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In this paper we study the convergence of monotone P1 finite element methods for fully nonlinear
Hamilton–Jacobi–Bellman equations with degenerate, isotropic diffusions. The main result is strong
convergence of the numerical solutions in a weighted Sobolev space L2(H1

g (W)) to the viscosity solution
without assuming uniform parabolicity of the HJB operator.
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1. Introduction

Hamilton-Jacobi-Bellman (HJB) equations characterise the value functions of optimal control prob-
lems. For a wide range of control problems one can compute optimal control policies from the partial
derivatives of the value function.

An important tool in the analysis of HJB equations and their numerical approximations is the con-
cept of viscosity solutions. Its definition is based on sign information on function values of candidate
solutions, leading typically to proofs of L• convergence of numerical methods, cf. Barles & Sougani-
dis (1991). It is more difficult to prove convergence in other norms if solely the concept of viscosity
solutions is used.

The approach with weak solution, familiar from semilinear differential equations, in the context of
Hamilton-Jacobi-Bellman equations is delicate because often uniqueness cannot be ensured. However,
we believe that combining the notions of viscosity and weak solution is attractive for numerical analysis:
the former to deal with uniqueness and the latter to study convergence of partial derivatives.

In Jensen & Smears (2013) the uniform convergence of P1 finite element approximations to the
viscosity solutions of isotropic, degenerate parabolic HJB equations was shown. In addition L2(H1)
convergence was demonstrated, under the assumption that the HJB equation is uniformly parabolic.
In this paper we remove the assumption of uniform parabolicity and verify that strong convergence in
weighted L2(H1

g ) spaces can be maintained, see Theorem 7.1 below. Also a condition in (Jensen &
Smears , 2013, Assumption 7.1) that the d-dimensional Lebesgue measure of the boundary of the zero
level set of the value function has to vanish is not needed anymore.

Our approach uses coercivity properties of the HJB operator. An alternative technique to control
derivative terms is proposed in Smears & Süli (2014), where HJB equations satisfying Cordes condi-
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tions are discretised. A general review of the recent advances in the discretisation of fully nonlinear
equations is given in Feng, Glowinsky & Neilan (2013).

In Section 2 we introduce the Bellman equation, while in Section 3 the numerical method is defined.
Section 4 is concerned with uniform convergence to the value function. In Section 5 a nonlinear pro-
jection operator is constructed and analysed, which preserves positivity and boundary conditions of the
viscosity solution. Section 6 is concerned with the coercivity of the continuous and discrete Bellman
operators. The main result of strong convergence in a weighted Sobolev space is proved in Section 7.
Finally, in Section 8 assumptions of the prior analysis are translated into concrete parameter values for
the method of artificial viscosity.

2. Problem statement

Let W be a bounded polygonal domain in Rd , d > 2. Let A be a compact metric space and let

A !C(W)⇥C(W ,Rd)⇥C(W)⇥C(W), a 7! (aa ,ba ,ca , f a)

be continuous, such that the families of functions {aa}a2A, {ba}a2A, {ca}a2A and { f a}a2A are equi-
continuous. Consider the bounded linear operators

La : H2(W)! L2(W), w 7! �aa Dw+ba ·—w+ ca w, a 2 A.

We assume that aa > 0, i.e. that all La are of degenerate elliptic. Similarly, we require that ca > 0.
Furthermore, suppose that pointwise f a > 0. Observe that

sup
a2A

k(aa ,ba ,ca , f a)kC(W)⇥C(W ,Rd)⇥C(W)⇥C(W) < •, (2.1)

and also supa2A kLakH2(W)!L2(W) <•. Let the final-time data vT 2C(W) be non-negative, that is vT > 0
on W , and let vT satisfy homogeneous boundary conditions on ∂W . For smooth w, let

Hw := sup
a
(La w� f a),

where the supremum is applied pointwise. The HJB equation considered is

�∂t v+Hv = 0 in WT := (0,T )⇥W , (2.2a)
v = 0 on (0,T )⇥∂W , (2.2b)

v = vT on {T}⇥W . (2.2c)

DEFINITION 2.1 (Barles & Perthame (1988); Fleming & Soner (2006)) An upper semi-continuous
(lower semi-continuous) function v : [0,T ]⇥W !R is a viscosity subsolution (supersolution) of

�∂t v+Hv = 0 on WT , (2.3)

if for any w 2C•(R⇥Rd) such that v�w has a strict local maximum (minimum) at (t,x) 2 (0,T )⇥W
with v(t,x) = w(t,x), gives �∂tw(t,x)+Hw(t,x)6 0, (greater than or equal to 0). If v 2C([0,T ]⇥W)
is both a viscosity subsolution and a supersolution of equation (2.3), then v is called a viscosity solution.

The viscosity solution of (2.2) is understood to be a viscosity solution of the PDE (2.2a), in the
sense of Definition 2.1, that satisfies pointwise the boundary conditions (2.2b) and (2.2c). Owing to the
definition of viscosity solutions, v is a continuous function.
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3. The numerical scheme

Let Vi, i 2N, be a sequence of piecewise linear, conforming, shape-regular finite element spaces with
nodes y`i . Here ` is the index ranging over the nodes of the finite element mesh Ti. Let V 0

i ⇢ Vi be
the subspace of functions which satisfy homogeneous Dirichlet conditions on ∂W . It is convenient to
assume that y`i 2 W for ` 6 Ni := dimV 0

i ; i.e. the index ` first ranges over internal nodes and then over
boundary nodes. The associated hat functions are denoted f `

i ; that is f `
i 2 Vi and f `

i (y
l
i) = 1 if l = `,

otherwise f `
i (y

l
i) = 0. Set f̂ `

i := f `
i /kf `

i kL1(W). Thus, the f `
i are normalised in the L• norm whilst the

f̂ `
i are normalised in the L1 norm. The mesh size, i.e. the largest diameter of an element, is denoted Dxi.

It is assumed that Dxi ! 0 as i ! •.
Let hi be the (uniform) time step size used in conjunction with Vi, with T/hi 2N, and let sk

i be the
kth time step at the refinement level i. It is assumed that hi ! 0 as i ! •. The set of time steps is
Si :=

�
sk

i : k = 0, . . . ,T/hi
 

. Let the `th entry of diw(sk
i , ·) be

(diw(sk
i , ·))` =

w(sk+1
i ,y`i )�w(sk

i ,y
`
i )

hi
.

For each a and i, we introduce operators Ea
i and Ia

i to break La into an explicit and implicit part:

Ea
i : H2(W)! L2(W), w 7! �āa

i Dw+ b̄a
i ·—w+ c̄a

i w,

Ia
i : H2(W)! L2(W), w 7! � ¯̄aa

i Dw+ ¯̄ba
i ·—w+ ¯̄ca

i w,

with continuous

A !C(W)⇥C(W ,Rd)⇥C(W), a 7! (āa
i , b̄

a
i , c̄

a
i ),

A !C(W)⇥C(W ,Rd)⇥C(W), a 7! ( ¯̄aa
i ,

¯̄ba
i , ¯̄ca

i ).
(3.1)

It is required that c̄a
i and ¯̄ca

i are non-negative and that there is C 2R such that

kc̄a
i kL• +k ¯̄ca

i kL• 6C, 8 i 2N, 8a 2 A. (3.2)

Also, find for each i a non-negative f a
i which approximates f a : f a

i ⇡ f a . The conceptual statements
La ⇡ Ea

i + Ia
i and f a ⇡ f a

i are made precise as follows:

ASSUMPTION 3.1 For all sequences of nodes (y`i )i2N, where in general `= `(i) depends on i:

lim
i!•

sup
a2A

���aa �
�
āa

i (y
`
i )+ ¯̄aa

i (y
`
i )
���

L•(supp f̂ `
i )
+
��ba �

�
b̄a

i + ¯̄ba
i
���

L•(W ,Rd)

+
��ca �

�
c̄a

i + ¯̄ca
i
���

L•(W) +
�� f a � f a

i
��

L•(W)

�
= 0.

Let h·, ·i denote the standard inner product for both of the spaces L2(W) and L2(W ,Rd), the two
cases being distinguished by the arguments of the inner product. Consider the following discretisation
of Ea

i and Ia
i by operators Ea

i and I
a
i that map H1(W) toRNi : for w 2 H1(W), ` 2 {1, . . . ,Ni = dimV 0

i },

(Ea
i w)` := āa

i (y
`
i )h—w,—f̂ `

i i+ hb̄a
i ·—w+ c̄a

i w, f̂ `
i i, (3.3a)

(Iai w)` := ¯̄aa
i (y

`
i )h—w,—f̂ `

i i+ h ¯̄ba
i ·—w+ ¯̄ca

i w, f̂ `
i i, (3.3b)

(Fa
i )` := h f a

i , f̂ `
i i. (3.3c)
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Throughout this work, we identify E
a
i and I

a
i , when restricted to Vi, with their matrix representations

with respect to the nodal basis
�

f `
i
 
`. Under this basis, the nodal evaluation operator w 7! w(y`i ) corre-

sponds to the identity matrix Id.
We now define the numerical scheme for (2.2). Obtain the numerical solution vi(T, ·) 2V 0

i by nodal
interpolation of vT . Then, for each k 2 {0, . . . ,T/hi �1}, the numerical solution vi(sk

i , ·) 2V 0
i is defined

inductively by

�divi(sk
i , ·)+ sup

a2A

�
E

a
i vi(sk+1

i , ·)+ I
a
i vi(sk

i , ·)�F
a
i
�
= 0. (3.4)

4. Review of monotonicity and uniform convergence

The proof of gradient convergence in weighted spaces, given in Section 7, is based on the non-negativity
of numerical solutions and uniform convergence to the viscosity solution.

ASSUMPTION 4.1 For each a 2A, assume that Ea
i , restricted to Vi, has non-positive off-diagonal entries.

Let hi be small enough so that hiE
a
i � Id is monotone for every a , i.e. so that all entries of all hiE

a
i � Id

are non-positive. For each a , suppose that for all v 2Vi such that v has a non-positive local minimum at
the internal node y`i , we have (Iai v)` 6 0.

It was shown in (Jensen & Smears , 2013, Theorem 3.1) that Assumption 4.1 implies the existence
of a unique numerical solution vi of (3.4) and that vi is non-negative.

Let t =Jsk
i +(1�J)sk+1

i 2 [sk
i ,s

k+1
i ] lie between two time steps, J 2 [0,1]. Then we interpret vi(t, ·)

as the linear interpolant between vi(sk
i , ·) and vi(sk+1

i , ·):

vi(t, ·) = Jvi(sk
i , ·)+(1�J)vi(sk+1

i , ·). (4.1)

ASSUMPTION 4.2 The Hamilton–Jacobi–Bellman problem (2.2) has a unique viscosity solution v and

lim
i!•

kvi � vkL•(WT ) = 0. (4.2)

In Jensen & Smears (2013) it was demonstrated that Assumption 4.2, that is uniform convergence,
holds if the following conditions are satisfied:

1. Orthogonal projection: Suppose there exist linear mappings Pi : C([0,T ],H1(W)) ! [0,T ]⇥Vi
which satisfy for all f̂ `

i 2V 0
i

h—Piw(t, ·),—f̂ `
i i= h—w(t, ·),—f̂ `

i i, 8t 2 [0,T ], (4.3)

and there is a constant C > 0 such that for every w 2C•(Rd) and i 2N,

kPiwkW 1,•(W) 6CkwkW 1,•(W) and lim
i!•

kPiw�wkW 1,•(W) = 0. (4.4)

2. Boundary control: For each a 2 A, we define va
i : Si ! V 0

i to be the numerical solution of the
linear evolution problem associated to the control a with homogeneous Dirichlet conditions:
va

i (T, ·) = vi(T, ·) is the interpolant of vT , and for each k 2 {0, . . . ,T/hi �1},

(hiI
a
i + Id)va

i (s
k
i , ·) =�(hiE

a
i � Id)va

i (s
k+1
i , ·)+hiF

a
i . (4.5)
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Suppose that for each (t,x) 2 [0,T ]⇥∂W

inf
a2A

sup
(sk

i ,y
`
i )!(t,x)

limsup
i!•

va
i (s

k
i ,y

`
i ) = 0,

where the supremum is taken over the set of all sequences of nodes which converge to (t,x).

3. Comparison: Let v be a lower semi-continuous supersolution with v(T, ·) = vT and v|[0,T ]⇥∂W = 0.
Similarly, let v be an upper semi-continuous subsolution with v|[0,T ]⇥∂W = 0 and v(T, ·) = vT .
Then v 6 v.

5. Projection into the approximation space

For shorthand, let W = W 1,d+1+e(WT )\ L2((0,T ),H1
0 (W)) ⇢ C(WT ) with e > 0. We also use the

discrete spaces
Wi := {v 2C([0,T ],V 0

i ) : v|[sk
i ,s

k+1
i ]⇥W is affine in time},

which means that functions in Wi have the form of (4.1) between two time-steps. Observe that Wi ⇢W
for all i 2N.

We introduce the cut-off operation

Ci : W !W, w 7! max{w�kv� vikL•(WT ),0}.

Furthermore, we denote the nodal interpolant from W onto Wi by Ii, meaning that Iiw(sk
i ,y

`
i ) =

w(sk
i ,y

`
i ) at all time steps sk

i and spatial nodes y`i . Finally we define Qi = Ii �Ci. Thus Qi is a mapping
of the type W ! Wi. Observe that Qiv 2 Wi satisfies homogeneous boundary conditions. Furthermore,
from Civ 6 vi and the monotonicity of the nodal interpolation operator it follows that Qiv 6 vi. The
stability of the max operation and Ii gives, cf. (Ern & Guermond , 2004, Corollary 1.110) with ` = 0
and p = d +1+ e ,

kQivkW . kvkW ,

kQiv(T, ·)kL•(W) . kv(T, ·)kL•(W).
(5.1)

LEMMA 5.1 Suppose that v 2 W . The sequence Qiv consists of non-negative functions, satisfying
homogeneous Dirichlet boundary conditions and Qiv 6 vi. Moreover, the sequence converges strongly
in W and L•(WT ) to v.

Proof. The convergence of Qiv to v in W remains. We break the proof into two steps by means of the
triangle inequality:

kQiv� vkW 6 kQiv�IivkW +kIiv� vkW .

Step 1. Observe that
v�Civ = min{kv� vikL•(WT ),v}.

Thus kv�CivkL•(WT ) ! 0 as i ! •. Moreover, denoting the gradient in time and space by —(t,x) ,

k—(t,x) (v�Civ)kLd+1+e (WT )
= k—(t,x)vkLd+1+e (Gi)

,

where Gi = {x2WT : v(x)2 (0,kv�vikL•(WT ))} as we have —(t,x) (v�Civ)= 0 in WT \Gi. Because
T

i Gi =
/0 it follows that kv�CivkW ! 0 as i ! •. Hence, owing to (5.1), kQiv�IivkW = kIi(Civ� v)kW
vanishes as i ! •.
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Step 2. Let d > 0. Recalling the density of smooth functions in W there is a vd 2C•(WT ) such that
kvd � vkW 6 d . For t 2 [0,T ] we know (Ern & Guermond , 2004, Corollary 1.110) that

kIivd (t, ·)� vd (t, ·)kW 1,d+1+e (W) . Dxikvd (t, ·)kW 2,d+1+e (W).

and similarly for x 2 Ti

kIivd (·,x)� vd (·,x)kW 1,d+1+e ([0,T ]) . hikvd (·,x)kW 2,d+1+e ([0,T ]).

We conclude that for i sufficiently large

kIiv� vkW 6 kIi(v� vd )kW +kIivd � vdkW +kvd � vkW . d ,

using once again (5.1). ⇤
We shall also require a super-approximation result on nodal interpolation in weighted Sobolev

spaces. We cite Theorem 2.1 in Demlow, Guzman & Schatz (2011), with the notation adapted to
this paper.

LEMMA 5.2 Let T be a mesh element with diameter Dx 6 1 and I be the nodal interpolation operator
of T . Given g 2W 2,•(T ) there exists a value K, depending on kgkW 2,•(T ) and the shape regularity of T
and the dimension d, such that for affine functions w

kg2w�I (g2w)kH1(T ) 6 KDx
�
k—(gw)kL2(T ) +kwkL2(T )

�
.

6. Coercivity properties of the Hamilton–Jacobi–Bellman operator and its discretisation

Owing to the non-negativity of v, for each â 2 A, we formally have for the exact solution

∂t v+ sup
a
(La v� f a) = 0 =) ∂t v+Lâ v 6 f â =) h∂t v,vi+ hLâ v,vi6 h f â ,vi. (6.1)

Furthermore, if there exists an â 2 A such that aâ 2 W 2,•(W) and câ � 1
2 (— · bâ +Daâ) > 0 we have

for w 2 H1
0 (W)

hLâ w,wi= haâ —w,—wi+ h(câ � 1
2 (— ·bâ +Daâ))w,wi, (6.2)

thus giving in combination with (6.1) control on v in a Sobolev space weighted by aâ . We intend to build
the gradient convergence proof upon a bound similar to (6.1), with the differential operator replaced by
its discretisation and v by vi �Qiv.

Fix an arbitrary a 2 A. It is useful to view E
a
i and I

a
i as bilinear forms on H1(W)⇥Vi. Functions

u 2Vi have the nodal representation

u(y) = Ầu(y`i )f `
i (y).

To test with functions other than f̂ `
i we introduce the following bilinear form as a partially discrete

operation: for w 2 H1(W) and u 2Vi

hhEa
i w,uii := Ầu(y`i )

�
āa

i (y
`
i )h—w,—f `

i i+ hb̄a
i ·—w+ c̄a

i w,f `
i i
�
.
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We use the corresponding interpretation for hhIai w,uii and also

hhw,uii= hhIdw,uii= Ầw(y`i )u(y`i )kf `
i kL1(W),

hhFa
i ,uii= Ầu(y`i )h f a

i ,f `
i i= h f a

i ,ui.

Let H1
g (W) be the closure of C•

0 (W) in the norm

kvk2
g :=

Z

W
v2g dx+

Z

W
|—v|2g dx,

where g : W ! R is a non-negative L•(W) function. We write H1
a(W) as abbreviation of H1

aa (W) and
H1

i (W) for H1
gi
(W) where gi is a weight depending on i 2N.

We now formulate a discrete analogue of (6.1) with (6.2): Consider that there exists an a 2 A and
weights gi and a C0 > 0 such that for all i 2N

|w|2L2((0,T ),H1
i (W))

.
T
hi
�1

Â
k=0

⇣⌦⌦�
hiE

a
i � Id

�
w(sk+1

i , ·)+
�
hiI

a
i + Id

�
w(sk

i , ·),w(sk
i , ·)

↵↵⌘

+ 1
2 hhw(T, ·),w(T, ·)ii+C0kw(T, ·)k2

H1(W)
(6.3)

(⇤)
=

T
hi
�1

Â
k=0

⇣
hi
⌦⌦
E

a
i w(sk+1

i , ·)+ I
a
i w(sk

i , ·),w(sk
i , ·)

↵↵
+ 1

2 hhw(s
k+1
i , ·)�w(sk

i , ·),w(s
k+1
i , ·)�w(sk

i , ·)ii
⌘

+ 1
2 hhw(0, ·),w(0, ·)ii+C0kw(T, ·)k2

H1(W)

for all w 2Wi with w > 0 and i 2N, where (⇤) is a simple reformulation in terms of a telescope sum and

|w|2L2((0,T ),H1
i (W))

=
Z T

0

Z

W
|—w|2gi dxdt.

The bound (6.3) is a property of the numerical scheme, which should in spirit be derived analogously to
(6.1) and (6.2), once the parameters of the scheme are selected suitably. In the following Example 6.1
this derivation is shown for the fully implicit setting. In Section 8.2 the bound is established for a wider
range of explicit-implicit methods.

EXAMPLE 6.1 Suppose that there is an a 2 A such that
p

aa 2W 2,•(W) and ca � 1
2 (— ·ba +Daa)> 0.

Choosing a fully implicit scheme with Ia
i = La +2K Dxi (k

p
aakW 1,•(W) +1)D and Ea = 0, the highest

order term in hhIai w,wii is at time sk
i :

Ầw(sk
i ,y

`
i ) ¯̄aa

i (y
`
i )h—w(sk

i , ·),—f `
i i= h—w(sk

i , ·),—Ii( ¯̄aa
i (s

k
i , ·)w(sk

i , ·))i (6.4)

with w 2Wi as weight and numerical diffusion coefficient

gi := ¯̄aa
i = aa +2K Dxi (k

p
aakW 1,•(W) +1). (6.5)
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According to Lemma 5.2, for i sufficiently large,

|h—w,—Ii(aa w)i�h—w,—(aa w)i|6 k—wkL2(W) ·kIi(aa w)�aa wkH1(W)

6 K Dxi k—wkL2(W)

�
k—(

p
aa w)kL2(W) +kwkL2(W)

�
(6.6)

6 K Dxi (k
p

aakW 1,•(W) +1)kwk2
H1(W)

.

Therefore, adding and subtracting h—w,—(aa w)i from (6.4), the triangle inequality and (6.6) give
⌦⌦
I
a
i w,w

↵↵
=
�
h—w,—Ii(aa w)�h—w,—(aa w)i

�
+ h—w,—(aa w)i

+2K Dxi (k
p

aakW 1,•(W) +1)h—w,—wi+ hba ·—w+ ca w,wi

>hLa w,wi+K Dxi (k
p

aakW 1,•(W) +1)h—w,—wi> 1
2
|w|2H1

i (W) ,

implying (6.3) as the reformulation (⇤) shows. We used here that ¯̄aa
i � aa is constant and therefore

unaffected by nodal interpolation. ⇤
Due to the definition of the numerical method and the non-negativity of the vi, if (6.3) holds then

|vi|2L2(H1
i )
.

T
hi
�1

Â
k=0

⇣⌦⌦�
hiE

a
i � Id

�
vi(sk+1

i , ·)+
�
hiI

a
i + Id

�
vi(sk

i , ·),vi(sk
i , ·)

↵↵⌘

+ 1
2 hhvi(T, ·),vi(T, ·)ii+C0kvi(T, ·)k2

H1(W)

6
T
hi
�1

Â
k=0

⌦⌦
hiF

a
i ,vi(sk

i , ·)
↵↵
+ 1

2 hhvi(T, ·),vi(T, ·)ii+C0kvi(T, ·)k2
H1(W)

.(T k f a
i kL1(W) +1)kvikL•([0,T ]⇥W) +C0kvi(T, ·)k2

H1(W), . (6.7)

Using stability of nodal interpolation to bound kvi(T, ·)kH1(W) in terms of the final time data, we see that
(6.3) guarantees stability in the L2(H1

i )-norm.

7. Weighted gradient convergence

The following theorem is the main result of the paper. It lists three assumptions: the first, on the second
derivatives of

p
āa

i and
p

¯̄aa
i , is needed for the application of Lemma 5.2, the second for (7.5) and the

third in (7.2).

THEOREM 7.1 Suppose the value function v belongs to the space W and there is an a 2 A and weights
g,gi 2 L•(W), i 2N, such that

1. k
p

āa
i kW 2,•(W) and k

p
¯̄aa
i kW 2,•(W) are uniformly bounded in i,

2. there is a C > 0 such that āa
i 6Cgi and ¯̄aa

i 6Cgi for all i 2N,

3. the coercivity condition (6.3) and g . gi are satisfied for large i.

Then the numerical solutions converge to the viscosity solution v strongly in L2([0,T ],H1
g (W)).
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Proof. Step 1: Let us assume for a moment that the approximations Qiv 2Wi satisfy

T
hi
�1

Â
k=0

⌦⌦�
hiE

a
i � Id

�
Qiv(sk+1

i , ·)+
�
hiI

a
i + Id

�
Qiv(sk

i , ·),(vi �Qiv)(sk
i , ·)

↵↵
! 0. (7.1)

We discuss the validity of (7.1) in Step 2 below.
With x k = vi(sk

i , ·)�Qiv(sk
i , ·),

|vi �Qiv|2L2(H1
i )

(6.3)
.

T
hi
�1

Â
k=0

⌦⌦�
hiE

a
i � Id

�
x k+1 +

�
hiI

a
i + Id

�
x k,x k↵↵+ 1

2 hhx
T/hi ,x T/hiii+C0kx T/hik2

H1(W)

=

T
hi
�1

Â
k=0

⌦⌦�
hiE

a
i � Id

�
vi(sk+1

i , ·)+
�
hiI

a
i + Id

�
vi(sk

i , ·),x k↵↵+ 1
2 hhx

T/hi ,x T/hiii

�

T
hi
�1

Â
k=0

⌦⌦�
hiE

a
i � Id

�
Qiv(sk+1

i , ·)+
�
hiI

a
i + Id

�
Qiv(sk

i , ·),x k↵↵+C0kx T/hik2
H1(W)

(⇤)
6

T
hi
�1

Â
k=0

⌦⌦
hiF

a
i ,x k↵↵ �

T
hi
�1

Â
k=0

⌦⌦�
hiE

a
i � Id

�
Qiv(sk+1

i , ·)+
�
hiI

a
i + Id

�
Qiv(sk

i , ·),x k↵↵

+ 1
2 hhx

T/hi ,x T/hiii+C0kx T/hik2
H1(W)

, (7.2)

using in (⇤) the numerical scheme and that, due to the assumptions on the Qi, the sign of vi �Qiv is
known. Since

T
hi
�1

Â
k=0

⌦⌦
hiF

a
i ,x k↵↵6k f a

i kL2(W)

T
hi
�1

Â
k=0

hi
�
kvi(sk

i , ·)� v(sk
i , ·)kL2(W) +kv(sk

i , ·)�Qiv(sk
i , ·)kL2(W)

�

.k f a
i kL2(W)

�
kvi � vkL2(WT )

+kv�QivkL2(WT )

�
,

the first term in (7.2) vanishes as i ! •. The second term vanishes due to (7.1). For the two last terms
recall Step 2 in the proof of Lemma 5.1 and that vi is the interpolant of v at time T . Hence

|vi � v|L2([0,T ],H1
i (W)) ! 0

as i ! •.
Step 2: It remains to show (7.1). The terms connected to the time derivative in (7.1) vanish in the

limit as

T
hi
�1

Â
k=0

⌦⌦
Qiv(sk+1

i , ·)�Qiv(sk
i , ·),x k↵↵=

T
hi
�1

Â
k=0

hi
⌦⌦
(∂tQiv)|(sk

i ,s
k+1
i ),x

k↵↵

. k∂t vkL1(WT )
kx kkL•(WT ), (7.3)
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using the uniform convergence in x k. Recall that hhIai Qiv(sk
i , ·),x kii is equal to

Ầ(vi �Qiv)(sk
i ,y

`
i )
⇣

¯̄aa
i (y

`
i )h—Qiv(sk

i , ·),—f `
i i+ h ¯̄ba

i ·—Qiv(sk
i , ·)+ ¯̄ca

i Qiv(sk
i , ·),f `

i i
⌘
.

The lower-order terms vanish due to the uniform convergence of vi �Qiv to 0 and the bound

sup
i
k ¯̄ba

i ·—Qiv(sk
i , ·)+ ¯̄ca

i Qiv(sk
i , ·)kL1(W) < •.

We note that

Ầ(vi �Qiv)(sk
i ,y

`
i ) ¯̄aa

i (y
`
i )h—Qiv(sk

i ,·),—f `
i i= h—Qiv(sk

i ,·),—Ii( ¯̄aa
i (vi �Qiv))(sk

i ,·)i,

so that in (7.1) the implicit part of the second-order term becomes

T
hi
�1

Â
k=0

hi h—Qiv(sk
i , ·),—Ii( ¯̄aa

i (vi �Qiv))(sk
i , ·)i=

Z T

0
hJi—Qiv,Ji—Ii( ¯̄aa

i (vi �Qiv))idt, (7.4)

where Ji maps any w : [0,T ] ! L2(W ;Rd) onto the step function (Jiw)|[sk
i ,s

k+1
i ) ⌘ w(sk

i , ·). Observe

that Ji—Qiv converges strongly in L2(WT ;Rd). Owing to Lemma 5.2, we have the chain of inequalities

k—Ii( ¯̄aa
i x )kL2(W ;Rd) 6 k—( ¯̄aa

i x )kL2(W ;Rd) +k—( ¯̄aa
i x �Ii( ¯̄aa

i x ))kL2(W ;Rd)

6 k—( ¯̄aa
i x )kL2(W ;Rd) +K Dxi

�
k—(

p
¯̄aa
i x )kL2(W) +kxkL2(W)

�

6 (k
p

¯̄aa
i kL2(W) +K Dxi)k

p
¯̄aa
i —xkL2(W ;Rd) + (k

p
¯̄aa
i k2

H1(W)
+K Dxi)kxkL2(W)

at a time sk
i 2 [0,T ). Observe that

k
q

¯̄aa
i —xkL2(W ;Rd) . |x |H1

i (W) (7.5)

by the hypotheses of the theorem. Therefore, in combination with Assumption 4.2 as well as (5.1) and
(6.7), we obtain an L•(L2) bound over Ji—Ii( ¯̄aa

i (vi �Qiv)) in (7.4). The convergence

lim
i!•

Z T

0
hw,Ji—Ii( ¯̄aa

i (vi �Qiv))idt =� lim
i!•

Z T

0
h— ·w,JIIi( ¯̄aa

i (vi �Qiv))idt = 0

with test functions w in the dense subset C1
0(WT ;Rd) gives weak convergence of —Ii( ¯̄aa

i (vi �Qiv))
in L2(WT ;Rd), see (Yoshida , 1980, p. 121). Combining weak and strong convergence, it is ensured
that (7.4) converges to 0 as i ! •, cf. (Zeidler , 1990, Prop. 21.23). A similar argument shows that
Âk hi hhEa

i Qiv(sk+1
i , ·),x kii vanishes in the limit. Therefore we proved (7.1). ⇤

The Sobolev regularity of the value functions is for example discussed in Fleming & Soner (2006)
and Wei, Wu & Zhao (2014) and Zhou (2015).

We conclude the section with a brief sketch how the convergence of the optimal controls of the
discrete problem to the optimal controls of the continuous problem might be established on the basis of
Theorem 7.1.
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EXAMPLE 7.2 Let a0 : W ! [0,1] be a smooth, non-negative function and set a1(x) = 2a0(x) for all
x 2 W . Let B be the unit ball. We consider the equation

�vt +( sup
a2[a0(x),a1(x)]

a Dv)+ |—v|=�vt +( sup
a2[a0(x),a1(x)]

a Dv)+( sup
b2∂B

b ·—v)

=�vt + sup
(a,b )2[a0(x),a1(x)]⇥∂B

(a Dv+b ·—v) = f , (7.6)

which may degenerate where a0(x) = 0. Now let (vi)i be a sequence of finite element solutions con-
verging to the value function v as in Theorem 7.1, supposing a fully implicit time discretisation as in
Example 6.1. We may omit for this example the further specification of the problem such as the bound-
ary conditions; however, we expect that the hypotheses of Theorem 7.1 are met.

We let g = a0 and suppose that on some non-empty open set N we have the bound a0(x)> d from
below with d > 0. As —vh converges in Ld+1+e to —v on [0,T ]⇥N it follows that the piecewise linear
functions with the values h—vh, f̂ `

i i at the nodes y`i converge to —v on [0,T ]⇥N as well.
The optimal control of the first-order term at y`i is b `

i = h—vh, f̂ `
i i/|h—vh, f̂ `

i i|. If we interpret bi as
the piecewise linear function which interpolates the b `

i at the nodes, then bi converges on [0,T ]⇥N in
Ld+1+e to the optimal control —v/|—v| of the continuous problem, assuming no division by zero occurs
on N (which would correspond to the case that —v = 0 and any b 2 ∂B is an optimal control).

Described as the Bang-bang principle, one typically sees regions where the optimal control a of the
continuous problem is either equal to a0 or a1, otherwise Dv = 0 and any a 2 [a0,a1] is optimal; see
(Jensen & Smears , 2012, Section 6) for a related example. In this spirit let us suppose that there is a
non-empty open set (s, t)⇥M ⇢ [0,T ]⇥N on which a0 is the unique optimal control of the continuous
problem.

We claim that then there cannot be a non-empty open subset (sh, th)⇥Mh of (s, t)⇥M on which a1
is the optimal control of the discrete problem after sufficient refinement. More precisely we claim that
there is no (sh, th)⇥Mh such that for all nodes y`i 2 Mh and times sk

i 2 (sh, th) for all large i we have

�divi(sk
i , ·)+a1 h—vi,—f̂ `

i i= h f̂ `i , f̂ `
i i, (7.7)

where f̂ `i = f `i � |h—vh, f̂ `
i i|. Similarly, v solves on M, with f̂ (x) = f (x)� |—v(x)|, the linear equation

�vt �a0 Dv = f̂ . (7.8)

So suppose there was an Mh on which (7.7) holds. For simplicity let us assume that Mh is the union of
elements, at any level i of refinement and time sk

i ; thus the boundary of Mh consists of edges of elements.
Similarly we suppose that sh and th are discrete time steps. Then we can use vi on the boundary of
(sh, th)⇥Mh as Dirichlet data, converging in L• to v. Together with the Dirichlet data, (7.7) may be
viewed as a localised initial boundary value problem. Linear finite element analysis and ‘ f̂ `i ! f̂ ’ imply
the convergence of the vi to the solution of

�wt �a1 Dw = f̂ ,

which is different from v, giving a contradiction.

8. The method of artificial diffusion

We illustrate now a way of choosing the coefficients of Ea
i and I

a
i in order to satisfy the assumptions of

the above analysis.
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For all a 2 A we need to impose the conditions to ensure uniform convergence. For one â 2 A we
wish to enforce terms to guarantee convergence in a Sobolev space with a weight associated to Lâ .

REMARK 8.1 One could define a set B⇢A of multiple indices â for which one wishes to derive Sobolev
norm bounds, which are associated to different weights gâ and gâ

i . The analysis generalises directly.

Given a function g : W !Rd and an element K of the mesh Ti, we denote

|g|K :=
⇣ d

Â
j=1

��g j
��2

L•(K)

⌘ 1
2
.

If g is elementwise constant then |g|K is simply the Euclidean norm of g on K. Let DxK denote the
diameter of K. We assume that the meshes Ti are strictly acute, cf. Burman & Ern (2002), in the sense
that there exists J 2 (0,p/2) such that for all i 2N:

—f `
i ·—f l

i
��
K6� sin(J) |—f `

i |K |—f l
i |K 8`, l 6 dimVi, ` 6= l, 8K 2 Ti. (8.1)

We choose a splitting of the form

aa = ãa + ˜̃aa , ba = b̃a + ˜̃ba , ca = c̃a + ˜̃ca ,

which does not depend on i 2 N. It is generally necessary to add artificial diffusion to the second-
order coefficients, that means that we generally need to determine i-dependent coefficients āa

i > ãa and
¯̄aa
i > ˜̃aa . It can also be necessary to construct ¯̄ca

i > ˜̃ca . For the other lower-order terms we can use the
above splitting directly: For all i 2N set

b̄a
i = b̃a , ¯̄ba

i = ˜̃ba , c̄a
i = c̃a and also f a

i = f a ,

where all terms are in C(W), ãa and ˜̃aa are non-negative and all c̃a and ˜̃ca are non-negative and satisfy
inequality (3.2).

For instance, one could discretise symmetric terms implicitly, i.e. aa = ˜̃aa and ca = ˜̃ca , and screw-
symmetric terms explicitly, i.e. ba = b̃a . With this approach the coercivity properties of La are well
incorporated. Alternatively, if there is coercivity which is uniform in a with respect to a useful weight g ,
then it is interesting to select Iai = Ii independently of a because in this case only a linear system needs
to be solved at each time step while an O(Dxi) time-step may be preserved. We also refer to Jensen &
Smears (2012) for further illustrations of operator splittings.

To obtain uniform convergence we select the non-negative parameters n̄a
i and ¯̄na

i such that for all K
that have y`i as vertex:

�
|b̄a

i |K +DxKkc̄a
i kL•(K)

�
6 n̄a

i sin(J) |—f̂ `
i |K vol(K), (8.2a)

�
| ¯̄ba

i |K +DxKk ¯̄ca
i kL•(K)

�
6 ¯̄na

i sin(J) |—f̂ `
i |K vol(K). (8.2b)

We now turn to convergence in the weighted Sobolev norm associated with the control â . We require
that

p
ãâ ,

p
˜̃aâ 2W 2,•(W) as well as

˜̃câ � 1
2 (— · ˜̃bâ +D ˜̃aâ)> 0,

c̃â � 1
2 (— · b̃â +D ãâ)> 0, (8.3)

g := ˜̃aâ � ãâ > 0
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so that

ãâ . g and ˜̃aâ . g. (8.4)

We choose āâ
i and ¯̄aâ

i both in C(W) such that at the nodes

āâ
i (y

`
i )> ãâ(y`i )+ n̄ â

i
¯̄aâ
i (y

`
i )> ˜̃aâ(y`i )+µi

)
(8.5)

such that for large i

µi > max
n

¯̄nâ
i ,2K Dxi

⇣
3k
q

āâ
i kW 1,•(W) +k

q
¯̄aâ
i kW 1,•(W) +3

⌘
+2hik—ãa + b̃âk2

L•(W)

o
. (8.6)

Notice the recursive nature of the definition of ¯̄aâ
i which appears also on the right-hand side of (8.6).

For Dxi small enough it is clear that µi can be chosen so that is satisfies (8.6). Finally, we set

¯̄câ
i = ˜̃câ +K Dxi

⇣
k
q

āâ
i kW 1,•(W) +1

⌘
+ hi

2 kc̃âk2
L•(W). (8.7)

Note that if the diffusion and reaction terms are approximated implicitly then ¯̄câ
i = ˜̃câ . Sections 8.1 and

8.2 below show that, under suitable time-step restrictions, (8.3), (8.4) and (8.5) give convergence.

8.1 Verification of uniform convergence

Suppose that w 2Vi has a non-positive local minimum at an interior node y`i . It was shown in Jensen &
Smears (2013) that then

(Ea
i w)` 6 0, (Iai w)` 6 0, (8.8)

and, if n̄a
i and ¯̄na

i are chosen optimally, then for K 2 Ti

n̄a
i = O

�
supK

�
|b̄a

i |KDxK +kc̄a
i kL•(K)Dx2

K
 �

,

¯̄na
i = O

�
supK

�
| ¯̄ba

i |KDxK +k ¯̄ca
i kL•(K)Dx2

K
 �

.

)
(8.9)

Note that (8.9) is consistent with Assumption 3.1. We turn to time step restrictions for semi-implicit
and explicit methods which give Assumption 4.1. The non-positivity of the diagonal terms of hiE

a
i � Id

expands to

1 >hi

⇣
āa

i (y
`
i )h—f `

i ,—f̂ `
i i+ hb̄a

i ·—f `
i + c̄a

i f `
i , f̂ `

i i
⌘

=hi

⇣
O
�
āa

i Dx�2
K
�
+O

�
|b̄a

i |K Dx�1
K
�
+O

�
c̄a

i
�⌘

.

Therefore the time step restriction imposed by La is hi . infK
�
Dx2

K/āa
i (y

`
i )
�
, y`i 2 K, if there is a non-

zero ãa and i is large. It is hi . infK
�
DxK/|b̄a

i (y
`
i )|K

�
if all āa

i = 0, i 2N, and there are non-zero b̄a
i ,

and is O(1) if all āa
i and b̄a

i vanish. There is no restriction if also all c̄a
i are zero. If the scheme is fully

implicit, there are no time-step restrictions.
Assumption 4.2 holds if there is an orthogonal projection, boundary control and comparison, see

page 4. The former is essentially a quasi-uniformity assumption on the mesh, cf. Demlow, Leykekhman,
Schatz and Wahlbin (2012), the latter two on the boundary value problem. In fact, the comparison
principle is one of the building blocks in the theory of viscosity solutions.
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8.2 Verification of Sobolev convergence

The main step of this section is the proof that (6.3) is satisfied. We begin with the examination of the
explicit terms. With wk+1 = w(sk+1

i , ·) and wk = w(sk
i , ·),

⌦⌦
E

â
i wk+1,wk↵↵= h—wk+1,—Ii(āâ

i wk)i+ hb̃â ·—wk+1 + c̃â wk+1,wk+1 +(wk �wk+1)i, (8.10)

using the interpolation operator as in (6.4). We also find, as in (6.6), for large i

|h—wk+1,—Ii(āâ
i wk)i�h—wk+1,—āâ

i wki|6 K Dxi
���
q

āâ
i
��

W 1,•(W) +1
�
|wk+1|H1(W) kwkkH1(W).

Therefore,

h—wk+1,—Ii(āâ
i wk)i>

�
h—wk+1,—Ii(āâ

i wk)i�h—wk+1,—āâ
i wki

�
+ h—wk+1,—āâ

i wki
> h—wk+1, āâ

i —wki+ h—wk+1,wk+1—āâ
i i+ h—wk+1,(wk �wk+1)—āâ

i i

�K Dxi
���
q

āâ
i
��

W 1,•(W) +1
�
|wk+1|H1(W) kwkkH1(W).

Recalling (8.3) and using that ãâ � āâ
i is constant, we see that

h—wk+1,wk+1—āâ
i i+ hb̃â ·—wk+1 + c̃â wk+1,wk+1i= h(c̃â � 1

2 (— · b̃â +D ãâ))wk+1,wk+1i> 0.

Now

|h(—āâ
i + b̃â) ·—wk+1 + c̃â wk+1,wk �wk+1i|

6 hi
2
�
k—ãa + b̃âk2

L• k—wk+1k2
L2 +kc̃âk2

L• kwk+1k2
L2

�
+ 1

2hi
kwk �wk+1k2

L2

6 hi
2
�
k—ãa + b̃âk2

L• k—wk+1k2
L2 +kc̃âk2

L• kwk+1k2
L2

�
+ 1

2hi

⌦⌦
wk �wk+1,wk �wk+1↵↵

where we can use Jensen’s inequality as Â` f `
i (x) = 1 is a convex combination:

kwk �wk+1k2
L2 =

Z

W

⇣
Ầ
�
wk(y`i )�wk+1(y`i )

�
f `

i (x)
⌘2

dx

6
Z

W
Ầ
�
wk(y`i )�wk+1(y`i )

�2f `
i (x)dx =

⌦⌦
wk �wk+1,wk �wk+1↵↵.

We summarise

⌦⌦
E

â
i wk+1,wk↵↵> � 1

2

��
q

āâ
i —wk+1

��2
L2 � 1

2

��
q

āâ
i —wk

��2
L2 � 1

2hi

⌦⌦
wk �wk+1,wk �wk+1↵↵

�K Dxi
���
q

āâ
i
��

W 1,•(W) +1
�� 1

2 |w
k+1|2H1(W)

+ 1
2kwkk2

H1(W)

�
(8.11)

� hi
2
�
k—ãa + b̃âk2

L•(W) k—wk+1k2
L2(W)

+kc̃âk2
L•(W) kwk+1k2

L2(W)

�
.

Now to the implicit terms. Recall (8.7), where ¯̄câ
i is increased compared to ˜̃câ to provide additional

control with the L2 scalar product. Also compare (8.6) with the artificial diffusion introduced in (6.5).
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Then, as in Example 6.1, for large i,
⌦⌦
I
â
i wk,wk↵↵> h ˜̃aâ Dwk,Dwki+ h( ˜̃câ � 1

2 (— · ˜̃bâ +D ˜̃aâ))wk,wki (8.12)

+
⇣

K Dxi

⇣
3k
q

āâ
i kW 1,•(W) +k

q
¯̄aâ
i kW 1,•(W) +3

⌘
+hik—ãa + b̃âk2

L•(W)

⌘
h—wk,—wki

+
⇣

K Dxi

⇣
k
q

āâ
i kW 1,•(W) +1

⌘
+hikc̃âk2

L•(W)

⌘
hwk,wki.

We observe that nearly all terms on the right-hand side of (8.11) can be bounded by corresponding terms
in (8.12) of time k or k+1, also owing to (8.3). The exception are hhwk �wk+1,wk �wk+1ii and when
w is evaluated at the final time. For the former we point to the occurrence of this term in (6.3). For the
latter we choose C0 such that

C0kwT/hik2
H1(W) > 1

2

��
q

āâ
i —wT/hi

��2
L2(W) +

K Dxi
2

���
q

āâ
i
��

W 1,•(W) +1
�
|wT/hi |2H1(W)

+hik
pgi—wT/hik2

L2(W)

+ hi
2
�
k—ãa + b̃âk2

L•(W) k—wT/hik2
L2(W)

+kc̃âk2
L•(W) kwT/hik2

L2(W)

�
.

Then we obtain (6.3) with gi = g + µi
3 :

T
hi
�1

Â
k=0

⇣
hi
⌦⌦
E

a
i wk+1 + I

a
i wk,wk↵↵+ 1

2 hhw
k+1 �wk,wk+1 �wkii

⌘
+ 1

2 hhw
0,w0ii+C0kwT/hik2

L2(W)

>
T
hi

Â
k=0

⇣
hihgi—wk,—wki

⌘
+ 1

2 hhw
0,w0ii> |w|2L2((0,T ),H1

i (W))
,

where the last inequality follows because the composite trapezium rule is exact for functions in Wi.
Finally, observe that g . gi and that by (8.4) there is a C > 0 such that āa

i 6 Cgi and ¯̄aa
i 6 Cgi for all

i 2N, as required in the statement of Theorem 7.1.
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I. Smears, E. Süli, Discontinuous Galerkin finite element approximation of Hamilton–Jacobi–Bellman equations
with Cordes coefficients, in SIAM Journal on Numerical Analysis. 52 (2014), pp. 993–1016.

L. Wei, Z. Wu, H. Zhao, Sobolev Weak Solutions of the Hamilton–Jacobi–Bellman Equations, in SIAM Journal on
Control and Optimization. 52 (2014), pp. 1499–1526.

K. Yosida, Functional Analysis, 6th ed., Springer, New York, 1980.
E. Zeidler, Nonlinear functional analysis and its applications II, Springer, New York, 1990.
W. Zhou, Interior Regularity of Fully Nonlinear Degenerate Elliptic Equations I: Bellman Equations with Constant

Coefficients, in SIAM J. Math. Anal. 47 (2015), pp. 2375–2415.


