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Abstract: Educational recommenders have received much less attention in comparison with e-
commerce- and entertainment-related recommenders, even though efficient intelligent tutors could
have potential to improve learning gains and enable advances in education that are essential to
achieving the world’s sustainability agenda. Through this work, we make foundational advances
towards building a state-aware, integrative educational recommender. The proposed recommender
accounts for the learners’ interests and knowledge at the same time as content novelty and popularity,
with the end goal of improving predictions of learner engagement in a lifelong-learning educational
video platform. Towards achieving this goal, we (i) formulate and evaluate multiple probabilistic
graphical models to capture learner interest; (ii) identify and experiment with multiple probabilistic
and ensemble approaches to combine interest, novelty, and knowledge representations together; and
(iii) identify and experiment with different hybrid recommender approaches to fuse population-based
engagement prediction to address the cold-start problem, i.e., the scarcity of data in the early stages of
a user session, a common challenge in recommendation systems. Our experiments with an in-the-wild
interaction dataset of more than 20,000 learners show clear performance advantages by integrating
content popularity, learner interest, novelty, and knowledge aspects in an informational recommender
system, while preserving scalability. Our recommendation system integrates a human-intuitive
representation at its core, and we argue that this transparency will prove important in efforts to give
agency to the learner in interacting, collaborating, and governing their own educational algorithms.

Keywords: open education; recommendation systems; lifelong e-learning; state-based learner mod-
elling; Sustainable Development Goal 4

1. Introduction

Equitable quality education is one of the Sustainable Development Goals (SDG). Edu-
cation (SDG 4) is specifically critical to achieving other SDGs, such as eradicating poverty,
improving health and well-being, and providing decent work and economic growth op-
portunities while passively contributing to many other SDGs (e.g., improving industry,
innovation and infrastructure, developing sustainable cities, peace, justice and strong in-
stitutions, etc.). However, delivering quality education is a complex challenge at multiple
scales and scopes (pedagogically, operationally, and technologically [1]). The world pop-
ulation is very diverse, and education ultimately should support human individuality,
allowing learners to work towards their own goals and realise their own dreams at their
own pace.

Technology, coupled with recent developments in open education, provides the possi-
bility of personalising education at scale. However, the technological framework can be
critical in terms of whether that technology empowers the user or achieves the complete
opposite (e.g., does not supporting a diverse population of learners or nudges the user in
directions that are not of interest or are pedagogically unsuitable for them).

We envision empowering personalised learning at scale with a learning assistant that
supports the user in their learning paths, giving them agency and control, in addition to
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access to a plethora of pedagogically and culturally diverse educational resources. We
argue that for this technology to be empowering, the learner needs to be able to interact
with the notions and perceptions of their own learning models, as well as contest and
govern them to suit their own varied educational needs, empowering them with a sort
of technological learning “exoskeleton”. Crucial technical components necessary to allow
such interaction and collaboration are the transparency and interpretability of the system’s
variables (e.g., learner interests). This work focuses on addressing these challenges by
developing an artificial intelligence (AI) system that can: (i) infer multiple-user latent
variables, such as user interests/goals or knowledge/skills; (ii) create a human-intuitive
representation that can be understood, queried, and modified by the user; (iii) understand
the topical content of learning materials; (iv) respect population diversity and users’ privacy;
and (v) be data-efficient while addressing common recommendation system challenges,
such as the cold-start problem [2,3]. We see this as a first step towards the ambitious goal
of building AI systems that enable empowering personalised lifelong learning.

Developing user models that can to some extent capture the factors that affect user
engagement is foundational to building effective recommendation systems in education [2],
as well as for many other applications related to knowledge management and tracing. A
recommender attempts to rank items in a collection in order to personalise the individual
experience. Educational recommenders achieve the same goal by ranking relevant learning
resources differently for individual learners, leading to personalised learning experiences.
Traditionally, the user modelling and recommender system research community has fo-
cused on modelling different user factors in isolation, such as user interests or knowledge
states. However, plenty remains to be performed if we are to build user models that are
truly integrative, simultaneously modelling and combining relevant latent user variables.
Such models could potentially help us (and the learners) to better understand individu-
alised learning preferences and goals, with the objective of providing the most fulfilling
learning path.

Our work consists of two core contributions: (1) a novel online learner model that can
infer learner interests based on implicit user interactions (we call it TrueLearn Interest);
(2) multiple integrative models that use content popularity, learner interest, novelty, and
knowledge to make engagement predictions. The proposed TrueLearn INK and TrueLearn
PINK models are online, transparent user modelling algorithms that are also integrative
(in the sense that they can model multiple factors that influence learner engagement). Our
experiments with a large dataset of more than 20,000 learners indicate that our proposals,
TrueLearn Interest, INK, and PINK, can significantly outperform competitive baselines in
predicting in-the-wild learner engagement with educational videos, while still utilising
multiple classification metrics currently used to evaluate performance.

Although much remains to be performed (on technical, social, and pedagogical fronts)
for these personalised learning approaches to start producing practical results, the human-
intuitive user and content representation, along with the data/computational efficiency of
the TrueLearn model family, makes it a very strong candidate for personalising the learning
of masses of informal learners over long periods of time. This paves the way towards
building a promising AI companion for lifelong learning that relies on freely available
knowledge, such as open educational resources and Wikipedia [1]. All these features and
the performance evaluation strongly suggest that such a model family can become the
foundation of low-cost, effective, equitable, and quality learning, which will address SDG 4
while at the same time actively and passively benefiting the success of other SDGs.

2. Related Work

The learning analytics and educational data mining (EDM) communities that build
intelligent tutoring systems (ITS) and educational recommendation systems (EdRecSys) [4]
have developed novel approaches that focus on capturing and exploiting the context of
the learner. The contextual factors, such as the knowledge state [5–8], degree of novelty
of informational content [9,10], interests [11] and learning goals [12], are crucial variables
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that are utilised in developing effective personalised e-learning systems. To build a truly
integrative EdRecSys that understands the interplay of these factors, we need to incorporate
all of these factors in our recommender model. Figure 1, from our prior work [2], shows a
suitable setting to model this interplay. Our primary aim through this work is to build and
test the usefulness of a viable algorithm that integrates all these factors. When building
EdRecSys, interpretability is crucial as it provides the transparency needed to trigger the
trust of a learner [13,14]. Recent studies have further showed that connecting AI recom-
mendations with human-intuitive explanations and visualisations leads to an increase in
trust and the perceived sophistication and accuracy of AI-based learning systems [15]. With
innovative movements such as open educational resources (OER) [16] and massively open
online courses (MOOC) [17] on the rise, our proposals to exploit this massive collection
of learning materials should work towards scalable systems that can accommodate pop-
ulations of learners over a lifetime (e.g., in informal/lifelong learning scenarios). Only
through such systems can we truly realise quality education for all (SDG 4). Our previous
experiments to tackle this problem have shown promising evidence that building high
quality recommenders while retaining scalability and transparency is feasible [10]. The
TrueLearn INK and TrueLearn PINK models make further progress in this direction, and
resemble Figure 1. They integrate popularity, interest, novelty, and knowledge in an online
and transparent learner model.

Figure 1. Graphical model of learner engagement that incorporates the drivers of learner engagement,
including content (P)opularity, Learner (K)nowledge, (N)ovelty and (I)nterests.

2.1. Opportunities and Challenges in Scaling Personalised Education

The last decade has seen a favourable increase in interest in the research community
towards pushing the frontiers of e-learning, with an increased emphasis on the need to
address diverse learner backgrounds and goals using large collections of educational ma-
terials. In a world populated by MOOCs, many powerful educational resources that can
become enablers of our future generations are gated behind licensing walls that limit their
reach and impact. OERs provide an excellent remedy for this situation by relaxing copy-
right restrictions, leading to mass adoption among both learning resource creators [18] and
consumers [19]. Currently, new AI-enabled tools that discover and index such collections
are emerging [20,21], and these solutions are addressing the vital need for scalable content
understanding that can support large OER collections. With the ability to harness these
AI-powered tools within our grasp, we should design these openly accessible tools in such
a way that we avoid increasing the disparities in terms of access to quality education [1]. In
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a landscape where high-quality educational resources are available in abundance, having
scalable educational recommenders that can connect distinct learning materials to individ-
uals across languages, cultures, and content modalities over a lifelong journey of learning
is a game changer [22].

2.2. Scalable Content Representation

While acknowledging that scalable content-understanding tools are surfacing, it is
important to understand their usefulness to EdRecSys. Amongst many approaches, topic-,
keyword-, and concept-based approaches have become popular research directions in the
context of informational recommendation systems, such as news [23,24], social media [25,26],
and educational content [10,27].

From their inception, the ITS and EdRecSys communities have heavily relied on manu-
ally labelling the knowledge components (KCs, i.e., knowledge topics covered) in a learning
material or exercise [28,29]. However, this is not scalable in practice [5,30]. Since then,
unsupervised learning techniques, such as latent Dirichlet allocation (LDA) [31] and entity
linking, have shown great promise towards this goal [32]. While unsupervised models,
such as LDA, solve the costly human annotation challenge, they entail complexities in
hyperparameter tuning and do not guarantee identifying topics that are humanly intuitive.
Entity linking handles the explainability of topics by using concepts from a knowledge base,
such as Wikipedia, as the topic taxonomy. Multiple models have successfully built content
representations using entity linking to leverage informational [33] and educational [34]
recommenders, while recent models such as TrueLearn Novel demonstrated very good
predictive performance with educational recommendations [10]. Due to this potential of
entity linking, we use entity linking for content representation.

Fragments of Content

Finding the relevance of parts of documents rather than entire documents, be it
in text [35], audio podcasts [36], or video [21,37], has become a much more prominent
research area in recent years. Learning needs may be granular enough for a case where a
fragment of a resource is sufficient. Breaking informational videos into fragments has also
shown promise in efficient previewing [21,38] and enabling the non-linear consumption
of videos [39]. Our prior proposal, the TrueLearn Novel [10] model, demonstrates the
potential of utilising fragment-wise recommendation in educational recommenders using
the PEEK dataset [40]. This allows the e-learning system to have video fragments that
contain a satisfactory amount of knowledge while ensuring that the video fragment length
is good for retaining viewer engagement [41]. As we extend the TrueLearn Novel in this
work, our new proposals address the fragment-wise engagement prediction task.

2.3. Learner Interest, Novelty, Knowledge, and Content Popularity

The majority of work in the EdRecSys domain revolves around using learner
context [8–10] to predict learner engagement. When it comes to the learner context, mod-
elling the interests and personal goals of individual learners plays a key role. This task is an
active research area in information retrieval and in the recommendation systems domain.
Interest models in our prior work mainly use two approaches for exploiting explicit (espe-
cially in e-commerce and entertainment domains [42,43]) and implicit feedback (mainly
in social media [44]) as target labels. Using the features of the content that users interact
with in order to build individualised profiles is a popular approach when it comes to mod-
elling interest. As a reliable content-based feature, keywords/concepts/entities/topics are
widely used. These techniques in unison are identified as concept-based approaches [44].
Many concept-based approaches count the number of times a user interacts with differ-
ent concepts based on their interaction with materials that contain these concepts. These
frequency-based methods build a representation of user interest over time and then use a
selected similarity metric (e.g., Cosine or Jaccard similarity) to estimate the most relevant
content for the user [27,40,45]. Previously, frequency-based user models [46] built for
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educational information retrieval have utilised probabilistic Bayesian modelling inspired
by knowledge tracing [30]. While our proposed interest model utilises the frequency of
concept occurrence to build a user model, Syed and Collins-Thompson tackle information
search (where a query dictates the information need), a different task in comparison with
the content recommendation task that we focus on. Other probabilistic approaches pro-
posed for interest modelling rely on unsupervised topic detection models, such as LDA, to
discover concepts and model interests in these concepts (e.g., with content merging [47] in
a streaming setting [48], etc.). As discussed in Section 2.2, such approaches have their disad-
vantages and are not relevant to this work as we use entity linking to link with Wikipedia
concepts. In recent years, there have also been proposals that utilise deep learning to learn
from user interaction sequences in order to make content recommendations. This has led
to recurrent neural network models being proposed for EdRecSys [49,50]. However, deep
learning approaches lack the human-intuitive representations that we believe to be a key
characteristic of the ideal educational recommender [2].

The recent work we identified to be most relevant to the proposed interest model uses
concept-based user modelling to recommend MOOCs to learners [34]. In their approach,
they consider the user session to be a document in which the topics they visit over time are
terms (words). They compute the term frequency (TF) for each user over time to build a user
profile. To predict compatibility with potential future content at time t, the user’s TF-based
topic profile up to time point t− 1 is used. The engagement is predicted by measuring the
similarity between the user profile and the content. This similarity measure can be used to
rank recommendations. Piao and Breslin further extend this method using term-frequency-
inverse document frequency (TFIDF)-based profiles, which penalise general topics that
occur abundantly and challenge the task of discriminating between users. However, we go
beyond naïvely counting concept occurrences to formulate a novel Bayesian model that can
capture the relationship between engagement and latent user interest in order to predict the
compatibility between the user and the prospective educational video. This sophistication
is added using extremely computationally efficient algorithms to ensure the scalability of
the models. A scalable, human-intuitive interest representation of the user is created as
a result.

The receptiveness of a learner to a specific learning resource depends on their cur-
rent knowledge state as much as their interests and goals. Knowledge tracing (KT) [5]
and item response theory (IRT) [51] are the two main approaches used by the EDM and
ITS communities when modelling the knowledge/skills of learners. In the context of KT,
Bayesian modelling of the learner interaction journey in the form of a hidden Markov
model has been the dominant idea. This approach allows one to recover a rich, inter-
pretable representation of the learner knowledge (i.e., skill mastery) while building a
probabilistic model that operates under human-intuitive assumptions [30]. However,
the widely available implementations of KT use expectation maximisation to learn, in-
curring significant computational costs and limiting its use in large-scale applications.
Bishop et al. [52] recently demonstrated that KT can be trained online, allowing it to
scale better. The interest tracing model described in Section 3.4.1 in this work is based
on this idea. Advancements in using machine learning methods (e.g., knowledge tracing
machines [6]) and neural KT [7,8]) have improved the predictive performance in certain
datasets; however, their superiority is being rigorously questioned in more insightful stud-
ies [53,54]. Additionally, these are data-hungry, complex models and lack interpretability.
More relevant proposals to our work utilise variants of IRT, such as the Elo [55] and Tru-
eLearn Novel [10] algorithms. The TrueLearn Novel algorithm models novelty in addition
to the learner-knowledge state, producing leading results in video engagement prediction
tasks using online learning. The utilisation of online Gaussian expectation propagation
while maintaining a Wikipedia-based user model retains both scalability and human-
intuitiveness, which we maintain in our resultant models. When building TrueLearn INK
and PINK models, we use the TrueLearn Novel model to model the knowledge acquisition
and novelty assumptions in learning.
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Although the connection between contextual learner engagement (inferred from
learner interests and knowledge) and learning gains have been explored by many [56,57],
we need to understand the role that context-agnostic engagement has to play in this
equation; that is, what attributes of educational materials lead to a learner population’s
engagement with it (regardless of individual learner contexts)? Prior work has identified
verticals, such as freshness, presentation, authority, understandability, and topic coverage,
as factors that contribute towards population-based engagement, while machine learning
models based on these features can be built to predict population-based engagement [58].
Our prior work also indicated that such models were critical in addressing both user and
item cold-start problems [3,58]. In this work, we train such a population-based predictor
to incorporate with TrueLearn PINK to help the personalisation model address the user
cold-start problem.

2.4. Combining Predictions

As argued in Section 2.3, learner engagement is affected by a multitude of different
factors. While systems modelling these factors in isolation can be used successfully, the aim
is to combine the different hypotheses together to build a more integrative recommender
(as per Figure 1). Such a system is capable of accounting for multiple factors associated
with the learner. Therefore, combining models is a sensible approach towards utilising all
the available hypotheses together (popularity, knowledge, novelty, and interest). There
are many ways to combine prediction models [59]. Using probabilistic modelling to
combine predictions is one of the simpler ways of doing this [60]. Ensemble techniques
(such as Bayesian averaging, boosting, bagging, or stacking) have also shown promise
in robustly combining classifiers [61]. Amongst ensemble methods, using a meta-learner
(a.k.a stacking) is an approach that allows training a meta-model that learns to weigh the
different hypotheses that are being combined. Stacking has been used successfully (with
a reported 10% performance improvement) in the learner modelling domain [62,63]. We
also experiment with multiple online meta-learners, including a novel model, to create a
transparent, scalable, yet integrative, learner model. Another type of combination used
in hybrid recommender systems is switching, where the hybrid recommender switches
between different models for different predictions, something that we also experiment
with. Many recommendation systems utilise switching to start recommendations with
a population-based model and switch to a personalised model addressing the cold-start
problem [64]. In addition to the meta-learner approach, we experiment with switching to
formulate a different version of the TrueLearn PINK model.

3. Integrative and Personalised Educational Recommendations

With our familiarity of the relevant recent works, we outline the experimental method-
ology in this section. Modelling and predicting user engagement using watch time with
videos has been studied in both population-based [41,65] and personalised [40,66] contexts.
This paper attempts to build a novel learner model that can predict learner engagement
with video lectures using factors such as content popularity, learner interests, novelty, and
knowledge, which are outlined in Section 2. Towards this goal, we begin by outlining the
problem setting and identifying the different components that need to be developed and
combined. We formulate a Bayesian model that captures the assumptions relating to learner
interests as the first step. Then, we investigate how we can integrate popularity, knowledge,
novelty, and interest models into one model using suitable methods of combination.

3.1. Problem Setting

In this scenario, we focus on modelling where a learner ` in a learner population
L interacts with a series of educational resources S` ⊂ {r1, . . . , rR}, where rx are frag-
ments/parts of different educational videos. The watch interactions happen over a period
of T time steps, with R being the total number of resources in the system. In this sys-
tem with a total N unique KCs, resource rx is characterised by a set of top KCs or topics
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Krx ⊂ {1, . . . , N}. We assume the presence irx of KC in resource rx and that the degree drx

of KC coverage in the resource is observable. Figure 2 illustrates the problem setting we
aim to model.

Figure 2. Visual illustration of the problem setting, where learner ` with knowledge (that allows
them to tackle novel content) θNK and interests θI is watching fragments of educational videos rx

containing different knowledge components Krx over time t.

The key idea is to model the probability of engagement et
`,rx
∈ {1,−1} between learner

` and resource rx at time t as a function of the learner interest θt
`I

and knowledge θt
`NK

based on the top KCs covered Krx using their presence irx , in addition to the depth of topic
coverage drx .

According to Bayes rule, the posterior distributions are proportional to:

P(θt
`I
|et
`,rx

, Krx , irx ) ∝ P(et
`,rx
|θt
`I

, Krx , irx ) · P(θt
`I
) (1)

P(θt
`NK
|et
`,rx

, Krx , drx ) ∝ P(et
`,rx
|θt
`NK

, Krx , drx ) · P(θt
`NK

) (2)

The underlying assumptions for how learner interest, knowledge, and novelty relate
to learner engagement are graphically illustrated in Figure 3. Hypothesis (i) represents the
common assumption in interest-based informational recommendation systems, namely
that a user will engage with an item if there is enough interest towards the topics present in
the resource [67]. Hypothesis (ii) is the underlying assumption of TrueLearn Novel [10],
which accounts for the knowledge state of the user and the novelty element using ε as the
engagement margin. In the subsequent steps, we formulate Bayesian graphical models that
resemble the interest hypothesis in Section 3.4; furthermore, we use the TrueLearn Novel
model [10] to model the knowledge and novelty hypothesis.
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Figure 3. Graphical illustration of the assumptions made when modelling learner’s (i) interest (I),
and (ii) novelty and knowledge (NK). TrueLearn Interest model proposed in this work tests hypothesis
(i). TrueLearn Novel model used in TrueLearn INK and PINK uses hypothesis (ii).

3.2. Data

Two publicly available datasets are used in the experiments and they are based on our
prior work. As both datasets are drawn from the VideoLectures.Net repository, the videos
overlap. We primarily use the recently published PEEK dataset [40] for the final evaluation
as this dataset is the only publicly available dataset perfectly capturing the problem setting
stated in Section 3.1. The dataset contains over 20,000 in-the-wild learners consuming
fragments of over 10,000 unique educational video lectures. Each lecture fragment in the
dataset is also annotated with the top five Wikipedia concepts retrieved via entity linking.
The PEEK dataset only includes learners with at least five recorded sessions. The dataset
consists of learner sessions where the majority of the sessions are relatively short; however,
there is a proportion of user sessions that are comparatively lengthy. The majority of
lectures that are found in the PEEK dataset focus on data science/machine learning and
computer science, although lectures relating to other subjects are also present.

The VLE dataset [3] was used to train the context-agnostic engagement predictor. A
population-based engagement prediction model has to be trained in order to estimate the
engagement when combining the population prior. To avoid data leakage, the set of video
lectures in the test data of PEEK dataset was identified beforehand and removed from the
training data of the context-agnostic model.

3.3. Baseline Models

To measure the comparative performance of the proposed models, we devised sev-
eral baselines. We used three content-based similarity baselines, namely the (i) Cosine,
(ii) JaccardC, and (iii) JaccardU models, along with multi-skill knowledge tracing and
TrueLearn Novel models, which are proposed in prior work [40]. As per Section 2, we iden-
tified additional frequency-based learner models proposed in the concept-based interest
modelling domain as suitable baselines. Hence, we included the TF- and TFIDF-based
user interest models [34] in our baseline set. The PEEK dataset already contains topic
depth drx . Therefore, we experimented with two versions of the TF model, where (iv) the
TF(Binary) model uses the presence of a concept in binary form (irx ) and (v) the TF(Cosine)
uses the coverage of a concept (drx ) estimated using the Cosine similarity between the video
fragment transcript and Wikipedia page of the concept [40]. Finally, (vi) the TFIDF(Cosine)
model normalised the concept counts with inverse document frequency.

3.4. Learner Interest

When modelling interest, we hypothesised that a learner starts watching a video
fragment because they are interested in the topics included in that fragment. Regardless
of whether they engage positively (watching a significant fraction of the video fragment),
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choosing to start watching can be considered as a signal of interest in the topics covered.
This leads us to use both positive and negative engagement events as positive interest
signals. Although a proxy of KC coverage (drx ) is available to the system [10], we need
to assume that the learner is only aware of the fact that a specific topic is present in the
video fragment when committing to start watching. Therefore we used binary features
irx to indicate that a subset of KCs, Krx were present in a video fragment when modelling
interest. To model the assumptions illustrated in Figure 3i, we formulated two online
learning models that used density filtering (posterior of θt−1

`I
becomes prior for event at

time t) to model learner interest, θt
`I

. The two proposed models are described below.

3.4.1. Interest Tracing Model

As the initial proposal for modelling interest, we formulated this model. This is a user
model where the interest parameter for each user is modelled as a Bernoulli variable. The
model assumes that user interest in a KC (topic) is a probability where values are close to 1,
which indicates a high probability of interest. The model aims to predict the engagement
et
`I

, rx of the learner ` with resource rx at time t, which is based on the learner’s interest θt
`I

in KCs Krx and their presence irx in the resource as:

êt
`,rx

=

{
1 if P(et

`I,rx
|θt
`I

, Krx , irx ) ≥ 0.5
0 otherwise

(3)

The graphical model representing the interest tracing model is presented in Figure 4
(left) and is an adaptation of an online knowledge tracing model (online KT model) [10]
that is inspired by an online skill assessment model [52]. As per Figure 4 (left), we compute
P(et

`I,rx
|θt
`I

, Krx , irx ) by computing the joint probability of learner `’s interest in KCs Krx

as AND(θt
`j), j ∈ Krx together with a noise factor. The noise factor accounts for the two

scenarios where (i) the learner has interest and decides to disengage due to other reasons
(e.g., lack of time, contextual limitations, etc.), or when (ii) the learner lacks interest but
decides to engage (e.g., an academic obligation). Similar factors have been taken into
account to address the guess and miss situations in question by answering/knowledge
tracing scenarios [30,52]. As the parameters are Bernoulli and the outcome is binary, we
use loopy belief propagation [68] to execute inference steps in this model.

3.4.2. TrueLearn Interest Model

TrueLearn Interest is a reformulation of the IRT-inspired TrueLearn fixed-depth model [10],
which is furthermore inspired by the TrueSkill model [51]. The model tries to determine
if the learner ` has higher interest in topics Krx that are present in the resource rx (binary
irx ) as per Figure 3i. Figure 4 (middle) illustrates the factor graph of the TrueLearn Interest
model. In contrast to the interest tracing model, TrueLearn Interest uses Gaussian variables
where the level of interest (µ`) and degree of uncertainty (σ2

` ) are inferred. The irx are
binary values that are observable (irx ∼ N (1, 02)). The β2 factor acts as the noise factor. The
prediction êt

`,rx
is made similarly using the criteria outlined in Equation (3). As per Figure 4

(middle), the prediction probability is calculated using:

P(et
`I,rx
|θt
`I

, Krx , irx ) = CDFN (pt
`Irx
− prx ≥ 0.0). (4)

In other words, it is validated if the learner interest θt
`I

in topics Krx is significantly
larger than the sum of their presence irx values. This result is a normal variable because the
result is a difference between two Gaussian variables. The cumulative distribution function
(CDFN ) can be used to estimate the probability that the learner interest is larger than zero.
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Figure 4. Factor graphs representing the probabilistic graphical models for interest tracing (left),
TrueLearn Interest (middle), and TrueLearn Novel (right) models.

3.5. Combining Interest, Novelty, and Knowledge: TrueLearn INK Model

We use the TrueLearn Novel model to infer the knowledge representation of the learner
while modelling novelty. It is one of the most recent learner models that accounts for both
the novelty of content and the knowledge state of the learner while demonstrating superior
performance when predicting engagement with video lectures [10,40]. The TrueLearn
Novel model is an online model using density filtering and recovers learner skills even
if the concepts occur sparsely [10]. This makes the algorithm scalable and data efficient.
The model also uses entity linking for content annotation by creating an interpretable user
model. The hypothesis used by the TrueLearn Novel models is illustrated in Figure 3ii,
while the factor graph of the TrueLearn Novel model is presented in Figure 4 (right). Being
similar to the TrueLearn Interest model described earlier, the TrueLearn Novel model
also uses expectation propagation [69] for inference. We direct the reader to the original
TrueLearn Novel manuscript for more details [10].

Given that we have two distinct graphical models that predict learner engagement
based on two independent variables: (i) interest (et

`I,rx
) and (ii) novelty and knowledge

(et
`NK,rx

), we experiment with combining the predictions to create the TrueLearn INK model
as per Equation (5).

et
`INK,rx

= f (et
`I,rx

, et
`NK,rx

) (5)

where f is a function that combines the predictions. To choose f (·), we experimented with
multiple ensemble-learning techniques belonging to two main groups.

• Probabilistic Combination of Outcomes: Using probability theory to combine the
predictions together;

• Meta-Learner: Learning how to weigh the two predictions to obtain a more accurate
final engagement prediction.
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3.5.1. Using Probabilistic Combination with Existing Meta-Learners

In the context of probabilistic combination, we tried both the (i) AND(et
`I,rx

, et
`NK,rx

) oper-
ator, the more restrictive assumption where both models have to predict high probabilities
for the ultimate prediction et

`INK,rx
to be positive, and (ii), the OR(et

`I,rx
, et

`NK,rx
) operator, the

less restrictive assumption [60].
When choosing a meta-learner, we restricted ourselves to online learning schemes to

preserve the scalability of TrueLearn INK. We also dismissed multi-layer perceptrons for
maintaining a linear meta-learner that increased the interpretability of the learned weights.
Perceptron and stochastic logistic regression models are selected for experimentation.

3.5.2. Meta-TrueLearn

Additionally, we formulated a linear model that learned weights using an expectation
propagation analogue compared with the TrueLearn models. The meta-TrueLearn model
can be seen as a Bayesian probit regressor. A similar weight-learning scheme has previously
been used in a personalised click-through prediction task [70]. The proposed meta-learning
model is illustrated in Figure 5. As seen in the figure (only black parts), two predictions
from the interest et

`I
and TrueLearn Novelty model et

`NK
are fed as observed constants (i.e.,

Gaussians with zero variance). The product factor and sum factor are used to model the
final engagement et

`INK
as:

et
`INK,rx

= Wt
`I
· et

`I,rx
+ Wt

`NK
· et

`NK,rx
+ bt

`, (6)

where Wt
`I

, Wt
`NK

, and bt
` are trainable parameters that are modelled as Gaussian variables,

while bt
` is the bias term. The model trains in a greedy fashion, contributing to compu-

tational efficiency. Although the prediction step is executed in every time step, weight
updates only happen when a misclassification is encountered.

Figure 5. Factor graphs representing meta-TrueLearn, a probabilistic graphical model to combine
the predictions from both interest and knowledge-based engagement models. Optionally, the same
meta-learner can be used to combine the population-based model (parts highlighted in red dashes).
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3.6. Combining Population-Based Prior (P + INK): TrueLearn PINK Model

One of the weaknesses of an online learning scheme such as TrueLearn is that it starts
learning the model using historical interaction data from the user. This means that these
models do not have any historical data at the beginning (when t is close to 1, hereafter
referred to as tsmall), leading them to use non-informative priors (Gaussians with mean
close to 0 and a large variance) when calculating etsmall

`I
and etsmall

`NK
. This causes TrueLearn

INK to estimate the same probability of engagement etsmall
`INK,rx

for every user regardless of
what video fragment rx they watch in the first interactions with the system, implying a
cold-start problem. Popularity-based (context-agnostic) recommenders are one remedy to
the cold-start problem [58].

Several of our recent works [3] have proposed methods leveraging content features and
topical features (as per Figure 1) to predict population-based engagement of an educational
video. We use this approach to build a context-agnostic engagement predictor for video
lectures, estimating eL,rx , engagement of the learner population L with resource rx, creating
a prior for engagement where learner knowledge and interest-based estimates are non-
informative. We hypothesise that using such an informative prior in the early phase of
a user session and gradually transitioning to rely on learned personalised interest and
knowledge models (TrueLearn INK) can address the cold-start problem. We define our final
proposal TrueLearn PINK, a hybrid recommender model that starts engagement prediction
heavily relying on a population-based prior and transitions to TrueLearn INK over time.
We devise two approaches used in hybrid recommendation systems [64], (i) switching
and (ii) stacking (i.e., meta-learner) to facilitate the transition from population prior to
TrueLearn INK.

3.6.1. TrueLearn PINK (Switching)

This algorithm starts making engagement predictions using the population-based
engagement predictor and switches after n events. Algorithm 1 is used for each learner
` ∈ L in TrueLearn PINK (switching).

Algorithm 1 Hybrid Recommender TrueLearn PINK using Switching

Require: 0 ≤ et
`I

, et
`NK
≤ 1

Require: n ≥ 1 . upper ceiling of tsmall
Ensure: t ≥ 1

for t ∈ {1 . . . T`} do
if t ≤ n then . tsmall scenario

et
`PINK
← eL,rx . estimate from population-based predictor

else if t > n then
et
`PINK
← et

`INK,rx
. estimate from personalised model

end if
end for

3.6.2. TrueLearn PINK (Meta)

In contrast, this approach maintains a set of weights that determine how much influ-
ence the different predictions (from population-based to interest and knowledge models)
have on the final prediction. This is performed by using the same meta-learner described in
Section 3.5. We included a new additive component Wt

`P
· eL,rx in Equation (6) to modify the

factor graph (including red-dashed components of Figure 5). Wt
`P

is a trainable parameter.

3.7. Experiments

We ran a series of experiments that allowed us to answer multiple research questions
related to the performance of the proposed TrueLearn models.
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• RQ 1: How well do the interest models perform?
• RQ 2: How well do different combining mechanisms perform with TrueLearn INK?
• RQ 3: Does combining the individual models lead to superior performance?
• RQ 4: Does combining the population-based component in early stage prediction

further improve performance?

We designed our experiments in a phased methodology. The sequential integration
of different factors is graphically illustrated in Figure 6. The systematic integration of
TrueLearn Interest, TrueLearn Novel, and the population-based model leads to the final
TrueLearn PINK model. As per the figure, the experiments around our contributing models
helped us to resolve the relevant research questions.

Learner
Interest

TrueLearn Interest
Model

Learner
Knowledge

TrueLearn Novel
Model

Population-based
Model

Content
Novelty

Content
Popularity

TrueLearn INK
Model

RQ 1

RQ 2 & 3

RQ 4

TrueLearn PINK
Model

Learner-based Variables

Content-based Variables

Models From Prior Work

Novel Models (Our Contribution)

Experiments

Figure 6. Graphical illustration of the experimental design where we sequentially integrated
(I)nterests, (N)ovelty, (K)nowledge, and (P)opularity factors together, creating a unified model.

In the first experiment addressing RQ 1, the two proposed models, namely (i) interest
tracing and (ii) TrueLearn Interest, are compared with the six baseline interest models
described in Section 3.3, and the results are reported in Table 1.

In the second experiment addressing RQ 2, we took the best-performing interest model
from the former experiment and combined its predictions with the knowledge and novelty
model, creating TrueLearn INK (results in Table 2). In terms of accounting for novelty and
knowledge, the TrueLearn Novel [10] is used where the number of KCs is kept to |Krx | = 3,
which is based on the results demonstrated with the PEEK dataset [40]. To identify the
best ensemble approach for TrueLearn INK, we benchmarked multiple methods. From
the probabilistic approach, we tried both the AND and OR assumptions. We empirically
evaluated three online meta-learners, namely (i) Logistic, (ii) Perceptron, and (iii) Meta-
TrueLearn. When experimenting with meta-learners, we experimented both with and
without the bias term to identify the best model. As a post-step, we further compared the
predictive performance of isolated models vs. the combined model to identify the strengths
and weaknesses of the TrueLearn INK model, thereby addressing RQ 3. The results of the
post-analysis are found in Figure 7.
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Finally, we launched our third experiment once the best combiner for the TrueLearn
INK model had been determined. We further combined the population-based engagement
prediction model with it. This combination is experimented on by switching and stacking
(using a meta-learner). We call this model TrueLearn PINK. The results of TrueLearn PINK
are reported in Table 3.

Figure 7. How the mean accuracy, precision, recall, and F1 score at time t across all users change on
TrueLearn Interest (green), TrueLearn Novel (yellow), and TrueLearn INK Meta (blue) models.

Table 1. Weighted average test-set performance for accuracy (Acc.), precision (Prec.), recall (Rec.),
and F1 score (F1). The best-performing and next best values are highlighted in bold and italic
faces, respectively. The proposed models that outperform baseline counterparts in the PEEK dataset
(p < 0.01 in a one-tailed paired t-test) are marked with ·(∗).

Algorithm Acc. Prec. Rec. F1

Cosine 55.08 57.86 58.45 54.06
JaccardC 55.46 57.81 60.36 55.03

Baseline JaccardU 64.05 57.85 72.76 61.22
Models TF(Binary) 55.19 56.71 66.60 57.38

TF(Cosine) 55.11 56.75 65.95 57.11
TFIDF(Cosine) 41.80 31.70 9.05 10.67

Our New Interest Tracing 47.95 52.05 37.24 38.96
Proposals TrueLearn Interest 57.70 56.83 78.74 (∗) 62.50 (∗)
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Table 2. Weighted average of PEEK dataset test-set performance for accuracy (Acc.), precision (Prec.),
recall (Rec.), and F1 score (F1). The best-performing and next best values are highlighted in bold and
italic, respectively. The proposed models that outperform baseline counterparts in the PEEK dataset
(p < 0.01 in a one-tailed paired t-test) are marked with ·(∗).

Algorithm Acc. Prec. Rec. F1

Best Baselines from Table 1
TF(Binary) 55.19 56.71 66.60 57.38
JaccardU 64.05 57.85 72.76 61.22

TrueLearn Models in Isolation
TrueLearn Interest 57.70 56.83 78.74 62.50
TrueLearn Novel 64.40 58.42 80.15 65.12

TrueLearn INK Models (Our New Proposals)
AND 65.33 (∗) 58.70 (∗) 69.80 61.68
OR 56.74 56.74 88.92 (∗) 65.63 (∗)

Logistic 78.58 (∗) 64.07 (∗) 68.17 65.86 (∗)

Perceptron 78.56 (∗) 64.05 (∗) 68.58 66.04 (∗)

Meta-TrueLearn 78.71 (∗) 64.19 (∗) 68.62 66.14 (∗)

Table 3. Weighted average of PEEK dataset test-set performance for accuracy (Acc.), precision (Prec.),
recall (Rec.), and F1 score (F1). The best-performing and next best values are highlighted in bold and
italics, respectively. The proposed models that outperform baseline counterparts in the PEEK dataset
(p < 0.01 in a one-tailed paired t-test) are marked with ·(∗).

Algorithm
Predicting First Event Predicting All Events

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Best Performing Model from Table 2
TrueLearn INK 44.21 44.21 100.0 61.32 76.26 63.36 69.30 65.84

TrueLearn PINK Models (Our New Proposals)
Switching 56.09 (∗) 50.32 (∗) 53.58 51.89 77.08 (∗) 63.92 (∗) 66.55 64.95
Meta 56.02 (∗) 50.25 (∗) 53.58 51.85 78.90 (∗) 64.88 (∗) 66.06 65.29

3.8. Evaluation Metrics

We used a hold-out validation technique in all the experiments where the training
data is used for hyperparameter tuning. We used the test data to measure and report the
predictive performance. As the downstream prediction task predicts discrete labels [40],
we used classification metrics, namely accuracy, precision, recall, and F1 score, to report
the performance. F1 score and accuracy are used as the primary metrics for model com-
parison as they represent correctly predicting both positive and negative labels. When
evaluating with the full PEEK dataset, a learner-wise paired t-test is used to measure if
the proposed models lead to a statistically significant improvement over the baselines.
Pearson R correlation is used where correlation analysis between two continuous variables
is performed.

The results reported in Tables 1 and 2 use learner events 2 ≤ t ≤ T` for computing
evaluation metrics. This is because all the baselines and our proposals in these tables are
not capable of making meaningful predictions when historic data is absent (when t = 1).
However, TrueLearn PINK addresses this weakness. Hence, the results in Table 3 use
learner events 1 ≤ t ≤ T` for computing evaluation metrics.

4. Results and Discussion

The results from all the different experiments outlined in Section 3.7 are presented
in this section. Our experiments focus on understanding the prediction quality of the
proposed models, namely TrueLearn Interest, TrueLearn INK, and TrueLearn PINK (refer
to Figure 6). All TrueLearn models are massively parallelisable because the learner model
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for different learners can be learned independently. Our current implementation is in
Apache Spark [71] (using the MapReduce paradigm [72]), which demonstrates this fact.
All experiments were run with an AMD Ryzen Threadripper 2950X CPU with 15GB
memory. The code to reproduce the proposed models and experiments is available online
(https://github.com/sahanbull/TrueLearn, accessed on 1 May 2022).

4.1. Predictive Performance of TrueLearn Interest (RQ 1)

Different numbers of topics |Krx | are experimented with to identify the best performing
|Krx | for the interest tracing and TrueLearn Interest models. Empirical results showed that
the most predictive feature settings were |Krx | = 1 and |Krx | = 5 for interest tracing
and TrueLearn Interest, respectively. Table 1 outlines the predictive performance of the
proposed interest models in comparison with the relevant baselines. The table shows clear
evidence of the superiority of the TrueLearn Interest model in comparison with the baseline
interest models with the PEEK dataset. The results show that the performance of TrueLearn
Interest is significantly better than the next best performing baseline in terms of recall and
F1 score. This model also surpasses all but one of the baselines when it comes to accuracy.
The performance of the proposed interest tracing model is not competitive. This difference
of performance observed between the Bernoulli- and Gaussian-based models is consistent
with the results obtained in our prior work [10,40] when evaluating similar models for
modelling knowledge.

4.1.1. On Performance of JaccardU Model

The results in Table 1 show that the JaccardU model contends closely with the Tru-
eLearn Interest model. However, the TrueLearn Interest model significantly outperforms
JaccardU in the full PEEK dataset in terms of F1 score, which combines precision and recall.
On the other hand, the JaccardU model is much better at predicting negative engagement,
as shown by the superiority of the accuracy score. From a data efficiency perspective,
JaccardU has several weaknesses. As the Jaccard score is computed based on the number of
users who visited videos, the JaccardU model really struggles when the number of users is
small [40]. While individual users could be very active, the JaccardU model will not work
unless many of them co-visit videos. In contrast, the TrueLearn Interest model does not
have this issue as it does not rely on other users’ actions for recommendation or content
representation.

4.1.2. TrueLearn Interest vs. TrueLearn Novel

The experimental results demonstrate that TrueLearn Interest (as per Table 1) and
TrueLearn Novel [40] are the most suitable choices when accounting for the interest, novelty,
and knowledge of learners in predicting engagement. However, the results in Table 2 also
show that the performance of these two models are very similar to each other. Therefore,
it is sensible to validate if the prediction behaviours of these two models are significantly
different from each other. To validate this, we take the predictions made on the test set
by both the models separately and measure the agreement between their engagement
predictions as:

Agreement =
1

∑`∈L T`
∑
`∈L

T`

∑
t=1

A(et
`I,rx

et
`NK,rx

), (7)

where A =

{
1 if et

`I,rx
= et

`NK,rx
0 otherwise

, T` is the number of events of learner `, and L is the

full set of learners.
The experimental results show that there is only 73.1% agreement between the predic-

tions coming from the two models. Therefore, we can observe that there is a significant
deviation between the behaviours of the two models. This observation further reinforces
the utility of combining the two hypotheses together.

https://github.com/sahanbull/TrueLearn
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4.2. Predictive Performance of TrueLearn INK (RQ 2 and 3)

The predictive performances of the different versions of TrueLearn INK using different
methods of combination are outlined in Table 2. This table also includes the two best-
performing baselines from Table 1, in addition to the performances of the two TrueLearn
models when they are used in isolation. The primary observation from Table 2 is that the
majority of the combination approaches (except AND model) lead to significantly improved
accuracy, precision, and F1 score. Among the TrueLearn INK models, the meta-learning
approaches seem to perform better than the probabilistic combination approaches.

Among the probabilistic approaches, the AND model tends to be very restrictive when
predicting positives, leading to improved accuracy and precision. On the other hand, the
OR model seems to be too relaxed, leading to a significantly higher recall at the cost of
degraded accuracy and precision.

Table 2 further shows that the meta-learner-based approaches seem to be equally
competent in prediction, with minor differences in performance. Our proposal, the meta-
TrueLearn model, is the best-performing model among its meta-learning counterparts. The
meta-TrueLearn-based TrueLearn INK model gives the best performance among all the
tested models in terms of accuracy, precision, and F1 score, while attaining the highest recall
score among the meta-learner-based models. Table 2 also shows that the meta-learning
models lead to more accurate and precise models, pushing recall lower in comparison with
using the TrueLearn Interest and TrueLearn Novel models in isolation. This observation is
further confirmed by the performance reported in Figure 7.

We take the prediction for the tth event of the entire test-set population and calculate
the performance metrics for the three models to create Figure 7. We restrict the plots to
t ≤ 50 because the number of learners with more events is very small [40], making the
metrics unstable. The figure shows how TrueLearn models rapidly learn to predict with
accuracy, precision, and F1 boosting from ≈0.5 to 0.85 in the first five events. This figure
further elaborates how the prediction quality of TrueLearn INK is superior throughout
the learner journey (both early and later stages) in comparison with using the models in
isolation. The only exception is recall, where the TrueLearn INK model is inferior. This
is expected as the weight updating mechanism of meta-TrueLearn model is driven by
accuracy.

Meta-Weights and Topic Sparsity

In the deeper analysis, we observed that there is a relationship between how the meta-
weights Wt

`I
and Wt

`NK
change with the number of unique topics/KCs a learner encounters.

We plotted Figure 8 by taking the final weights of the user WT
`I

and WT
`NK

and plotting it
against the total number of unique KCs for the user. Pearson R correlation analysis between
these variables also showed that the number of unique topics has a positive correlation
of 0.028 (p ≤ 0.05) and a negative correlation of −0.234 (p ≤ 0.01) with WT

`I
and WT

`NK
,

respectively. This suggests that the model learns to concentrate on an interest more when a
large number of new topics are encountered.

4.3. TrueLearn PINK: Addressing the Cold-Start Issue for TrueLearn INK (RQ 4)

In Figure 9 (depicted in dark blue), the average performance of TrueLearn INK on the
first 10 events of the learner test-set sampleclearly shows that it struggles in the first few
(≈5) events of each user. This is an expected observation because TrueLearn INK uses no
information to estimate the engagement of the user at time step 1. This cold-start problem
needs to be addressed in order to improve the effectiveness of personalisation.
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Figure 8. Changes in meta-weights WT
`I

(Orange) and WT
`NK

(Blue) with respect to the number of
unique topics for each learner ` in the test set

Figure 9. How accuracy, precision, recall, and F1 score of TrueLearn INK (dark blue); TrueLearn PINK
(Switching) (light blue), which uses switching approach; and TrueLearn PINK (Meta) (yellow), which
uses a meta-learner approach, changes over time step t across the entire learner test-set population.

We address the cold-start weakness of TrueLearn INK described in Section 4.2 by com-
bining a population-based prior, creating TrueLearn PINK. Table 3 shows the performance
of TrueLearn PINK when combining the population-based prior using (i) switching, as per
Algorithm 1, and (ii) a meta-learner, as per Figure 5. It is evident from Table 3 that this
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enhancement leads to significant improvements of accuracy and precision while sacrificing
recall, which also leads to a drop in the F1 score.

However, TrueLearn PINK behaves differently in the first event because the model has
additional prior information (coming from the population-based prediction model). Both
the accuracy and precision of the predictions in the first event of the learner population
significantly improves (in Table 3, left part); furthermore, the recall will fall, as the proposed
context-agnostic model only captures a population-based prior, which may deviate from
the individuality of the learners. However, it can be argued that making a prediction with
partial additional information is still better than predicting with no prior information. In
the bigger picture (in Table 3, right part), being able to make slightly more informed and
varied predictions for the early events of the learners based on lecture content features
enables significant improvements in the prediction accuracy and precision of TrueLearn
PINK on the entire test set.

A magnified look at the performance of the first 10 events of the learners outlined in
Figure 9 further elaborates the effect of TrueLearn PINK. TrueLearn PINK (Switching) in
light blue, only using the population prior in the first event (tsmall ∈ 1 or n = 1 determined
via grid search) shows superior accuracy and precision to TrueLearn INK, and then matches
its performance as the algorithm switches from t ≥ 2. The TrueLearn PINK (Meta) in orange
maintains a learnable set of meta-weights for popularity, interest, and knowledge models
(set to Wt=1

`P
= 0.90, Wt=1

`I
= 0.05, and Wt=1

`NK
= 0.05 in the beginning). As the population-

based model does not get suppressed in event 2 when using TrueLearn PINK (Meta) (in
contrast to TrueLearn PINK (Switching)), the superiority of accuracy and precision persists
in the early stage (tsmall scenario) while also beating its counterparts in F1 score when t ≥ 2

We encounter further interesting observations from Figure 9 and Table 3. Firstly, the
TrueLearn PINK (Meta) model leads in predictive performance when it comes to predicting
learner engagement across events in the entire dataset. Explaining this observation with
Figure 9 is fairly straightforward as the meta-learner approach involves the population-
based prior in multiple events that go beyond the first event of each learner. This indicates
to us that using the population-based prior in multiple events followed by the first event
is more beneficial as the TrueLearn models cannot learn reliable interest and knowledge
parameters by using only one interaction. However, it gets interesting as the same meta-
learner model is outperformed by the TrueLearn PINK (switching) model in the first event
(refer to Table 3). This means that giving 100% weighting to the population-based model’s
prediction in the switching approach rather than 90% in the meta-learner approach leads to
significantly better predictions in the first event. This observation is also explainable. In
the meta approach, we fuse the population-based predictions with two non-informative
predictions (90:5:5 in the beginning), where the non-informative predictions add noise to
the final prediction. However, adding 5% weight to these non-informative predictions
is essential to learn the weighting of the contextual predictions that are important for
personalisation. This observation further proves that the population-based model gives a
refined signal that the model can use in the early events.

Impact of the Population-Based Model

By observing the left part of Table 3, one can determine that TrueLearn INK always
predicts positive engagement for each learner at time step 1. At the first event, the recall
of TrueLearn being 1.0 while the accuracy and precision are the same depicts this fact.
TrueLearn predicts positively in each user’s first event because the model has no infor-
mation to base the prediction on and, hence, uses the initial mean and variance (set as
hyperparameters) to make the first estimate [10]. This will output the same probability
value for any learner ` at time t = 1, regardless of what video fragment rx they are about
to engage with. As these models are intended to be used for recommendations, having
a t = 1 prediction that gives a uniform score for every material takes the ranking ability
away from the model. In other words, the TrueLearn INK model will rank the resources
randomly to each learner in the first event. Therefore, having the capability to estimate
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different scores to different materials in the first step will definitely help a recommender, as
it allows ranking materials. Table 3 and Figure 9 further confirm that TrueLearn PINK is
capable of scoring different video fragments rx differently when t ∈ tsmall, and is capable
of practically ranking materials in the system while gaining performance.

4.4. Opportunities and Limitations

As Section 4 suggests, TrueLearn INK and TrueLearn PINK bring significant per-
formance gains over the baseline recommendation systems by combining the content
popularity, learner interests, and novelty and knowledge factors together (as per Figure 1).
The proposed Bayesian models learn rapidly with a very small number of events, making
them data efficient. They also exclusively rely on the individual learners’ data, making
them massively parallelisable and privacy preserving by design. In a new age where OERs
can be resourced for personalised education at a global scale, the data efficiency, privacy,
and scalability features that the TrueLearn family of models possess make it a strong candi-
date for ensuring quality education while respecting the individual liberties and rights of
global citizens. Its reliance on Wikification [32] for creating content representations also
allows scalable content annotation, which is pivotal to the process of rapidly including large
numbers of newly created materials to the OER collection, keeping it up-to-date. Wikipedia,
which is multi-lingual, cross-domain (from sciences to arts), and temporally-dynamic (up-
dating its knowledge with time), enables the building of content representation that is
robust to the evolution of universal knowledge itself [1].

The human-intuitive learner representation that all TrueLearn models maintain is
also something that is worthy of attention. Having a representation that relies on human-
intuitive symbols (Wikipedia topics in this case) allows the AI-powered system to commu-
nicate with the human user with actionable narratives [73]. Such human-intuitive learner
models have proven to be key to promoting self-reflection and meta-cognition in learn-
ers [74]. Such expressive models also pave a pathway to facilitating active thinking and
self-regulated learning [75], which are critical triggers for success in an informal, lifelong
e-learning scenario. Human intuitiveness goes far beyond presenting insights to the learner.
The presentation can be further extended to a two-way communication channel between
the human learner and the AI system. Users could theoretically check the latent variables
of TrueLearn models to understand what the model believes about them, encouraging the
users to intervene and change the model’s perception (e.g., by correcting and repositioning
skill/interest parameters for different KCs). The same is applicable to controlling the
ensemble of hypotheses that formulate the final prediction, as it gives the user agency to
decide what drives their recommender system. For instance, the learner could decide to
weight their interest more than the knowledge state, depending on their immediate needs.
In summary, the transparent representations allow for the development of different levels
of human-in-the-loop AI within the recommender [76]. In the eyes of policy makers and
scientists, such transparency can serve as a powerful diagnostic tool that will allow for the
scrutinisation of the model’s assumptions and incorporating other non-technical features,
such as explainability, accountability, and fairness, which are essential for a global-scale
educational recommender that can shape the future of the broader world population.

While TrueLearn is developing in a promising direction, it has limitations that demand
attention. While TrueLearn proves excellent in predicting the engagement of learners,
engaging with learning materials does not explicitly translate into users acquiring new
knowledge or attaining learning gains, which is the key objective of learning. While
learner engagement correlates with learning gains [77], explicit question answering is the
obvious way to verify knowledge; however, it is not a feature of the TrueLearn model at
this time. The immaturity of automatic question generation models partly contributes to
this limitation. In addition, current TrueLearn models assume that the KCs they model are
independent from each other, despite Wikipedia-based KCs being semantically related [78].
This is a major weakness of the model assumptions that needs to be addressed in future
work. While video-watching time is used by TrueLearn, many other interaction patterns
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(e.g., pausing, replaying, and skipping ahead) that carry stronger signals of engagement
are not used. TrueLearn’s ability to work with non-video OERs (PDFs and interactive
materials) is also not developed.

5. Conclusions

This work marks a step towards creating integrative educational recommendation
systems that can account for different aspects when predicting learner engagement by
modelling the user state. We hypothesise that this can not only improve predictive per-
formance by considering the multiple factors involved in engagement but could also help
improve the explainability of recommendations. We make multiple model contributions:
(i) TrueLearn Interest, a competitive learner interest representation; (ii) TrueLearn INK, an
integrative learner model that accounts for learner interest, and novelty and knowledge;
and (iii) TrueLearn PINK, which uses a population-based prior to address the cold-start
problem in educational recommendation processes. Our extensive experiments show that
the proposed models significantly improve on the competitive baselines while retaining
the important qualities of a lifelong-learning educational recommender, such as scalabil-
ity, data efficiency, and transparency. Experiments with interest models suggest that the
Gaussian-based TrueLearn Interest model is most suitable. Experiments with combining
two independent TrueLearn models also lead to a significant improvement of predictive
performance over using the models in isolation. We also observe that meta-learner-based
ensemble approaches tend to perform better among different combining techniques. The
proposed meta-TrueLearn, an online Bayesian probit regression scheme, exhibits the best
predictive performance among the TrueLearn INK and PINK models. The analysis of
this model shows that the ensemble model improves overall performance by significantly
improving accuracy and precision while sacrificing some recall. Further experiments in
combining the population-based engagement predictor as a prior for cold-start scenarios
show that the combined TrueLearn PINK model can push the accuracy and precision of the
model further than TrueLearn INK.

Empowering educational recommendation technology still has much scope for further
development. Running extensive experiments on how to incorporate semantic relatedness
between KCs is our immediate priority. Additional model assumptions, such as interest
dynamics and forgetting [79], also need to be explored and accounted for. Another major
missing piece that will truly boost the utility of the TrueLearn recommender is developing
how the model can interface with human users to become a truly collaborative/cooperative
AI rather than a prescriptive one. Finally, implementing the recommender to drive OER-
based learning platforms, such as X5Learn [21], will allow us to run larger scale, in-the-wild
user studies while also focusing on much needed extensions, such as working with non-
video materials and scalable question generation for personalised testing. We strongly
believe that TrueLearn, when further enriched as discussed above, could help deliver
equitable personalised online education.
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