
4. If E is a co-extension w.r.t. 〈R2

c ,R2
d〉 and an ad-extension w.r.t. 〈R1

c ,R1
d〉, then it is a co-

extension w.r.t. 〈R1
c ,R1

d〉.
5. If E is a pr-extension w.r.t. 〈R2

c ,R2
d〉 and an ad-extension w.r.t. 〈R1

c ,R1
d〉, then it is a pr-

extension w.r.t. 〈R1
c ,R1

d〉.
6. If E is a st-extension w.r.t. 〈R1

c ,R1
d〉 and maximally cf w.r.t. 〈R2

c ,R2
d〉, then it is a st-extension

w.r.t. 〈R2
c ,R2

d〉.
Some comments regarding Proposition 10 are in line here. First, it is interesting to note how the

direction of the implication changes depending on the semantics considered. Moreover, in most
cases, additional assumptions are needed, i.e. the fact that E is a co-extension in one of the attack
classifications does not necessarily imply that it is also a co-extensions w.r.t. the other. Also, notice
that R2

c ⊆ R1
c ⊆ R and R1

d ⊆ R2
d ⊆ R.

More importantly, gr-extensions are missing from Proposition 10. As a matter of fact, no similar
condition can be devised for gr-extensions. In particular, if a set is a gr-extension under one attack
classification and a co-extension under the other, this is not enough to guarantee that it is also a gr-
extension under both. More formally, we will consider the following two conditions (both of which
turn out to be false).

1. If E is a gr-extension w.r.t. 〈R1
c ,R1

d〉 and a co-extension w.r.t. 〈R2
c ,R2

d〉, then it is a gr-
extension w.r.t. 〈R2

c ,R2
d〉.

2. If E is a gr-extension w.r.t. 〈R2
c ,R2

d〉 and a co-extension w.r.t. 〈R1
c ,R1

d〉, then it is a gr-
extension w.r.t. 〈R1

c ,R1
d〉.

The first condition is shown to be false via Figure 4. In that figure, we observe the same AAF,
with two different attack classifications (〈R1

c ,R1
d〉, 〈R2

c ,R2
d〉, shown in the left and right parts of the

figure respectively), where

• R1
c = {(a′, b′), (b, b′), (b′, b), (c′, b), (c, c′), (c′, c)}

• R1
d = {(a, a′), (b, b′), (b′, b), (c, c′), (c′, c)}

• R2
c = {(a′, b′), (b, b′), (b′, b), (c, c′), (c′, c)}

• R2
d = {(a, a′), (b, b′), (b′, b), (c, c′), (c′, c)}

We observe that R2
c ⊆ R1

c and R1
d = R2

d .
Let us now consider the AAF in Figure 4 from the perspective of 〈R1

c ,R1
d〉. We observe that

{a, b, c} is a gr-extension. Indeed, it is a co-extension because it defends all its members, and the
addition of any extra argument would render the set non-cf. Now, let us consider its subclasses: ∅,
{b}, {c} and {b, c} are not co-extensions (because they defend a and if we add a in the respective set
we get a cf one); {a} and {a, c} are not co-extensions (because they defend a′ and if we add a′ in
the respective set we get a cf one); finally, {a, b} is not an ad-extension (due to the attack c′ →c b).
Thus, {a, b, c} is indeed a gr-extension w.r.t. 〈R1

c ,R1
d〉.
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202 Argumentation frameworks with attack classification

FIGURE 4. An AAF with two attack classifications (counter-example #1.

FIGURE 5. An AAF with two attack classifications (counter-example #2.

Now, let us consider the same AAF, but from the perspective of 〈R2
c ,R2

d〉. Here, we observe that
{a, b, c} is again a co-extension (as can be easily verified), but {a, b} is also a co-extension, since the
conflict-generating attack (c′, c) is missing in 〈R2

c ,R2
d〉. Thus, {a, b, c} is not a gr-extension w.r.t.

〈R2
c ,R2

d〉.
The second condition is shown to be false via the counter example of Figure 5. There, we depict

the same AAF under two different attack classifications (〈R1
c ,R1

d〉, 〈R2
c ,R2

d〉, shown in the left and
right parts of the figure, respectively), where

• R1
c = {(a, b), (b, a)}

• R1
d = {(a, b), (b, a)}

• R2
c = {(b, a)}

• R2
d = {(a, b), (b, a)}.

We observe again that R2
c ⊆ R1

c and R1
d = R2

d .
We now note that {b} is a co-extension from the perspective of 〈R1

c ,R1
d〉 but not a gr-extension

(because ∅ is also a co-extension w.r.t. 〈R1
c ,R1

d〉). On the other hand, {b} is a gr-extension from the
perspective of 〈R2

c ,R2
d〉, as can be easily verified.

4 A Principle-based Analysis

In order to better understand the behaviour of the different acceptability semantics of AAFs, recent
studies proposed a set of principles and examined which semantics satisfy each of these principles.
In this section, we present a similar principle-based analysis for AAFs with attack classification and
their semantics. The definitions of the principles we consider are from [20]. They were originally
defined for AAFs, so, where necessary, we adjust them to fit the definitions of AAFs with attack
classification. We focus our attention to complete, preferred, grounded and stable semantics. At
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Argumentation frameworks with attack classification 203

TABLE 1. Principles and semantics for argumentation framework with attack classification. We
write highlight to denote a difference with AAFs.

Principle co gr pr st

Language independence (Def. 11) Yes Yes Yes Yes
Conflict freeness (Def. 12) Yes Yes Yes Yes
Defense (Def. 13) Yes Yes Yes Yes
Admissibility (Def. 14) Yes Yes Yes Yes
Strong admissibility (Def. 16) No No No No
Naivety (Def. 17) No No No Yes
Indirect conflict freeness (Def. 19) No No No No
Reinstatement (Def. 20) No No No No
Weak reinstatement (Def. 21) No No No No
CF-Reinstatement (Def. 22) Yes Yes Yes Yes
I-Maximality (Def. 23) No Yes Yes Yes
Allowing abstention (Def. 24) No No No No
Crash resistance (Def. 27) Yes Yes Yes No
Non-interference (Def. 29) Yes Yes Yes No
Directionality (Def. 31) No No No No
Weak directionality (Def. 32) No No No Yes
Semi-directionality (Def. 33) No No No No

the end of the section, Table 1 provies an overview of the results and highlights the differences
with AAFs.

We adopt the standard definition of isomorphic argumentation frameworks.

DEFINITION 9
(Isomorphic) Two argumentation frameworks F1 = 〈A1,R1〉 and F2 = 〈A2,R2〉 are isomorphic
if and only if there exists a bijective function m: A1 → A2, such that (a, b) ∈ R1 if and only if
(m(a), m(b)) ∈ R2. This is denoted by F1

.=m F2.

We introduce the notion of isomorphic attack classifications to describe isomorphic argumentation
frameworks whose attacks are classified in the same way.

DEFINITION 10
(Isomorphic with classification) Two argumentation frameworks F1 = 〈A1,R1〉 and F2 =
〈A2,R2〉 such that F1

.=m F2 are equipped with isomorphic attack classifications 〈R1
c ,R1

d〉 and
〈R2

c ,R2
d〉 if and only if for every (a, b) ∈ R1, (m(a), m(b)) ∈ R2 it holds that (a, b) ∈ R1

c iff
(m(a), m(b)) ∈ R2

c and (a, b) ∈ R1
d iff (m(a), m(b)) ∈ R2

d .

The language independence principle holds for the semantics that only take into account the
topology of the argumentation graph and the classification of the attacks and not the names of the
arguments. We have extended its original definition [3], to take into account the classification of the
attacks.
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204 Argumentation frameworks with attack classification

DEFINITION 11
(Language independence) A semantics σ satisfies the language independence principle if and only
if for every two argumentation frameworks F = 〈A1,R1〉, F2 = 〈A2,R2〉, such that F1

.=m F2,
with isomorphic attack classifications 〈R1

c ,R1
d〉 and 〈R2

c ,R2
d〉, respectively, it holds that σ (F2) =

{m(E)|E ∈ σ (F1)}, where σ (F1) is the set of σ -extensions of F1 with respect to 〈R1
c ,R1

d〉 and
σ (F2) is the set of σ -extensions of F2 with respect to 〈R2

c ,R2
d〉.

In the following and all other propositions that appear in this section, the mentioned semantics
refer to the semantics of AAFs with attack classification, as defined in Section 2.2. The proofs of all
propositions are presented in the appendix.

PROPOSITION 11
Language independence is satisfied by co, gr, pr and st semantics.

Dung [11] introduced the notion of conflict freeness, which was later stated as a principle by [3].
Here, we extend the original definition to take into account the classification of attacks.

DEFINITION 12
(Conflict freeness) A semantics σ satisfies the conflict freeness principle if and only if for every
argumentation framework F , for every classification of its attacks 〈Rc,Rd〉, for every σ -extension
E of F with respect to 〈Rc,Rd〉, E is conflict-free with respect to 〈Rc,Rd〉.

PROPOSITION 12
Conflict freeness is satisfied by co, gr, pr and st semantics.

Defense and admissibility were also proposed as principles by Baroni and Giacomin [3]. Here, we
adjust their definitions to take into account the classification of attacks.

DEFINITION 13
(Defense) A semantics σ satisfies the defense principle if and only if for every argumentation
framework F , for every classification of its attacks 〈Rc,Rd〉, for every σ -extension E of F with
respect to 〈Rc,Rd〉 and for every argument a ∈ E , E defends a with respect to 〈Rc,Rd〉.

DEFINITION 14
(Admissibility) A semantics σ satisfies the admissibility principle if and only if for every
argumentation framework F , for every classification of its attacks 〈Rc,Rd〉, every σ -extension E of
F with respect to 〈Rc,Rd〉 is admissible with respect to 〈Rc,Rd〉.

PROPOSITION 13
Defense and admissibility are satisfied by co, gr, pr and st semantics.

Baroni and Giacomin [3] introduced the notions of strong defense and strong admissibility. In our
framework, these are defined as follows.

DEFINITION 15
(Strong defense) Let F = 〈A,R〉, S ⊆ A and an attack classification〈Rc,Rd〉. An argument a ∈ A
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Argumentation frameworks with attack classification 205

is strongly defended by S if and only if for every b ∈ A such that b →c a, there exists c ∈ S \ {a}
such that c →d b and c is strongly defended by S \ {a}.

DEFINITION 16
(Strong admissibility) A semantics σ satisfies the strong admissibility principle if and only if for
every argumentation framework F , for every classification of its attacks 〈Rc,Rd〉 and for every
σ -extension E of F with respect to 〈Rc,Rd〉, E strongly defends all arguments it contains.

Strong admissibility is satisfied by the grounded semantics of AAFs, but this does not hold for
AAFs with attack classification. This is the first difference we observe between the two frameworks.

PROPOSITION 14
Strong admissibility is not satisfied by any of co, gr, pr and st semantics.

Van der Torre and Vesic [20] proposed the principle of naivety, which we redefine as follows.

DEFINITION 17
(Naivety) A semantics σ satisfies the naivety principle if and only if for every argumentation
framework F , for every classification of its attacks 〈Rc,Rd〉, and for every σ -extension E of F with
respect to 〈Rc,Rd〉, E is maximal for set inclusion conflict-free set in F with respect to 〈Rc,Rd〉.

PROPOSITION 15
Naivety is satisfied by st semantics, but not by co, gr or pr.

Coste-Marquis et al. [10] introduced the notion of indirect conf licts, which they defined as
follows.

DEFINITION 18
(Indirect Conflict) Let F = 〈A,R〉, S ⊆ A and a, b ∈ A. Then, a indirectly attacks b if and only
if there is an odd-length path from a to b with respect to the attack relation. S is without indirect
conflicts if and only if there exist no x, y ∈ S such that x indirectly attacks y.

The indirect conflict-freeness principle is then defined as follows.

DEFINITION 19
(Indirect conflict freeness) A semantics σ satisfies the indirect conflict-freeness principle if and
only if for every argumentation framework F , and for every classification of its attacks 〈Rc,Rd〉,
every σ -extension E of F with respect to 〈Rc,Rd〉 is without indirect conflicts.

PROPOSITION 16
Indirect conflict freeness is not satisfied by any of co, gr, pr and st semantics.

Another principle proposed by Baroni and Giacomin [3] was reinstatement, according to which
an extension must contain all the arguments it defends.

DEFINITION 20
(Reinstatement) A semantics σ satisfies the reinstatement principle if and only if for every
argumentation framework F , for every classification of its attacks 〈Rc,Rd〉, for every σ -extension
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206 Argumentation frameworks with attack classification

E of F with respect to 〈Rc,Rd〉 and for every a ∈ A it holds that if E defends a with respect to
〈Rc,Rd〉, then a ∈ E .

Interestingly, in contrast with AAFs, reinstatement is not satisfied by any of the semantics of AAFs
with attack classification.

PROPOSITION 17
Reinstatement is not satisfied by any of co, pr, gr and st semantics.

Baroni and Giacomin [3] studied another similar principle called weak reinstatement, which has
the following definition.

DEFINITION 21
(Weak reinstatement) A semantics σ satisfies the weak reinstatement principle if and only if for
every argumentation framework F , for every classification of its attacks 〈Rc,Rd〉, for every σ -
extension E of F with respect to 〈Rc,Rd〉, and for every a ∈ A, it holds that if E strongly defends a
with respect to 〈Rc,Rd〉, then a ∈ E .

As shown in the following proposition, weak reinstatement is also not satisfied by any of the
semantics of AAFs with attack classification, signifying another important difference with AAFs.

PROPOSITION 18
Weak reinstatement is not satisfied by any of co, gr, pr and st semantics.

Another similar principle introduced by Baroni and Giacomin [3] is CF-reinstatement. Here, this
principle can be defined as follows.

DEFINITION 22
(CF-reinstatement) A semantics σ satisfies the CF-reinstatement principle if and only if for every
argumentation framework F , for every classification of its attacks 〈Rc,Rd〉, for every σ -extension
E of F with respect to 〈Rc,Rd〉 and for every a ∈ A it holds that if E defends a with respect to
〈Rc,Rd〉 and E ∪ {a} is conflict-free, then a ∈ E .

While AAFs and AAFs with attack classification behave totally differently with respect to the two
other forms of reinstatement, their behaviour is exactly the same with respect to CF-reinstatement.

PROPOSITION 19
CF-reinstatement is satisfied by co, gr, pr and st semantics.

The principle of I-maximality, originally proposed in [3] states that an extension cannot contain
another extension.

DEFINITION 23
(I-maximality) A semantics σ satisfies the I-maximality principle if and only if for every
argumentation framework F , for every classification of its attacks 〈Rc,Rd〉 and for every σ -
extensions E1, E2 of F with respect to 〈Rc,Rd〉, if E1 ⊆ E2, then E1 = E2.

PROPOSITION 20
I-maximality is satisfied by gr, pr and st semantics, but not by co.

We next consider the allowing abstention principle, introduced by [1] and defined as follows.
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Argumentation frameworks with attack classification 207

DEFINITION 24
(Allowing abstention) A semantics σ satisfies the allowing abstention principle if and only if for
every argumentation framework F , for every classification of its attacks 〈Rc,Rd〉, for every a ∈ A,
if there exist two σ -extensions E1, E2 of F with respect to 〈Rc,Rd〉, such that a ∈ E1 and E2 →c a
then there exists an extension E3 such that a /∈ E3 and E3 does not attack (with a conflict-generating
attack) a.

AAFs and AAFs with attack classification behave differently with respect to this principle for the
complete and grounded semantics.

PROPOSITION 21
Allowing abstention is not satisfied by any of co, gr, pr and st semantics.

In order to define crash resistance [8] in our framework, we first need to introduce the following
two definitions.

DEFINITION 25
(Disjoint argumentation frameworks) Let F1 = 〈A1,R1〉 and F2 = 〈A2,R2〉 be two
argumentation frameworks. The frameworks are called disjoint if and only if A1 ∩ A2 = ∅.

An argumentation framework F∗ with classification of attacks 〈R∗
c ,R∗

d〉 is contaminating if
joining F∗ with an arbitrary disjoint framework F with classification of attacks 〈Rc,Rd〉, results in
a framework F∗ ∪ F having the same extensions as F∗.

DEFINITION 26
(Contamination) An argumentation framework F∗ = 〈A∗,R∗〉 with a classification of attacks
〈R∗

c ,R∗
d〉 is contaminating for a semantics σ if and only if, for any argumentation framework F =

〈A,R〉 disjoint from F∗ with any classification of attacks 〈Rc,Rd〉 it holds that F∗ ∪ F and F∗
have the same σ -extensions. We shall denote this by σ (F∗ ∪ F) = σ (F∗).

DEFINITION 27
(Crash resistance) A semantics σ satisfies the crash resistance principle if and only if there are no
contaminating argumentation frameworks for σ .

PROPOSITION 22
Crash resistance is satisfied by co, gr and pr semantics but not by st.

Crash resistance forbids only the most extreme form of interferences between disjoint subgraphs.
A stronger property, non-interference, was defined by Caminada et al. [8]. We first need to define a
notion of isolated set, i.e. a set that neither attacks outside arguments nor is attacked by them.

DEFINITION 28
(Isolated) Let F = 〈A,R〉 be an argumentation framework, with any type of classification for its
attacks 〈Rc,Rd〉. A set S ⊆ A of arguments is isolated in F if and only if the following holds.

((S × (A \ S)) ∪ ((A \ S) × S)) ∩ R = ∅.
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208 Argumentation frameworks with attack classification

A semantics satisfies non-interference if for every isolated set S, the intersections of the extensions
with the set S coincide with the extensions of the restriction of the frameworks on S.

DEFINITION 29
(Non-interference) A semantics σ satisfies the non-interference principle if and only if for every
argumentation framework F = 〈A,R〉, with any classification of attacks 〈Rc,Rd〉, and for every
S ⊆ A set of arguments isolated in F , it holds σ (F↓S) = {E ∩ S|E ∈ σ (F)}, where F↓S =
(S,R ∩ (S × S)).

PROPOSITION 23
Non-interference is satisfied by co, pr and gr semantics but not by st.

The previous principle can be made even stronger by considering the case when the set S is not
attacked by the rest of the framework but can attack the rest of the framework with any attack. Such
sets are called unattacked and are defined as follows.

DEFINITION 30
(Unattacked) Given an argumentation framework F = 〈A,R〉 with a classification of attacks
〈Rc,Rd〉, a set of arguments U ⊆ A is unattacked if and only if �a ∈ A \ U such that a attacks U .
The set of unattacked sets in F is denoted by US(F).

Using the notion of unattacked sets, the principle of directionality, introduced by Baroni and
Giacomin [3], is defined as follows.

DEFINITION 31
(Directionality) A semantics σ satisfies the directionality principle if and only if for every
argumentation framework F = 〈A,R〉, with any classification of attacks 〈Rc,Rd〉, and for every
U ∈ US(F), it holds that σ (F↓U ) = {E ∩ U |E ∈ σ (F)}.

While AAFs and AAFs with attack classification behave in the same way with respect to crash
resistance and non-interference, their behaviour is different for the complete, preferred and grounded
semantics with respect to directionality.

PROPOSITION 24
Directionality is not satisfied by any of co, gr, pr and st semantics.

We now consider two variants of directionality, called weak directionality and semi-directionality,
originally defined in [20].

DEFINITION 32
(Weak directionality) A semantics σ satisfies the weak-directionality principle if and only if for
every argumentation framework F = 〈A,R〉, with any type of classification for its attacks 〈Rc,Rd〉,
and for every U ∈ US(F), it holds that σ (F↓U ) ⊇ {E ∩ U |E ∈ σ (F)}.

DEFINITION 33
(Semi directionality) A semantics σ satisfies the semi-directionality principle if and only if for
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every argumentation framework F = 〈A,R〉, with any type of classification for its attacks 〈Rc,Rd〉,
and for every U ∈ US(F), it holds that σ (F↓U ) ⊆ {E ∩ U |E ∈ σ (F)}.

Similar to directionality, AAFs with attack classification demonstrate a different behaviour from
AAFs with respect to weak directionality and semi-directionality for the complete, grounded and
preferred semantics.

PROPOSITION 25
Weak directionality is satisfied by st semantics but not by co, gr or pr.

PROPOSITION 26
Semi-directionality is not satisfied by any of co, gr, pr and st semantics.

Table 1 provides an overview of the principles that are satisfied or violated by each of the
semantics of AAFs with attack classification, highlighting the differences with AAFs. As expected,
AAFs with attack classification satisfy a subset of the principles satisfied by AAFs. This is because
AAFs are a special case of AAFs with attack classification, as shown in Proposition 3. Some notable
findings are (i) the two frameworks behave in the same way with respect to most of the principles; (ii)
the grounded semantics does not satisfy strong admissibility; (iii) while none of the semantics satisfy
reinstatement or weak reinstatement, they all satisfy CF-reinstatement; (iv) allowing abstention is
not satisfied by any of the semantics; and (v) with respect to all directionality principles, AAFs with
attack classification behave in the same way with AAFs for the stable semantics, but, in contrast
with AAFs, they violate these principles for the complete, grounded and preferred semantics.

5 Use Case: Argumentation Schemes

Argumentation schemes are patterns of arguments used in everyday conversational argumentation
[23]. Each scheme is informally described in terms of a set of defeasible premises and a conclusion
and is associated with a set of critical questions, which are possible ways to undermine an argument
matching the scheme. For example, the scheme for arguments from position to know is described as
follows.

Major Premise: Source a is in a position to know about things in a certain subject domain S
containing proposition A.
Minor Premise: a asserts that A (in domain S) is true (false).
Conclusion: A is true (false).

The critical questions associated with this scheme are as follows.

CQ1: Is a in a position to know whether A is true (false)?
CQ2: Is a an honest (trustworthy, reliable) source?
CQ3: Did a assert that A is true (false)?

A formal model of argumentation schemes, which is still missing, would enable evaluating
arguments matching the schemes using computational methods. Here, we show how they can be
formalized as AAFs equipped with an attack classification. Our approach consists of the following
steps (for an example, see Figure 6).

1. Model the argument matching a scheme, each critical question associated with the scheme,
and each response to a critical question as arguments in an AAF.

2. Add a normal attack from each critical question to the main argument.
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210 Argumentation frameworks with attack classification

FIGURE 6. Model of a dialogue with an argument from position to know.

3. Add an attack from each response to the corresponding critical question. If the response
adequately addresses the critical question, model the attack as normal. If the response leaves a
doubt, model it as a defending attack.

By modelling the attack from the response to the critical question as a normal attack, we make
sure that the attack from the critical question to the argument is ineffective. If all critical questions
are attacked with a normal attack, and if there are no other counter-arguments, the argument becomes
sceptically accepted. On the other hand, by modelling the attack to the critical question as defending,
we leave some doubt regarding the acceptability of the argument. If there are no other counter-
arguments, the argument is not rejected but is included in some of the extensions of the framework.

To illustrate this behaviour, we use the classic example of a dialogue in which a tourist, wandering
around in a foreign city, asks a stranger where the Central Station can be found. The stranger says
that the station is behind building X, so the tourist believes that the station is there (a). The three
questions that could then be asked are the following. Is the stranger in position to know where the
station is (cq1)? Is the stranger a reliable source (cq2)? Did the stranger indeed say that the Central
Station is located behind building X (cq3)? Consider the following responses to these questions. The
stranger said she works at the station, she is therefore in position to know (r1). She was wearing a
uniform, so she is a reliable source (r2). Her English was great, so I am sure she said that the station
is located behind building X (r3).

We can model this dialogue as an AAF as described above and as shown in Figure 6. Considering
the responses to the critical questions as adequate, we model the attacks to the arguments
representing the critical questions as normal. This framework has only one (complete, grounded,
preferred, stable) extension, which contains the argument concluding that the Central Station is
behind building X.

Consider now the case that the response to cq3 is the following: ‘There was too much noise
and I couldn’t hear what the stranger was saying, but I could read her lips’ (r′

3). Obviously, such
a response would leave a doubt about whether the station is indeed located behind building X. To
capture this case, we model the attack from r′

3 to cq3 as a defending attack. The framework then has
two complete extensions, one in which a is accepted ({r1, r2, r′

3, a}) and another in which a is not
accepted ({r1, r2, r′

3, cq3}). While there might be other ways to end up with the same extensions by
using standard AAFs and by adding additional arguments or attacks, our approach offers a standard
and intuitive way of modelling argumentation schemes, with critical questions attacking the main
argument and responses attacking the critical questions. Following this approach, the acceptability
of the main argument depends only on characterizing the attack to the critical question.
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FIGURE 7. Workflow of the application.

6 A Declarative Implementation

The proposed framework has been implemented as a Web App,2 through which users can write their
own AAFs with attack classification and request the computation of all/one of the σ -extensions,
where σ ∈ {cf, ad, co, st, pr, gr}. For each request, the app returns the number of σ -extensions (if
the user requests all σ -extensions), the σ -extension(s) and the time that the solver needed to compute
the extensions.

The various semantics have been encoded in the language of Answer Set Programming (ASP), a
declarative, non-monotonic formalism suitable for solving combinatorial and optimization problems.
The Web App uses the Clingo3 and Asprin ASP reasoners4 to execute the logic programs. Asprin is
applied when optimizations, such as subset/superset relations, are needed.

The main components and the workflow of our implementation are shown in Figure 7. The
wrapper and the ASP code are available in our GitHub repository.5 The ASP encoding of the different
semantics is also shown in Subsection C of the appendix.

In brief, the system receives an ASP program representing an AAF with attack classifications,
along with the user’s choice of semantics to compute. Through a GUI, the user can specify the type
of extensions she is interested in and also if she wishes one or all extensions (Step 1 in Figure 7).
Then, the system computes the corresponding extensions by applying the associated (to the selected
semantics) ASP code. It uses Clingo to compute the cf, ad and co extensions and Asprin to compute
the gr, pr and st extensions, taking advantage of its capability to compute maximal or minimal

2http://139.91.183.45:8070/
3https://potassco.org/clingo/
4https://potassco.org/asprin/
5https://github.com/valexande/Argumentation-with-Classification
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FIGURE 8. Running example.

answer sets (Step 3). The wrapper deals with all data communication and transformation among
components (Steps 2 and 4). Finally, the results, along with some analytics, are presented on the
GUI (Step 4).

Next, we discuss the rationale of our ASP encoding with the help of an example. Consider the
framework shown in Figure 8, containing the arguments {a, b, c}, a conflict-generating attack from
argument a to c, a defending attack from argument b to c and a normal attack from a to b. The
encoding of this input in ASP, according to our implementation, is as follows:

The first rule defines the available arguments of the framework, and then all attack relations are
specified by means of the attacks/3 predicate.

The ASP program for cf begins by generating combinations of arguments that may comprise a
possible answer.

The above so-called choice rule generates every possible subset of the set of arguments, and for
each subset, it instantiates the cf _extension/1 predicate with every argument it contains. In our
example, a program having this rule alone would generate 8 answer sets, each containing instances
of cf-extension with arguments from each of the following sets: {}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},
{a, b, c}.

Apparently, not all of these answer sets are valid cf-extensions for the given framework. In order
to compute the valid conflict-free sets, an appropriate constraint needs to be applied:

The above constraint eliminates any answer where an internal conflict-generating attack among
arguments exists. In our running example, when this constraint is applied, together with the
choice rule and the input, it will generate 5 answer sets, one for each of the following sets:
{}, {a}, {b}, {c}, {b, c}.
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The same rationale is applied to the other extensions. For instance, for computing the ad
extensions, we initially consider all cf extensions, and we start pruning any answer set that does
not satisfy the following constraint.

The following rules specify the cases that the defendedByExtension/1 predicate is true:

The first rule represents the case that an argument does not receive a conflict-generating attack. The
second rule describes the case that the argument is defended against conflict-generating attacks by a
conflict-free set. The third rule is used to describe arguments receiving a conflict-generating attack.
These rules implement the conditions of admissibility as described in Definition 4. In our running
example, these rules will generate two ad answer sets: {}, {a}.

The computation of pr and gr extensions is trivial with Asprin. We first compute all the ad and co
answer sets, respectively, for pr and gr, and then we find the maximal (for pr) or minimal (for gr)
sets among them. For the pr answer sets, the rules that compute the maximal w.r.t. subset relation ad
answer sets are

The first line is a preference predicate with name p1 and type superset for the atom ad_extension/1.
In the second line, we ask to optimize p1. Eventually, Asprin will compute the maximal subsets for
the atom ad_extension/1. If more than one maximal answer sets exist, all of them will be returned.

Similar is the case for gr. With the following rules, we find the minimal w.r.t. subset relation co
answer sets.

In our running example, the gr, pr and co answer sets are the same: {a}.
For the st semantics, we use a similar set of rules to compute the maximal conflict-free sets. We

then use the following two rules to find the arguments attacked (with a defending attack) by these
sets and to prune the answers that contain arguments that are neither contained nor attacked by these
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sets:

In our running example, there is no st extension.

7 Related Work

The need to further refine the notion of attack in argumentation frameworks has led to several
different extensions of AAFs. For example, AAFs with recursive attacks (AFRAs) [2] and extended
argumentation frameworks (EAFs) [17] extended the definition of attack, allowing attacks to be
directed not only to arguments but also to other attacks. The difference between the two is that,
while in EAFs only attacks whose target is an argument can be attacked, in AFRA, any attack can be
attacked. This idea is orthogonal to our approach that considers a classification of attacks, which are,
however, all directed to arguments, and studying the combination of these two approaches, e.g. by
allowing different types of attack that can be directed to either arguments or attacks is an interesting
research direction.

Commonsense argumentation frameworks [22], on the other hand, included two types of attacks,
which differ in the type of arguments they are directed to, i.e. deductive arguments or commonsense
arguments. In our framework, all arguments are of the same type and attacks are not characterized
by the arguments they are directed to, but by the role that the modeller would like them to have in
the process that selects an acceptable set of arguments.

Bipolar argumentation frameworks (BAFs) [9] introduced support as a new kind of interaction
among arguments in abstract argumentation. The definition and role of direct defeats is the same as
that of attacks in AAFs, while the role of support is to help arguments establish their rationality. A
combination of supports and defeats in a chain of arguments can lead to different types of defeat
among arguments such as indirect and supported defeats. The main difference with our approach
is that such types of interaction are not primitive but result from the combination of the pairwise
interactions in a chain of arguments. Another important difference is that all types of defeat in BAFs
have the same dual role with the attacks in AAFs, i.e. to generate conflicts and to defend other
arguments.

Some other studies have introduced weights or preferences on attacks following quantitative
or qualitative approaches. For example, weighted argumentation systems [13] assign weights to
attacks as a way to describe their strength, and use the idea of an inconsistency budget as a way
to disregard attacks up to a certain weight. The idea of weighted attacks is also used in [14], where
the acceptability of arguments is not defined in terms of the standard Dung-style extensions, but in
terms of numerical values derived from a set of equations describing the arguments and the attacks.
weighted argumentation systems are also presented in [6]. The main difference with our approach
is that our aim is not to capture the strength of attacks, but the different roles that attacks may have
in an argumentation framework. These two ideas are orthogonal, and combining them to develop a
weighted argumentation framework with attack classification would be an interesting future research
direction. While social networks is indeed a domain where numerical weights can be derived from
the reactions of the users, in many other domains, such types of data may not be available.
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A qualitative approach to represent preferences among attacks was proposed in [16]. Similarly
to our approach, the authors defined a framework with (an arbitrary number of) types of attack.
These are partially ordered and each attack is assigned one of these types. This allows for a finer-
grained definition of defense (compared with AAFs), which can roughly be described as follows:
an argument is defended against an attack from a counter-argument, if the latter receives a stronger
attack from another argument. It also allows for a finer definition of acceptability semantics, which
take into account the relative difference of strength between defensive and offensive attacks.

All such preference-based approaches and many others, such as [7,15], which use either numerical
values or priorities to represent the (relative) strength of attacks, have a common aim: to capture the
(absolute or relative) strength of arguments and to resolve conflicts by comparing the conflicting
arguments according to their strength. Our aim, on the other hand, is to capture the different roles that
attacks may have in an argumentation framework. These two ideas are orthogonal, and combining
them to develop a weighted or preference-based argumentation framework with attack classification
would be an interesting future research direction.

Similarly to our approach, [19] considers different types of attack (or attack relations) among
arguments. Their approach is based on the intuition that each attack relation can represent a different
criterion according to which the arguments can be evaluated one against another. The evaluation
of arguments is based on the aggregation of the different attack relations using methods from social
choice theory, such as majority voting, and the use of the standard acceptability semantics of AAFs in
the aggregate argumentation framework. They do not, therefore, provide ways to treat certain criteria
differently than others, which is one of the main characteristics of the AAFs with attack classification
where conflict-generating and defending attacks have different effects on the acceptability of the
arguments they attack or defend.

Deductive argumentation [5] also supports different types of attack, which depend on the
underlying logic. For example, choosing classical logic as the base logic provides seven different
types of attack. The different types of attack in such frameworks are associated with the internal
structure of arguments and cannot therefore be directly compared with our framework where
arguments are abstract. Extending those frameworks with the ability to explicitly represent the role
of attacks, as in our framework, would enable alternative ways to reason with structured arguments,
which might be useful in some domains.

AAFs with attack classification generalize AAFs in a way that cannot be captured by any of the
other extensions of AAFs discussed in this section. As shown in Proposition 3, the framework we
propose preserves compatibility with AAFs retaining many of its nice properties (see Section 4).
This also makes it possible to extend AAFs with attack classification with additional features of
other frameworks (e.g. preferences, weights on arguments or attacks, etc.), which are also compatible
with AAFs, resulting in even more expressive argumentation models. The study of such potential
extensions is among our plans for future work.

8 Conclusion

Motivated by the observation, we made in [21] on the dual role of attacks in AAFs, in this
paper, we introduce a new abstract model of arguments called AAFs with attack classification.
Its main characteristic is that it allows specifying the role of each attack in a given argumentation
graph. Specifically, it allows classifying attacks into four disjoint sets: normal attacks, which are
equivalent to the standard attacks of AAFs; conf lict-generating attacks, which generate conflicts,
but cannot defend against one; defending attacks, which can defend other arguments, but do not
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generate conflicts; and irrelevant attacks, which are neither conflict-generating nor defending and
are, therefore, ignored. This classification allows our framework to more accurately model real-
world dialogues where different responses to the same argument may have a different effect on its
acceptability. We recast the definitions of conflict-free, admissible, complete, preferred, grounded
and stable extension-based semantics to account for the attack classification that we introduced to
AAFs. To examine the behaviour of the new framework and its semantics, we studied their properties
and their relation with the semantics of AAFs, and we assessed the different semantics against a set of
standard principles. Finally, to enable testing our framework, we developed a Web App that supports
the creation of argumentation frameworks with attack classification and the computation of their
extensions.

As we explain in Section 7, the attack classification that we extend AAFs with, is orthogonal to
other extensions that previous studies have proposed. The combination of different extensions can,
therefore, lead to more expressive frameworks that introduce preferences or weights on different
types of attack, or apply the proposed classification to other types of attack such as the second-order
attacks of EAFs [17], the high-order attacks of AFRA [2] or the structure-aware attacks of structured
argumentation frameworks.

Our plans for future work include extending both the theoretical and the practical results we
present in this paper. In terms of theory, we plan to define alternative semantics for our framework
(e.g. semi-stable, eager, ideal) based on their corresponding definitions for AAFs. We also want to
extend our principle-based analysis with other principles that are related to the notion of skepticism,
such as skepticism adequacy and resolution adequacy [3] or to expressiveness, such as tightness,
conf lict-sensitiveness and com-closure [12]. Such an analysis will help us better understand the
advantages and limitations of our approach and its differences with AAFs. We also plan to define
new principles, which will be specific to AAFs with attack classification. This will help further
analyse the behaviour of this framework and may also lead to the definition of new semantics,
tailored to its distinctive features.

Another possible theoretical extension of our work would be to make the ‘defending’ property
attack-specific. In particular, one could argue that a defending attack from argument a to argument b
may be defending some (but not all) of the conflict-generating attacks originating from b. To support
this, we could consider a formalism, where the ‘characterization’ of the attack as defending would
also include the (conflict-generating) attacks that it can be used to defend other arguments from.
This would, of course, result in a more complex formalism but also a more expressive one.

In terms of practical work, we want to evaluate and refine the Web App in terms of performance
and usability. We also want to explore potential applications of our framework in domains where the
proposed classification of attacks fits well with the types of information they use, such as persuasion
dialogues or debates in web forums and social media.
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A Appendix
A multi-attack argumentation framework
In this section, we provide the background material which refers to multi-attack argumentation
frameworks (MAAFs) and their semantics, originally defined in [21]. An MAAF is an argumentation
framework where attacks are of multiple types.

DEFINITION 34
An MAAF is a tuple 〈A, T ,R〉, such that

• A is a set of arguments;
• T is a set of attack types;
• R ⊆ A × A × T is a set of type-annotated attacks among arguments.

Note that A and/or T can be infinite, so R can be infinite too. Intuitively an attack (a, b, τ) ∈ R
represents that a attacks b and that the attack is of type τ . Note that the same two arguments may
be related with attacks of different types, in which case each attack type is represented as a different
triple in R.

For any given set of types T0 ⊆ T , we say that a attacks b w.r.t. T0 (denoted by a →T0 b) if there
exists τ ∈ T0, such that (a, b, τ) ∈ R. For simplicity, we often write →τ to denote →{τ } and → to
denote →T . We extend notation to sets of arguments, and, for B, C ⊆ A, we write B →T0 C if and
only if ∃b ∈ B, c ∈ C such that b →T0 c. For singleton sets, we often write b →T0 C and B →T0 c
instead of {b} →T0 C and B →T0 {c}, respectively.

The restriction of an MAAF to a specific set of types T0 is the AAF that is generated from the
MAAF by considering only the attacks in T0. Formally, given an MAAF 〈A, T ,R〉, the restriction
of 〈A, T ,R〉 to T0 is an AAF 〈A′,R′〉, where A′ = A and R′ = {(a, b) | (a, b, τ) ∈ R for some
τ ∈ T0}.

To define MAAF extensions, we introduce three new classes of semantics: firm, restricted and
loose. For each type of semantics defined in [11] (e.g. admissible, complete, etc.), we define its
counterpart for each class (e.g. firmly admissible, restrictively stable, loosely complete, etc.). The
three classes differ in how certain types of attack are considered. As already mentioned, the idea
behind our semantics is the treatment of certain types of attacks as being conflict-generators only or
attackers only. To do this, we consider a certain set of types, say T0, which are treated in the ‘normal’
manner. Different types of semantics can now result depending on the exact behaviour of the attacks
in T \ T0. In particular:

1. Firm semantics (e.g. admissible, complete) w.r.t. a certain set of attack types (say T0) requires
a candidate extension to be defended against all types of attacks, and an attack can be defended
only by attacks from T0. In other words, attacks in T0 have the standard behaviour, but attacks
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in T \ T0 act as conflict-generators only, not as defenders. We call them firm because, while
they allow any type of argument to unleash offensive attacks, they only allow certain types of
attack (those in T0) to defend an argument, making its defense more difficult.

2. Restricted semantics (e.g. admissible, complete) w.r.t. a certain set of attack types (say T0)
require a candidate extension to be defended against attacks from T0 only, and an attack can
be defended only by attacks from T0. Thus, restricted semantics essentially consider only the
attacks in T0, both for the attacks and for defending against them, i.e. attacks in T \ T0 are
totally ignored.

3. Loose semantics (e.g. admissible, complete) w.r.t. a certain set of attack types (say T0) are the
most ‘relaxed’ ones, as they require a candidate extension to be defended only against attacks
from T0, while defense can happen by any type of attack. In other words, in loose semantics,
attacks in T \ T0 are treated as defenders only and cannot generate attacks. Loose semantics
allows attacks to be ignored, so they may result to extensions that are not defended against all
attacks, specifically against attacks that are of types not in T0.

In the following, we use shorthands to refer to the various types and classes of semantics. In
particular, for the three classes of semantics, we use fr for firm, re for restricted and lo for loose
semantics. We also use θ as a catch-all variable that refers to any of these classes. Similarly, for
types of extensions, we use cf for conflict-free, ad for admissible, co for complete, pr for preferred,
gr for grounded and st for stable. We also use σ as a catch-all variable to indicate any of these
extension types. For example, we write fr-co-extension to refer to a firmly complete extension, and
θ − σ -extension to refer to an extension of class θ and the type denoted by σ .

The definitions for the above semantics in MAAFs follow.

DEFINITION 35
Consider an MAAF 〈A, T ,R〉, some T0 ⊆ T , some a ∈ A and some set E ⊆ A. We define the
notion of defense for the different classes of semantics as follows:

• E firmly defends a (or fr-defends a) w.r.t. T0 if and only if E →T0 b whenever b → a;
• E restrictively defends a (or re-defends a) w.r.t. T0 if and only if E →T0 b whenever b →T0 a;
• E loosely defends a (or lo-defends a) w.r.t. T0 if and only if E → b whenever b →T0 a.

DEFINITION 36
Consider an MAAF 〈A, T ,R〉 and some T0 ⊆ T . For θ ∈ {fr, re, lo}, a set E ⊆ A is a θ − ad
extension w.r.t. T0 (in words: firmly/restrictedly/loosely admissible) if and only if

• E is θ − cf;
• if a ∈ E , then E θ-defends a w.r.t. T0.

DEFINITION 37
Consider an MAAF 〈A, T ,R〉 and some T0 ⊆ T . For θ ∈ {fr, re, lo}, a set E ⊆ A is a θ − co
extension w.r.t. T0 (in words: firmly/restrictedly/loosely complete) if and only if

• E is θ -ad;
• if E θ -defends a w.r.t. T0, and E ∪ {a} is θ -cf w.r.t. T0, then a ∈ E .
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DEFINITION 38
Consider an MAAF 〈A, T ,R〉 and some T0 ⊆ T . A set E ⊆ A is a θ − gr extension w.r.t. T0 (in
words: firmly/restrictedly/loosely grounded) if and only if E is a minimal with respect to set inclusion
θ − co extension w.r.t. T0.

DEFINITION 39
Consider an MAAF 〈A, T ,R〉 and some T0 ⊆ T . A set E ⊆ A is a θ − pr extension w.r.t. T0
(in words: firmly/restrictedly/loosely preferred) if and only if E is a maximal with respect to set
inclusion θ − ad extension w.r.t. T0.

DEFINITION 40
Consider an MAAF 〈A, T ,R〉 and some T0 ⊆ T . A set E ⊆ A is as follows.

• A firmly stable extension (fr-st) w.r.t. T0 if and only if

E is maximally fr-cf w.r.t. T0;
E → T0 a whenever a /∈ E .

• A restrictedly stable extension (re-st) w.r.t. T0 if and only if

– E is maximally re-cf w.r.t. T0;
– E → T0 a whenever a /∈ E .

• A loosely stable extension (lo-st) w.r.t. T0 if and only if

– E is maximally lo-cf w.r.t. T0;
– E → a whenever a /∈ E .

B Proofs for formal properties
PROOF OF PROPOSITION 1. Case #1 of the proposition is obvious by the fact that E defends all its
elements, as well as a and thus it defends all elements of E∪{a}. Also, E∪{a} is cf, by the hypothesis.
For case #2, again, we observe that E ∪{a} defends all its elements, so it suffices to show that E ∪{a}
is cf. We note 4 different cases.

• If E →c E , then we get a contradiction because E is cf.
• If E →c a, then, since E defends a, it follows that E →d E ; thus E →c E , a contradiction since
E is cf.

• If a →c E , then, since E is an ad-extension, it follows that E →d a; thus, E →c a, a
contradiction by the second bullet.

• If a →c a, then, since E defends a it follows that E →d a, i.e. E →c a, a contradiction again.

It follows that E ∪ {a} is cf and thus an ad-extension. �

PROOF OF PROPOSITION 2. The first result is direct by combining Definition 5, Proposition 1
(second bullet) and the fact that if E is ad, then it is cf by definition. For the second result, note
that if E is cf and E →d a whenever a /∈ E , then E →c a whenever a /∈ E ; thus, E is maximally cf.
The result is now direct from Definition 8. �

PROOF OF PROPOSITION 3. We observe that, for any a, b ∈ A: a →c b if and only if a →d b if and
only if (a, b) ∈ R. We also observe that Proposition 2 applies, since Rd ⊆ Rc. Combining the above
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facts with the definitions of the various semantics in Subsection 2.2 and in [11], the result follows
trivially. �

PROOF OF PROPOSITION 4. For the first case, we observe that, for all a, b ∈ A,

• a →c b in the AAF if and only if a → b in the MAAF;
• a →d b in the AAF if and only if a →T0 b in the MAAF.

Combining these two facts with the respective definitions in Subsection 2.2 and [21], the result
follows trivially. Analogously, for the second case and for all a, b ∈ A:

• a →c b in the AAF if and only if a →T0 b in the MAAF;
• a →d b in the AAF if and only if a →T0 b in the MAAF.

Again, the result follows trivially from the respective definitions. Finally, for the third case and
for all a, b ∈ A:

• a →c b in the AAF if and only if a →T0 b in the MAAF;
• a →d b in the AAF if and only if a → b in the MAAF.

Again, the result follows trivially from the respective definitions a →T0 b. �

PROOF OF PROPOSITION 5. #1, #2 and #3 are obvious by the respective definitions. For #4, it
suffices to show that if σ defends a and E ∪ {a} is cf, then a ∈ σ . Indeed, we observe that, under the
above assumptions E ∪ {a} is an ad-extension, so if a /∈ σ , then E ∪ {a} ⊃ E , a contradiction by the
fact that E is a maximal ad-extension. For #5, note that if E is a st-extension, then it is cf and also
defends itself against all external attacks; thus, it is ad. Furthermore, it is maximally ad, since it is
maximally cf. Therefore, E is a pr-extension. �

PROOF OF PROPOSITION 6. We will prove the result constructively. First, we will describe a
construction over F , and then we will show that this construction generates some E with the
properties required. The proof is broken down in steps, represented as claims proved individually
below; the last claim (Claim 6) shows the result.
Construction. We assume a well-order ≺ over A (its existence is guaranteed by the axiom of choice).
For a given set E ⊆ A, we denote by min≺ E the minimal element of E according to ≺. Moreover,
for E ⊆ A, set E = {a ∈ A \ E | E: defends a, E ∪ {a} is cf }, i.e. the arguments that are defended
by E and do not conflict with E. We define the function: φ : 2A �→ 2A as follows:

φ(E) =
{

E , when E = ∅
E ∪ {min≺(E )} , when E �= ∅

Finally, we define a function G recursively on the ordinals as follows:

G(β) = E∗ , when β = 0
G(β + 1) = φ(G(β)) , when β is a successor ordinal
G(β) = ⋃{G(γ ) | γ < β} , when β is a limit ordinal.

CLAIM 1. For two ordinals β, γ , if β < γ , then G(β) ⊆ G(γ ). We will use transfinite induction on γ .
If γ = 0, then the result holds trivially as there is no β for which β < γ . Suppose that the result
holds for all γ < δ; we will show that it holds for γ = δ. If δ is a successor ordinal, then there exists
some δ− such that δ = δ− + 1. Clearly, by the definition of G and φ, G(δ) ⊇ G(δ−). Furthermore,
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by the inductive hypothesis, G(δ−) ⊇ G(β), which shows the result. If δ is a limit ordinal, then the
result follows directly by the definition of G.

�

CLAIM 2. For any ordinals β, G(β) ⊇ E∗. If β = 0 the result follows by the definition of G. If β > 0,
the result follows by Claim 6.

CLAIM 3 For any ordinal β, G(β) is an ad-extension.
We will use transfinite induction over β. For β = 0, the result follows by our assumption on E∗.

Now suppose that it holds for all β < γ . We will show that it holds for β = γ . If γ is a successor
ordinal, then take γ − such that γ = γ − + 1. Then, by definition, G(γ ) = φ(G(γ −)). By the
inductive hypothesis, G(γ −) is an ad-extension. Moreover, by the definition of φ, φ(E) is an ad-
extension whenever E is an ad-extension, so G(γ ) is an ad-extension. If γ is a limit ordinal, then
suppose that G(γ ) is not cf. Then, there exist a1, a2 ∈ G(γ ) such that {a1, a2} is not cf, and, thus,
there exist ordinals δ1, δ2 such that δ1 < γ , δ2 < γ , a1 ∈ G(δ1), a2 ∈ G(δ2). If δ1 = δ2, then G(δ1) is
not cf, a contradiction by the inductive hypothesis. If δ1 < δ2, then G(δ2) ⊇ G(δ1) (by Claim 6), so
a1, a2 ∈ G(δ2), a contradiction by the inductive hypothesis. The case of δ2 < δ1 is analogous. Thus,
G(γ ) is cf. Now consider some a ∈ G(γ ). Then, by the definition of G, there exists some δ < γ

such that a ∈ G(δ). Since G(δ) is an ad-extension by the inductive hypothesis, it follows that G(δ)

defends a, so, given that G(γ ) ⊇ G(δ) (Claim 6), we conclude that G(γ ) defends a. Thus, G(γ ) is an
ad-extension.

CLAIM 4. There exists ordinal β such that G(β) = G(β + 1).
By Claim 6, we conclude that G is an increasing function from the ordinals into 2A. It cannot

be strictly increasing, as if it were we would have an injective function from the ordinals into a
set, violating Hartogs’ lemma. Therefore, the function must be eventually constant, so for some β,
G(β) = G(β + 1).

CLAIM 5. There exists some E such that E ⊇ E∗, and the following hold.

1. E is a co-extension.
2. For any E ′ such that E∗ ⊆ E ′ ⊂ E , there exists a ∈ E \ E ′ which is defended by E ′ and E ′ ∪ {a}

is cf.
3. For any E ′ such that E∗ ⊆ E ′ ⊂ E , E ′ is not a co-extension.

By Claim 6, there exists ordinal β such that G(β) = G(β + 1). Set E = G(β). By Claim 6, E ⊇ E∗,
so it is an adequate choice. We will show that E satisfies the required properties. For the first result,
note that by Claim 6, E is an ad-extension. Moreover, E = G(β) = G(β + 1) = φ(G(β)) = φ(E),
which implies that E = ∅, which, in tandem with the fact that E is an ad-extension leads to the
conclusion that E is a co-extension. For the second result, take some E ′ such that E∗ ⊆ E ′ ⊂ E .
Set S = {γ | G(γ ) �⊆ E ′}. We observe that β ∈ S, so S �= ∅. Set δ = min< S. Obviously, δ = β

or δ < β. If δ = 0, then G(δ) = E∗ ⊆ E ′, a contradiction. If δ is a successor ordinal, then take
δ− such that δ = δ− + 1. Thus, G(δ) = φ(G(δ−)). By construction, G(δ−) ⊆ E ′ and G(δ) �⊆ E ′;
therefore, G(δ) = G(δ−)∪{a}, for some a for which G(δ−) defends a and G(δ−)∪{a} is cf. If a ∈ E ′,
then G(δ) ⊆ E ′, a contradiction by the choice of δ, so a /∈ E ′. Moreover, a ∈ G(δ). If δ = β, then
G(δ) = E , so a ∈ E . If δ < β, then a ∈ G(δ) ⊆ G(β) (by Claim 6), so a ∈ E . We conclude that
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a ∈ E \ E ′. Thus, we have found some a with the required properties. If δ is a limit ordinal, then, by
the definition of δ, G(δ′) ⊆ E ′ for all δ′ < δ. Therefore, G(δ) = ⋃

δ′<δ G(δ′) ⊆ E ′, a contradiction
by the choice of δ. The third result follows from the second: indeed, as there exists a ∈ E \ E ′ which
is defended by E ′ and E ′ ∪ {a} is cf, it cannot be the case that E ′ is a co-extension.

PROOF OF PROPOSITION 7. We first observe that ∅ is cf and an ad-extension, so the claim is true
for σ ∈ {cf, ad}. Let us now turn our attention to the case where σ = pr. Our proof follows the lines
of the respective proof in [4]. Set AD = {E | E is an ad-extension} (AD �= ∅, as shown above). We
will show that any ⊆-chain (Ei)i∈I (for some appropriate set of indexes I) in AD possesses an upper
bound. Indeed, set E = ⋃

Ei. Obviously, E ⊇ Ei, so it is an upper bound; it remains to show that
E ∈ AD, i.e. that E is an ad-extension. Suppose that E is not cf, i.e. there exist a1, a2 ∈ E such that
a →c b. By the definition of E , there exist Ei, Ej such that a1 ∈ Ei, a2 ∈ Ej for some i, j ∈ I . It is the
case that Ei ⊆ Ej or Ej ⊆ Ei, so suppose, without loss of generality, that Ei ⊆ Ej. Then a1, a2 ∈ Ej, a
contradiction, since Ej is an ad-extension (thus cf). Thus, E is cf. It remains to show that E defends
all a ∈ E . Indeed, take some a ∈ E . Then, a ∈ Ei for some i ∈ I , and, thus Ei defends a, which implies
that E defends a, since E ⊇ Ei. Thus, any ⊆-chain (Ei)i∈I in AD possesses an upper bound, which,
by Zorn’s lemma, implies that AD has a maximal element, i.e. that there exists a pr-extension. By
Proposition 5, the existence of a pr-extension implies that there exists a co-extension as well. For
gr-extensions, note that ∅ is an ad-extension, so applying Proposition 6 for E∗ = ∅, we ensure the
existence of some E which is minimally co-extension, i.e. E is a gr-extension. �

PROOF OF PROPOSITION 8. Given that ∅ is an ad-extension, we can apply Proposition 6 for E∗ = ∅
to get some E which is a minimal co-extension, i.e. E is a gr-extension. Now suppose that there is a
second gr-extension, say E ′ (E ′ �= E). Obviously, E �⊆ E ′ and E ′ �⊆ E . Set E0 = E ∩ E ′. It follows
that ∅ ⊆ E0 ⊂ E , so by Proposition 6 again, there exists some a ∈ E \ E0 which is defended by
E0 and E0 ∪ {a} is cf. Moreover, E0 ⊂ E ′, so a is defended by E ′. But E ′ is a gr-extension; thus, a
co-extension and also E ′ defends a. Thus, given that Rd ⊆ Rc, we can apply Proposition 2 (bullet
#1) to conclude that a ∈ E ′, a contradiction by the choice of a. �

PROOF OF PROPOSITION 9. The result is direct by the fact that the relations →c, →d are identical
in the two frameworks. �

PROOF OF PROPOSITION 10. For #1: suppose that there exist a, b ∈ E such that (a, b) ∈ R2
c , then

(a, b) ∈ R1
c so E is not cf w.r.t. 〈Rc,Rd〉[1], a contradiction. For #2: consider some b ∈ A such that

(b, a) ∈ R2
c . Then, (b, a) ∈ R1

c , so, by the hypothesis, there exists c ∈ E such that (c, b) ∈ R1
d ⊆ R2

d ,
which proves the result. For #3: Direct from the first two bullets. For #4: It suffices to show that if E
defends a w.r.t. 〈R1

c ,R1
d〉 and E ∪ {a} is cf w.r.t. 〈R1

c ,R1
d〉 then a ∈ E . Indeed, by the second result,

we conclude that E defends a w.r.t. 〈R2
c ,R2

d〉, whereas by the first result, we conclude that E ∪ {a} is
cf w.r.t. 〈R2

c ,R2
d〉. Given that E is a co-extension w.r.t. 〈R2

c ,R2
d〉, it follows that a ∈ E , which proves

the result. For #5: Suppose, for the sake of contradiction, that E is not a pr-extension w.r.t. 〈R1
c ,R1

d〉.
Then, there exists some E ′ ⊃ E , such that E ′ is an ad-extension w.r.t. 〈R1

c ,R1
d〉. By the second result,

E ′ is also an ad-extension w.r.t. 〈R2
c ,R2

d〉, a contradiction by the fact that E is a pr-extension w.r.t.
〈R2

c ,R2
d〉. For #6: Direct by the fact that R1

d ⊆ R2
d and the hypotheses. �

PROOF OF PROPOSITION 11. It follows directly from the definitions of co, gr, pr and st semantics,
according to which, whether a set of arguments E is an extension of an AAF F = 〈A,R〉 or not
depends only on its attack relation, R, and the classification of the attacks, 〈Rc,Rd〉, and not on the
names or labels of the arguments in R. �
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PROOF OF PROPOSITION 12. It follows directly from the definitions of co, gr, pr and st semantics,
according to which every co, gr, pr or st extension must be cf. �

PROOF OF PROPOSITION 13. Admissibility follows directly from the definitions of co, gr and pr
semantics, according to which every co, gr or pr extension must be ad. According to the definition
of st semantics, every st-extension is cf and defends itself against all arguments it does not contain;
it is, therefore, ad. Since admissibility is a special case of defense, defense is also satisfied by co,
gr, pr and st semantics. �

We introduce the following lemma to simplify the proofs of some of the remaining propositions.

LEMMA 1
Any principle that is not satisfied by the σ -semantics of AAF is not also satisfied by the σ -semantics
of AAFs with attack classification.

PROOF OF LEMMA 1. Consider a semantics of AAFs σ and a principle p not satisfied by σ . This
means that there is an AAF, F = 〈A,R〉 and a σ -extension of it E not satisfying the requirements
of p. From Proposition 3, E is also a σ -extension of F = 〈A,R〉 with attack classification 〈Rc,Rd〉,
where Rc = Rd = R. Since E does not satisfy the requirements of p, the σ semantics of AAFs with
attack classification violate p. �

PROOF OF PROPOSITION 14. As shown in [3], strong admissibility is not satisfied by the co, pr
and st semantics of AAFs. By Lemma 1, it is also not satisfied by the co, pr and st semantics of
AAFs with attack classification. For the gr semantics, consider an AAF F = 〈A,R〉 with attack
classification 〈Rc,Rd〉, where A = {a, b, c}, Rc = {(a, b), (a, c)} and Rd = {(c, a)}. Its grounded
extensions are E1 = {a} and E2 = {b, c} and E2 does not strongly defend c. Therefore, strong
admissibility is not satisfied by gr semantics either. �

PROOF OF PROPOSITION 15. As shown in [20], naivety is not satisfied by the co, gr and pr semantics
of AAFs. By Lemma 1, it is also not satisfied by the co, gr and pr semantics of AAFs with attack
classification. For the st semantics, naivety follows directly from its definition. �

PROOF OF PROPOSITION 16. As shown in [10], indirect conflict-freeness is not satisfied by any of
co, gr, pr and st semantics of AAFs. By Lemma 1, it is also not satisfied by any of co, gr, pr and st
semantics of AAFs with attack classification. �

PROOF OF PROPOSITION 17. Consider the AAF shown in Figure 1. {b, c, d} is a complete, grounded,
preferred and stable extension, which defends a but does not contain it. Therefore, reinstatement is
not satisfied by any of co, gr, pr and st semantics. �

PROOF OF PROPOSITION 18. In the AAF shown in Figure 1, {b, c, d} strongly defends a but does
not contain it. Therefore, weak reinstatement is not satisfied by any of co, gr, pr and st semantics.�

PROOF OF PROPOSITION 19. CF-Reinstatement follows directly from the definitions of co, gr and
pr semantics. For the st semantics: suppose there is a st extension E and an argument a such that
E ∪ {a} is conflict-free and a does not belong to E . This cannot be the case because E would not be
maximally cf. Therefore, CF-reinstatement is also satisfied by the st semantics. �

PROOF OF PROPOSITION 20. As shown in [3], I-maximality is not satisfied by the co semantics of
AAFs. By Lemma 1, it is also not satisfied by the co semantics of AAFs with attack classification.
I-Maximality follows directly from the definitions of gr, pr and st semantics. �
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PROOF OF PROPOSITION 21. Consider the AAF shown in Figure 1. {b, c, d} and {a, d} are co, gr
and pr extensions. Argument b is contained in {b, c, d} and attacked by {a, d} and there is no other
(co, gr or pr) extension. The non-satisfiability of allowing abstention by the st semantics follows
directly from its definition, which requires that every st extension must be maximally cf. �

The following lemma has been proved for AAFs in [1]. We will prove that this result holds also
for AAFs with attack classification. This lemma will be used for proving the remaining propositions.

LEMMA 2
For all semantics of AAFs with attack classification: (i) directionality implies non-interference and
(ii) non-interference implies crash resistance.

PROOF OF LEMMA 2.(i) follows directly from Definitions 28 and 30, according to which every
isolated set is also an unattacked set.

For (ii), suppose that for a semantics σ that satisfies non-interference, there is a contaminating
argumentation framework F∗ = (A∗,R∗). Then, for any framework F = 〈A,R〉 disjoint from F∗,
it holds that σ (F∗) = σ (F∗∪F). However, σ satisfies non-interference and A is isolated in F∗∪F ,
thus: σ ((F∗ ∪ F)↓A) = {E ∩ A|E ∈ σ (F∗ ∪ F)}. F∗ = (A∗,R∗) and F = (A,R) are disjoint;
therefore, σ ((F∗ ∪ F)↓A) = σ (F) and by the initial supposition, F∗ and F have the same set of
σ -extensions. Therefore, the previous equation implies: σ (F) = {E ∩ A|E ∈ σ (F∗)}, and, since
F∗ and F are disjoint, σ (F) = σ (F∗). This is obviously a contradiction, unless σ returns only the
empty set as an extension for any framework, which is not the case for any of the semantics that we
study. �

PROOF OF PROPOSITION 22. By Proposition 23 and Lemma 2, co, gr and pr semantics satisfy crash
resistance. As shown in [8], crash resistance is not satisfied by the st semantics of AAFs. By Lemma
1, it is also not satisfied by the st semantics of AAFs with attack classification. �

PROOF OF PROPOSITION 23. We show that for σ = co, for any argumentation framework F =
〈A,R〉 with any classification of attacks 〈Rc,Rd〉 and for any isolated set S ⊆ A: σ (F↓S) =
{E∩S|E ∈ σ (F)}. Let S1 an isolated set of F and E1 a co-extension of F↓S1 . Then S2 = A\S1 should
also be isolated, since it does not attack or receive any attacks from S1. Let E2 be a co-extension of
F↓S2 . For both E1 and E2, it holds that they are conflict-free and they defend all arguments they
contain from attacks from S1 (resp. S2). Since there are no attacks between S1 and S2, both E1 and
E2 defend all arguments they contain from attacks from A and E = E1 ∪ E2 is conflict-free. E is,
therefore, admissible in F . Furthermore, E1 (resp. E2) cannot defend any argument in S2 (resp. S1).
Therefore, E contains all arguments in A that it defends from attacks from A.Itis, therefore, aco −
extensionof F andE1 = E ∩ S1. Since this holds for any extension of S1, co(F↓S1) ⊆ {E ∩ S1|E ∈
co(F)}.

Consider now any co-extension of F , E ′, such that E ′
1 = E ′ ∩ S1. E ′ is conflict-free and defends

all arguments it contains from attacks from A; therefore, given that there are no attacks between S1
and S2 = A \ S1, E ′

1 is conflict-free and defends all arguments it contains from attacks from S1.
This means that E ′

1 is admissible in F↓S1]. Since E ′ is complete, there is no argument a1 in A \ E ′
and therefore also in S1 \ E ′

1, such that E ′ defends a1 and E ′ ∪ {a1} is conflict free. Given that there
are no attacks between S1 and S2, this means that there is no argument a1 ∈ S1 \ E ′

1 such that E ′
1

defends a1 and E ′
1 ∪ {a1} is conflict free. E ′

1 is, therefore, a co-extension of F↓S1 . Since this holds
for any co-extension of F , co(F↓S1) ⊇ {E ∩ S1|E ∈ co(F)}. The co semantics, therefore, satisfies
non-interference.
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Using a similar proof process, it can be easily verified that pr and gr semantics also satisfy non-
interference.

As shown in [3], non-interference is not satisfied by the st semantics of AAFs. By Lemma 1, it is
also not satisfied by the st semantics of AAFs with attack classification. �

PROOF OF PROPOSITION 24. From Definitions 31–33, it follows that a semantics σ satisfies
directionality if and only if σ satisfies both weak- and semi-directionality. Since, by Propositions
25 and 26, none of the co, gr, pr and st semantics satisfy both weak- and semi-directionality, they
do not satisfy directionality either. �

PROOF OF PROPOSITION 25. For co, gr and pr semantics: consider an AAF F = 〈A,R〉 with
attack classification 〈Rc,Rd〉, where A = {a, b, c}, Rc = {(b, a)} and Rd = {(c, b)}. Consider the
unattacked set U = {b, c}. The only co-, pr- and gr-extension of F↓U is E = {b, c}. F has two co-,
pr- and gr-extensions: E1 = {a, b} and E2 = {a, c}. Neither E1 ∩ U nor E2 ∩ U is equal to E , the only
extension of F↓U . Therefore, co, gr and pr semantics do not satisfy weak directionality.

For st semantics: consider any st-extension, E , of an AAF F = 〈A,R〉, equipped with some attack
classification 〈Rc,Rd〉 and an unattacked set of arguments U ∈ US(F). By definition, E is maximal
among the conflict-free subsets of A. E ∩ U is, therefore, maximal among the conflict-free subsets
of U . E attacks (with a defending attack) all arguments that are not in E ; therefore, E ∩ U attacks
(with a defending attack) all arguments in U \ {E ∩ U}. E ∩ U , therefore, fulfils all the conditions
for being a st-extension of F↓U , which means that for σ = st, for every U ∈ US(F) it holds that
σ (F↓U ) ⊇ {E ∩ U |E ∈ σ (F)}. Weak directionality is, therefore, satisfied by the st semantics. �

PROOF OF PROPOSITION 26. The example used in the Proof of Proposition 25 is a proof that co, gr
and pr semantics do not satisfy semi-directionality.

By Propositions 24 and 25, st semantics does not satisfy directionality but satisfies weak
directionality. Given that a semantics σ satisfies directionality if and only if σ satisfies both weak-
and semi-directionality, st semantics does not satisfy semi-directionality. �

C ASP Code for Web App

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/2/192/7005682 by C
atherine Sharp user on 03 M

arch 2023



Argumentation frameworks with attack classification 227

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/2/192/7005682 by C
atherine Sharp user on 03 M

arch 2023



228 Argumentation frameworks with attack classification

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/2/192/7005682 by C
atherine Sharp user on 03 M

arch 2023



Argumentation frameworks with attack classification 229

Received 29 January 2022

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/2/192/7005682 by C
atherine Sharp user on 03 M

arch 2023


	 Argumentation frameworks with attack classification
	1 Introduction
	2 A&#x200C;AFs with Attack Classification
	3 Formal Properties
	4 A Principle-based Analysis
	5 Use Case: Argumentation Schemes
	6 A Declarative Implementation
	7 Related Work
	8 Conclusion


