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Abstract

Understanding how learning changes during human development has been one of the

long-standing objectives of developmental science. Recently, advances in computa-

tional biology have demonstrated that humans display a biaswhen learning to navigate

novel environments through rewards and punishments: they learn more from out-

comes that confirm their expectations than fromoutcomes that disconfirm them.Here,

we ask whether confirmatory learning is stable across development, or whether it

might be attenuated in developmental stages inwhich exploration is beneficial, such as

in adolescence. In a reinforcement learning (RL) task, 77 participants aged 11–32 years

(four men, mean age = 16.26) attempted to maximize monetary rewards by repeat-

edly sampling different pairs of novel options,which varied in their reward/punishment

probabilities. Mixed-effect models showed an age-related increase in accuracy as long

as learning contingencies remained stable across trials, but less so when they reversed

halfway through the trials. Agewas also associatedwith a greater tendency to staywith

an option that had just delivered a reward, more than to switch away from an option

that had just delivered a punishment. At the computational level, a confirmationmodel

provided increasingly better fit with age. This model showed that age differences are

captured by decreases in noise or exploration, rather than in themagnitude of the con-

firmation bias. These findings provide new insights into how learning changes during

development and could help better tailor learning environments to people of different

ages.
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Research Highlights

∙ Reinforcement learning shows age-related improvement during adolescence, but

more in stable learningenvironments comparedwith volatile learningenvironments.

∙ People tend to stay with an option after a win more than they shift from an option

after a loss, and this asymmetry increases with age during adolescence.

∙ Computationally, these changes are captured by a developing confirmatory learning

style, inwhich people learnmore fromoutcomes that confirm rather thandisconfirm

their choices.

∙ Age-related differences in confirmatory learning are explained by decreases in

stochasticity, rather than changes in themagnitude of the confirmation bias.

1 INTRODUCTION

Confirmation biases involve the tendency to assign greater weight

to confirmatory than disconfirmatory evidence (Nickerson, 1998).

Confirmation biases are amongst the most well-researched biases in

cognitive science (Benjamin, 2019) and have been shown to affect

social judgements (Snyder et al., 1978), investments (Park et al.,

2013), medical diagnoses (Mendel et al., 2011) and information bub-

bles (Knobloch-Westerwick et al., 2020), among many other domains.

Recently, computational approaches have demonstrated that a form

of confirmation bias can also affect how an individual’s behaviour is

shaped by rewards and punishments, one of the building blocks of

learning, known as reinforcement learning (RL). Indeed, studies have

shown that, as agents learn to navigate novel environments through

reward and punishment, they tend to learn more from outcomes

that confirm their choices, than from outcomes that disconfirm their

choices, a phenomenon called choice confirmation bias, or confirmatory

learning (Palminteri & Lebreton, 2022, for a review). Choice confirma-

tion bias has been observed in human adults (Palminteri et al., 2017),

adolescents (e.g.,Nussenbaumet al., 2021;Xia et al., 2021) andchildren

(Habicht et al., 2021), aswell as rodents (Ohtaet al., 2021) andmonkeys

(Farashahi et al., 2019), and in many different learning environments

(Lefebvre et al., 2022; Tarantola et al., 2021). Despite these advances,

the developmental trajectories of confirmatory RL remain unclear. It is

possible that confirmatory RL is attenuated during stages of develop-

ment in which more exploratory learning styles are beneficial, such as

adolescence. The current study aimed to address this proposal.

Adolescence, defined as the age between 10 and 24 (Sawyer et al.,

2018), is considered a sensitive period of development (Fuhrmann

et al., 2015; Laube et al., 2020), in which developmental changes in the

brain and the mind enable and motivate individuals to become inde-

pendent from their caregivers, by exploring new activities and social

environments as opposed to confirming (building upon) pre-existing

ones. In addition, adolescents have less experience than adults on

which to base their beliefs, preferences and confirmation biases (in

Bayesian terminology, they have broader priors) (Tenenbaum et al.,

2011). For example, relative to adults, adolescents tend to be less cer-

tain about their preferences (Reiter et al., 2021), displaymore variance

in their choices (Ciranka & van den Bos, 2021; Martin et al., 2018)

and are more tolerant to making decisions under ambiguity (Tymula

et al., 2012; van den Bos & Hertwig, 2017). In parallel, across cul-

tures, sensation seeking shows a quadratic developmental trajectory,

increasing in the teenage years and peaking in the late teens, then

decreasing in early adulthood (Steinberg et al., 2018). Other learning-

related processes, such as non-verbal reasoning (Chierchia et al., 2019)

and inhibitory control (Constantinidis & Luna, 2019), also develop dur-

ing adolescence, thoughmore linearly or asymptotically. These findings

are consistent with the notion that adolescence is characterised by a

transition between more exploratory and more confirmatory learning

styles (Conway, 2020; Frankenhuis&Walasek, 2020;Giron et al., 2022;

Gopnik, 2020).

In line with this, studies have demonstrated that adults are less

exploratory or less ‘noisy’ in their RL behaviour than adolescents aged

12–18 years (Bolenz et al., 2017; Nussenbaum & Hartley, 2019, for

reviews). Frequently, this has been associated with the notion that

adolescents generally perform worse than adults in RL. However, in

contrast to this, recent studies have also pointed to possible advan-

tages of heightenedexplorationduring adolescence. These studies sug-

gest that such adolescent advantages can particularly emerge in more

volatile environments in which flexibility is more useful (Eckstein et al.,

2022; Lloyd et al., 2021). This raises the question of whether such age-

relateddifferences inRL could be explainedby changes in confirmatory

learning. To assess this, we investigated whether certain behavioural

patterns of confirmatory learning become more pronounced with age

between early adolescence and early adulthood. In particular, previous

work (Lefebvre et al., 2022; Palminteri et al., 2017) has shown that,

in adults, confirmation bias is associated with three behavioural pat-

terns that can be detected through three different RL environments.

In addition to these, we propose a fourth behavioural pattern, which

is associated with confirmatory learning across these environments.

Below we illustrate these patterns of confirmatory learning, at the

behavioural and computational levels.
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1.1 Confirmatory reinforcement learning –
behavioural level

First, choice confirmation bias predicts better performance in a num-

ber of RL environments (Chambon et al., 2020; Lefebvre et al., 2022;

Tarantola et al., 2021). While this sounds counterintuitive, it has been

suggested that psychologically inflating confirmatory evidence can

serve to buffer the impact of noise on decision-making (Lefebvre et al.,

2022;Qiu et al., 2020), possibly preserving against excessive self-doubt

or uncertainty. In particular, simulations suggest that confirmation

bias is especially advantageous in certain stable (henceforth stationary)

learning environments (Lefebvre et al., 2022), that is, environments in

which learning contingencies do not change. This could occur because,

in stationary learning environments, past outcomes (i.e., the evidence

history) are, by definition, more predictive of future outcomes and

should allow people to generate more reliable priors (one’s current

belief about the probability distribution of future outcomes before any

further evidence is sampled). Over-emphasizing outcomes that con-

firm one’s choices could, therefore, be adaptive if those outcomes are

noisy or probabilistic but stationary. The hypothesis that confirmatory

learning increases with age during adolescence is consistent with the

frequently observed positive association between age and RL accuracy

(see Bolenz et al., 2017 andNussenbaum&Hartley, 2019, for reviews).

Second, by the same reasoning, the advantages of confirmation bias

on performance are reducedwhen learning contingencies change, that

is, in more volatile environments (Lefebvre et al., 2022; Palminteri

et al., 2017). In such cases, confirmatory learning could instead serve

to momentarily decrease performance. For example, if a previously

advantageous option becomes suddenly disadvantageous, a higher

confirmation bias could lead one to initially discount the disconfirma-

tory evidence incurred when contingencies change, leading to some

perseveration in selecting options that are no longer advantageous

(e.g., a greater lag in reversal learning). In other words, while confirma-

torybias can lead to faster learning in stationary learningenvironments

that can result in greater overall performance, it can also result in

a greater negative impact (or ‘harder crash’) on performance when

contingencies change. This prediction is consistent with recent find-

ings that age-related benefits are largely reduced, and can be even

reversed, in more volatile environments (Eckstein et al., 2022; Lloyd

et al., 2021).

Third, confirmation bias can result in biased sampling behaviours in

situations in which neither option is better than the other. This case is

peculiar because if no option is best (e.g., each option is equally likely

to deliver a reward/punishment), there is no objective way to assess

performance. However, this condition potentially allows the observa-

tion of a different confirmation bias signature: people should develop a

tendency to select one of the options more frequently than the others,

even if the evidence does not discriminate between options. In con-

trast, unbiased learners would sample equally advantageous options

to similar extents. In other words, if adults assign more weight to con-

firmatory than disconfirmatory evidence, they might tend to choose

one option more frequently than the other, as if that option had been

rewardedmore often (i.e., confirmed). Adolescents might, on the other

hand, show amore unbiased selection of the options, thusmore closely

aligning their behaviour with the evidence they experienced. We refer

to this behavioural pattern as choice conservatism. The link between

confirmatory learning and conservatism has been observed in adults

(Palminteri et al., 2017) but has not yet, to our knowledge, been

investigated in adolescents.

Fourth, confirmation bias can be associated with an amplified win-

stay/lose-shift asymmetry. Most learning rules suggest that winning

should increase the probability of staying with a given option while

losing should induce switching away from it (Sutton & Barto, 1998).

As learning progresses, however, both biased and unbiased learners

should begin to show an asymmetry in the frequency of these two

behaviours: they should stay after wins more than they shift after

losses. This is because if someone has learned that an option is gener-

ally better than another, they should continue to choose it even when

it occasionally delivers a loss. However, if people place a higher weight

on confirmatory evidence than disconfirmatory evidence, they might

show an amplified asymmetry in such win-stay/lose-shift behaviour. A

link between this win-stay/lose-shift asymmetry and age has been sup-

ported by previous work showing that, relative to adolescents, adults

are more likely to learn from positive outcomes than from negative

outcomes (Hauser et al., 2015; Rosenbaum et al., 2022; van den Bos

et al., 2012; Xia et al., 2021; see Nussenbaum & Hartley, 2019 for a

discussion).

In addition to addressing how these four decision patterns of confir-

matory learning change with age, as secondary exploratory variables,

we assessed decision times (DTs) and outcome observation times

(OOTs). Given the evidence that impulsivity is heightened in adoles-

cence (Steinberg, 2010; Ziegler et al., 2019), one possible explanation

for age-related improvements in accuracy could be that younger par-

ticipants spend too little timemaking decisions and learning from their

outcomes. Controlling forDTs andOOTswill help addresswhether this

is the case.

1.2 Confirmatory reinforcement learning –
computational level

Computationally, choice confirmation bias is captured by an asym-

metry in learning rates. Learning rates are behaviourally estimated

parameters that regulate the extent to which agents update option

values when encountering a discrepancy between expected and expe-

riencedoutcomes (a prediction error). Prediction errors canbepositive

(better than expected) or negative (worse than expected), and tradi-

tional RL models assume that agents do not distinguish between the

two (Sutton & Barto, 1998). In contrast, RL models that allow posi-

tive and negative learning rates to vary separately have been found to

better account for observed behaviour (Palminteri & Lebreton, 2022).

In addition, positive learning rates are frequently larger than negative

ones, and the extent of this discrepancy can be used as a measure of

choice confirmation bias.
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Importantly, the four age-related behavioural patterns described

above are not exclusively consistent with confirmatory learning. We

illustrate this by focusing on the first of the anticipated patterns: the

age-related improvement in RL accuracy. Even a traditional RL model

could account for this by assigning more optimal learning rates to

adults than adolescents (Decker et al., 2015;Master et al., 2020). Alter-

natively, different learning models might apply to people of different

ages, supporting qualitative rather than quantitative differences in

learning styles betweenadults andadolescents. For example, one study

found that adolescent RL was best described by a model with a single

learning rate that was only shaped by the outcomes of chosen options,

and not by the outcomes of unchosen options (whichwere nonetheless

observed). In contrast, adult RL was captured by more sophisticated

models that also tracked the outcomes of unchosen options (i.e.,

models that incorporated counterfactual evidence) (Palminteri et al.,

2016). An even simpler model than Q-learning is a random model

(Wilson & Collins, 2019), which assumes that people randomize their

choices between options, but might have a random bias towards one

of them. This model assumes that participants are insensitive to option

values. Nonetheless, even a random model could still pick up on age-

related differences in RL accuracy, for example, by estimating greater

option biases in adults (which happen to be in favour of the correct

option).

In addition to learning rates, which regulate how values are

learned, common computational models connect these values to

choices through another parameter called inverse temperature (Equa-

tion 4). When inverse temperature is high, even a small difference

in option values is sufficient to direct choice, whereas people with

lower inverse temperature will more frequently choose sub-optimal

options. The term derives from sciences on solids, such as metals,

which are more flexible at higher temperatures, and has been used to

describe certain statistical optimization algorithms (Kirkpatrick et al.,

1983). These algorithms typically begin by performing large and unpre-

dictable shifts in parameter adjustment. As they approach an optimal

solution, they cool off: their adjustments become smaller and more

predictable. Intriguingly, recent accounts have suggested that this

‘cooling off’ metaphor well describes how learning changes with age

across development (Giron et al., 2022; Gopnik, 2020). Indeed, inverse

temperature has frequently been found to increase between adoles-

cence and adulthood, providing a plausible computational basis to

age-related benefits in learning (Nussenbaum & Hartley, 2019, for a

review).

In summary, different models, differential model fits or different

parameter settings within models (e.g., related to learning rate asym-

metries or inverse temperature) could theoretically be consistent with

the first behavioural pattern of interest: a commonly observed positive

trend between age and RL accuracy. An optimal RL model should be

able to explain the other three predicted age-related trends aswell and

to do so better than alternative models. Thus, together with the four

age-related patterns illustrated above, here,we aim to characterize the

computational source of age-related differences in learning between

adolescence and adulthood.

1.3 The current study

In the current study, we addressed the question of whether confirma-

tory learning increases with age between adolescence and adulthood.

We address this behaviourally and computationally, by employing

a standard RL task in which participants between the ages of 11

and 32 years repeatedly chose between fixed pairs of options (pairs

of novel symbols) that varied in their monetary reward/punishment

probabilities. At the behavioural level, in line with the four decision

patterns illustrated above, we hypothesised that, if confirmatory learn-

ing increases with age between adolescence and adulthood, increasing

age should be associated with different behaviours in different envi-

ronments. Specifically, we made four predictions that there would

be: (P1) increased accuracy in stationary and asymmetric conditions

(where one option is more advantageous than the other); (P2) reduced

age-related advantages in reversal learning conditions; (P3) increased

likelihood of preferring one option over another (choice conservatism)

when both are equally advantageous, namely, in stationary but sym-

metric conditions and (P4) increased win-stay/lose-shift asymmetry

across conditions. At the computational level, we predicted (P5) that

these age trends would be best captured by a confirmation model,

which allows confirmatory and disconfirmatory learning rates to vary

independently.

2 METHODS

2.1 Participants

We recruited 77 participants (four men, age range 11–32 years;

M = 16.26, SD = 4.62). Our sample size was determined based on pre-

vious computational studies, which observed developmental trends in

RL with sample sizes ranging between 50 and 100 (Cohen et al., 2020;

Habicht et al., 2021; Palminteri et al., 2016; Rosenbaum et al., 2022)

(see Supplementary Material 1 for a power analysis). The much larger

prevalence ofwomen/girls in our samplewas due to logistic constraints

of school testing. Given there were only four men and that they were

all over 18 years of age, modelling interactions between age and gen-

der was not feasible. Instead, to not sacrifice any power, we conducted

our main analyses on all participants and then conducted sensitivity

analyses by re-running all models on women/girls only. The results

wereunchangedunlessotherwisenoted. Toavoid arbitrary age-related

grouping criteria, key analyses employed age as a continuous variable.

However, for illustrative purposes only, we also present data dividing

our sample into ‘adults’ (N = 20, age range 18–32 years; M = 22.85,

SD = 3.09), and ‘adolescents’ (N = 57, age range 11–17; M = 13.95,

SD = 2.15). The data from adult participants have been published pre-

viously (Palminteri et al., 2017). All participants received £5 for their

participation, plus up to £15, proportionally to the points accumulated

during the task. Adult participants, and parents of participants under

18 years, gave written informed consent and the study was approved

by the UCL ethics committee (number: 3453/001).
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F IGURE 1 (a) Trial structure. After a fixation cross, participants chose between one of two symbols by pressing one of two keys and their
choice was confirmed by the appearance of a red arrow under the chosen option. The outcomes of both the chosen and the unchosen options were
then revealed. Tomove on to the next trial, participants had to press the same key as before, thus matching the outcome. Decision times (DTs) and
outcome observation (OOTs) times were self-paced. (b) Experimental conditions. Participants were told that some symbols might lead to winning
more often than others. They were asked to try to discover which option wasmore advantageous by trial and error. Symbols were presented in
fixed pairs, for 24 trials. There were four pairs of symbols in three conditions. In the asymmetric condition, one symbol led to winningmore
frequently than the other throughout the session. In the reversal condition, one symbol led to winningmore frequently than the other for the first
half of the trials, but these contingencies reversed in the second half. In the symmetric condition, both symbols were equally advantageous. The
asymmetric condition was repeated twice, each timewith a new pair of symbols. The reversal and symmetric conditions each occurred once, each
timewith a unique pair of symbols. The exact probabilities of winning 1 point for each option are shown on the y-axis, for each condition (losing
occurred with the complimentary probability), as a function of the trial. Symbol pairs were presented in an interleaved fashion.

2.2 Experimental task

Participants took part in a standard probabilistic instrumental learning

task (Figure 1).Onmultiple trials, theywere asked to choose oneof two

visual stimuli (Figure 1a), resulting in two possible outcomes: winning

1 point or losing 1 point. Participants were encouraged to accumulate

as many points as possible and were informed that some stimuli would

result in winning more often than others. Participants were given no

explicit information regarding these reward probabilities. Instead, they

had to learn these through trial and error. To allow learning to occur,

the same two stimuli were presented in fixed pairs for 24 trials. On

each trial (Figure 1a), after a 1 s fixation cross, the two stimuli were

presented. Participants made their decisions by pressing left or right

arrow keys with their right hand. The DT was self-paced, recorded and

analysed.Decisionswere confirmedby the appearance of a red triangle

under the chosen option, lasting 0.5 s. Outcomes for both the chosen

and unchosen options were then shown. The obtained outcomes were

presented in the same place as the chosen stimulus and the forgone

outcomes in the same place as the unchosen stimulus. To move to the

subsequent trial, participants had to match the position of the chosen

outcomewith a key press (right/left arrow). TheseOOTswere also self-

paced and analysed. There were four pairs of stimuli, presented in a

pseudo-randomly interleaved fashion. For each pair, the reward prob-

abilities of each of the stimuli varied according to three experimental

conditions described below (Figure 1b).

In the asymmetric condition, one stimulus was consistently more

likely to result in a win than the other. Specifically, the probabilities of

winning 1 point were 0.75 for one option and 0.25 for the other, and

these probabilities remained stationary for this pair of stimuli. In the

reversal condition, one stimuluswas also better than the other, but only

in the first half of the block (the first 12 trials). In the second half of

the block (trials 13–24), these probabilities were reversed, such that

the previously advantageous option become disadvantageous and vice

versa. Specifically, in the pre-reversal portion of the reversal condition,

the probabilities of winning 1 point were 0.83 for one stimulus, and

0.17 for the other, and these probabilities reversed in the post-reversal

portion of the condition. These reward probabilitieswere slightlymod-

ified relative to the asymmetric condition to compensate for the fact

that, in the reversal condition, participants had fewer trials to learn

(12 trials vs. 24). Finally, in the symmetric condition, both options were
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equally likely to result in a win/loss, with a probability of 0.5. These

three conditions respectively allow us to address the three predic-

tions introduced above: (P1) Agewould improve accuracy in stationary

environments (asymmetric condition); (P2) Age-related benefits would

decrease in volatile environments (reversal condition); (P3) Age would

be associated with an increased tendency to choose the same option

(choice conservatism) when both options are equally advantageous

(symmetric condition) and (P4) Across conditions, age should be asso-

ciatedwith an increased tendency to stay afterwins as opposed to shift

after losses.

Overall, the four pairs of 24 trials amounted to 96 trials across the

session. Each fixed pair of stimuliwas used in one condition only, except

for the asymmetric condition, which employed two pairs of stimuli. We

emphasized the asymmetric condition for consistency with the previ-

ous study from which the adult sample was drawn (Palminteri et al.,

2017). To account for the power imbalance between conditions that

resulted from this, we conducted sensitivity analyses by re-running all

our main analyses twice: once without the first asymmetric condition

and oncewithout the second, thus equating the number of trials across

conditions. The results were unchanged by these exclusions.

Because the computational models employed here assume that the

outcomes of one option are not informative of the outcomes of the

other option, in all conditions, outcome probabilities were truly inde-

pendent across optionpairs (althoughonaverage anti-correlated in the

asymmetric and reversal conditions). Thus, in the symmetric condition,

in a given trial, the obtained and forgone outcomes were the same in

50% of trials; in the asymmetric condition, this was the case in 37.5%

of trials; finally, in the reversal condition, this was the case in 28.2% of

trials.

2.3 Behavioural analyses

Our main independent variable (IV) of interest was age, which we

modelled as a continuous variable. We then assessed the associations

between age and five dependent variables (DVs).

2.4 Choice variables

The three central DVs of interest were choice-related variables:

1. Accuracy. In asymmetric and reversal trials, where one option

was more advantageous than the other, we focused on accuracy.

Choices in these trials were coded as 1 when participants chose

the option with the higher win probability, and 0 otherwise. This

variable allows us to address the predictions that age increases

accuracy in stationary learning conditions (P1) more than volatile

ones (P2).

2. Preferred choice rate. In symmetric trials, since options were equally

advantageous and accuracy cannot be established, we focused on

the extent to which participants developed a preference for one

of the options. We defined the preferred option as the most fre-

quently chosen option, that is, chosen by the participant on more

than 50% of the trials. We then coded choices as 1 when they

coincided with the preferred option, and 0 otherwise. This variable

allows us to address the prediction that age increases the tendency

to choose the sameoption (choice conservatism)whenbothoptions

are equally advantageous (P3).

3. Win-stay/lose-shift. Across all trials, we focused on win-stay/lose-

shift behaviour. Choiceswere coded as1 if participants either chose

the same option as in the previous trial after winning in the previ-

ous trial or if they switched to the other option after losing in the

previous trial. Choices were coded as 0 otherwise. To distinguish

between win-stay and lose-shift, an additional regressor was used

to code trials based on whether participants had won or lost on the

previous trial. These were coded as a two-level factor with levels

‘win’ versus ‘lose’. This variable allows us to assess the prediction

that age increases the asymmetry between the tendency to stay

after a win and the tendency to shift after a loss (P4).

2.5 Time variables

As additional DVs of interest, we focused on two time-related vari-

ables:

4. DTs. In all trials, we recorded how long it took participants to

reach a decision. This is the time between when the symbols were

presented andwhen participants made their choice.

5. OOTs. In all trials, we recorded the time spent observing the out-

comesof choices. This is the timebetweenwhen theoutcomeswere

presented andwhenparticipants pressed the samekey they used to

make their choice to pass to the next trial.

Both time measures were log-transformed as this better approx-

imated a normal distribution. These variables allow to assess the

secondary hypothesis that age-related changes in RL are associated

with changes in deliberation times or impulsivity.

To retain all data points whilst accounting for non-independence of

observations (e.g., the fact thatmultiple responses came from the same

participant), these five DVs were analysed using separate generalized

mixed effects models (GLMMs), the details of which are described in

the Supplementary Material (Supplementary Material 2). In addition,

because age trends vary in their shape, depending on the cognitive pro-

cesses involved (e.g., Fuhrmann et al., 2015; Laube et al., 2020), we

compared different candidate functions of age effects. Out of a linear,

quadratic, cubic, logarithmic and inverse functions linking age to RL

accuracy, AIC suggested that the linear function provided the best fit

to the data (see SupplementaryMaterial 2 for details).

2.6 Non-verbal reasoning

Because non-verbal reasoning abilities develop markedly during ado-

lescence (Chierchia et al., 2019) and have been suggested to predict RL
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performance (Nussenbaumetal., 2021), thematrix reasoning sub-scale

of the WASI (Wechsler, 1999) was also collected after the main task.

Since controlling for this variable did not alter our main findings, these

are discussed in the SupplementaryMaterial (SupplementaryMaterial

3 for details).

3 DATA EXCLUSION

We excluded trials in which the response time was less than 100ms or

larger than 10 s (51 trials out of 7392, less than 1%).

4 COMPUTATIONAL ANALYSES

Following previous studies (e.g., Palminteri et al., 2015, 2017), we fit-

ted the data with a confirmatory learning model. The model estimates

the expected values (Q-values) of each option, that is, the reward par-

ticipants expect to receive when choosing that option based on its

trial-by-trial rewardhistory. TheQ-values start at 0,which corresponds

to the a priori expectation of a 50% chance of winning one point, and

a 50% chance of losing one point. After every trial t, the values of the

chosen option (QC) and of the unchosen option (QU) are, respectively,

updated according to the following rules:

QC (t + 1) = QC (t) +
LRConPEC (t) if PEC (t) > 0

LRDisPEC (t) if PEC (t) < 0
(1)

QU (t + 1) = QU (t) +
LRConPEU (t) if PEU (t) < 0

LRDisPEU (t) if PEU (t) > 0
(2)

PEC(t) and PEU(t) refer to the prediction errors of the chosen and

unchosen options, respectively, that is, howmuch the actual outcomes

differ from the expected outcomes, and can be calculated as

PEi (t) = Ri (t) − Qi (t) (3)

Where the subscript i is C in Equation (1) and U in Equation (2), Ri(t)

is the actual outcome and Qi(t) is the predicted outcome. The learning

rates, LRCon and LRDis, are scaling parameters that adjust the ampli-

tude of value changes from one trial to the next. The confirmatory

learning rate LRCon is used when the chosen outcome is better than

predicted (Equation 1) or when the unchosen outcome is worse than

predicted (Equation 2). The disconfirmatory learning rate LRDis is used

when the chosenoutcome isworse thanpredictedor theunchosenout-

come is better than predicted. In other words, LRCon and LRDis quantify

sensitivity to confirmatory and disconfirmatory evidence, respectively.

Finally, the probability/likelihood of selecting an option was esti-

mated with a softmax rule:

PC (t) =
e𝛽QC (t)

e𝛽QC (t) + e𝛽QU(t)
(4)

This is a standard stochastic decision rule that calculates the proba-

bility of selecting one of a set of options according to their associated

values. The inverse temperature, β, is another scaling parameter that

adjusts the stochasticity of decisionmaking.

We compared four RL models. As a baseline model, we used a

random model (Wilson & Collins, 2019), which assumes that partici-

pants choose randomly but with a potential bias towards one of the

two options (which is captured by the single ‘bias’-related parameter).

Because of previously reported differences in the way adolescent and

adults learn from counterfactual outcomes, we also fit an ‘informa-

tion’ model (Palminteri et al., 2016), in which two learning rates are

shaped by the outcomes of the chosen and unchosen options, respec-

tively. To control for a positivity bias (Palminteri et al., 2017), we also

fit a ‘valence model’, in which two learning rates, LRPos and LRNeg, are,

respectively, shaped by positive and negative outcomes, regardless of

whether these are chosen or unchosen options. A full model with four

learning rates (for each possible combination of positive/negative pre-

diction errors vs. chosen/unchosen outcomes) was not included in the

model comparison procedure because previous work has shown that

it is largely outperformed by the confirmation model (Palminteri et al.,

2017). However, we separately fit this full model to address the ques-

tion of whether adults and adolescents might differ in their use of

counterfactual information. This was not the case (see Supplementary

Material 4).

4.1 Parameter optimisation and model
comparison

Weoptimisedmodel parameters byminimising the negative log poste-

rior probability of themodel.

LPP = log
(
P(Data|Model, Parameters)

)
(5)

This approach was chosen as it considers both the likelihood of the

models and the likelihood of the parameter values given their priors,

andhence it avoids degenerateparameter estimates,which canhappen

when only themodel likelihood is taken into account.

The optimisation was performed using the optimx function with

nlminb algorithm (package optimx) (Nash & Varadhan, 2011). For

the Q-learning models, the parameter values were constrained to

0.1 < β < 100, and 0 < LR < 1, and initialized at 1 and 0.2, respec-

tively. Parameter priorswerebasedonprevious studies andwere set to

β (inverse temperature): gamma distribution (1.2, 5); LR: beta distribu-

tion (1.1, 1.1). All learning rates LR had the same prior. For the random

model, the bias parameterwas constrained to 0< bias<1, initialized at

0.2. There was a uniform prior (0,1) on the bias parameter.

A single set of parameters was used to fit data from all conditions,

as previous studies showed similar parameter estimates across con-

ditions (Chambon et al., 2020; Lefebvre et al., 2017; Palminteri et al.,

2017). However, because there is an ongoing discussion (Nussenbaum

&Hartley, 2019; Nussenbaum et al., 2021) on whether parameters are
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8 of 15 CHIERCHIA ET AL.

F IGURE 2 Positive association between age and accuracy across
all trials. Solid lines are estimated fixed effects from generalizedmixed
models with 95% confidence ribbons. Dots are observed grandmeans,
with surface areas proportional to the number of participants.
***p< .001

flexible, and possibly adaptive to different conditions, the parameters

were also estimated separately for each condition. The results of this

analysis corroborated the findings of the condition-wide analysis (see

SupplementaryMaterial 5 for details).

The models were then compared using Bayesian model selection

to obtain exceedance probabilities. This allowed us to estimate the

proportion of participants who favoured each model and select the

model that was more likely than any other compared model to gen-

erate the data of a randomly chosen participant. We also assessed

protected exceedance probabilities, which correct exceedance prob-

abilities for the possibility that the observed differences in model

evidence are due to chance. We used Aikaike weights for the calcula-

tion and forwarded them into the function VB_bms from the package

bmsR (https://github.com/mattelisi/bmsR/). Finally, after model com-

parison, we also assessed parameter and model recoverability (Wilson

&Collins, 2019).

5 RESULTS

5.1 Behavioural results

5.1.1 Choice variables

The first generalized mixed model (GLMMAcc, see Supplementary

Material 2) revealed a significant association between age and accu-

racy (χ2(1) = 22.87, p < 0.001) (Figure 2): age was associated with a

linear increase in the (log) odds of choosing the option with the high-

est probability of winning (slope = 0.15, SE = 0.029). These results

support prediction P1, that age and accuracy are positively related in

stationary and asymmetric learning environments. The model further

revealed a significant trend of trials (χ2(1) = 57.76, p < 0.001), which

F IGURE 3 No significant association between age and preferred
option choice rate in symmetric trials, in which options are equally
advantageous. Solid lines are estimated fixed effects from generalized
mixedmodels with 95% confidence ribbons. Dots are observed grand
means, with surface areas proportional to the number of participants.
†p= 0.090

were also associated with an increase in the probability of accurate

choices (slope = 0.08, SE = 0.01, p < 0.001). In addition, age and tri-

als interacted (χ2(1) = 25.57, p < 0.001), such that older participants

were more likely to learn as trials progressed, or learned more effi-

ciently, than younger participants. This interaction of trials and age

on accuracy was not constant across conditions, as demonstrated by

a significant three-way interaction between age, trial and condition

(χ2(2) = 20.05, p < 0.001) (Figure 7 and Supplementary Material 6):

the beneficial impact of age on accuracy was decreased in early post-

reversal trials relative to pre-reversal trials, with age decreasing the

probability of responding correctly in the first three post-reversal trials

(ps < 0.05). These results support prediction P2, that age-related ben-

efits in accuracy are reduced in more volatile learning environments.

Further exploratory comparisons showed that the positive association

between trials and accuracy was greater in pre-reversal than asym-

metric trials for participants aged 17 or older (ps< 0.05), but not for

younger participants (ps> 0.3).

A second GLMM on symmetric trials, in which both options are

equally advantageous, focused on whether age modulated choice con-

servatism, that is, the extent to which participants chose a preferred

option (the option chosen on more than 50% of the trials) (GLMMPref,

see SupplementaryMaterial 2). This model revealed a positive, but not

significant, association between age and conservatism (χ2(1) = 2.73,

p = 0.098) (Figure 3). This result does not support prediction P3

that conservative preferences would increase with age in symmetric

learning environments.

A third mixed model (GLMMWSLS, see Supplementary Material 2)

revealed a significant main effect of the previous outcome on win-

stay/lose-shift behaviour (χ2(1) = 141.88, p < 0.001). Specifically,

participants were more likely to stay after a win than to switch after

a loss (contraststay/win – switch/loss = 1.93, SE = 0.162, p < 0.001). This

 14677687, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.13330 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [03/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/mattelisi/bmsR/


CHIERCHIA ET AL. 9 of 15

F IGURE 4 Win-stay/lose-shift asymmetry increasedwith age
across all trials. This wasmainly driven by staying after wins (vs.
switching after losses). Solid lines are estimated fixed effects from
generalizedmixedmodels with 95% confidence ribbons. Dots are
observed grandmeans, with surface areas proportional to the number
of participants. ***p< 0.001

further interacted with age (χ2(1) = 7.31, p = 0.007). Specifically,

increasing agewas associatedwith a linear increase in the log odds that

participants would stay after a win (slope= 0.09, SE= 0.02, p< 0.001).

However, age did not modulate the extent to which people switched

after a loss (slope = −0.008, SE = 0.02, p = 0.678) and the contrast

between these two slopeswas significant (slopestay/win – switch/loss = 0.1,

SE= 0.04, p= 0.007). This supports our prediction thatWSLS asymme-

try would increase with age (Figure 4). Notably, exploratory post-hoc

analyses showed that the age-related increase in WSLS asymmetry

was also robust in symmetric trials. In these trials, age was associated

with increased log odds of staying after a win (slope = 0.07, SE = 0.03,

p=0.009) anddecreased logoddsof shifting after a loss (slope=−0.06,

SE = 0.02, p = 0.003). This demonstrates that age-related increases

in WSLS asymmetry are not a mere by-product of increased learn-

ing, because symmetric trials are learning-neutral (see Supplementary

Material 7 for further information).

5.1.2 Decision time and observation time variables

A first mixed model (GLMMDT, see Supplementary Material 2) sug-

gested therewasnooverall effect of ageonDTs (χ2(1)=2.95,p=0.086)

(Figure 5, left panel). This was further qualified by an interaction

between age and condition (χ2(3) = 12.87, p = 0.005): there was a sig-

nificant positive association between age and DTs in symmetric trials

(slope= 0.03, SE= 0.01, p= 0.004) but not in the remaining conditions

(all ps> 0.180). The only significant contrasts between these associa-

tions (i.e., between the condition-level slopes relating age to DTs) were

the contrasts between symmetric and asymmetric trials, and between

symmetric and post-reversal trials (both psBonf < 0.05). The contrast

F IGURE 5 Age, decision times and outcome observation times.
No significant association between age and decision times (left panel).
Negative association between age and outcome observation times
(right panel). Solid lines are estimated fixed effects from generalized
mixedmodels with 95% confidence ribbons. Circles are observed
grandmedians (for condition-level plots see SupplementaryMaterial
11). ***p< 0.001, †p< 0.10

between symmetric and pre-reversal trials did not survive Bonferroni

correction (pBonf = 0.062). Overall, this model suggested that DTs only

increased with age in symmetric trials (see Supplementary Material

11).

A second mixed model (GLMMOOT, see Supplementary Mate-

rial 2) revealed a significant association between age and OOTs

(χ2(1) = 11.93, p < 0.001): OOTs decreased linearly with age

(slope = −0.02, SE = 0.006, p < 0.001) (Figure 5, right panel).

This overall trend was modulated by an interaction with condi-

tion (χ2(3) = 8.91, p = 0.031), but no contrasts survived correction

for multiple comparisons (all psBonf > 0.069). The same model also

revealed a main effect of the current outcome (χ2(1) = 171.85,

p < 0.001): OOTs were shorter after winning than after losing

(contrastwon – lost = 0.29, SE 0.02, p < 0.001). However, this did not

interact with age (χ2(1)= 0.23, p= 0.637). Follow-up exploratory mod-

els (GLMMAcc-DT and GLMMAcc-OOT, see Supplementary Material 8)

revealed significant interactions between age and time-related vari-

ables on accuracy (DTs: χ2(1) = 4.35, p = 0.037; OOTs: χ2(1) = 23.56,

p < 0.001). Longer DTs and OOTs were associated with decreased

accuracy and this negative association increased linearlywith age (Sup-

plementary Material 8). The first of these interactions (between age

and DTs on accuracy) was no longer significant after removing the

four men from the sample (χ2(1) = 1.97, p = 0.161), but it remained

significant for OOTs (χ2(1)= 17.26, p< 0.001).

5.2 Computational results

Model comparisons suggested that the confirmation model, that is, a

model with separate confirmatory and disconfirmatory learning rates,
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10 of 15 CHIERCHIA ET AL.

F IGURE 6 Model fit (AIC) and parameter estimates of the confirmationmodel as a function of age. The dashed line in themiddle panel
indicates unbiased values. Asterisks indicate p-values of Spearman’s rank correlations. ***p< 0.001, **p< 0.01

TABLE 1 Model frequencies and exceedance probabilities

Model

Model

frequencies

Exceedance

probability

Protected

exceedance

probability

Confirmationmodel 0.70 1.00 1.00

Informationmodel 0.01 0 0

Valencemodel 0.03 0 0

Randommodel 0.26 0 0

best explained the observed behaviour (Table 1). Themodels displayed

adequate parameter and model recoverability (see Supplementary

Material 9 for details).

Rank correlations (Spearman) further suggested that the fit of

the confirmation model improved with age (ρ = 0.40, p < 0.001)

(Figure 6, left panel), particularly relative to the random model (see

Supplementary Material 10 for further details). In terms of model

parameters, the confirmation model showed that, in both adults and

adolescents, the mean difference between confirmatory and discon-

firmatory learning rates (LRCon – LRDis) was positive (MAdults = 0.39,

SD = 0.26; MAdolescents = 0.27, SD = 0.36), and significantly differ-

ent from 0 (Wilcoxon sign-rank tests, ps < 0.001). This suggests

that both age groups displayed choice confirmation bias. However,

the magnitude of the bias was not associated with age (ρ = 0.05,

p = 0.655) (Figure 6, middle panel). In contrast, inverse tempera-

ture showed a positive association with age (ρ = 0.36, p = 0.001)

(Figure 6, right panel). Overall, these findings suggest that, between

adolescence and adulthood, increasing age is associated with an

increased likelihood of adopting confirmatory learning strategies,

coupled with lower levels of noise or exploration in confirmatory

learning, and no difference in the magnitude of choice confirmation

bias.

Based on these estimated participant-level parameters, we simu-

lated participants’ behaviour for each of the four predicted behavioural

patterns of confirmatory learning. The fit between the simulated and

observed data appeared reasonable (Figure 7), in that they recovered

the age-related changes illustrated in the behavioural analyses: (1)

heightened accuracy in asymmetric and pre-reversal trials (panel a and

left-side of panel b), (2) decreased accuracy in post-reversal trials (right

side of panel b), (3) increased selection of preferred options in sym-

metric trials (panel c) and (4) increased win-stay/lose-shift asymmetry

across trials (panel d).

Finally, to further qualify how learning rates and inverse temper-

ature contributed to these behavioural patterns, we simulated those

behaviours for a range of possible parameter values (i.e., all possible

combinations of each decile of each parameter) and assessed how

the observed values fall within this space. Figure 8 suggests that

confirmation bias and inverse temperature can frequently compete

to explain variance in each of the predicted behavioural patterns, and
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CHIERCHIA ET AL. 11 of 15

F IGURE 7 Observed and simulated data. Full lines and points are observed data, and dashed lines and empty points are simulations. These
simulations tracked each of the four confirmatory learning patterns described above. (a) Adults weremore accurate than adolescents in
asymmetric trials. (b) Age-related accuracy advantages were reduced in post-reversal trials. (c) Adults and adolescents displayed a similar
tendency to repeatedly select the same option in symmetric trials. (d) Across trials, adults weremore likely than adolescents to stay on an option
that delivered a reward on the preceding trial, than to shift away from an option that just delivered a punishment. Error bars and confidence
ribbons are bootstrapped 95% confidence intervals.

TABLE 2 Parameter estimates and confirmatory learning patterns

Confirmation bias

Behavioural pattern

Inverse tem-

perature Raw Normalised

Accuracy (Asymmetric

and pre-reversal

trials)

0.89*** 0.06 0.05

Accuracy

(Post-reversal trials)

−0.27* 0 −0.31*

Conservatism

(Symmetric trials)

0.41*** 0.3* 0.38**

Win-stay (All trials) 0.87*** 0.21
◦

0.11

Lose-shift (All trials) −0.79*** −0.26* −0.34**

Rank correlations (Spearman) between behavioural measures of confirma-

tory learning and two confirmation model parameter estimates: inverse

temperature and confirmation bias. Confirmation bias is the difference

between learning rates and is either raw: LRCon – LRDis; or normalised: (LRCon

– LRDis)/(LRCon + LRDis).
***p< 0.001.

**p< 0.01.

*p< 0.05.
◦

p< 0.1, FDR corrected (Benjamini–Hochbergmethod).

that age-related differences in these patterns are more likely to be

captured by inverse temperature than confirmation bias.

In line with the notion of a trade-off between confirmation bias

and inverse temperature, both estimated parameters showed similar

directional associations with a subset of the predicted behavioural

patterns, though inverse temperature explained substantially more

variance (Table 2).

6 DISCUSSION

This study aimed to assess whether confirmatory RL, the tendency to

learn more from confirmatory than from disconfirmatory reinforcers,

changes with age between adolescence and early adulthood. In line

with our predictions, in a standard RL task, we found that perfor-

mance improved with age between 11 and 32 years in a stationary

condition (prediction P1), but that these age-related improvements

were reduced in a reversal learning condition in which a previously

advantageous option suddenly became disadvantageous (P2). Age did

not affect participants’ tendency to repeatedly select the same option

when both options were equally advantageous (in contrast to P3). Par-

ticipants of all ages were more likely to repeat choices that had just

been rewarded more than they were to switch away from choices

that had just been punished, but the magnitude of this win-stay/lose-

shift asymmetry increased with age (P4). At the computational level,

a confirmation model, which allows confirmatory and disconfirmatory

learning rates to vary separately, provided a better fit to the data than

alternativemodels (P5), and the fit improvedwith age between adoles-

cence and adulthood. The model revealed that age-related differences

in confirmatory learning were best explained by differences in inverse

temperature, that is, noise or exploration, rather than themagnitude of

the confirmation bias itself. Finally, we found that outcomeobservation

times were greater for younger participants than for older partici-

pants, suggesting that age-related improvements in RL are unlikely to

be explained by developmental trajectories of impulsivity (Steinberg,

2010) or reduced attention to decision outcomes.

Our results suggest that learning becomes increasingly confirma-

tory between adolescence and adulthood. While this can be beneficial
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12 of 15 CHIERCHIA ET AL.

F IGURE 8 Behavioural patterns of confirmatory learning as a function of confirmation bias and inverse temperature. Lines are simulated
behaviours across a range of parameter values of confirmation bias (LRCon – LRDis, on the x-axis) and inverse temperature (colour gradient). These
simulations suggest that, frequently, confirmation bias and inverse temperature both predict increased accuracy in asymmetric trials (a),
decreased accuracy in post-reversal trials (dashed lines panel b), increased selection of preferred options in symmetric trials (c) and increased
discrepancy betweenwin/stay versus lose/shift behaviour (respectively, solid vs. dashed lines of panel d)

when reinforcement contingencies are asymmetric and stationary

(Lefebvre et al., 2022) (P1), it could lead to momentary disadvan-

tages when environments change unexpectedly (P2). It should be

noted that age-related effects in pre- versus post-reversal accuracy

are not entirely separable. It is plausible that, because older par-

ticipants learned faster in pre-reversal trials, they also encountered

larger disadvantageswhen learning contingencies changed. In linewith

this, the adult disadvantage in post-reversal trials was only tempo-

rary (i.e., it was only observed in early post-reversal trials). Indeed,

while older participants incurred larger accuracy costs than younger

participants when contingencies reversed (i.e., they ‘crashed harder’),

they also recovered faster, and continued to outperform younger par-

ticipants in later post-reversal trials (e.g., Figure 7b). Despite this,

though not originally predicted, the finding that the adult advantage

in accuracy was amplified in pre-reversal, relative to asymmetric tri-

als, further supports the view that age-related benefits in RL could be

related to option asymmetries, that is, how differentiable options are

in terms of reward/punishment probabilities. Indeed, what we labelled

as pre-reversal and asymmetric trials were both asymmetric trials that

differed in themagnitudeof the asymmetry. Specifically, in pre-reversal

trials, one option was associated with an 83% probability of a reward

and the other option with 17%. In contrast, in asymmetric trials, the

reward probabilities were 75% and 25%. Consequently, the options

were more differentiable (i.e., more asymmetric) in one condition than

in the other. We speculate that this increased asymmetry might have

led to the amplification of age-related learning advantages.

The results above shed light on the type of environments that

might amplify or reduce age-related advantages in learning. How-

ever, several of our results also show how age-related changes in

learning are not limited to material advantages or disadvantages

associated with cumulative reward/punishment, but differences in

learning style more broadly. For example, across each of the envi-

ronments tested, age was associated with an increased tendency to

stay after wins (P4), and no change (or even a decrease) in the ten-

dency to switch after a loss. Importantly, this age-related increase

in win-stay/lose-shift asymmetry was also observed in symmetric tri-

als, which are performance neutral. This suggests that the age-related

increase in win-stay/lose-shift asymmetry is not merely a by-product

of better learning with age. Rather, we speculate that, in symmet-

ric trials, adults behaved as if their choices had been confirmed,

even though both options had the same objective chances of being

rewarded.

Similarly, we had also predicted (P3) that adults might be more con-

servative in their choices than adolescents (in symmetric trials), and

that is, that they would tend to stay with one option more than the

other when both are equally advantageous. This prediction was not

supported by our data, yet we interpret this null finding with caution,

as we observed a trend in the hypothesized direction. If the asso-

ciation between age and choice conservatism in symmetric trials is

small, a more highly powered study might be able to detect it. We also

note that age was not associated with decision times in any condition

except for the symmetric condition, where age predicted longer DTs.

This suggests that attempting to maximize efficiency in environments

where efficiency cannot be attained, such as in symmetric environ-

ments, might be associated with cognitive costs, such as deliberation

times, rather thanmaterial costs.

 14677687, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.13330 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [03/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHIERCHIA ET AL. 13of 15

At the computational level, we found that, between adolescence

and early adulthood, age-related differences in RL were captured by

two features: first, participants became increasingly likely to learn

more from confirmatory and disconfirmatory outcomes. Second, con-

firmatory RL became less noisy. The first result is supported by the

observation that the confirmation model fits improved with age, the

second by the observation that inverse temperature declined with

age. Indeed, while inverse temperature can sometimes be interpreted

as noise or exploration, the interpretation of this parameter in our

paradigm ismore likely related to noise (also called randomexploration

or selection noise) than to exploration (sometimes called strategic

exploration) (Findling et al., 2019; Nussenbaum & Hartley, 2019). In

fact, because our paradigm provided counterfactual feedback (i.e., par-

ticipants were also shown the outcomes of the options they did not

choose), exploration/exploitation trade-offs wereminimized.

Age-related decreases in inverse temperature during adolescence

have been observed many times before (Nussenbaum & Hartley, 2019

for a review). This is also consistent with the recently advanced

notion that, much like statistical learning algorithms, which cool off

as they approach optimal solutions, learners become less stochastic

and more accurate with age (Giron et al., 2022; Gopnik, 2020). How-

ever, we speculate that not all noise/inverse temperatures are equal

because this might also depend on the models they are embedded

in. One of the proposed functions of confirmatory learning is that,

by emphasizing confirmatory outcomes, this learning style can artifi-

cially decrease psychological noise (e.g., inverse temperature) to buffer

the impact of environmental noise (Lefebvre et al., 2022; Qiu et al.,

2020). In line with this, our simulations suggest that inverse tem-

perature and confirmation bias (i.e., the magnitude of learning rate

asymmetry) frequently compete to explain the behavioural patterns

tested here (Figure 8). Further, beyond simulations, this trade-off also

partly held true in our data, in that the estimated levels of inverse tem-

perature and confirmation bias made similar directional predictions

for a subset of the behavioural patterns (Table 2). However, inverse

temperature clearly contributed to a larger extent. Similarly, age dif-

ferences in RL were captured by differences in inverse temperature

but not by the magnitude of the confirmation bias. In summary, we

speculate that people do not simply become less noisy with age dur-

ing adolescence, but they might become less noisy in confirmatory

learning.

One limitation of this study is that it might have been under-

powered (see Supplementary Material 1), especially with regards to

the older participants. Better powered studies could help address

possibly smaller age-related effects that were not detected here

(such as choice conservatism in symmetric trials). A second limita-

tion is that our sample was almost entirely composed of women/girls.

Because someprevious studies have observed gender differences inRL

(Evans & Hampson, 2015), we recommend caution in generalizing the

reported results to men/boys. Finally, cross-sectional studies such as

ours can conflate age-related and inter-individual differences. Further

longitudinal approaches to similar developmental questions are thus

warranted.

7 CONCLUSION

How learning styles change during adolescence is a central question in

developmental science. Here, we adopted a computational approach

to address how RL, one of the building blocks of learning, changes

between adolescence and adulthood. At both the behavioural and

computational levels, our results suggest that RL becomes increas-

ingly confirmatory during adolescence. We found that, during this

period of life, young people become more accurate learners in stable

learning environments (in which confirmatory evidence is important),

but not necessarily in more volatile environments (in which discon-

firmatory evidence is important). Between adolescence and early

adulthood, participants also became more likely to stay with choices

that were recently confirmed, rather than shift away from choices

that were disconfirmed. In environments in which learning cannot be

improved, adults might also incur higher cognitive costs, such as longer

deliberation times. Computationally, age-related differences in RL are

associated with reduced noise in learning separately about confirma-

tory and disconfirmatory evidence. These results provide new insights

intohow learningmight changewith ageduringdevelopment and could

help better tailor learning environments to people of different ages.
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