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Overview 

Climate change vulnerability emerged as a research field in the 1990s in response to climate change, natural 

hazard and disaster planning, and endangered species research. Initial climate change vulnerability research  

was firmly focused on the vulnerability of terrestrial systems, including primarily humans. The field has 

expanded from this beginning, and climate change vulnerability assessments (CCVAs) are now widely 

viewed as a critical component of climate-smart management of species and ecosystems and quantifying 

climate change impacts1–3. CCVAs seek to address several critical questions related to the effects of climate 

on species and ecosystems, namely, which are most vulnerable, where they are most vulnerable when they 

become vulnerable, and why they are vulnerable. CCVAs can also identify gaps in data and information 

needed to understand climate change impacts on species and ecosystems. To this end, over 800 peer-

reviewed CCVAs have been developed to evaluate the vulnerability of species, communities and ecosystems 

across different scales and systems, using various approaches (e.g. trait-based, correlative, mechanistic 

modelled, theoretical)e.g. 4–6. This interest has led to a broad acceptance of what features define vulnerability. 

Following an early IPCC definition7 and subsequent broad adoption4–6,8–10, species’ climate vulnerability has 

been defined by three dimensions: their sensitivity, exposure, and adaptive capacity (adaptivity) to climate 

change. Sensitivity refers to the propensity for a species to be adversely affected by its exposure to climate 

change. Exposure refers to the extent to which species will be subjected to hazardous climate changes, 

including the magnitude of the effects. Adaptivity refers to the potential of species to adapt to any adverse 

exposure to climate change. These dimensions have close analogies in other disciplines, including 
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community ecology and dynamic complex systems theory11–13. For example, sensitivity is analogous to the 

ecological concept of resistance, exposure is analogous to reactivity, and adaptivity is analogous to 

resilience14–16. Thus, the dimensions that define climate vulnerability are rooted in ecological theory.  

Despite the tremendous interest in assessing climate vulnerability and the hundreds of vulnerability 

analyses4,5, these methods have not been consistently applied across species, locations, geographic scales, or 

time. Further, climate vulnerability assessments are rarely applied in marine management settings6, such as 

fisheries, species at risk, or spatial planning. Reviews have reported that vulnerability studies often 

incorporate expert opinions, such as subjective species rankings, rather than quantitative approaches 

(objective data and reproducible methods), have been locally or regionally focused4–6, and infrequently 

incorporate all dimensions that are accepted to define vulnerability, including sensitivity, exposure, and 

adaptivity. For instance, of 743 climate change vulnerability studies, De los Rios et al. 5 reported that only 

11% had considered all three dimensions that collectively define vulnerability, and a review by Pacifici et al. 

6 reported that only 4% of assessments were global. Notably, CCVAs report vulnerability as relative scores 

and rankings, which may have hindered their uptake and application in management settings.  

The climate change risk assessment (CCRA) described here integrates the knowledge accumulated in 

previous climate change studies and CCVAs to develop a unified framework for assessing both relative 

climate vulnerability and absolute climate risk that fills several of these existing gaps. It enables the 

vulnerability and risk of marine species to be assessed at all locations across their geographic distributions in 

a spatially explicit, quantitative, reproducible, consistent, and standardized manner, can be applied at scales 

from local to global, can incorporate new information as it becomes available, and is transparent, and 

evaluates the statistical uncertainty of estimated vulnerability and risk. Perhaps most critically, the 

framework provides a robust method for translating relative vulnerability scores and rankings into absolute 

risk categories for species and ecosystems to aid the management and conservation of marine ecosystems 

under climate change. The CCRA consists of the following overarching design principles:  

1. Generalized and adaptable: The information used to define vulnerability and risk represent generalized 

responses of species to climate change operating consistently across species with varying taxonomies 

and life histories. The approach is designed to be minimal-realistic and a starting platform upon which to 

build. Here, we developed an approach with the understanding that its utility depends on its goals and 

objectives, which may differ across users. A global minimal-realistic CCRA may be appropriate for 

those seeking a broad overview of vulnerability, but additional climate information may be required for 

those seeking to evaluate the vulnerability of fisheries, for instance. It is also anticipated that new 

climate-relevant information will become increasingly available and the framework is developed to 

flexibly incorporate this information should it be deemed relevant. 

2. Quantitative and comprehensive: Several existing CCVAs have been developed using semi-

quantitative rankings based on expert opinione.g. 3,10. These approaches are sensible but are also difficult 

to reproduce and labour-intensive, particularly at large scales. This limits their reproducibility, making it 
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challenging to monitor vulnerability in a standardized manner over time. This study prioritizes the use of 

measurable, quantitative information sources to facilitate the reproducibility of the assessment. De los 

Rios et al. 5 reported that only 11% of vulnerability assessments had included all three dimensions 

widely accepted to define it (sensitivity, adaptivity, exposure), and those that do often contain only a 

single index to define each dimension. This study represents and integrates all three vulnerability 

dimensions and comprehensively uses multiple indices to define each dimension robustly. The 

framework also defines the indices using a comprehensive range of approaches, including correlative, 

trait-based, and mechanistic, across various biological organization levels, from species to ecosystems 

and incorporating past, present, and future climate data.  

3. Globally and taxonomically standardized and scalable: Species vulnerability assessments are 

predominantly conducted at local or regional scales6, making it difficult to interpret them globally, 

limiting their interpretability and use. We standardize vulnerability estimates using immutable scaling 

factors and statistical transformations to interpret the vulnerability scores for individual species and/or 

locations on a standardized scale across all sites and species. This scalability ensures that the framework 

can be applied at varying spatial (e.g. local, regional, global) and taxonomic (e.g. species, ecosystems) 

scales, thus accommodating different goals and objectives. The vulnerability scores’ interpretation is 

preserved through this scalability when they are downscaled from coarser global resolutions to higher- 

resolutions and more scale-appropriate data layers used (e.g. regional climate models).  

4. Practical, transparent and parsimonious: The framework uses robust yet broadly interpretable 

methods to encourage its ongoing use and development. To increase transparency, the framework 

prioritized using publicly available, peer-reviewed data and integrated it using the most parsimonious 

methods. To this end, the framework maximizes the information related to species’ climate vulnerability 

and risk while minimizing data volume and complexity. As some species or regions are data-limited, 

sensitivity analyses were performed to determine the acceptable data completeness thresholds.  

With these overarching design principles in mind, climate vulnerability and risk were evaluated for each 

species (taxonomically) at all locations across their native geographic distributions (spatial) and 

superimposed to explore ecosystem patterns; the main steps in this process were:  

1. Identification of indices of climate sensitivity, exposure and adaptivity. 

2. Data compilation. 

3. Calculation of climate indices.  

4. Calculation of climate vulnerability.  

5. Calculation of climate risk 

6. Quality control, sensitivity, and robustness analyses. 

The following text describes these steps and, as an illustrative example, assesses Shortfin mako’s (Isurus 

oxyrinchus) climate vulnerability and risk under the IPCC’s shared socioeconomic pathway (SSP) scenario 
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SSP5-8.5, representing continued fossil fuel development17,18. An overview schematic of the workflow and 

steps in the analyses are in Extended Data Figure 1. 

1. Defining climate vulnerability: data, indices, and dimensions 

Holistic principles guide the CCVA and CCRA that we developed: climate change impacts on 

species are complex and synergistice.g. 19. Therefore, the climate vulnerability of species can’t be adequately 

defined by a single index or dimension. Building on this idea, our framework defines vulnerability 

hierarchically: vulnerability is calculated from its three accepted dimensions (sensitivity, exposure, 

adaptivity)7, each of which is derived from four climate indices (12 indices total), which in turn are 

calculated using data and ecological theory (Table S1). Indices related to species climate sensitivity included 

species’ thermal safety margins9,20–22, vertical habitat variability and use23–26, conservation status27, and 

cumulative impacts28–35. Indices of species climate exposure were calculated from ensemble climate 

projections and included the species’ time of climate emergence from their thermal niche36–39, suitable 

thermal habitat loss40–42, climate-related ecosystem disruption43–46, and the projected climate velocity7,47–49. 

Indices related to species adaptivity to climate change included the species’ geographic range 

extent23,47,49,50,52–54, geographic habitat fragmentation10,55–59, maximum body length4,10,57,60–64, and historical 

thermal habitat variability and use10,65–68. These climate indices were selected based on pre-defined criteria, 

as follows: We prioritized indices that are grounded in ecological theory, widely accepted, and validated, 

preferably through peer-review and publication. Indices were restricted to those where the mechanism of 

climate change effects was widely accepted and well documented in existing climate change vulnerability 

studies20,33,36,38,e.g. 47,49,69,70. Indices were also chosen to maximize their unique information content and 

minimize redundancies; their uniqueness was evaluated by testing their collinearity and through sensitivity 

analyses (see Quality control and sensitivity analyses section). Parsimony was also critical: indices that were 

easy to interpret and calculate were given priority. Our framework constitutes a ‘combined approach’4–6; it 

integrates trait-based, correlative, and mechanistic information and incorporates abiotic, biotic, and human 

pressures acting across multiple biological organization levels (species to ecosystems). The selected indices 

(Table S1) are described in the Calculation of the indices section. 
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Table S1 | Indices used in this study. 

Index Description Data sources Rationale References 

Sensitivity (S) 

Thermal safety 

margin 

Difference between maximum 

environmental temperature and 

species upper temperature tolerance.  

AquaMaps 

Reynolds daily 

SST  

Species inhabiting waters at their upper thermal limits 

are more vulnerable to further warming. The thermal 

safety margin has been extensively used in climate 
vulnerability assessments to measure species 

sensitivity and tolerance to further warming. 

9,20–22,71,72 

Conservation status Assessed species extinction risk 

(categorical). 

IUCN red list 

status  

Climate effects on and species can be more severe 

when species are or have been impacted by additional 
stressors (e.g. fishing, pollution, and nutrient loading) 

and are at low conservation status. 

27,71 

Cumulative impacts Multivariate index of human impacts. Human impact 

index  

Species exposed to multiple impacts are more sensitive 
to additional stressors, tipping points, synergistic 

impacts.  

28–35,73 

Vertical habitat 

variability and use 

A bivariate function of maximum 
depth of occupancy and vertical range 

of species. 

AquaMaps  

FishBase 

SeaLifeBase 

Habitat generalist species are more adapted to climate 
variability and change than are specialist species due to 

their ability to occupy a greater variety of habitats. 

Species inhabiting the upper ocean and with narrow 
vertical habitat, ranges are more sensitive to upper 

ocean warming.  

23–26,66 

Adaptivity (AC) 

Geographic range 

extent 

A bivariate function of the global 

present-day geographic habitat area 
and latitude span occupied by the 

species. 

AquaMaps  Broadly distributed species are less susceptible to 

adverse climate change events over parts of their 
geographic distributions. Greater opportunity for 

favourable habitat (e.g. climate refugia) within larger 

distributions. 

10,23,76,26,53,54,

57,61,71,74,75  

Geographic habitat 

fragmentation 

The proportion of species native 

geographic distribution that is 

fragmented.  

AquaMaps  Species with less fragmented habitat ranges have 

greater access to potentially favourable habitats (e.g. 

climate refugia), migration corridors, and larval 
dispersal. Consequently, studies in terrestrial and 

marine systems have reported that species with 

fragmented geographic ranges are more sensitive to 

and less resilient to climate change impacts 

10,55,79–82,56–

59,71,76–78  

Maximum body 

length 

The maximum body length reached 

globally.  

FishBase 

SeaLifeBase  

The maximum size is a predictor of several life-history 

traits (e.g. generation length, time to maturity, intrinsic 
rate of population increase) that cumulatively define 

species potential reproductive capacity and population 

growth rate.  The maximum size (length or mass) 
reached by species has been commonly used as a proxy 

of extinction risks and vulnerability of species to 

climate change. Smaller species that tend to be r-
selected are viewed as more resilient than larger, k-

selected ones. 

4,10,75,83–

85,57,60–64,67,71 

Thermal habitat 

variability and use 

A bivariate function of the fraction of 

total historical temperature habitat 
within the species recorded thermal 

preference and the total temperature 

range experienced by the species 
across its global present-day 

geographic range. 

Reynolds daily 

OISST  

Species inhabiting more variable thermal environments 

such as at the range-edges of their geographic 
distributions are thought to have a greater capacity to 

adapt to climate change and are believed to be less 

sensitive to it 

10,65–68,86–89 

Exposure (E) 

Projected climate 

velocity 

The ratio of projected temporal and 

spatial change in thermal isotherms 
within the species geographic 

distribution. 

CMIP6 monthly 

SST  

The velocity of climate change (VoCC) represents 

climatic isotherms’ geographic movement over time 

and is a widely used measure of climate exposure 

7,47,48,90 

Projected 
ecosystem 

disruption 

For each grid cell across the focal 
species native geographic distribution, 

the proportion of all species projected 

to exceed their thermal tolerances. 

CMIP6 monthly 

SST  

Individual species will be impacted by climate-driven 
ecosystem restructuring via altered predation, prey 

availability, competition.  

38,43–46,91 

Projected time of 

climate emergence 

from species’ 

thermal niche 

The year when the projected 

temperature first exceeds the thermal 

tolerance of focal species for at least 

three years in a row. 

AquaMaps  

CMIP6 monthly 

SST  

The time of climate emergence from pre-industrial 

temperature variability has been widely used as a proxy 

for climate change timing. The time of climate 
emergence from a species thermal tolerance range has 

recently been developed as an index of the timing of 

species exposure to dangerous climate conditions. 

36,38,39,49,92 

Projected loss of 
suitable thermal 

habitat 

For each focal species, the proportion 
of native geographic distribution lost 

due to projected climate change. 

AquaMaps  

CMIP6 monthly 

SST  

Species that are projected to lose more of their thermal 

habitat are more vulnerable.  

40–42,93,94 
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2. Data compilation 

Overview  

The data layers required to calculate the indices in Table S1 were obtained from publicly available and 

validated sources (Table S2) and were used to calculate the 12 indices of the sensitivity, adaptivity, and 

species’ exposure to climate change. These data sources and indices combined information at the individual 

species level (e.g., thermal preferences and tolerances, geographic distribution characteristics, trait 

information, and conservation status) with information about their environment (historical, present and 

projected thermal habitat, exposure to anthropogenic exposure stressors). Following most previous CCVAs, 

sea surface temperature (SST) was the primary indicator of climate change4–6,e.g. 8–10,95,96, even though it may 

not capture every aspect of climate vulnerability97. SST is widely available over historical and future 

projections at high spatial and temporal resolutions. There is a greater understanding of SST’s effects on 

species relative to other climate change variables (e.g. net primary production, oxygen concentration, 

acidification)19,98. For these reasons, most CCVAs have used temperature as the primary index of climate 

change4–6,e.g. 8–10,95,96. Following this, species that did not inhabit the upper 100m of the ocean were excluded 

from the analyses, as were those whose maximum depth of occurrence exceeded 1000m, as surface 

temperatures could weakly define the vulnerability of these species. See Criteria for species inclusion 

section for a validation of this threshold.  

Table S2 | Data sources used in this study. 

Species native geographic distribution 

This CCRA framework required the native geographic distributions of each marine species; these were 

obtained from the AquaMaps website99. AquaMaps predicts marine species’ spatial distribution on a 0.5° 

global grid using environmental niche models experts can validate as a quality control measure (Figure S1). 

The approach matches observed species occurrence records with local environmental conditions to estimate 

suitable habitat conditions (environmental envelopes). The niche models predict the relative probability of 

occurrence and habitat suitability for each species as functions of bathymetry, water temperature, salinity, 

primary production, and the presence of and for some species, the proximity to sea ice and coasts, and 

Type Variable Source Temporal Spatial  References 

Taxonomic, 
spatial 

Species native geographic distribution AquaMaps 2000-2014 0.5° 99 

Taxonomic  Conservation status IUCN Red List - - 69 

Taxonomic  Vertical habitat variability and use FishBase, SeaLifeBase, AquaMaps - - 99–101 

Taxonomic Maximum body length FishBase, SeaLifeBase - - 100,101 

Taxonomic Thermal niche AquaMaps 2000-2014 - 99 

Taxonomic Species taxonomy World Register of Marine Species - - 102 

Spatial Cumulative impacts Cumulative human impact index - 1km2 31–33 

Spatial Bathymetry General Bathymetric Chart of the 

Oceans (GEBCO) 

- 4km2 103 

Spatiotemporal Sea surface temperature NOAA daily Optimum Interpolation Sea 
Surface Temperature dataset 

1981-2020 0.25° 104 

Spatiotemporal Projected sea surface temperature Coupled model intercomparison project 

phase 6 (CMIP6) 

1850-2100 1° 105 

https://en.wikipedia.org/wiki/Grid_(spatial_index)


8 

 

dissolved oxygen levels. Species occurrence records are obtained through online species databases such as 

the Ocean Biodiversity Information System (OBIS) or the Global Biodiversity Information Facility (GBIF), 

while information on the maximum distribution extents and habitat use of species come from FishBase100, 

SeaLifeBase101, and AlgaeBase106. Modelled species distributions are harmonized with the currently known 

species distributions in geographic space, while experts can also review and verify predicted environmental 

envelopes in environmental space. The predicted distributions for each species are updated every 1-2 years 

as new data become available. AquaMaps native geographic distribution estimates have been validated using 

independent survey observations107 and evaluated against alternative methodologies and independent species 

distribution datasets108.  

Climate vulnerability and risk were evaluated at 1° resolution to increase the global analyses’ 

computational efficiency and ensure that they were compatible with the spatial resolution of the input 

climate projections (Table S2). To achieve this, the geographic distributions for each species were rescaled 

from the native 0.5° resolution using bilinear interpolation. We verified that the bilinear interpolation was 

suitable through sensitivity analyses by comparing the interpolated probabilities of occurrence from bilinear, 

nearest neighbour, and spatially averaged approaches and the native 0.5° resolution data. Values interpolated 

using bilinear and averaging were almost identical (r=0.98), but those from nearest neighbour yielded 

slightly less similar values (r=0.93). Comparing the interpolated values to the native 0.5° values (one-to-

many merge) indicated that the bilinear and average approaches yielded less bias than the nearest neighbour.  

 
Figure S1 | Example of estimated native geographic distribution 

for Shortfin mako. 

Colours are the probability of occurrence for shortfin mako estimated 

by AquaMaps99, where yellow is the highest and blue lowest 

probability.  

Species traits 

Thermal niches 

The upper and lower thermal preferences and tolerances that define the realized thermal niche of marine 

species were obtained from AquaMaps99. The minimum and maximum temperature preferences for species 

were defined by the 10th and 90th percentiles of the observed temperature variation from available species 

occurrence records located within a species’ maximum distribution extent, respectively. The minimum and 

maximum temperature tolerances for species were determined by the 25th and 75th percentiles of the 

temperature variation, respectively, + 1.5 × interquartile or absolute maximum in extracted data (whichever 

https://en.wikipedia.org/wiki/OBIS
https://en.wikipedia.org/wiki/GBIF
https://en.wikipedia.org/wiki/FishBase
https://en.wikipedia.org/wiki/SeaLifeBase
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is greater). The upper-temperature tolerance values are relevant to this study as they are used to calculate 

several of the climate indices; these values represent the species realized, rather than fundamental, upper 

thermal tolerances. To evaluate the veracity of the species’ upper thermal tolerances in AquaMaps, we 

compared them against the fundamental critical thermal maximum for those species that have been 

determined through experimentation, compiled, and published9,20,109. Specifically, we compared the upper 

realized thermal tolerances reported in AquaMaps against the fundamental thermal tolerances for 60 

matching species in the GlobTherm database109, 76 species reported in Pinsky et al. 20, 58 species reported in 

Comte et al. 9, and 767 species that were imputed in Comte et al. 9. The AquaMaps realized upper thermal 

tolerances were positively correlated to the fundamental upper thermal tolerances in the published databases 

(r=0.8-0.88; Figure S2). However, as expected, the fundamental tolerances were generally higher than the 

AquaMaps realized tolerances. This discrepancy may be driven by the difference in the duration of thermal 

exposure. Whereas realized tolerances were evaluated using time-averaged SST, fundamental tolerances are 

derived from experiments that capture more acute heat exposure (e.g. responses over minutes, hours, days). 

Were we to use the hottest hourly or daily temperature in a year, we expect the realized and fundamental 

tolerances would be equivalent.  

 
Figure S2 | Relationships between realized upper thermal 

limits of species in AquaMaps and in the scientific literature.  

Points show the upper thermal tolerances of species reported in 

AquaMaps against matching species from the GlobTherm 

database 109, Pinsky et al. 20, Comte et al. 9, and imputed in Comte 

et al. 9. Dashed lines represent a 1:1 relationship. 

Maximum body lengths 

The maximum body size of species was estimated from the FishBase1 and SeaLifeBase2 databases. From 

FishBase, length-length relationships were used to calculate maximum lengths in standard units of total 

length (TLen). For species with no length-length relationship yet in FishBase, relationships were established 

 
1 http://www.fishbase.org 
2 https://www.sealifebase.ca/ 
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using measurements in the MORPHOMETRICS table or the PicturesMain tables. Where needed, lengths 

from the DIET, FECUNDITY, MATURITY, OTOLITH, POPCHAR, POPLL, POPLW, and SPAWNING 

tables were compiled and converted to TLens. To validate the length records, the largest maximum lengths 

were examined to find and exclude those which are not plausible for each genus. Maximum lengths from 

FishBase were obtained from R. Reyes Jr at Quantitative Aquatics, Inc. From SeaLifeBase, the type of 

measurement used to assess maximum total lengths (TLens) for invertebrates depended on their taxonomy. 

TLen was defined by the shell length and body length for gastropods, bivalves, and some decapods. TLen 

was determined by mantle length (ML) for cephalopods, carapace length (CL) for decapods, and shell height 

(SHH) for some gastropods. The lengths (TLen, ML, CL, SHL) across tables were then compared, and the 

larger lengths were used to update the maximum lengths in the SPECIES table. P.M. Sorongon-Yap 

compiled maximum lengths from SeaLifeBase at Quantitative Aquatics, Inc. 

Fuzzy matching species traits 

Species-level information (e.g. traits) were combined within the database according to their Latin 

species names. However, in some instances, the same species were entered differently between the different 

data sources; they were synonyms to their accepted taxonomies or were entered incorrectly due to human 

error. The World Register of Marine Species (WoRMS)102 was used as a taxonomic template to validate all 

species’ identities and ensure that the taxonomies were correct and standardized across the different data 

sources. WoRMS contains both the accepted Latin and common names of all available species and their 

known synonyms. Using fuzzy string matching, species-level climate indices were joined according to 

species identity. Using the IUCN Red List conservation status as an example, the fuzzy string distance 

between each Red List species and each WoRMS synonym was calculated; this value is 0 when the WoRMs 

and Red List Latin names are identical, 1 when there is a one-character difference, and so on. We then 

selected the most likely match between WoRMS and the Red List Latin names according to the minimum 

string distance, provided that the distance was <=1. The distance of 1 was selected with the understanding 

that human error (e.g. data entry typos) would most likely result in single character omissions, insertions, 

and substitutions.  

Environmental conditions 

Temperature conditions were evaluated using daily SST estimates from the NOAA 0.25° daily Optimum 

Interpolation Sea Surface Temperature dataset (OISST)104. The temperature dataset is a combination of 

observations from different observation platforms (satellites, ships, buoys, and Argo floats) and is available 

globally since 1981 at a spatial resolution of 0.25°. SST values were rescaled to a global 1° grid using 

bilinear interpolation.  

A multivariate index of cumulative human impacts (HI) on ocean ecosystems was developed in 

Halpern et al. 31,33. The HI index integrates 17 global anthropogenic drivers of ecological change, including 

fishing pressure, pollution, invasive species, eutrophication, climate change, and others. The HI estimates 
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were available at a global 1km2 native resolution. These values were rescaled to a global 1° grid using 

bilinear interpolation. 

Climate projections 

We obtained monthly time-series of projected monthly SST from the coupled model intercomparison project 

phase 6 (CMIP6) between 1850 and 2100. All SST projections were interpolated to a regular global 1x1° 

grid. An ensemble of SST projections was obtained from 15 published Global Climate (GCM) or Earth 

System Models (ESMs) within the CMIP6 archive (Table S3). These models span a broad range of the 

projections of SST within the CMIP6 model set. SST projections (°C) were made under the IPCC’s shared 

socioeconomic pathway (SSP) scenarios SSP5-8.5, representing continued fossil fuel development, and 

SSP1-2.6, representing an increase in sustainable development17,18. 

Table S3 | List of models from the CMIP6 multi-model ensemble archive used in this study. 

N Model  Modeling Center (or Group)  Reference 

1 BCC-CSM Beijing Climate Center  110 

2 INM-CM4-8 Institute for Numerical Mathematics 111 

3 MIROC6 Japan Agency for Marine-Earth Science and Technology 112  

4 MRI-ESM2-0 Meteorological Research Institute 113 

5 ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisation 114 

6 CAMS-CSM1-0 Chinese Academy of Meteorological Sciences 115 

7 CMCC-CM2-SR5 Centro Euro-Mediterraneo sui Cambiamenti Climatici 116 

8 FGOALS-f3-L Chinese Academy of Sciences 117 

9 FIO-ESM-2-0 First Institute of Oceanography 118 

10 KACE-1-0-G National Institute of Meteorological Research & Korean Meteorological Agency 119 

11 KIOST-ESM Korea Institute of Ocean Science and Technology 120 

12 NESM3 Nanjing University of Information Science and Technology 121 

3. Calculation of the indices  

Overview 

Climate indices were calculated or obtained in their native units. Each vulnerability index was defined by 

the focal species’ traits, calculated from environmental or ecological data on a geographic grid across the 

geographic distribution of the focal species and/or a combination of the two. This resulted in indices that 

were both taxonomically (e.g. each species) and geographically (e.g. each grid cell and species) explicit. The 

indices were then transformed to ensure they mapped onto a standardized scale (range: 0-1), using 

hyperbolic functions (see section Notes on standardization, below). This critical step ensured that indices 

with different units could be compared, normalized, and combined. It also ensured that vulnerability could 

be re-estimated at different spatial resolutions or at different points in time without a loss of information. 

The following section describes the interpretation, calculation, and standardization for each index.  

Notes on standardization: reference values and scaling 

The indices of climate sensitivity, exposure, and adaptivity described below were in different units, and 

standardizations were necessary to ensure that all indices were directly comparable on a standardized scale 
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and their interpretations were ecologically grounded. Furthermore, the indices needed to be calculated in this 

manner to ensure that the CCRA could be reproduced in future studies, potentially over different geographic 

domains (e.g. regional), at higher spatial resolutions, and at different future exposure horizons without any 

loss of information. The indices also needed to be calculated so that vulnerability could be monitored over 

time. Reference values and scaling functions were used to meet these criteria. 

Reference values were used to ensure that the indices varied on standard interpretable scales (0-1). 

They were selected using established guidelines such as spatial or taxonomic comparison against global 

maximum32,122. Alternatively, scaling functions described how the scaled indices varied as their unscaled 

analogues increased. It was possible to scale some indices using standard approaches (e.g. log10) and/or by 

expression as a proportion of a global or theoretical maximum (e.g. %). Other indices were scaled using 

rectangular hyperbolic functions that characterize the change in the indices from the height of an asymptote 

and the rate at which it is reached. Rectangular hyperbola is also known as saturating hyperbola, 

decelerating curve, and asymptotic regression, representing one of the most ubiquitous curves in biology123. 

They have been used to describe a variety of biological phenomena, including, for instance, the reaction 

speed of enzymes, the nature of predator-prey interactions, and ecosystem stability. Here we use hyperbolic 

functions described by the exponential equation due to their wide use and ease of interpretation to 

standardize and normalize some climate indices. The exponential growth function is described as 

 𝑌 =  𝛼𝑒𝜆𝑋, Equation 1 

where 𝛼 is the y-intercept and 𝜆 is the rate parameter. The equation ensures that Y ranges between 0 and  ∞ 

and increases for 𝜆>1 and declines for 𝜆<0. Changing these two parameters can yield widely varying 

response functions. For example, an asymptotic increase in Y can be described by,  

 𝑌 =  1 − 𝑒−𝜆𝑋 Equation 2 

where higher values of 𝜆 yield sharper increases, and earlier asymptotes in 𝑌 with lower values yielding 

slower increases that do not reach an asymptote (Figure S3). 

 
Figure S3 The exponential curves described by Equation 1 under 

different levels of 𝝀. 

This generalized exponential function was used to define the scaling of the indices and ensure they were 

standardized between 0 and 1. These standardizations are defined in the descriptions of the individual 

indices; sensitivity analyses evaluating the validity of their use are described in the Quality control and 

sensitivity analyses section below. 
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Climate sensitivity indices 

Overview 

The species' sensitivity quantifies their responsiveness to climate change and is comparable to the concept of 

reactivity in community ecology14,124. The species' sensitivity is primarily a function of the present 

environmental conditions and status of the species. For instance, these include their environment’s status, 

the stressors they are presently exposed to, their current conservation status, and their physiological 

condition.  

Thermal safety margins 

Rationale 

The thermal safety margin (TSM) has been extensively used in climate vulnerability assessments to measure 

species sensitivity and tolerance to further warming9,20,21. Species inhabiting thermal environments close to 

their upper temperature limit (narrow thermal safety margin) are more vulnerable to climate warming than 

those further away (Figure S4).  

 
Figure S4 | Thermal safety margin. 

The thermal safety margin for shortfin mako in grid cell c (red arrow) 

is calculated as the distance between the current warmest 

temperatures experienced in grid cell c (orange vertical line) and the 

maximum temperature tolerance of shortfin mako (blue shaded 

density and vertical line). 

Calculation 

For each species within each 1° grid cell across its estimated geographic distribution, a thermal safety 

margin was calculated as the difference between the estimated upper thermal tolerance of the species and the 

maximum daily SST observed over the previous decade (e.g. here, between 2010 and 2020). AquaMaps 

provided the estimated thermal tolerances and native geographic distribution for each species. NOAA daily 

Optimum Interpolation Sea Surface Temperature (OISST) estimates were used to evaluate the maximum 

temperatures reached across each species’ geographic distribution between 2010 and 2020104(Table S2). The 

standardization function allowed climate sensitivity to increase exponentially as the TSM declined as 

 𝑆 𝑇𝑆𝑀𝑠,𝑐 =  𝑒−𝜆𝑇𝑆𝑀𝑠,𝑐 , Equation 3 
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where 𝑇𝑆𝑀𝑠,𝑐 is the thermal safety margin (°C) for species s in grid cell c, and 𝜆 is the rate parameter (0.33). 

The rate parameter (𝜆) and resulting equation were chosen to standardize the index (0-1), normalize it’s 

distribution and allow most of the change in sensitivity to occur for TSMs below 10°C, with sensitivity 

being increasingly uniform when the TSM exceeds 10°C. There should be little difference in the sensitivity 

of species inhabiting ocean temperatures that are >10°C from their upper thermal maximum (Figure S5). 

Our definition of sensitivity (Equation 3) assumes that risk declines with thermal distance from the species' 

upper thermal tolerance. In general, thermal performance is strongly warm skewed, with fitness expected to 

increase gradually until the thermal optima before rapidly declining to zero as the species' upper thermal 

tolerance limit approaches. Our assumption that risk increases continuously with temperature thus captures 

the risk of the species' upper thermal tolerance being exceeded rather than representing variation fitness 

within the thermal niche. Refer to the Quality control and sensitivity analyses section for an evaluation of 

how the vulnerability calculations are affected by the specification of 𝜆.  

 
Figure S5 | Thermal safety margins for Shortfin mako. 

The thermal safety margins (left) were calculated across the native geographic distribution and transformed 

using the function described by Equation 3 (middle) to standardize them (right). 

The transformation altered the distribution of the TSMs such that they were less skewed (Figure S6) 

 
Figure S6 | Distribution of thermal safety margins. 

Histograms depict the distribution of thermal safety margins for species and locations 

randomly sampled before (green; left) and following (purple; right) standardization. The 

distributions were derived from random samples of 10 M observations.  

Conservation status of species 

Rationale 

The estimated conservation status of individual species was obtained from the IUCN Red List Index of 

species (RLI)69, the world’s most comprehensive inventory of biological species’ global conservation status. 

The Red List classifies species into extinction risk categories based on population trends, population size 

and structure, and geographic distribution, and the process is quality controlled through a peer-review 
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process. Red List assessment contributors include BirdLife International, the Institute of Zoology, the UNEP 

World Conservation Monitoring Centre, and the IUCN Species Survival Commission. The IUCN strives to 

update each species assessment every five or ten years. Excluding species that have not been evaluated or 

that are data deficient, species are categorized as extinct, extinct in the wild, critically endangered, 

endangered, vulnerable, near threatened, or of least concern (Figure S7).  

 
Figure S7 | IUCN conservation status. 

The spectrum of IUCN conservation status categories is 

depicted with shortfin mako classified as ‘endangered.’ 
Calculation 

The Red List categories were transformed to numeric values as follows: Critically endangered=0.5, 

endangered=0.05, vulnerable=0.005, near threatened/lower risk/near threatened=0.0005, least concern/lower 

risk/least concern=0; they were then standardized between 0-1 (Figure S8).  

 
Figure S8 | IUCN Red List categorization for Shortfin mako. 

The Red List classification for shortfin mako was converted from discrete categorical responses (left panel) to 

standardized numeric values (middle and right).  

The Red List values were skewed such that most species had a low sensitivity (‘least concern’); (Figure S9) 

https://en.wikipedia.org/wiki/BirdLife_International
https://en.wikipedia.org/wiki/Institute_of_Zoology
https://en.wikipedia.org/wiki/World_Conservation_Monitoring_Centre
https://en.wikipedia.org/wiki/IUCN_Species_Survival_Commission
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Figure S9 | Distribution of IUCN Red List status values. 

Histograms depict the distribution of Red List status for 

species after standardization.  

Cumulative impacts 

Rationale 

Climate effects on ecosystems and species can be more severe when overlaid by additional stressors, such as 

fishing, pollution, and nutrient loading. For example, Ottersen et al. 34 reported that extensive fishing could 

render fish populations less resistant to the harmful effects of short-term climate variability on occasional 

low year classes. Alternatively, studies have reported that species and ecosystems protected from such 

stressors may be more resistant and resilient to stressors such as climate change and fishing28–30. For 

example, Le Bris et al. 35 found that management initiatives to protect large female lobsters in the Gulf of 

Maine (GoM) have led to higher resilience to ocean warming and productivity of the lobster population 

there when compared to populations in adjacent Southern New England, where large individuals were less 

strictly conserved35. Without conservation measures to protect large lobsters and female reproductive 

lobsters, lobster abundance in the GoM would have increased by 242% rather than 515%, as oceans warmed 

between 1985 and 201435. These results contribute to a growing body of research suggesting that protecting 

species, and predators, in particular, can enhance the resilience of populations to stressors, such as climate 

change14,35,125. 

Calculation 

The multivariate index of cumulative human impacts (HI) on ocean ecosystems developed in 

Halpern et al. 31,33 was used as an index of cumulative impacts on marine ecosystems. The HI index (HII) 

integrates 17 global anthropogenic drivers of ecological change, including fishing pressure, pollution, 

invasive species, eutrophication, climate change, and others. The 1km2 HI values were re-interpolated using 

nearest neighbour methods to a worldwide 1° grid. This interpolation changed the HII scale: whereas the 

native 1km2 HII ranged between 0-12, the interpolated HII ranged from 0-8. The range of the HII may likely 

change as it is updated. HII was transformed to ensure that it would be insensitive to the native scale, as 

 𝑆 𝐻𝐼𝐼𝑐 =  1 − 𝑒−𝜆𝐻𝐼𝐼𝑐 , Equation 4 

where 𝐻𝐼𝐼𝑐 is the HII in cell c, and 𝜆 is the rate parameter, set to 0.6. The rate parameter (𝜆) and resulting 

equation were chosen to standardize the index (0-1), normalize it’s distribution and ensure that 𝑆 𝐻𝐼𝐼𝑐 ranges 

between 0 and 1 and is nearly uniform for values above 5 (Figure S10). Refer to the Quality control and 
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sensitivity analyses section for an evaluation of how the vulnerability calculations are affected by the 

specification of 𝜆. 

 
Figure S10 | Cumulative human impacts across the native geographic distribution of Shortfin mako. 

The HII across the native geographic distribution of shortfin mako (left) were transformed using Equation 4 (middle) 

into standardized values (right). 

The distribution of the cumulative impacts is shown before and after transformation (Figure S11). 

 
Figure S11 | Distribution of cumulative human impacts. 

Histograms depict the distribution of cumulative human impacts before (green; left) and 

following (purple; right) standardization.  

Vertical habitat variability and use 

Rationale 

Habitat generalist species are more adapted to climate variability and change than are specialist species due 

to their ability to occupy a greater variety of habitats23–26. Vertical habitat specialization, the depth of species 

occupancy, and the ability to occupy different vertical habitats play a significant role in determining the 

adaptivity of species to climate change. Species restricted to the uppermost epipelagic layers of the ocean 

are expected to have a lower capacity to adapt to climate change, as the upper oceans are more exposed to 

warming e.g. 10. Similarly, species that occupy a narrow range of vertical habitats are also less adaptable. As 

such, a vertical habitat index was calculated for each species according to its maximum occupancy and 

range depth.  

Calculation 

Our analysis included species that inhabited the upper 100m of the ocean and excluded those whose 

maximum depth of occurrence exceeded 1000m (excepting mammals and deep-diving pelagics such as 

tunas and billfishes); surface temperatures could weakly define the climate risk of these species. . For these 

species, climate sensitivity to upper ocean warming declined exponentially with both the maximum depth of 

occupancy and vertical range of each species as 

 𝑆 𝑉𝑅𝑠 =  𝑒−𝜆𝑉𝑅𝑠 Equation 5 
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 𝑆 𝑀𝑑𝑒𝑝𝑠 =  𝑒−𝜆𝑀𝑑𝑒𝑝𝑠 Equation 6 

where 𝑉𝑅𝑠 and 𝑀𝑑𝑒𝑝𝑠 are the vertical range and maximum depth of occupancy for species s in meters, and 

𝜆 is the rate parameter (0.003). The rate parameter, 𝜆, corresponds to the rate of decline in climate sensitivity 

over depth and depth range and was empirically derived as the exponential rate of change in the difference 

between surface and subsurface temperatures across depths between 0 and 1000m globally. These equations 

allow sensitivity to scale between 0 and 1, with most of the change in sensitivity occurring between the 

surface and 500 m depth or range, with sensitivity being very similar below 500 m (Figure S12). Maximum 

sensitivity occurred for surface-dwelling species with narrow vertical ranges, while the lowest sensitivity 

occurred for species below 500 m with wider vertical ranges. Estimates of maximum depth of occupancy 

and vertical habitat range were retrieved from AquaMaps99 and FishBase126. The maximum depth of 

occupancy and vertical habitat range was truncated by the maximum bathymetry present in each grid cell 

across its native geographic distribution for each species. Bathymetry values were extracted from the 

General Bathymetric Chart of the Oceans (GEBCO; Table S2). Cumulative climate sensitivity was then 

calculated as the mean of the species’ standardized vertical range (Equation 5) and the maximum depth of 

occupancy (Equation 6) indices. Refer to the Quality control and sensitivity analyses section for an 

evaluation of how the vulnerability calculations are affected by the specification of 𝜆. 

 
Figure S12 | Vertical habitat use of Shortfin mako. 

The maximum depth of occupancy and vertical habitat range (left) were transformed using the function described by Equation 6 

(middle) to develop a standardized index of vertical habitat use (right panel). The transformation function (Equation 6; middle) 

specifies that species restricted to the oceans’ uppermost layer are most sensitive to upper-ocean warming (middle). The 

sensitivity declines rapidly below 500 m and is virtually nonexistent below 1000 m depth. 

The distribution of the vertical habitat range and the maximum depth of species are shown before 

and after transformation (Figure S13). 
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Figure S13 | Distribution of vertical habitat uses. 

Histograms depict the probability distribution of vertical habitat range (green; left), maximum depth of occupancy 

(green; middle), and the standardized vertical habitat index (purple; right). 

Climate exposure indices 

Overview 

The exposure of species to climate change is primarily a function of the future conditions of their 

environment. Accordingly, the exposure of species to future climate changes was evaluated using monthly 

projections of sea surface temperature (SST) between 1850-2100 from Global Earth System Models (ESMs) 

in the coupled model intercomparison project phase 6 (CMIP6). All SST projections were regridded onto a 

regular global 1x1° grid. Each exposure index (see below) was first calculated separately for each ESM 

projection on a global grid. Following this, the multi-model ensemble average for each separate exposure 

index was calculated. Each exposure index was standardized by a normalization constant to facilitate 

comparability when using alternative data sources or spatial resolutions. The cumulative climate exposure 

was then estimated as the average across all standardized exposure indices. Lastly, the climate exposure for 

each species within each 1° grid cell was obtained by calculating the probability of species occurrence by 

the standardized climate exposure in that grid cell.  

Projected time of climate emergence 

Rationale 

The time of climate emergence from pre-industrial temperature variability has been widely used as a proxy 

for climate change timing36,49,92. In the same vein, the time of climate emergence from a species' thermal 

tolerance range has recently been developed as an index of the timing of species exposure to dangerous 

climate conditions38,39. This index provides a means of assessing whether exposure to hazardous climate 

change is an imminent or distant threat (Figure S14).  
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Figure S14 | The timing of climate emergence from the thermal niche. 

The time of emergence for shortfin mako in grid cell c (ToE; red arrow) was 

calculated as the year in which the projected annual maximum of monthly 

temperature within grid cell c (points) first exceeds the thermal niche of 

shortfin mako (gray shaded density and blue horizontal line). 

Calculation 

The time of initial climate emergence (ToE) for each species was estimated as the year in which the 

projected maximum annual of monthly SST emerges from the species thermal tolerance niche for two 

consecutive years. ToE calculations were made using the methods described in Trisos et al. 38 for each 

species within each 1° grid cell across its native geographic distribution. Whereas Trisos et al. 38 used 

projections of mean annual temperature and an exceedance run length of 5 years, we used temperature of the 

hottest month and a run length of two years; in doing so, our ToE index quantifies the onset of thermal stress 

in species rather than absolute mortality to inform climate risk. We used climate projections between 2015 

and 2100. ToEs for species that did not exceed their thermal tolerances within this projection window were 

set at the maximum year of the projection. The ToE for each species and grid cell was estimated individually 

for each ESM and then averaged across all ensemble models. The resulting ToEs were standardized 

according to 

 𝐸 𝑇𝑜𝐸𝑠,𝑐 =  𝑒−𝜆𝑇𝑜𝐸𝑠,𝑐, Equation 7 

where 𝑇𝑜𝐸𝑠,𝑐 is the ensemble projected year of climate emergence from the thermal niche for species s in 

grid cell c, and 𝜆 is the rate parameter (0.033). The rate parameter (𝜆) and resulting equation were chosen to 

ensure that 𝐸 𝑇𝑜𝐸𝑠,𝑐 ranges between 0 and 1, and increases more rapidly as it approaches 0 and declines 

more slowly as it increases (Figure S15). Maximal exposure occurs for species inhabiting waters that are 

already thermally hazardous (e.g. ToE=0). Refer to the Quality control and sensitivity analyses section for 

an evaluation of how the vulnerability calculations are affected by the specification of 𝜆. 
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Figure S15 | Projected time of climate exposure for Shortfin mako. 

The multi-model projected time of climate exposure (left) was calculated across the native geographic distribution of 

shortfin mako and transformed using the function described by Equation 7 (middle) to standardize them (right). 

The distribution of the projected time of climate emergence of species’ thermal niche is shown 

before and after transformation (Figure S16). 

 
Figure S16 | Distribution of projected time of climate exposure. 

Histograms depict the probability distribution of projected time of climate exposure for 

species and locations randomly sampled before (green; left) and following (purple; right) 

standardization. The distributions were derived from random samples of 10 M observations.  

Projected ecosystem disruption 

Rationale 

Healthy, intact ecosystems are thought to be more resilient and resistant to stressors, including climate 

change91. Alternatively, stressors such as climate change can erode the structure and function of ecosystem 

through several pathways. In addition to the direct effects of temperature on species via their physiological 

tolerances, climate change can also indirectly affect species by altering their predators, prey, and 

competitors43–46. Such ecologically mediated climate change effects on species are notoriously challenging 

to assess and understand in situ due to the presence of lagged effects between predators and prey, the high 

collinearity between non-interacting species, and the scarcity of requisite data to resolve the effects. 

Notwithstanding this, studies suggest that changes in abundance or distribution of species can trigger 

cascading ecosystem effects, ecological regime shifts, and alternative stable states, causing modified 

ecosystem structure and function127–129. Studies also indicate that these ecological effects tend to be more 

significant when the abundance or distribution of several species changes in concert rather than isolation. 

Research into biodiversity and ecosystem function also suggests an accelerated risk to ecosystem function as 

more species are removed from it28.  
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Calculation 

To quantify the magnitude of ecological disruption resulting from an ecosystem’s exposure to climate 

change, we calculated the fraction of all species in our analysis at each location (grid cell) that are thermally 

exposed before the maximum year in the projection window (the year 2100). This index quantifies the risk 

of secondary ecological effects (e.g., changes in predation, prey availability, competition) due to climate 

change that species may be exposed to; it does not assume all species interact but instead captures the risk 

that a species will be impacted by the loss of other species in the system, which will increase with the 

number of species that are exposed 

 𝐸 𝑇𝑜𝐸𝐸𝑐 =  1 − 𝑒−𝜆𝑇𝑜𝐸𝐸𝑐, Equation 8 

where 𝑇𝑜𝐸𝐸𝑐 is the proportion of all species in grid cell c that emerge from their thermal niche by 2100, and 

𝜆 is the rate parameter, set at 4. The rate parameter (𝜆) and resulting equation were chosen to standardize the 

index (0-1), normalize it’s distribution and specify that a species’ exposure increases asymptotically with the 

fraction of species lost in its ecosystem, with the most significant exposure occurring for species inhabiting 

ecosystems with the greatest loss of species. We contend that individual species are likely to be most 

affected when the ecosystem initially undergoes climate-driven restructuring (species loss); thus, the 

exposure increases most rapidly for species loss up to ~50%. However, as the climate-driven ecosystem 

disruption becomes sufficiently large, additional species losses are likely redundant: e.g. losing 80% of 

species is functionally equivalent to losing 90%. Refer to the Quality control and sensitivity analyses section 

for an evaluation of how the vulnerability calculations are affected by the specification of 𝜆. 𝑇𝑜𝐸𝐸𝑐 was 

estimated individually for each ESM using the approach described in Trisos et al. 38 and then averaged 

across all ensemble models (Figure S17). 

 
Figure S17 | Magnitude of ecological change across the native geographic distribution of Shortfin mako. 

The fraction of species projected to be lost in each grid cell were calculated across the geographic distribution of 

shortfin mako (left) and transformed using the function described by Equation 8 (middle) to standardize them (right). 

The distribution of the projected fraction of species lost following transformation is shown in Figure S18. 
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Figure S18 | Distribution of the projected magnitude of ecological changes. 

Histograms depict the probability distribution of the projected magnitude of species’ 

ecological changes before (green; left) and following (purple; right) standardization.  

Projected loss of suitable thermal habitat 

Rationale 

Temperature changes have, and are expected to continue to cause, geographic range expansions, 

contractions, and redistributions in marine species40–42,93. Accordingly, changes in species' geographic range 

predicted by temperature changes are frequently used to define their vulnerability to climate change4,6,42,95. 

The nature and magnitude of such geographic range shifts will predominantly depend on the correspondence 

between local temperature changes and the species’ thermal tolerance niche. Accordingly, we evaluated the 

extent of each species’ estimated native geographic distribution that would be lost due to projected ocean 

warming. We did not assess the net change in the entire geographic distribution of species (e.g. the 

difference between the habitat gained and lost due to climate) for several reasons. While range contractions 

can be driven by a single variable (e.g. temperature), species expansions into new habitats will depend on 

the favorability of several environmental and biotic factors that we did not evaluate (e.g. bathymetry, 

oxygen, acidity, ocean mixing, predators, prey, competition, dispersal). Evaluating species range expansions 

would require future projections in many of these environmental and biotic factors, which are, in many 

cases, unavailable. Even if such projections were available, using them to forecast species range expansions 

would introduce considerable uncertainty into our analysis. Further, this study aims to assess risk to current 

marine biodiversity rather than trying to project how biodiversity may shift in the future, which has been the 

focus of other studiese.g. 130. Whereas many factors are needed to determine range expansions, the lethality of 

temperature alone can mediate range contractions. Therefore, our approach is conservative but possibly 

simplistic for some species, as it predicts that most species will lose habitat but that none will gain. 

Nonetheless, this index provides a valuable assessment of how the native geographic distribution of species 

could contract in response to climate change while avoiding the assumptions, complexities, and data 

requirements required to evaluate the net distributional responses. Finally, given that our framework does 

not evaluate the potential for geographic range expansions, it is best interpreted as the climate risk to the in 

situ persistence of species.  

Calculation 

Projected changes in species geographic distributions that are attributable to temperature were estimated 

from the time of climate emergence from the thermal niche calculations described above. The number of 
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grid cells in each species native geographic distribution is projected to emerge from their thermal niche prior 

to the end of the climate projection window (the year 2100) was standardized by the total number of grid 

cells in their native geographic distribution. This index quantifies the geographic extent of adverse climate 

change impacts that species may be exposed to. 

 𝐸 𝑇𝐻𝐿𝑠 =  1 − 𝑒−𝜆𝑇𝐻𝐿𝑠, Equation 9 

Where 𝑇𝐻𝐿𝑠 is the proportion of all grid cells across the native geographic distribution of species 𝑠 that are 

projected to become thermally hazardous by 2100, and 𝜆 is the rate parameter, set at 5. The rate parameter 

(𝜆) and resulting equation were chosen to standardize the index (0-1) and specify that a species’ exposure 

increases asymptotically with the fraction of thermal habitat loss, with the most significant exposure 

occurring for species losing all of their present-day suitable thermal habitats. No transformation was 

necessary as there was no reason to expect a nonlinear variation in the exposure index as a function of 

distributional changes (Figure S19). The maximum exposure occurs for species projected to lose all suitable 

habitats. Refer to the Quality control and sensitivity analyses section for an evaluation of how the 

vulnerability calculations are affected by the specification of 𝜆. 𝑇𝐻𝐿𝑠 was estimated individually for each 

ESM and then averaged across all ensemble models (Figure S19). 

 
Figure S19 | Thermal habitat loss for Shortfin mako. 

The proportion of the entire native geographic distribution of shortfin mako (left) was used to evaluate the projected 

thermal habitat lost due to climate change (right). 

The distribution of the projected thermal habitat loss of all species is shown in Figure S20.  
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Figure S20 | Distribution of the projected thermal habitat loss. 

Histograms depict the probability distribution of projected thermal habitat 

loss following standardization.  

Projected climate velocity 

Rationale 

The velocity of climate change (VoCC) represents climatic isotherms’ geographic movement over time and 

is a widely used measure of climate exposure7,47,48,90,131. Species inhabiting waters with greater velocities of 

climate change are more exposed.  

Calculation 

For each GCM projection, we calculated climate velocity (km yr-1) over the duration of the climate 

projection (2015-2100), using a gradient‐based approach48, as 

 𝑉𝑜𝐶𝐶𝑐 =  |
𝑠𝑐

𝑡𝑐
|, 

Equation 10 

where 𝑠𝑐 is the local spatial climatic gradient (°C km) and 𝑡𝑐 is the long‐term time trend (°C yr-1) in each 

grid cell, c 47,48. 𝑉𝑜𝐶𝐶𝑐 was calculated on a 3 × 3 cell neighbourhood and averaged across all available GCM 

models to obtain an ensemble average and its standard error.  

 𝐸 𝑉𝑜𝐶𝐶𝑐 =  1 − 𝑒−𝜆𝑉𝑜𝐶𝐶𝑐, Equation 11 

where 𝑉𝑜𝐶𝐶𝑐 is the VoCC in grid cell c until 2100, and 𝜆 is the rate parameter, set at 0.02. The rate 

parameter (𝜆) and resulting equation were chosen to standardize the index (0-1), normalize it’s distribution 

and specify that a species’ exposure increases asymptotically with the speed at which temperature isotherms 

are projected to move across the ocean. The most significant exposure occurs in areas with rapid isotherm 

movement (Figure S21). These calculations were made in the R statistical computing platform using the 

VoCC package48,132. Refer to the Quality control and sensitivity analyses section for an evaluation of how 

the vulnerability calculations are affected by the specification of 𝜆. 𝑉𝑜𝐶𝐶𝑐 was estimated individually for 

each ESM and then averaged across all ensemble models. 
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Figure S21 | Velocity of climate change for Shortfin mako. 

The velocity of climate change was calculated across the native geographic distribution of shortfin mako (left panel) 

and transformed using the function described by Equation 11 (middle) to standardize them (right). 

The transformation altered the distribution of the climate velocities to make them less skewed (Figure S22). 

 
Figure S22 | Distribution of the projected climate velocities. 

Histograms depict the probability distribution of projected climate velocities before (green; 

left) and following (purple; right) standardization.  

Adaptivity to climate indices 

Overview 

The concept of adaptivity is analogous to the well-known concept of resilience from ecological stability 

theory16. Adaptivity describes the extent to which species can recover from perturbations. It is 

predominantly defined by the life-history traits of species, their native geographic distribution 

characteristics, and the habitat to which they have been historically exposede.g. 75.  

Geographic range extent 

Rationale 

Geographic range extent refers to the total geographic area and latitude spanned by species. Species 

distributed broadly are thought to have a greater adaptivity to climate changes; there is a greater breadth of 

suitable climatic and habitat conditions (e.g. climate refugia) within their geographic distributions, buffering 

them against adverse climate changes23,53,54,71,74. Alternatively, range-restricted species are more likely to 

depend on specific habitat types and thus vulnerable to climate-driven habitat alteration. The latitude 

spanned by species is significant to their climate vulnerability, as temperature and climate change impacts 

have consistently varied by latitude47,49–52. The total geographic range area (km)10,26,61,75 and the latitude 

range of species10,57,75 are frequently used in climate vulnerability analyses to index their adaptability or 

sensitivity to climate change. 
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Calculation 

An index of the adaptivity of each species was calculated as a bivariate function of the geographic range 

area (km2), and latitude spanned by their native geographic distributions over the spatial domain of our 

CCRA analysis (i.e. global). The geographic range area (km2) occupied by each species was calculated from 

their native geographic distribution at a global 1˚ resolution obtained from AquaMaps and standardized by 

the maximum global occupancy area possible for any marine species (361,900,000 km2). Adaptivity to 

climate change increased exponentially with the geographic range area of each species as 

 𝐴𝐶 𝑅𝑎𝑟𝑒𝑎𝑠 =  1 − 𝑒−𝜆𝑅𝑎𝑟𝑒𝑎𝑠, Equation 12 

where 𝑅𝑎𝑟𝑒𝑎𝑠 is the geographic range area (km2) of species s, and 𝜆 is the rate parameter, set at 20. The rate 

parameter (𝜆) and resulting equation were chosen to standardize the index (0-1), normalize it’s distribution 

and specify that adaptivity increases asymptotically with geographic range area, with the greatest adaptivity 

occurring for species with the largest geographic range areas. The adaptivity was virtually uniformly high 

for species inhabiting >20% of the global ocean area (Figure S23). Refer to the Quality control and 

sensitivity analyses section for an evaluation of how the vulnerability calculations are affected by the 

specification of 𝜆. 

The latitude range of species was calculated as the difference between the highest and lowest latitude 

occupied by a species across its native geographic distribution obtained from AquaMaps. The ranges were 

standardized on a 0-1 scale by the maximum possible latitude range (90 degrees) as 

 𝐴𝐶 𝐿𝑟𝑎𝑛𝑔𝑒𝑠 =  
𝐿𝑟𝑎𝑛𝑔𝑒𝑠

90
 , Equation 13 

A standardized index of adaptivity as a function of the geographic range extent (𝐴𝐶 𝐺𝑟𝑎𝑛𝑔𝑒𝑠) was 

then calculated for each species as the mean of the standardized geographic range area (𝐴𝐶 𝑅𝑎𝑟𝑒𝑎𝑠) and 

latitude spanned (𝐴𝐶 𝐿𝑟𝑎𝑛𝑔𝑒𝑠).  
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Figure S23 | Geographic range extent of Shortfin mako. 

The geographic range extent of shortfin mako as a fraction of the total global ocean area (left) was 

transformed using the function described by Equation 12 (middle) to derive standardized values (right). 

The statistical distribution of the geographic range area and latitude range of species before and after 

transforming them is shown in Figure S24. 

 
Figure S24 | Distribution of the habitat ranges of all species. 

Histograms depict the probability distribution of habitat ranges for species before (green; left) and following 

(purple; right) standardization.  

Geographic habitat fragmentation 

Rationale 

Range fragmentation refers to the number of distinct isolated habitat patches that a species occupies across 

its native geographic distribution. Species with less fragmented habitat ranges have greater access to 

potentially favourable habitats (e.g. climate refugia), migration corridors, and larval dispersal. Alternatively, 

habitat fragmentation increases the isolation of habitat patches reducing the probability that they can be 

recolonized following local extinctions (e.g. the ‘rescue effect’77) and increases the amount of edge habitat 

in those patches. Consequently, studies in terrestrial and marine systems have reported that species with 

fragmented geographic ranges are more sensitive to and less resilient to climate change impacts10,55–58,71,82, 

primarily by affecting their extinction and colonizatione.g. 59. Habitat fragmentations are also known to 

aggravate the negative impacts of habitat loss on populations78–81. 

Calculation 

The extent of geographic habitat fragmentation for each species across the spatial domain of our CCRA 

analysis (i.e. globally) was calculated from their native geographic distribution at a global 1° resolution 
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obtained from AquaMaps. Habitat fragmentation was calculated from the number of patches in a species 

native distribution standardized by its total geographic distribution area. The number of patches was 

estimated using landscape analysis methods133,134 as 

 𝑁𝑃𝑠 =  𝑛𝑖, Equation 14 

where 𝑛𝑖 is the number of patches in the species native geographic range, where patches must be connected 

in eight directions (queen’s case=8 cells surrounding). NP was standardized to density by the total number 

of grid cells in the present-day species range.  A standardized habitat fragmentation index was then 

calculated as  

 𝐴𝐶 𝐻𝑓𝑟𝑎𝑔𝑠 =  𝑒−𝜆𝐻𝑓𝑟𝑎𝑔𝑠 , Equation 15 

where 𝐻𝑓𝑟𝑎𝑔𝑠 is the geographic habitat fragmentation of species s, and 𝜆 is the rate parameter, set to 8. The 

rate parameter (𝜆) and resulting equation were chosen to standardize the index (0-1), normalize it’s 

distribution and specify that adaptivity due to habitat fragmentation declines asymptotically with geographic 

range fragmentation, with the lowest adaptivity occurring for species with highly fragmented habitats 

(Figure S25). The adaptivity was virtually uniformly low for species with >25% of their present-day 

distribution fragmented. Habitat fragmentation calculations were made in the R statistical computing 

platform using the landscapemetrics package134. Refer to the Quality control and sensitivity analyses section 

for an evaluation of how the vulnerability calculations are affected by the specification of 𝜆. 

 
Figure S25 | Habitat fragmentation of Shortfin mako. 

The habitat fragmentation of shortfin mako (left) was transformed using the exponential function described by 

Equation 15 (middle) to derive standardized values (right). Habitat fragmentation was calculated as the number of 

habitat patches in a species native geographic distribution standardized by its entire distribution area. Species with 

a greater concentration of fragments (patches) in their distribution have a lower adaptivity. 

The distribution of species’ habitat fragmentation is shown in Figure S26. 
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Figure S26 | Distribution of the habitat fragmentation of all species. 

Histograms depict the probability distribution of the habitat fragmentation of species (green; 

left) and following (purple; right) standardization.  

Thermal habitat variability and use  

Rationale 

Ecological disturbance theory suggests that species and ecosystems that experience high natural variability 

are more adapted to cope with climate change86; empirical analyses have supported this theory87,135. 

Similarly, species inhabiting more variable thermal environments such as at the range-edges of their 

geographic distributions are thought to have a greater capacity to adapt to climate change65–67 and are 

believed to be less sensitive to it10. Continued exposure to temperatures close to the species’ thermal 

preferences is thought to ‘stretch’ their thermal niche and pre-adapt them to temperatures outside of their 

thermal preferences. Through this mechanism, species can exhibit different levels of plasticity in their 

thermal sensitivity depending on the variability in their thermal environment68. 

Calculation 

We developed an index that quantifies the proportion of the total available thermal habitat each species has 

inhabited over the past 40 years (1981-2021) in relation to its thermal preference range. Forty years was 

used as a pre-adaptation duration because it is the minimum baseline over which high-resolution (4km2) 

remote sensing observations of surface temperature are available. The temperatures experienced by species 

in the past 40 years were obtained from the NOAA 0.25° daily Optimum Interpolation Sea Surface 

Temperature dataset (OISST) between 1981 and 2021. The dataset combines observations from different 

observation platforms (satellites, ships, buoys, and Argo floats). For each 1° grid cell, a count of the 

frequency of SST values in each 1°C bin was obtained; each temperature distribution (Tdist) characterizes 

the range and frequency of historical temperature within each 1° cell. For each species within each 1° cell 

across its native geographic distribution, the area under the Tdist curve within the species temperature 

preferences (red shading in Figure S27) was standardized by the total area under the Tdist curve (gray + red 

shading in Figure S27).  



31 

 

 

Figure S27 | Adaptivity of species calculated from their thermal 

habitat variability and use. 

The adaptivity of a species was defined by the frequency to which it 

is exposed to temperatures at the extremes of its thermal preference 

range. Frequency of exposure to extreme temperatures was defined 

as the ratio of the area under the curve (AUC) of the total available 

thermal habitat (black line and gray shaded density), that is within 

the shortfin mako thermal preference range (red dashed lines and red 

shaded density). Species that are more frequently exposed to 

temperatures at their temperature preference extremes are assumed 

to have a higher adaptivity. 

 

A standardized index was then calculated as 

 
𝐴𝐶 𝑇𝐴𝑈𝐶𝑠 =  

𝑒𝜆𝑇𝐴𝑈𝐶𝑠

𝑒𝜆
, 

Equation 16 

where 𝑇𝐴𝑈𝐶𝑠  is the proportion of the total thermal habitat within the thermal niche of species s, and 𝜆 is the 

rate parameter, set to 4. The rate parameter (𝜆) and resulting equation were chosen to standardize the index 

(0-1), normalize its distribution and specify that adaptivity due to thermal habitat pre-adaptation increases 

exponentially with the proportion of the thermal habitat occupied (Figure S28). The resulting index 

characterizes the proportion of time that a species inhabits temperatures close to its thermal preference 

range. Species that inhabit a greater proportion of their total potential thermal habitat are, theoretically, more 

pre-adapted to climate change than those that inhabit less. Refer to the Quality control and sensitivity 

analyses section for an evaluation of how the vulnerability calculations are affected by the specification of 𝜆. 

The variability of the thermal environment experienced by a species is another crucial characteristic 

of pre-adaptation. Species inhabiting more thermally variable environments are believed to have a higher 

adaptivity to any thermal environment changes. Accordingly, each species’ temperature variability was 

calculated as the total temperature range (maximum-minimum) within each grid cell across its native 

geographic distribution over the previous 40 years (1981-2021; Figure S28).  
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Figure S28 | Thermal habitat variability and use for Shortfin mako. 

The total SST habitat variability across its geographic distribution and fraction of the time the SST habitat is within 

the species’ (left) defines the thermal habitat variability index (middle and right). Species inhabiting more thermally 

variable habitats at the extremes of their thermal preferences have higher adaptive capacities (yellow area in middle 

plot). 

The distribution of the thermal habitat use and variability indices for species before and after transforming 

them is shown in Figure S29. 

 
Figure S29 | Distribution of the thermal habitat variability and use of all species. 

Histograms depict the probability distribution of the thermal habitat use (green; left), thermal habitat variability (green; 

middle), and standardized thermal habitat use index (purple; right) for all marine species.   

Maximum body length 

Rationale 

The maximum size (length or mass) reached by species has been commonly used as a proxy of extinction 

risks, susceptibility to exploitation, and species vulnerability to climate change4,10,57,60–62,75,83. The maximum 

size is a predictor of several life-history traits (e.g. generation length, time to maturity, intrinsic rate of 

population increase) that cumulatively define species' potential reproductive capacity and population growth 

rate (Figure S30)63,64,75,83,84. Ecologically, body size has been used to classify species as r- (produce many 

offspring, high growth rates and mortality) or K-selected (produce fewer offspring, low growth rates and 

mortality). For these reasons, the maximum body length was used as an indicator of species’ resilience or 

adaptivity to the potential adverse effects of climate change (Figure S30), whereby smaller species that grow 
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and reproduce faster have a higher adaptivity4,10,57,60–62,71,75,83. The maximum body length of species (cm) 

was estimated from the FishBase3 and SeaLifeBase4 databases (see Data compilation section).  

 
Figure S30 | Maximum body size represents species’ 

adaptivity. 

The maximum body size of species is related to several of 

their reproductive attributes. Larger species are generally 

less resilient to perturbations and thus have a lower 

adaptivity.  
Calculation 

A standardized index of adaptivity as a function of the maximum possible body length of each species was 

calculated as  

 𝐴𝐶 𝑀𝑙𝑒𝑛𝑠 =  1 − 𝑀𝑙𝑒𝑛𝑆𝑇𝐷𝑠, Equation 17 

where 𝑀𝑙𝑒𝑛𝑆𝑇𝐷𝑠 is calculated as  

 𝑀𝑙𝑒𝑛𝑆𝑇𝐷𝑠 =  
𝑙𝑜𝑔10(𝑀𝑙𝑒𝑛𝑠+1)

𝑙𝑜𝑔10(3000 +1)
, Equation 18 

𝑀𝑙𝑒𝑛𝑠 is the maximum estimated length of species s (cm), and 3000 is a scaling factor corresponding to the 

approximate maximum length that the largest oceanic species (i.e. blue whale) could conceivably reach. The 

equation was chosen to normalize and standardize the index (0-1). Through this approach, much of the 

change in adaptivity occurred for changes in maximum body length between 0 and 100 cm (0-3.3ft), which 

seems biologically plausible considering the dramatic differences that exist in population doubling time 

between the smallest plankton (days) to fish that can reach 100 cm (e.g. Shortfin mako; ~2-4yrs). The 

equations predict that a species’ adaptivity declines asymptotically with its maximum possible length, with 

the lowest adaptivity occurring for species with larger body sizes that have slower growth rates and 

population doubling times and lower mortality rates. The most rapid changes in 𝐴𝐶 𝑀𝑙𝑒𝑛𝑠 occur for small-

bodied species, such as those with body lengths between 0 and 5 m and decline more moderately thereafter 

(Figure S31). 

 
3 http://www.fishbase.org 
4 https://www.sealifebase.ca/ 
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Figure S31 | Adaptivity defined by maximum body size for Shortfin mako. 

The maximum body size for shortfin mako (left) was transformed using the function described by Equation 18 

(middle) to standardize it (right). 

The distribution of the maximum body lengths of species before and after transforming them is 

shown in Figure S32. 

 
Figure S32 | Distribution of the maximum body lengths of all species. 

Histograms depict the probability distribution of the maximum body lengths of species before 

(green; left) and following (purple; right) standardization.  

4. Calculating climate vulnerability 

The 12 climate indices were used to calculate vulnerability and its dimensions two ways: (1) for each 

species, at all locations across their geographic distributions (taxonomic and spatial), (2) for each species, 

averaged across their geographic distributions (taxonomic).  

Species across their geographic distributions 

For each species within each grid cell across its native geographic distribution, the sensitivity, exposure, and 

adaptivity were calculated as the average of the four indices that define them. The standard deviation of the 

vulnerability dimensions provided an estimate of their statistical uncertainty and was propagated forward 

through all subsequent vulnerability calculations using variance weighting (read below).  

Because the sensitivity analyses suggested that the omission of any of the 12 climate indices in any 

grid cell could affect the vulnerability scores (Figure S33), the analysis was restricted to cells containing all 

12 indices. Conversely, the sensitivity analyses suggested that the vulnerability scores for species were 

relatively insensitive to missing values across their geographic distributions; guided by this result, it was 

determined that species could have upwards of 10% of grid cells across their native geographic distribution 

missing with minimal effect on the resulting vulnerability scores.  
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Figure S33 | Dimensions of vulnerability for Shortfin mako. 

The sensitivity (left), exposure (middle) and adaptivity (right) of Shortfin mako are calculated from the 12 indices 

across its native geographic distribution. 

For each species, 𝑠, and grid cell, 𝑐, across their native geographic distribution, vulnerability (𝑉𝑠,𝑐) 

was calculated from sensitivity, exposure, and adaptivity, while statistically accounting for both their 

variability and the statistical uncertainty associated with the indices of climate exposure calculated from 

ensemble climate projections.  

First, we statistically accounted for the uncertainty associated with the model-projected climate 

exposure of species through discounting. Discounting is common in economics and was used to develop the 

ocean health index (OHI) to account for the greater uncertainty associated with unknown future states32. Its 

use in the vulnerability estimation is analogous: the future exposure of species to climate change, estimated 

from ESM projections, are less well resolved than are their sensitivities or adaptive capacities, which are 

primarily based on the current and historical conditions, respectively. Our confidence in the reliability of the 

projected exposure indices scales with the length of the climate projection and the number of ensemble 

projections. Accordingly, these factors define a discount rate 𝜕. With all else being equal, exposure indices 

derived from single ESMs that make longer-term climate projections are less reliable51,136–138 and are thus 

more heavily discounted. Those derived from a larger ensemble of ESMs that make shorter-term projections 

are perceived as more reliable and are discounted less. The discount rate was calculated as 

 𝜕 =
𝑌𝑒𝑎𝑟𝑠

100𝜃
+  

𝑀𝑜𝑑𝑒𝑙𝑠

−20𝜃
+ 𝜗, Equation 19 

Where 𝑌𝑒𝑎𝑟𝑠 is the number of years in the climate projection, 𝑀𝑜𝑑𝑒𝑙𝑠 is the number of climate projections 

in the ensemble, 𝜃 is a scaling factor set to 40, and 𝜗 is 0.026 to yield a maximum discount rate of 5% when 

projections are made for >=100 years from a single projection and are 0% when projections are made for <5 

years from >19 projections. Our study evaluated climate projections from 12 models over 80 years, yielding 

a discount rate of 3.1%. To conserve the vulnerability scaling to between zero and one, discounts applied to 

exposure are credited to sensitivity, such that the maximum total adjustment is 10%. 
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Figure S34 | Discount rates. 

The discount rate on future exposure, credited to the 

present state, is a function of the length of the climate 

projection(s) and the size of the climate ensemble. Future 

conditions that are more uncertain due to far-future 

projections from a few ESMs are discounted more (5%) 

relative to those that project over the near future from 

many models (0%).  

For each species within each grid cell across its native geographic distribution, the discount rate was applied 

to the estimated exposure and sensitivity as  

 �̆�𝑠,𝑐 = [(1 − 𝜕)(𝐸𝑠,𝑐)] , Equation 20 

 �̆�𝑠,𝑐 = [(1 + 𝜕)(𝑆𝑠.𝑐)] , Equation 21 

Where �̆�𝑠,𝑐 and �̆�𝑠,𝑐 are the discounted sensitivity and exposure estimates for species 𝑠 within cell 𝑐. 

Through this equation, the future exposure of species to climate change was discounted relative to their 

current sensitivity. The discounting was applied to sensitivity, rather than adaptivity, as there is a broad 

consensus that it is better understoode.g. 139. Following this procedure, vulnerability was calculated as a 

weighted average of adaptivity and discounted sensitivity and exposure as 

 𝑉𝑠,𝑐 =
[�̆�𝑠,𝑐 × 𝜔𝑆𝑠,𝑐] + [�̆�𝑠,𝑐 × 𝜔𝐸𝑠,𝑐] +  [(1 − 𝐴𝐶𝑠,𝑐) × 𝜔𝐴𝐶𝑠,𝑐]

𝜔𝑆𝑠,𝑐 + 𝜔𝐸𝑠,𝑐 + 𝜔𝐴𝐶𝑠,𝑐
 Equation 22 

 

where 𝑉𝑠,𝑐 is the vulnerability, �̆�𝑠,𝑐 and �̆�𝑠,𝑐 are the discounted sensitivity and exposure, respectively, and 

𝐴𝐶𝑠,𝑐 is adaptivity for species 𝑠 within cell 𝑐. 𝜔𝑆𝑠,𝑐, 𝜔𝐸𝑠,𝑐, and 𝜔𝐴𝐶𝑠,𝑐 are the statistical reliability weights 

for the estimated sensitivity, exposure, and adaptivity, calculated from their scaled variances. For example, 

the weights for estimated sensitivities were calculated as the inverse of their coefficients of variation as 

 𝜔𝑆𝑠,𝑐 = (
𝜎𝑆𝑠,𝑐

𝜇𝑆𝑠,𝑐
)

−1

 Equation 23 

where 

 𝜇𝑆𝑠,𝑐 =
1

𝑛
∑ 𝑆𝑠,𝑐,𝑖

𝑛

𝑖=1
 Equation 24 

and 
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 𝜎𝑆𝑠,𝑐 = √
∑ (𝑆𝑠,𝑐,𝑖 − 𝜇𝑆𝑠,𝑐)

2𝑛
𝑖=1

𝑁𝑆𝑠,𝑐
 Equation 25 

where 𝜔𝑆𝑠,𝑐 is the reliability weight and 𝜎𝑆𝑠,𝑐 and 𝜇𝑆𝑠,𝑐 are the standard deviation and mean, respectively, of 

the four indices, 𝑖, that define sensitivity for species 𝑠 within cell 𝑐. 𝑁𝑆𝑠,𝑐 is the number of climate indices, 𝑖, 

that define sensitivity for species 𝑠 within cell 𝑐. This process estimated climate vulnerability for each 

species across the totality of its geographic distribution (Figure S35). 

 
Figure S35 | Geographic patterns of climate vulnerability for 

Shortfin mako. 

The vulnerability of Shortfin mako across its native geographic 

distribution was calculated from the 12 indices using Equation 22. 

Species  

For each species, 𝑠, we calculated vulnerability and its variability while statistically accounting for 

geographic differences in its uncertainty using inverse variance-weighting. The vulnerability for each 

species was calculated as a variance-weighted mean of the vulnerabilities in each grid cell across its 

geographic distribution as   

 𝑉𝑠 =  
∑ 𝜔𝑉𝑠,𝑐 𝑉𝑠,𝑐

𝑛
𝑐=1

∑ 𝜔𝑉𝑠,𝑐 𝑛
𝑐=1

 Equation 26 

while their variance-weighted standard deviations were calculated as 

 𝜎𝑉𝑠 =  √
𝑣1

𝑣1
2 − 𝑣2

∑ 𝜔𝑉𝑠,𝑐(𝑉𝑠,𝑐 −  𝜇𝑉𝑠,𝑐)2
𝑁

𝑐=1
 Equation 27 

where, 

 𝑉1 =  ∑ 𝜔𝑉𝑠,𝑐

𝑁

𝑐=1
 Equation 28 

and 

 𝑉2 =  ∑ 𝜔𝑉𝑠,𝑐
2

𝑁

𝑐=1
 Equation 29 

and 

 𝜔𝑉𝑠,𝑐 = (
𝜎𝑉𝑠,𝑐

𝜇𝑉𝑠,𝑐
)

−1

, Equation 30 
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In this manner, a greater statistical weighting is given to vulnerability estimates in grid cells where their 

variance (e.g., variance across the indices used to calculate them) is lower and vice-versa. Species 

vulnerability estimates will be more variable when the vulnerability is more dissimilar in the grid cells that 

comprise its geographic distribution and vice-versa. 

5. Calculating climate risk  

Climate change vulnerability has been almost exclusively reported in dimensionless units, allowing species 

and ecosystems to be scored and ranked on relative, but not absolute, scales. This approach helps to 

understand patterns and trends in species climate vulnerabilities relative to the other species assessed within 

the same vulnerability analysis. Yet, such relative vulnerability scores can tell us little about the absolute 

climate risks of species that are often needed in management and policy settings. For instance, regional 

assessments often rank species by their relative vulnerabilities against each other but rarely address the 

overarching question that managers and stakeholders are interested in: how many and which species are at 

high climate risk, and where are they most at risk? Indeed, interpreting the meaning of vulnerability rankings 

in dimensionless units on relative scales has been a significant challenge. It may be a contributing factor for 

their low incorporation into management. Previous vulnerability studies, or the comparably holistic 

cumulative impact index, have defined categories of high/low according to the statistical distribution of the 

dimensionless indices that represent them4,10,31,95. Here, we instead define climate risk thresholds that enable 

climate vulnerability to be translated into categories of risk according to the ecological interpretation of each 

of the 12 climate indices. Despite the challenges in reliably defining such risk thresholds140, they are 

increasingly being used to help guide conservation strategies and actions74,141–143. The risk thresholds are 

defined in their native units and propagated through the analysis, preserving their meaning and interpretation 

yet informing the interpretation of the dimensionless vulnerability scores. This approach is comparable to 

the definition of extinction risk used by the IUCN Red List of species69, the definition of safe operating 

space in planetary boundaries theory144, and the reasons for concern (RFC) framework adopted to define 

climate risk by the Intergovernmental Panel on Climate Change (IPCC)7,145,146. It allows the vulnerability of 

species and communities to be categorized according to our ecological interpretation of them and is guided 

by, rather than defined by, their statistical properties. Defining thresholds to define risk is notoriously 

challenging140,147 due to various factors, including a lack of knowledge needed to define them, uncertainties 

in climate model projections, and differences in value judgments regarding what constitutes dangerous 

risk140,147–150. However, threshold-defined risk assessments have proven immeasurably valuable in helping to 

communicate risks to a broad audience while supporting public engagement, management, and policy 

decisions. 

For instance, since 2001, the IPCC RFC framework has communicated levels of climate risk to humans 

using thresholds set by expert judgemente.g. 146. The resulting ‘burning embers’ diagrams have become 

widely used tools to communicate the risks stemming from anthropogenic climate change in a clear, 

intuitive manner that is critical for decision-making147. For instance, the goal of the Paris Agreement to limit 
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global warming to below 2°C was supported by IPCC reports of increasing risks beyond 1.5°C or 2°C 

warming148,149. It is, however, essential to define risk thresholds using transparent and, where possible, 

empirically supported approaches151–153. The following describes our rationale for defining a midpoint 

threshold (THM) to denote high/low climate risk, as well as the lower (THL) and upper (THU) thresholds that 

denote critical and negligible risk categories, respectively. These thresholds represent waypoints to guide the 

definition and communication of climate risk. To the extent possible, they were guided by empirical 

information. Nonetheless, some thresholds were unavoidably defined using less objective criteria. We 

anticipate that some of these thresholds may be refined as our knowledge of ecological thresholds continues 

to improve. The risk thresholds and their rationale and associated references are listed in  

Table S4. 

Sensitivity 

THM of thermal safety margins was set at 2ºC, THL at 1ºC and THU at 5ºC. These values were guided by 

observed and projected rates of surface warming. For example, THM of 2ºC is comparable to the warmest 

surface warming rates globally over the past century52, whereas 5ºC compares to projected warming to 

2100154. 

Since the vast majority of IUCN Red Listed species were classified as ‘least concern, this category 

was adopted as a natural threshold for both THM and THL. THU was set at ‘vulnerable,’ with all species 

classified within or above this classification defined as very high sensitivity.  

Thresholds for sensitivity by cumulative impacts were guided by the categories presented in Halpern 

et al. 31 and by the upper and lower 10% quantiles of its distribution. THM was set at 1.4, the level defined in 

Halpern et al. 31 as their low/very low impact threshold. THU was set at 2 (90th percentile), while THL was 

set at 0.6 (10th percentile).  

Thresholds for vertical habitat use were set individually for the maximum depth of occupancy and 

vertical habitat range. THM, THU and THL by maximum depth were set at 100, 50, and 200m, respectively. 

By these thresholds, sensitivity is high within the upper 100m, where warming is greatest, and only becomes 

very low at depths exceeding the epipelagic zone (200m).  

These climate sensitivity risk thresholds were propagated through the analyses described previously, 

enabling the relative sensitivity scores to be translated into absolute sensitivity risk categories (Figure S36). 

 
Figure S36 | Climate sensitivity and risk for Shortfin mako. 

The relative sensitivity of Shortfin mako across its native geographic 

distribution (left) translated into absolute risk categories (right). 

Exposure 

The projected time of climate emergence is a newly developed index of the timing of climate change 

exposure of species, and thus, there are not yet objective guidelines to define risk. We set THM, THL and 
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THU by projected ensemble time of thermal niche emergence at 50, 75, and 25 years, respectively. These 

thresholds were, to an extent, guided by the IUCN RedList categories and criteria for listing. Under the 

RedList criteria for a listing of vulnerable under Criterion E, species must have a 10% chance of extinction 

within 100 years69. Assuming that the instantaneous probability of local species extinction is a function of 

the death rate (d), our THU of 25 years would yield a d of 138x10-5; following this, our THM and THL values 

(50 and 75 years) would then yield extinction probabilities of 7% and 3% respectively by 2116 (100 years). 

Therefore, exposure to hazardous climate by 2040 (THU of 25 years) is very likely to lead to at least a 10% 

chance of extinction under a RedList assessment criterion of vulnerable.  

Although the loss in thermally suitable habitat has been used in climate vulnerability studies95, there 

were few objective thresholds to define risk from it in marine systems. However, modelling studies and 

reviews suggest that the maximum permissible habitat loss threshold for species is 10-50%155,156, 

comparable to estimates of minimum habitat required for species persistence estimated in freshwater157 or 

terrestrial143,158 systems. Following this, THM, THL and THU by projected ensemble change in suitable 

thermal habitat of species were set at 10, 5, and 20%, respectively. 

THM, THL and THU by the projected fraction of species lost due to warming were set at 10%, 5%, 

and 20%, respectively. There is considerable uncertainty regarding the safe operating space for ecosystems 

and of species loss therein159–162. However, our thresholds were guided by meta-analytic studies that have 

suggested a 20% loss of species as one possible threshold38,161,163. 

THM, THL and THU by projected ensemble climate velocity were set at 15, 6, and 30 km yr-1, 

respectively. Lacking a clear basis for their ecological interpretation, these thresholds were set by the 50th, 

10th, and 90th quantiles of the distribution of global velocity values. 

These climate exposure risk thresholds were propagated through the standardization analyses 

described previously, enabling the relative exposure scores to be translated into absolute exposure risk 

categories (Figure S37). 

 
Figure S37 | Translation of climate exposure to climate risk for Shortfin 

mako. 

The relative exposure of Shortfin mako across its native geographic 

distribution (left) translated into absolute risk categories (right). 

Adaptivity 

Thresholds of adaptivity defined by maximum species body size were referenced by the relationship 

between maximum body size and the intrinsic rate of population increase, which is linear on a log-log scale. 

THL adaptivity was set when the change in intrinsic population increase becomes negligible (100cm), and 
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THU was set where its change becomes rapid (10cm). THM, denoting the high/low adaptivity threshold, was 

set at 30cm, the point at which the intrinsic rate of population increase was moderate; this threshold was also 

the median of all body lengths in our database (Figure 39).  

 
Figure S38 | Maximum body size of species in relation 

to their intrinsic rate of population increase. 

Points show the maximum body size (cm) versus the 

intrinsic rate of population increase for 51 species within 

FishBase and SeaLifeBase. The line is the best fitting log-

log linear regression model fitted to the data (r2=0.59; 

p<0.0001). Vertical lines are the thresholds denoting very 

low (10cm), midpoint (30cm) and very high (100cm) 

adaptivity. 

Thresholds for adaptivity defined by geographic range extent were set individually for the total 

geographic area and latitude spanned. Thresholds of adaptivity defined by geographic range extent were 

referenced to the size of large marine ecosystems (LMEs)164. THU of range extent vulnerability was defined 

by the size of the largest large marine ecosystems (LME; Arabian Sea=3.84M km2=1% of the global area), 

THM by the median area of all LMEs (1.2M km2=~4% of the global area) and THL by the size of the 

smallest LME (Faroe Plateau=151,005km2=0.04% of the global ocean).  

THM, THU and THL by latitude spanned were set at 45°, 60°, and 20°, respectively. These values 

approximate the latitude span of marine biogeographic provinces (e.g. tropical, temperate, polar) that have 

been identified from analyses of large scale climatological (e.g. winds), oceanographic (e.g. mixing, 

currents, nutrient availability), and ecological (e.g. primary production) featurese.g. 165–167. 

THM of adaptivity as defined by habitat fragmentation was set at 10%, THU at 20% and THL at 1%. 

These values are comparable to those defined for the vulnerability of marine mammals, except our midpoint 

threshold is slightly higher (10%) than that defined by Albouy et al. 10; (2-4%).  

Thresholds for thermal habitat variability were set individually for the total temperature range and 

proportion of available thermal habitat occupied by the species across its geographic range. THM, THU and 

THL sensitivity by temperature range were set at 15°, 5°, and 10°C, respectively. THM of temperature range 

is identical to that used to define the vulnerability of marine mammals according to thermal habitat range 10. 

THM, THU and THL adaptivity by thermal habitat occupancy was set at 95%, 99%, and 80%, respectively. 
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These climate adaptivity risk thresholds were propagated through the standardization analyses 

described previously, enabling the relative adaptivity scores to be translated into absolute adaptivity risk 

categories (Figure S39). 

 
Figure S39 | Translation of climate adaptivity to climate risk for Shortfin 

mako. 

The relative adaptivity of Shortfin mako across its native geographic 

distribution (left) translated into absolute risk categories (right). 

The climate thresholds were propagated through the analyses using the equations described 

previously (Calculation of the indices), thus enabling climate vulnerability scores to be translated into 

absolute risk categories (Figure S40). 

 
Figure S40 | Translation of climate vulnerability to climate risk for Shortfin 

mako. 

The relative climate vulnerability of Shortfin mako across its native geographic 

range (left) translated into absolute risk categories (right). 

 

Table S4 | Thresholds used to define climate risk categories. 

Dimension Index Tlow Tmed Thigh Rationale References 

Sensitivity Thermal safety 
margin 

5°C 2°C 1°C Guided by warming rates. 1°C and 2°C compare to the rates of 
Warming over the past 50, 100 years, respectively52. 5° to 

projected warming 154. 

20,21,52,72,168 

Sensitivity Conservation 

status 

LC LC V, E, CR Defined by the IUCN RedList categories and criteria69: any 

category at or above ‘vulnerable’ is considered at high risk. 

69 

Sensitivity Cumulative 

impacts 

0.6 1.4 2 Guided by 31. 31,73 

Sensitivity Vertical habitat variability 

and use 

    

Sensitivity Maximum depth 200m 50m 20m Standard pelagic biogeochemical divisions within the euphotic 

zone to categorize variation in e.g. mixing, nutrients, 

photosynthetically active radiation, primary production. 

 

Sensitivity Vertical range 200m 50m 20m Standard biogeochemical divisions within the euphotic zone to 
categorize variation in e.g. mixing, nutrients, photosynthetically 

active radiation, primary production. 

 

Exposure Projected climate 
velocity 

6km yr-1 15km yr-1 30km yr-1 Guided by the quantiles of the statistical distribution.  

Exposure Projected time of 

climate 

emergence from 
the thermal niche  

75yrs 50yrs 25yrs Guided by the IUCN RedList assessment criteria69. 38,69 

Exposure Projected loss of 

suitable thermal 
habitat 

5% 10% 20% Guided by 143,155–158. 94,142,143,155–

158,169–171. 

Exposure Projected 

ecosystem 
disruption 

5% 10% 20% Guided by thresholds in 38,161,163. 38,76,142,159,161–

163 
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Adaptivity Geographic range extent     

Adaptivity Latitude span 20° 45° 60° Based on oceanographic and ecological domains that vary by 

latitude and are defined by biogeographic patterns in e.g. 
seasonality, ocean circulation, climate165–167 

165–167,169 

Adaptivity Total geographic 

area 

0.04% 1% 4% Referenced to the size spectrum of large marine ecosystems164.  54,76,143,155–

157,164,169–171 

Adaptivity Geographic 
habitat 

fragmentation 

20% 10% 1% Guided by and comparable to those defined in 10 for the 
vulnerability of cetaceans. 

10,76,79,80,143,158,

169,171–173 

Adaptivity Maximum body 
length 

100cm 30cm 10cm Empirically guided by the relationship with the intrinsic rate of 
population increase. 

63,84,85 

Adaptivity Thermal habitat variability and use    

Adaptivity Thermal habitat 

occupancy 

8% 95% 99% Guided by the quantiles of the statistical distributions 65,67 

Adaptivity Thermal habitat 

variability 

5°C 10°C 15°C Comparable to those defined in 10 for the vulnerability of 

cetaceans. 

10,65–67,86,89 

 

6. Quality control and sensitivity analyses 

Criteria for species inclusion  

Species that did not inhabit the upper 100m of the ocean (e.g. their depth range did not encompass the upper 

100m) were excluded from the analyses, as were those whose maximum depth of occurrence exceeded 

1000m, as surface temperatures could weakly define the vulnerability of these species. To validate this 

threshold, we evaluated the relationships between surface temperatures (SSTs) and temperatures at 

increasing depths (Figure S41). The monthly averaged temperatures at depths used for this sensitivity 

analysis were obtained from the 2018 National Oceanographic Data Center World Ocean AtlasNODC WOA; ,174.  

The SSTs and coincident temperatures at depths within the upper 200m were positively correlated for all 

months (r=0.92-0.97), and the SSTs well approximated the temperature variations across depths (absolute 

difference ~3°C).  



44 

 

 
Figure S41 | Relationships between spatial gradients in 

global ocean temperatures at the surface and across 

depths. 

The relationships (top) and absolute differences (bottom) 

between spatial gradient in SSTs and the corresponding 

temperatures at increasing depths are shown. Colours show 

the months of the temperature observations.   

Thresholds of acceptable index missingness  

We evaluated the sensitivity of the sensitivity, exposure, adaptivity, and vulnerability to the 12 input climate 

indices’ absences. From a random sample of 5000 species that contained complete observations (12 indices 

present across their native geographic distributions), we simulated all 4,016 possible combinations of index 

missingness (range=3 to 11 indices present). For each scenario (n=4,016), the difference between the 

sensitivity, exposure, adaptivity, and vulnerability calculated using the complete database was compared 

against each simulation for each species. This approach allowed us to quantitatively determine the effect of 

the number of indices omitted and the missing index identity on the estimates of vulnerability and its 

dimensions. It also enabled us to identify indices associated with a high sensitivity level whose omission had 

disproportionate effects on vulnerability and its dimensions.  

 Overall, the vulnerability calculations were relatively insensitive to missing indices (Figure S42). 

The omission of any single index led to an average change in the vulnerability of 6% relative to complete 

sampling. Omitting half of the indices (n=6) resulted in an average change in the vulnerability of 20% 

relative to complete sampling. However, we found that missing indices had a larger impact on the derivation 

of the climate dimensions. The omission of a single index resulted in an average change in sensitivity, 

exposure, or adaptivity of between 20 and 23% but could be as high as 63%, with three out of four indices 

missing. 
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Figure S42 | Effect of missing indices on the calculation of climate dimensions 

and of vulnerability. 

Points show the estimated differences between (y-axes; %) the climate dimensions 

and of vulnerability calculated across the entire range of species under different 

simulated levels of index missingness (x-axes). Each point was calculated from every 

conceivable combination of indices containing the specified level of missingness, 

across 5000 species (total: 4,016 possible missingness patterns). Vertical lines about 

the points depict the 95% confidence intervals about the means. 

Thresholds of acceptable data spatial missingness  

We evaluated the effect of missing observations across species’ native geographic distribution on the climate 

indices through simulation analyses. From a sample of 5,396 species that contained complete observations 

across their predicted native geographic distributions, we randomly sampled each vulnerability index under 

different scenarios of data completeness (range=40%-100%; n=19 levels). This random sampling was 

repeated 50 times for each species, generating 5,126,200 simulations (5,396 species, 19 missingness levels, 

50 replicates per species) for each of the 12 climate indices. For each simulation, we calculated the 

difference between each vulnerability index across each species distribution with complete sampling (no 

missing observations) and with the simulated data missingness level; differences were expressed as 

percentage change, relative to ‘true’ value, i.e. that calculated with complete sampling. The average 

difference was calculated across the 50 simulations for each species and vulnerability index. Lastly, we 

estimated the average effect of data missingness and its variability on each vulnerability index across all 

species using linear models. The effect of data missingness on the calculation of the vulnerability index 

varied but was generally small (Figure S43). When averaged across all species, a missingness level of 60% 

(40% data coverage) resulted in a change in the climate indices of 1%-2%. At 20% missingness (80% data 

coverage) the climate indices changed 0.4%-0.8% and at 10% missingness (90% coverage) they changed 

0.3%-0.5%. 
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Figure S43 | Effect of missing observations across species’ native geographic 

distribution on the calculation of climate indices. 

Points show the estimated differences between the climate indices calculated across the 

entire range of species and those calculated under different simulated levels of missingness 

(y-axes). Each point was calculated from 20 replicated missingness patterns and estimated 

across all species for which complete data exists (n=5,396). Horizontal lines about the 

points depict the 95% confidence intervals about the means. Analyses were undertaken for 

the 6 climate indices that exhibit spatial variation. 

The sensitivity of the analyses to the transformation functions 

It was not possible to objectively derive the transformation functions that standardized the climate indices. 

In many instances, standard transformations, such as log10, led to normalized and standardized indices but 

did not have ecological meaning. Instead, the transformation functions were chosen to ensure that the 

climate indices were ecologically grounded and were rooted in our understanding of how climate 

vulnerability scales with species traits, human stressors, ecosystem dynamics, and environmental change. 

The transformations were secondarily chosen to standardize the indices between 0 and 1 and reduce extreme 

skewness in their distributions, making them more susceptible to statistical outliers. However, because each 

index’s transformation function was derived subjectively, we also conducted sensitivity analyses to gauge 

their efficacy. Specifically, we quantitatively evaluated the impact of alternative transformation functions on 

the calculation of vulnerability, its indices and dimensions under different levels of observation missingness. 

We evaluated the impact of several transformations (Figure S44): i) untransformed (raw) but standardized 

between 0-1, ii) the transformations used in the analysis, iii) the transformations used in the analysis with the 

parameters scaled by factors of 2, iv) 3, v) 5, and vi) 10. For each transformation, the indices were 

individually rescaled (range=0-1) to ensure that they were compared in the same standardized units (% of 

the maximum). For each alternative transformation (n=6), we calculated the 12 indices, the vulnerability 

dimensions, and vulnerability accordingly for each of 1000 species across their native geographic 

distribution. We then compared the vulnerability and its dimensions for each species under these different 

transformations to gauge the sensitivity of the vulnerability estimation to our chosen transformation. This 
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approach does not determine the correct transformation but instead informs us of the overall sensitivity of 

the vulnerability calculations to standardization.  

 
Figure S44 | Alternative transformation functions 

tested. 

Different transformation functions used to standardize 

climate indices are shown. Colours depict the exponential 

transformation parameter scaling employed and black is 

the parameter used in our study. Red=unstandardized.  

Relative to the transformation parameters used in our study (𝜆 = 1), using no transformation (𝜆 =

0), led to an average relative difference in species vulnerability scores of 2%, while scaling up the 

parameters by a factor of 2 (e.g. doubling; 𝜆 = 2) led to an average relative difference in the vulnerability of 

8% (Figure S45). The effect of changing the transformation parameters on calculated sensitivity and 

adaptivity to climate changes were comparable to vulnerability. Relative to the parameters used in our study, 

using no transformation led to an average relative difference in species adaptivity scores of 9% while scaling 

up the parameters by a factor of 2 led to an average relative of 4%. Relative to the parameters used in our 

study, using no transformation scaling led to an average relative difference in species sensitivity scores of 

8%, while scaling up the parameters by a factor of 2 led to an average relative difference of 2%. Lastly, 

relative to the parameters used in our study, using no transformation scaling led to an average relative 

difference in species exposure scores of 7%, while scaling up the parameters by a factor of 2 (e.g. doubling) 

led to an average relative difference of 26%. 
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Figure S45 | Average vulnerability of species calculated under the different 

transformation functions shown in Figure S44. 

Points show the average vulnerability score across all species calculated from 

climate indices standardized using the exponential parameters shown in Figure 

S44. The red point denotes the transformations used in our study.  

In our study, species’ vulnerability scores remained positively correlated to those calculated using 

alternative transformation parameters (r=0.75-1; Figure S46).  

 
Figure S46 | Correlations between species 

vulnerability scores estimated in our analysis against 

those calculated under the different transformation 

functions shown in Figure S44. 

The transformation functions that standardized the climate indices could affect the species relative 

vulnerability scores. However, as the risk thresholds used to define risk are propagated through the same 

transformations, the risk assessments are less sensitive to the choice of transformation parameters. Overall, 

these analyses suggest that the vulnerability calculations are relatively insensitive to the transformation 

functions relative to untransformed data or the magnitude of the parameters used to derive them. 
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Missing data 

Body length estimates or IUCN Red List assessments were available for 8,865 and 6,455 of the 

24,938 assessed species, respectively; they were, however, unavailable or data deficient for many species. 

The sensitivity analyses we undertook (see Thresholds of acceptable index missingness section) indicated 

that omission of these or any of the 12 climate indices could potentially bias the vulnerability estimates. To 

maximize the number of species for which vulnerability could be evaluated, we gap-filled missing body 

lengths and Red List extinction risk values using the approaches described below.  

Imputation of body lengths 

We estimated missing body lengths multivariate imputation by chained equations (MICE). MICE is 

an increasingly common and recognized approach for dealing with diverse types of missing data (e.g. 

continuous or binary) and has previously been used to gap-fill missing observations in vulnerability studies9. 

Using MICE, missing values are imputed based on the observed values for a given variable and the 

relationships observed in the data for other associated variables. An ensemble of imputations is estimated for 

each missing value, and these are used to produce correct standard errors for the imputations. Imputing 

missing values has resulted in significantly less bias in subsequent analyses relative to case-wise deletion 175.  

Simulation analyses were undertaken to provide confidence in the imputation routine and to produce 

valid estimates. 5,415 species contained observations of body length. We randomly sampled body length 

observations from this species pool to simulate varying levels of missing-ness: 50%, 60%, 70%, 80% and 

90%. For each random draw of varying sampling intensity, we estimated the missing values using MICE 

using different imputation methods: classification and regression trees, random forests, a random sample 

from observed value, proportional odds model, and linear discriminant analysis. Predictive variables for the 

imputation included minimum and maximum species tolerance values (temperature, oxygen, net primary 

production, salinity, ice concentration, distance from land, and depth of occupancy), latitude range, 

geographic distribution, and taxonomy (phylum, order, family). The five most probable imputations and 

their ensemble average were retained. We evaluated the correlation between the true lengths and the imputed 

and the relative difference between them for continuous body length values. This procedure allowed us to 

evaluate the effectiveness of MICE to successfully gap-fill missing body lengths values under different 

levels of missingness and imputation approaches. Ensemble averaging the top five most probable 

imputations led to a better prediction of the true values relative to the single most probable imputation. The 

imputation was relatively insensitive to the proportion of missing values that were imputed (range 50-90% 

missing). Imputation of missing values via random forests was the optimal approach. Ensemble averaging 

the top 5 imputations yielded body length estimates that were positively correlated to the true values under 

all levels of missingness (r=0.5-0.61). With a missingness level of 60% (missingness in our analysis=~65%), 

the correlation between imputed and estimated body lengths was 0.56). The agreement between the imputed 

and actual body length values increased when evaluated on a log-log scale, consistent with their 

vulnerability analysis treatment (see Maximum body lengths section).  
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Gap-filling of Red List statuses 

We explored the feasibility of imputing missing Red List (RL) extinction risk values using the MICE 

approach described above for body lengths. For the categorical Red List extinction categories, we evaluated 

the proportion of imputed values that were correctly classified. Imputation via proportional odds models 

slightly outperformed the other methods and correctly classified assessment status 94% of the time, on 

average (Figure S47). However, the average classification accuracy of the imputation diminished when 

moving from species of least concern (LC; 99%) to those that were threatened or near-threatened, 

vulnerable, or critically endangered (~30%).   

Given these results, we considered two possible approaches to gap-fill missing RL statuses: (1) 

imputing missing RL values with the understanding that the classification accuracy will likely be more 

uncertain for non-LC species (e.g. a higher type II error rate). Under this approach, we accept the possibility 

of incorrectly estimating the status for ~7% of the missing species in our analysis, representing ~4% of all 

species. (2) Uniformly assigning the highest probability outcome (status=LC) for each missing RL value 

(e.g. a higher type I error rate). With this approach, we accept the certainty of underestimating the status for 

~6% of missing species but understand the type of error that we are imposing (e.g. higher type I error rate). 

After weighing the pros and cons of each approach carefully, we opted to uniformly assign an LC status to 

all missing or data deficient RL values. This approach to gap-filling offers several advantages over the 

imputation of missing values. First, this approach is the most conservative, as species with unknown RL 

statuses will have lower overall climate risk than may be the case. Second, in assigning LC values 

uniformly, there is a clear, unambiguous understanding that we are avoiding type II errors (which we feel 

are possibly more problematic) at the expense of a higher type I error rate. Lastly, forgoing imputation 

simplifies the analysis and makes it more reproducible and accessible.  

 
Figure S47 Estimation of missing Red List assessment status of species.  

Points are the average proportion of correctly classified species into Red List assessment categories 

under different simulated missingness levels and multivariate imputation methods. Colours depict the 

extent of simulated data missingness (range 50-90%). The ensembles of the top 5 imputations (left 

panel) and most probable imputations (right panel) are shown. Methods: polr=proportional odds model, 

lda=linear discriminant analysis, cart=conditional autoregressive model. 

Defining species native geographic distribution 

Species presences were inferred from their probabilities of occurrence estimated from AquaMaps and 

ranged from 0 (no occurrence) to 1 (certainty of occurrence). Ideally, species native geographic distribution 

would be defined as the probability of occurrence significantly different from 0. However, as the probability 
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of occurrence lacked statistical uncertainty estimates, this approach was unfeasible, and we needed to define 

probability thresholds for species presences. Previous studies using AquaMaps native geographic 

distributions have used probability thresholds ranging from those greater than 0176 to greater than 0.5177,178. 

Rather than arbitrarily setting a probability threshold, we conducted our analyses under three contrasting 

occurrence thresholds: i) >0, ii) >0.25, and iii) >0.5. We then evaluated the effect of the probability 

threshold on the estimation of climate vulnerability and risk across all species and ecosystems. Increasing 

the threshold from 0 to 0.5 yielded species vulnerability and risk scores that were broadly similar (r=0.95; 

average vulnerability difference=4.4%; Figure S48). Varying the occurrence threshold has a minimal effect 

on the species vulnerability rankings (Figure S49). In general, increasing the probability threshold from 0 to 

0.5 led to higher species and ecosystem vulnerability and risk for 66% of species; 82% under the high 

emissions scenario and 51% under low emissions. The higher risk with increasing probability threshold 

primarily resulted from the lower adaptivity due to the reduced species habitat range and higher 

fragmentation; the sensitivity and exposure scores were relatively insensitive. Increasing the probability 

threshold from 0 to 0.5 led to different risk outcomes for 10% of species (7% under high emissions and 13 

under low). Given these results, and our desire to produce conservative estimates of climate vulnerability 

and risk across the totality of a species potential geographic distribution, we used a probability of occurrence 

threshold of >0. We wanted to ensure that our analysis minimized the chance of type II errors (e.g. error of 

omission), whereby parts of a species realized geographic distribution were omitted. Hence, even though 

species realized distribution might be smaller than the estimated native distribution in our analysis, it is 

nonetheless contained within it.   

 
Figure S48 Relationships between species vulnerability scores 

under contrasting probability of occurrence thresholds.  

Colours depict the emission scenario. 
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Figure S49 Average vulnerability rank similarity of species 

under contrasting probability of occurrence threshold.  

Lines are the average overlap of species rankings when using a 

probability of occurrence threshold of 0.5 relative to 0. Large values 

denote higher ranking similarity and 0 denotes no similarity. 

Collinearity of climate indices 

We prioritized indices that contained unique information about species' climate vulnerability. The unique 

information content of the indices was quantified by calculating the variance inflation factor (VIF) between 

the species' climate vulnerability and all 12 climate indices179. VIF assessed the amount of multicollinearity 

in a set of multiple regression variables and is equivalent to the ratio of the total model variance to the 

variance of a model that includes every single predictor. VIF values above five have high collinearity. The 

VIF analysis suggested low collinearity among the 12 climate indices: 6 indices had extremely low scores 

(VIF<2), while only the projected time of climate emergence from the thermal niche has a moderately high 

but still acceptable score (VIF=4.3). The low VIF scores and generally weak relationships among the 

climate indices (Extended Data Figure 2) indicated a lack of collinearity among the climate indices. 

Vulnerability across the ecosystem 

We evaluated variation in climate vulnerability and risk across species’ trophic levels (TLs) in all grid cells 

in the global ocean where the ecosystem spanned >1 TL. However, not all grid cells contained the same 

number and consistency of species, and hence the trophic levels spanned varied spatially. Whereas virtually 

all cells contained top predator species (TL>4), far less contained primary producers (TL=1) or zooplankton 

(TL=2-2.5). This discrepancy could be due to a lower sampling level of plankton species, as the data sources 

we used (e.g., AquaMaps, FishBase, and SeaLifeBase) are less focussed on plankton species.  For instance, 

grid cells in nearshore waters tended to contain more low trophic species (TL<2.5) than those in the open 

ocean. This variation could potentially bias the analysis. Hence, we undertook sensitivity analyses to 

determine if this variation affected the TL to vulnerability relationships. We fit the linear models relating the 

climate vulnerability of species to their TLs in each grid cell using all available data (TLs 1-5; Figure S50 

top), omitting primary producer species (TLs=1; n=303 species; Figure S50 middle), and omitting primary 

producers and zooplankton (TLs<2.5; n=1,129 species; Figure S50 bottom). This sensitivity analysis 

indicated that the variation in species climate vulnerability with increasing TL was relatively insensitive to 

the presence or absence of low trophic level species. The proportion of all grid cells with positive regression 

slopes (𝛽𝑇𝐿>0), denoting more vulnerable high TL species, was 81% when considering all species, 82% 
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when omitting primary producers, and 84% when omitting all plankton; the proportions were 86%, 88%, 

and 96%, respectively, when considering only statistically significant trends (p<0.05). Under the low 

emission scenario, the proportion of all grid cells with positive regression parameters (𝛽𝑇𝐿>0), was 76% 

when considering all species, 76% when omitting primary producers, and 84% when omitting all plankton; 

the proportions were 79%, 82%, and 95%, respectively, when considering only statistically significant 

trends (p<0.05). 

As an additional sensitivity check, we fit an alternative model of species climate vulnerability as a 

discrete binary function of their TL; under this model, low TL species were the control (TL<4) and high TL 

species the treatment (TL>=4). This model evaluates the difference in climate vulnerability of high TL 

species (e.g. top predators) relative to all other species in the food web and is less sensitive to data values at 

the extreme ends of the TL spectrum (e.g. low TL species). Under this alternative model and under the high 

emission scenario, the proportion of all grid cells with positive regression parameters (𝛽𝑇𝐿>), denoting more 

vulnerable top predator species, was 80% when considering all species, 81% when omitting primary 

producers, and 80% when omitting all plankton; the proportions were 91%, 91%, and 91%, respectively, 

when considering only statistically significant trends (p<0.05). Under the high emission scenario, the 

proportion of all grid cells with positive regression parameters (𝛽𝑇𝐿>0), was 71% when considering all 

species, 72% when omitting primary producers, and 71% when omitting all plankton; the proportions were 

79%, 80%, and 79%, respectively, when considering only statistically significant trends (p<0.05).  
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Figure S50 Relationships between trophic level and climate vulnerability. 

Colours depict the magnitudes and directions of the estimated linear model slope (𝛽𝑇𝐿) of species’ 

climate vulnerability by their trophic level. 𝛽𝑇𝐿 captures systematic differences between species’ 

vulnerability given their position in the food web: red are areas where climate vulnerability 

increases with trophic level (e.g., top predators are most vulnerable) and blue where it declines (e.g., 

primary producers are most vulnerable). Gray denotes areas where data are insufficient for analyses 

or slopes that were non-significant (p>0.05). Slopes were calculated for all TLs (1-5; top), excluding 

phytoplankton (TLs 2-5; middle) and excluding zooplankton (TLs 2.5-5; bottom) 

Finally, we evaluated the possibility that a possible high correlation between species maximum body 

lengths (which are used in the calculation of climate vulnerability) could bias the relationships between 

species climate vulnerabilities and their TLs. We tested the sensitivity of our results to the inclusion of body 

length in several ways. First, under each emission scenario, we re-fitted the linear models relating species’ 

climate vulnerability by their trophic level in each grid cell but included species body length as a covariate 

in the models. This procedure enabled us to estimate the linear model slopes (𝛽𝑇𝐿) of species’ climate 

vulnerability by their trophic level while holding the effect of species body lengths on climate vulnerability 

fixed. Including body length as a covariate did not appreciably change the overall results. The model slopes 

(𝛽𝑇𝐿) estimated from the two contrasting models were highly correlated (r>0.99), and the proportion of 

positive/negative slopes was relatively consistent. For instance, under high emissions, 62% of cells 

contained positive slopes (p<0.05) and including body length in the models increased this to 69% (p<0.05).  

As a next step, we evaluated the collinearity between body length and TL but estimating the variance 

inflation factor (VIF); 179 for each model containing TL and body length as covariates. The analysis 

suggested low VIF values for body length in all grid cells and emission scenarios (VIF<2.5), with virtually 

all cells having extremely low scores (VIF<1.5). Lastly, the correlation between species body lengths and 
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TLs was relatively weak (r=0.21; 5,686 species). Cumulatively, these sensitivity analyses suggest that body 

length was not driving the observed relationships between species' climate vulnerability and their TLs.  

Supplementary figures  

 

 
Figure S51 Average species climate exposure under different 

emission scenarios.  

 

 
Figure S52 Average climate vulnerability of species under different 

emission scenarios.  

 

 
Figure S53 Average vulnerability and exposure rank similarity of species under 

different emission scenarios.  

Lines are the average overlap of species rankings under SSP1-2.6 and SSP5-8.5 for 

vulnerability (black) and exposure (red). Large values denote higher ranking similarity. 
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Figure S54 Average statistical uncertainty (coefficient of 

variation) in species vulnerability scores under different 

emission scenarios.  

 

 

 
Figure S55 Average statistical uncertainty (coefficient of 

variation) in species exposure under different emission scenarios.  
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Figure S56 Statistical distribution of the 12 climate indices for all 

assessed species.  

Coloured shading represents the smoothed numerical distributions of the 

species scores for the 12 climate indices in Supplementary Table 1. 

Colours depict the dimension: blue=sensitivity, red=exposure, 

yellow=adaptivity. Light red shading depicts scores under low 

emissions and dark red under high. Gray shading depicts the climate risk 

thresholds.  

 

 

 
Figure S57 Statistical distribution of the 3 climate dimensions for all 

assessed species. 
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Figure S58 Correlations between species vulnerability scores estimated in our 

analysis against the native climate indices used to calculate it. 

Colours and numbers are the correlations between climate vulnerability and the native 

climate indices calculated for each species. Colour shading and text are the direction and 

strength of the relationships: red is positive and blue negative correlations. 
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