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Abstract 

Frontotemporal lobar degeneration (FTLD) is a common form of early-onset dementia 

presenting with a complex gene and pathological architecture. Impairment in several 

molecular pathways has been associated with FTLD pathology however translating 

genetic knowledge into functional understanding of impacted biological processes in 

complex disorders still represents a major challenge.  

This thesis proposes a multi-omics network approach integrating genetics, 

transcriptomics and proteomics to investigate the common pathogenic mechanisms and 

their associated genes/proteins underlying Mendelian and sporadic forms of FTLD. 

Protein-protein interaction (PPINs) and gene co-expression (GCNs) networks were used 

to prioritise: i) disease-specific biological processes on the basis of known FTLD 

Mendelian and GWAS genes and ii) their associated genes/proteins, which were carried 

forward for hypothesis-driven functional validation using in vitro cellular models. A 

separate study specifically investigated C9ORF72 repeat expansions (i.e., a common 

genetic signature of FTLD) as a potential genetic modifier of FTLD syndromes in relation 

to genetic ancestry and age at onset (AAO). 

Results from these studies revealed that waste disposal, and autophagy/mitophagy 

dysfunction in particular, are among the most relevant biological processes impacted in 

FTLD. Further work indicated that CDC37, protein with no reported link to the 

mitochondria, has an important role in modulating PINK1-dependent mitophagy, as 

CDC37 deficient cells exhibited an increase in both PINK1 mRNA and protein expression 

as well as PINK1-dependent phosphorylation of ubiquitin, a common marker of 

mitophagy; additionally, CDC37 deficiency was shown to increase transcriptional 

expression of GRN, a common FTLD Mendelian gene. Finally, an iPSC GRN-/- model 

showed that both CDC37 protein expression and mitophagy were downregulated upon 

GRN insufficiency, suggesting a shared mechanism between GRN, PINK1 and CDC37 

where GRN modulation might be regulating the trafficking and stability of PINK1 via 

CDC37. Additionally, C9ORF72 analyses indicated a correlation between pathogenic 

C9ORF72 expansions, AAO, principal component analysis (PCA)-based Central/Northern 

European ancestry, and a diagnosis of bvFTLD, implying complex genetic risk 

architectures differently underpinning the behavioural and language variant syndromes. 
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These findings contribute to our understanding of PINK1-dependent mitophagy 

regulation via CDC37 and GRN and further emphasise the relevance of 

autophagy/mitophagy dysfunction in FTLD. 
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Impact statement 

In an era where scientific research is the golden standard for novel discoveries and 

technological progress, one may wonder whether it is as reliable as we think. Several 

studies across many fields have brought to light that only less than half of published 

findings can be replicated reliably1,2, leading many to consider whether there should be 

a paradigm shift in the way we do research, hence introducing the concept of 

triangulation1(Figure a).  

 

Figure a. Triangulation as a strategy to produce robust research. Different approaches are needed to address the 
same underlying question or more simply said, to prove a point using many distinct lines of evidence. Adapted from 
‘Robust research needs many lines of evidence’ by M. R. Munafò, 2018, Nature. Copyright 2022 Springer Nature 
Limited. Adapted with permission. 

 

Triangulation can be defined as the ‘strategic use of multiple approaches to address a 

single question’, implying that results that are consistent across different methodologies 

are less likely to be artefacts1. This concept has been dramatically changing the way we 

investigate human diseases, because rather than viewing a disease as an independent 

entity, it recognises the interplay of multiple molecular processes that interact in a 

complex network and are reflected in the expressed pathophenotype3,4. When translating 

this concept into the study of the brain, we realise that inter- and intracellular 

interconnectivity implies that the impact of a specific genetic abnormality is not 

restricted to the activity of the gene product that carries it but can spread along the links 
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of the network and alter the activity of gene products that otherwise carry no defects. 

Therefore, an understanding of a gene's network context is crucial in determining the 

phenotypic impact of defects that affect it.  

In this study, I propose a holistic network approach in line with the concept of 

triangulation where I integrate genetics, transcriptomics and proteomics to identify 

candidate FTLD-risk biological processes and associated genes/proteins. The 

characterisation of different networks (i.e., PPIN and GCN) behaviour as a whole is an 

essential component of this project as it allows to look at the same problem through 

different lenses and thus to improve our understanding of disease complexity at the 

cellular and molecular levels. This approach sheds light on how genetic and molecular 

perturbations propagate through the system by identifying and characterising network 

modules and hubs connecting apparently different pathophenotypes that can be targeted 

for clinical intervention. Through this in silico study of a multifactorial, complex 

neurodegenerative disorder, I show that this pipeline can be applied to: i) define disease-

specific biological processes on the basis of known Mendelian and GWAS genes; ii) 

identify genes/proteins involved in disease-specific processes. While these 

genes/proteins can be carried forward for functional validation, they can also be used to 

prioritise candidate genes in GWAS loci or be screened for rare variants within whole 

exome sequencing datasets, giving rise to several manifold downstream applications. 

Additionally, it is important to mention that this approach can be implemented in and 

facilitate the investigation of any complex disease, providing a resource that can be used 

by researchers in any field of biomedicine. 

This approach presents a robust pipeline to dissect the genetic and functional 

architecture underlying polygenic forms of disease. In doing so, it provides the basis for 

further genetic and hypothesis-driven functional studies to validate disease-risk 

pathways as well as identify targets for the future development of therapeutic 

interventions. On the basis of this approach, it is clear that to cure a specific disease it is 

of paramount importance to understand the cells' global organization — the 'think 

globally, act locally' paradigm of network medicine4. 

Finally, in this study I provided proof of concept that machine learning can be leveraged 

to segregate FTLD clinical subtypes.  Additionally, the comprehensive analysis of 

C9ORF72 repeat expansion size has shown strong correlations with age at onset and 
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ancestry, revealing novel genetic modifiers of FTLD. These results warrant further 

characterisation of genetic, environmental and additional clinical variables to fine-tune 

models that further characterise FTLD genetic risk architecture and are able to predict 

disease outcome to complement diagnostic criteria. 
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Chapter 1 

1. Introduction 

1.1. Frontotemporal dementia 

Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous group of 

incurable non-Alzheimer dementias characterised collectively by progressive atrophy of 

the frontal or temporal lobe, or both, which results in several cognitive deficits5,6. Cases 

of FTD have first been described at the end of the 19th century by Arnold Pick, who lent 

his name to the historical designation of the entire FTD spectrum as Pick’s disease7. 

Research over the past three decades however has shed light on the clinical, genetic and 

pathological complexity of these diseases as well as its unique selective brain 

degeneration patterns. 

Based on North American and European epidemiological studies, FTD is the second most 

common form of dementia after Alzheimer’s disease (AD) representing 10-20% of all 

dementia cases. FTD occurs in about three to 15 per 100 000 individuals with its onset 

typically beginning in the sixth decade of life, although several cases have been reported 

as early as the third or as late as the ninth decade5,8,9. Although FTD is substantially less 

common than AD, this disease group is of disproportionate importance as a cause of 

early-onset dementia and, as a result, of the socioeconomic and human costs that it 

entails5. With an ageing population worldwide, this represents a substantial social and 

economic problem and novel therapeutic strategies are urgently needed. A great deal has 

already been learnt about the pathology and pathogenesis of the disease, but there are 

still gaps in our knowledge and these remain important areas for current and future 

research. 

 

1.1.1. Diagnostic criteria and clinical features 

FTD is characterised by several clinical alterations which include gradual changes in 

personality, behaviour, and speech output10. To date, researchers have been able to 

develop multiple methodologies to classify FTD disorders using biological and molecular 

analytical tools. However, diagnosis is still obtained clinically with the help of consensus 

criteria, due to the absence of definitive biomarkers11. The main aim of establishing 

diagnostic criteria is to achieve uniformity in disease definition and to develop a sensitive 
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standard for early disease screening and management11. The consensus criteria 

published by Neary et al. in 1998 identify two major prototypical syndromes produced 

by FTD, defined on the basis of leading features at presentation: these are the behavioural 

variant (bvFTD) and the language variants (primary progressive aphasia [PPA], which 

include semantic dementia (SD or semantic variant primary progressive aphasia 

[svPPA]) and progressive non-fluent aphasia (PNFA or non-fluent variant primary 

progressive aphasia [nfvPPA])5,12,13. All the three variants share an insidious onset and 

inexorably progressive but variable decline, and each one is associated with 

topographically distinct cerebral involvement14. A list of the main clinical features of FTD 

have been summarised below.  

Behavioural variant FTD (bvFTD). This syndrome is characterised by marked change in 

personality and social conduct, often associated with executive dysfunction and language 

impairment as secondary features. Patients may as well be affected by loss of volition, 

inertia, emotional blunting and loss of insight that can later develop into minimal speech 

output or even mutism14. Although behavioural changes and cognitive deficits represent 

bvFTD predominant features, small proportions of patients have shown to also have 

visual hallucinations and prominent parkinsonism.  

Semantic dementia (SD). Semantic dementia is diagnosed when the dominant presenting 

features are loss of word and object knowledge and comprehension deficits, while speech 

output remains fluent and effortless, albeit with a tendency for repetition1. 

Comprehension impairment can be associated with varying degrees of prosopagnosia 

(loss of facial recognition). It is noteworthy that behavioural changes are also observed 

in SD but tend to be somewhat distinct from the ones seen in bvFTD. Josephs12 further 

divides SD into two separate variants based on which temporal lobe shows more severe 

atrophy: the right temporal variant, rather than the left one, holds behavioural changes 

as a typical presenting feature.  

Progressive non-fluent aphasia (PNFA). Non-fluent speech production, agrammatism and 

telegraphic speech are the major characteristics defining the third syndrome, known as 

progressive non-fluent aphasia1. Phonologic errors and difficulties in word retrieval, 

reading and writing are also part of the clinical picture. Whilst behavioural and 

personality changes typical of bvFTD are less common in PNFA, the development of 

extrapyramidal features is very often observed, sometimes leading to changes in 

diagnosis.  
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Over the past two decades, many case reports have recognised extrapyramidal features 

as prominent part of disease diagnostics; extensive overlap among the three above 

mentioned syndromes and progressive supranuclear palsy (PSP), corticobasal syndrome 

(CBS), and motor neuron disease (MND) has in fact been noted. In some reported cases 

of bvFTD, features of PSP are observed, suggesting that bvFTD and PSP could be in the 

same spectrum. Features of PSP are akinesia and rigidity, vertical supranuclear gaze 

palsy, and early falls. Milder changes in personality and behaviour can also occur in PSP, 

while apathy can be a salient feature, hence the overlap with bvFTD.  

Akinesia and rigidity also typically characterise CBS, albeit in an asymmetric manner. A 

combination of non-fluent speech, limb apraxia, and behavioural and personality changes 

characterises CBS, hence the overlap with the FTD syndromes.  

In parallel, the disease can also exhibit clinical features typical of parkinsonian and 

movement disorders, including MND. Some FTD cases may include features of MND, such 

as difficulty in speaking and swallowing, spasticity, weakness, hyperactive reflexes etc.; 

whereas MND is rare in SD, PNFA, PSP and CBS, it has been frequently associated with 

bvFTD, hence the term FTD-MND. FTD-MND displays rapid progression, with death 

occurring after approximately 2 years since onset. Behavioural and cognitive deficits are 

usually observed earlier than MND clinical features, however a small subset of patients 

with MND has or can later develop features suggestive of FTD. A summary of the main 

overlapping clinical features of FTLD are shown in Figure 1.1. 
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Figure 1.1. Clinical presentations within the frontotemporal lobar degeneration pathological spectrum. The 

core syndromes within the FTLD pathological spectrum are represented in blue, while syndromes depicted in red 

represent clinical presentations typically outside of the FLTD spectrum that have been found in people with 

pathologically confirmed FTLD. Note that the size of each circle is not intended to reflect the approximate prevalence 

of each syndrome. PPAOS, primary progressive apraxia of speech; rtvFTD, right temporal variant frontotemporal 

dementia. Adapted from ‘Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and 

therapeutic considerations’ by B. F. Boeve, 2022, The Lancet Neurology, Volume 21, Issue 3. Copyright 2022 by 

Elsevier Inc. Adapted with permission. 

 

Probable FTD diagnosis would need to meet the consensus criteria, but also includes 

imaging suggesting of specific atrophy topography on magnetic resonance imaging or 

computed tomography measurements11. Alternatively, positron emission tomography or 

single-photon emission computed tomography imaging demonstrating hypoperfusion or 

hypometabolism in specific brain regions5,11. Histopathological and genetic evidence of 

FTD are eventually assessed in order to diagnose definite FTD pathology5,11.  

FTD shows, to some extent, overlap with the diagnostics of numerous neurodegenerative 

diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). This has led to 

the suggestion that multiple neurodegenerative disorders share a number of features and 

molecular underpinnings16. For example and of note, significant evidence suggests 

positive genetic correlation between amyotrophic lateral sclerosis (ALS) and FTD17. Over 

the past decade it has been established that the TAR DNA binding protein 43 (TDP-43) is 
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the major pathological hallmark for the vast majority of both ALS and FTD cases17,18. This 

inference strongly supports the significant overlap of genetic and molecular features 

characterizing these diseases.   

 

1.1.2. Neuropathology 

Degeneration of the frontal and temporal cerebral lobes is a relatively consistent feature 

and the term frontotemporal lobar degeneration (FTLD) is routinely used to describe the 

pathological conditions that commonly present in FTD cases leading to a wide range of 

clinical symptoms8,9,19,20. As a result, the abbreviation FTLD will be used throughout the 

rest of this thesis.  

Pathologically, the brain of FTLD patients shows marked shrinkage and spongiform 

morphology due to progressive neuronal loss during the course of the disease. Within the 

three main syndromes of FTLD there are distinct patterns of atrophy: bvFTLD cases show 

atrophy affecting the bilateral frontal lobes, specifically the medial frontal lobes and the 

anterior temporal lobes. In SD, asymmetric atrophy is detected at the bilateral level in the 

middle, inferior and medial anterior temporal lobe, whereas PNFA mainly displays 

atrophy of the left posterior frontal and insular regions21. Degeneration may occasionally 

involve the basal ganglia as well as the substantia nigra.  

The advent of immunohistochemistry made evident that many different pathologies 

underlie the FTLD syndromes and associated FTLD-related disorders, such as PSP, CBS, 

and MND. It is in fact now well established in the field that more than 15 different 

pathologies can underlie FTLD and related disorders12. FTLD pathology is mainly 

characterized by i) aberrant accumulation of protein aggregates and ii) dystrophic 

neurites (DN) in the affected area21. Kurz & Perneczky18 suggest that protein misfolding, 

cleavage and phosphorylation play a crucial role in determining the development of 

protein aggregates. Intracellular deposits of these proteins often define the major 

histopathological signatures of common neurodegenerative disorders associated with 

cognitive deterioration. 

Different protein inclusions characterize the various FTLD subtypes, which can be 

subdivided into broad categories on the basis of the molecular defects that is most 

characteristic: the majority of FTLD cases shows almost equal distribution of 

microtubule-associated protein tau (MAPT) tauopathy (FTLD-tau) (~40% of cases) and 



36 
 

ubiquitin/TDP-43 (FTLD-TDP) proteinopathy (~50% of cases), while fused in sarcoma 

(FUS) positive (FTLD-FUS) and p62 (FTLD-UPS) pathology represent 10% and 1-2% of 

cases, respectively20. Such protein inclusions mostly accumulate in the cytoplasm of 

neurons and glial cells located mainly in the frontal and temporal cortex, but also in the 

hippocampus and sub-cortical nuclei21,22.  

Tauopathies are a group of diseases which show tissue deposition of the abnormally 

aggregated protein tau12. FTLD cases presenting tauopathies show as a predominant 

pathological feature hyperphosphorylated tau inclusions, which accumulate in the 

cytoplasm of neurons and glial cells located, mainly, in the frontal and temporal cortex, 

the hippocampus and subcortical nuclei, with a minor prevalence in midbrain, brainstem, 

cerebellum and spinal cord14,21.  

Tau is a microtubule-associated protein that stabilizes microtubule assembly by binding 

to tubulin. Tau has eight different isoforms that are generated by alternative splicing of 

exons 2, 3, and 10 from a single gene that in humans is designated MAPT, located on 

chromosome 17. Each tauopathy presents distinct morphological characteristics of 

neuronal and glial lesions, varies in the anatomic distribution of the lesions, and may 

differ by the molecular pathology.  

Although a significant number of FTLD and related disorders (i.e., PiD, CBD and PSP) are 

characterized by the accumulation of the protein tau, the majority of FTLD cases are TDP-

43 protein proteinopathies12.  

The TAR DNA-binding protein 43 (TDP-43) was identified in 2006 by researchers in 

Japan and USA as one of the mostly ubiquitinated proteins in FTLD, FTLD-MND and ALS. 

TDP-43 is a highly conserved nuclear protein that plays a key role in transcriptional 

regulation as well as in alternative splicing control12. Recent studies12 suggest that FTLD-

TDP could be further sub-classified into three variants based on the morphology, 

distribution, and ratio of TDP-43-positive neuronal cytoplasmic inclusions to dystrophic 

neurites; these have been described as FTLD-TDP types I, II, and III and they have shown 

to be associated with the FTLD syndromes. FTLD-TDP-typical inclusions (tau-negative, 

ubiquitin-positive) are often seen in patients carrying mutations in the progranulin 

(GRN), valosin-containing protein (VCP) and Chromosome 9 Open Reading Frame 72 

(C9ORF72) genes23. Interestingly, a recent study by Jiang et al.24 found that the 

pathological amyloid fibrils in FTLD-TDP might be composed of TMEM106B and not TDP-

43, thus potentially refocusing future pathogenic studies of FTLD-TDP. 
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Alternatively, neuronal inclusions immunoreactive to ubiquitin are characteristic of the 

FTLD-FUS form. FUS is the last major subgroup of FTLD pathology, and is a proteinopathy 

associated with the co-aggregation of FET (FUS [fused in sarcoma], EWS [Ewing sarcoma] 

and TAF15 [TATA binding associated factor 15]) proteins into ubiquitinated inclusions 

found in sporadic FTLD cases11. FUS proteinopathy has been suggested to be involved in 

the shared neuropathologic mechanisms underlying FTLD disorders and ALS11.  

Lastly, an ultimate FTLD subtype characterized by ubiquitin-immunoreactive inclusions 

has been recognized: FTLD-UPS (frontotemporal lobar degeneration with inclusions 

positive for ubiquitin proteasome system markers) is commonly associated with a 

mutation in the charged multivesicular body protein 2B (CHMP2B) gene that causes 

disruption of endosomal traffic. A decline in the levels of CHMP2B results in a decrease of 

hippocampal dendritic branching and diminished excitatory synapse activity, thus 

significantly decreased synaptic plasticity and causing cognitive and neurological 

deficits11. However, it is noteworthy to mention that CHMP2B mutations are relatively 

rare11. A summary of the different genetic, molecular and clinical classifications of FTLD 

are listed in Figure 1.2.
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Figure 1.2. Different classifications of frontotemporal lobar degeneration.
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1.1.3. Genetics 

Neurodegenerative disorders are generally characterised by a complex genetic 

architecture, and often a minority of familial cases is outnumbered by a large population 

of sporadic cases9.  

Mendelian genes have been classically isolated in familial studies through genetic linkage 

analysis and, more recently, whole-exome sequencing (WES) of large well-phenotyped 

pedigrees9,25. On the other hand, sporadic forms of disease are generally investigated 

through case/control association studies, such as genome-wide association studies 

(GWASs). GWASs are able to identify genetic variants associated with complex human 

diseases and traits by assessing the significant differences in allele frequencies of 

common genetic markers across large cohorts of patients and population-matched 

controls9. While in the past decade GWASs have been able to highlight hundreds of risk 

variants associated with neurodegenerative disorders, most variants identified so far 

confer relatively small increments in risk, and explain only a small portion of familial 

clustering, leading many to question how to explain the remaining ‘missing’ heritability26.   

 

1.1.3.1. Familial FTLD-Mendelian genetics  

Familial forms account for a minority of global FTLD cases, ranging from 30 to 40% 

overall. 

Several post-mortem studies demonstrated that clinically and neuropathologically 

diagnosed FTLD can result from different underlying molecular pathologies (e.g., tau or 

TDP-43 pathology), indicating that multiple pathogenic pathways might result in 

converging and/or overlapping clinical phenotypes27.  

Corresponding with this complex pathological architecture of FTLD, genes in manifold 

pathways have recently been implicated in its molecular pathogenesis27. However, the 

full spectrum of neurodegenerative disease genes and the relative proportions in which 

each contributes to the complex genetic architecture of FTLD have not yet been 

systematically explored.  

Mutations in a handful of genes, that are usually referred to as Mendelian FTLD 

genes9,14,28,29, are known to be classically associated with familial FTLD. The three most 

common ones are the microtubule-associated protein tau (MAPT), progranulin (GRN) and 

Chromosome 9 Open Reading Frame 72 (C9ORF72)10,11,30. 
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MAPT encodes different isoforms of tau proteins, which are essential for cell shape 

maintenance, molecules trafficking and signal transduction21. MAPT mutations (≥44 

pathogenic mutations9) are in fact involved in the formation of hyperphosphorylated tau 

in cortical and subcortical grey and white matter and they occur on average at a frequency 

of 6-11% of all FTLD subjects11. According to Young et al.11, they are inherited in an 

autosomal–dominant manner, they usually have high penetrance, and may have a shorter 

duration of illness relative to other mutations.  

GRN (≥70 pathogenic mutations31) is involved in cell cycle progression, autophagy-

lysosome pathway regulation and inflammation processes, and accounts for 5-20% of the 

cases in the FTLD population11,32. Just like MAPT, GRN mutations are inherited in an 

autosomal-dominant manner, but interestingly they have relatively low penetrance until 

the age of 7011.  

Mutations in both genes have been associated with asymmetrical frontal, temporal and 

inferior parietal lobe atrophy and mainly with TDP-43 positive inclusions. The overall 

frequency of MAPT and GRN mutations in FTLD accounts for only 20% of the cases21. 

The non-coding hexanucleotide repeat expansion in C9ORF72 exhibits an autosomal-

dominant pattern of inheritance and has been suggested to be the most common genetic 

cause of chromosome 9-linked FTLD and ALS11,33,34 as well as, although with lower 

prevalence, in AD, PD, ataxia and CBS cases19,21,35–43.  

 

Furthermore, a number of additional genes explain a minority of familial FTLD cases. 

Truncation mutations in the charged multivesicular body protein 2B (CHMP2B) gene are 

extremely rare but have been linked to a large Danish family and a Belgian patient 

presenting with FTLD44,45. 

FTLD-ALS pathology has also been associated with very rare mutations in other genes 

including sequestosome 1 (SQSTM1)46, ubiquilin 2 (UBQLN2)47, optineurin (OPTN)48, 

coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10)49, TANK binding 

kinase 1 (TBK1)48,50, intraflagellar transport 74 (IFT74)51, dynactin-1 (DCTN1)52 and, 

although still awaiting to be confirmed by further studies, the TIA1 cytotoxic granule-

associated RNA-binding protein (TIA1)53. To date, none of these mutations have been 

associated with a unique pathological signature20. Families carrying mutations in these 

genes have been found to present with variable FTLD and/or ALS features within the 

same pedigree, suggesting that mutations in these genes may predispose to both 
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diseases54,55. 

Mutations in a number of genes have been shown to co-occur with various phenotypes: 

mutations in the valosin-containing protein (VCP) have been identified in few cases 

carrying a combination of conditions such as inclusion body myopathy (IBM) with Paget 

disease of the bone (PDB) and FTD, and in FTLD-ALS cases, while mutations in SQSTM1 

have recently been described in families whose affected members presented with ataxia, 

dysarthria, dystonia, vertical gaze palsy and cognitive decline56,57. Finally, although 

pathogenic genetic variability in the transactive response DNA-binding protein (TARDBP) 

and the fused in sarcoma (FUS) genes is usually associated with clinically pure ALS, there 

have been very few reports of cases of clinical FTD (± ALS) harbouring mutations in these 

genes20,58–60. This is surprising in light of the fact that that the protein products of both 

TARDBP and FUS have been shown to be among the main pathological hallmarks 

contributing to FTLD pathology (FTLD-TDP and FTLD-FUS respectively)20. 

To summarise, Mendelian FTLD genes can be classified on the basis of their disease 

specificity: MAPT, GRN and CHMP2B can be considered the main ‘pure’ FTLD genes, as 

mutations in these genes are the most common and they have been mainly or exclusively 

identified in FTLD cases61; C9ORF72, VCP, TARDBP, FUS, SQSTM1, UBQLN2, IFT74, OPTN, 

CHCHD10, TBK1, and TIA1 seem to encompass ALS and/or some heterogeneous array of 

extra-phenotypic features, as a result they can be considered as ‘spectrum-FTLD genes9. 

A summary of the major genes associated with the FTLD-ALS continuum with their 

discovery timeline is presented in Figure 1.3. 
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Figure 1.3. Landscape of the genes associated with the FTLD-ALS spectrum. It has now been established that ALS 

and FTD are linked clinically, pathologically, and mechanistically, and the diseases are now properly recognized as 

representatives of a continuum of a broad neurodegenerative disorder, with each presenting in a spectrum of 

overlapping clinical symptoms. It has been estimated that approximately 15% of FTD patients meet ALS criteria and 

perhaps as much as 15% of ALS affected individuals can also meet FTD criteria. ALS-FTLD genes are plotted to shown 

clinical phenotype (x-axis), year of discovery (y-axis) and level of research on each gene (balloons’ size). Adapted 

from ‘Delineating the relationship between amyotrophic lateral sclerosis and frontotemporal dementia: Sequence 

and structure-based predictions’ by V. Kumar, 2016, Biochimica et Biophysica Acta, Volume 1862, Issue 9, Pages 

1742-1754. Copyright 2022 by Elsevier Inc. Adapted with permission. 

 

1.1.3.2. Sporadic FTLD  

Although sporadic forms of FTLD account for the majority (60-70%) of global FTLD 

cases9, the genetics of idiopathic FTLD is still relatively unclear. Besides the reports of a 

few MAPT, GRN and C9ORF72 mutations62,63, the genetic architecture of sporadic FTLD 

primarily refers to genetic risk markers with small effect size likely modulated by 

multiple genetic and/or environmental modifiers, as shown in Figure 1.49,26,62.  
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Figure 1.4. Schematic overview of common familial and rare FTLD genes and genetic risk factors. The risk 

attributed to a variant in a gene associated to FTLD (y-axis) is represented in function of its variant frequencies in the 

general population (x-axis). The sizes of the circles correspond approximately to the proportion of FTLD patients 

harbouring a variant in the corresponding gene. Each gene has been associated with certain types of pathology: 

FTLD-tau, FTLD-TDP, FTLD-FUS and FTLD-UPS, whereas in some instances the type of pathology is unspecified.  

 

To date, the most informative studies exploring genetic risk and/or modifying factors in 

sporadic FTLD have been GWASs. These studies were designed to either address actual 

sporadic cohorts, as in the case of the International clinical FTLD GWAS64, the Italian 

clinical FTLD-GWAS65 and the Dutch clinical FTLD-GWAS66, or more selective cohorts 

presenting with a specific pathology (i.e., TDP-43 pathology67) or a specific genetic 

variant (i.e., GRN mutation carriers68). 

Van Deerlin at al.67 published a GWAS study in 2010 that identified a number of single 

nucleotide polymorphisms (SNPs) encompassing the transmembrane protein 106B 

(TMEM106B) gene as risk factors for the FTLD-TDP subtype and observed that their risk 

alleles appeared to be particularly enriched in GRN mutation carriers, thus suggesting 

TMEM106B as a GRN modifier. Of note, TMEM106B association with FTLD has been 

confirmed in subsequent studies67,69–71 and functional analyses suggested that 

TMEM106B is involved in endolysosomal pathways and modulates PGRN protein 

levels72. 

In 2014, Ferrari at al.64 published a clinical international FTLD GWAS study. The analysis 

revealed two novel susceptibility loci for clinical FTLD: i) the RAB38 – CTSC locus for the 

bvFTD subtype, which was suggested to be involved in the lysosome-phagosome 
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pathways; ii) the BTNL2 and HLA-DRA – DRB5 locus in global FTLD, which was shown to 

regulate immune system processes9,64. 

A second clinical FTLD-GWAS was published only a year later by Ferrari et al.65, this time 

involving a multicentre Italian FTLD cohort. The study defined two suggestive (i.e., close 

to significance, yet not genome-wide significant) loci encompassing the CEP131 and 

ENTHD2 genes suggesting that neuronal development, differentiation and maturation 

processes might be the biological mechanisms underlying the association and thus 

driving FTLD pathogenesis in the Italian population64,65.  

Another FTLD-GWAS was published in 2018 by Pottier et al.68, who performed the 

analysis on a FTLD cohort selected for the specific feature of carrying loss of function GRN 

mutations. Interestingly, the results seem to replicate the findings by Van Deerlin et al.67: 

genome-wide significance was reached by a lead SNP encompassing TMEM106B, 

reinforcing the hypothesis that transcriptional regulation of such gene might underlie 

FTLD pathology by modulating PGRN protein levels. In addition, another outstanding 

marker regulating GFRA2 expression was identified and it was shown that GFRA2 and 

PGRN interact at the cellular level and seem to be both part of the glial cell line-derived 

neurotrophic factor (GDNF) pathway, which is known to promote neuronal survival73. 

Altogether, this study confirms TMEM106B and brings forward GFRA2 as novel potential 

modifiers in GRN mutation carriers. 

The most recent FTLD-GWAS was published in 2021 by Reus et al.66, who collected a 

multicentre Dutch FTLD cohort. The study identified two risk SNPs tagging a C9ORF72 

haplotype which is carried by ~4% of the population and has been shown by several 

studies to greatly increase the risk for a pathological C9ORF72 repeat expansion, which 

has been associated with the FTLD-ALS continuum34,74,75. These findings imply that these 

novel variants increase susceptibility to C9ORF72 pathological repeat expansions.  

Besides the typical GWASs, more recently evidence originating from a study76 

investigating epigenetics combined with GWAS data suggested that the HLA locus might 

play a key role in regulating the expression of proinflammatory players in the brain 

cortex, impacting FTLD patients’ age at onset (AAO). This study is one of many that 

further support that multiple risk factors and/or modifiers might in fact significantly 

contribute to disease endophenotypes or disease-specific features9. 

Overall, the associations reported in the different FTLD-GWASs hardly replicated across 

each other, with the exception of the TMEM106B locus which is shown in two 
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independent studies (the FTLD-TDP and FTLD-GRN GWAS). Given the specific 

characteristics of the cohorts analysed, one featuring genetic variability in the GRN gene 

and the other TDP-43 pathology, it would appear that TMEM106B is probably an 

exclusive modifier of GRN mutation carriers and cases presenting TDP-43 pathology. The 

clinical GWASs indicated different loci and were not cross-supportive, suggesting that 

differences in population substructure might be determining such genetic associations, 

and therefore underlie this lack of replication together with sample size and statistical 

power.  

 

1.1.4. Molecular mechanisms of FTLD pathogenesis 

Impairment in several pathways has been associated with FTLD pathology however 

translating genetic knowledge into functional understanding of impacted biological 

processes in complex disorders still represents a major challenge77. To date, the study 

and functional characterisation of the protein products of Mendelian, sporadic and GWAS 

genes has pointed to a number of susceptibility processes that seem to be conserved 

across familial and sporadic forms of disease and thus have been informative on the 

potentially associated impacted biological processes. Among others, waste disposal and 

immune signalling have been commonly prioritised, while DNA damage response is 

emerging as a novel intriguing candidate pathway9  (Figure 1.5).  
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Figure 1.5. Summary of all putative impacted molecular processes contributing to FTLD pathogenesis on the 

basis of the current global genetic characterization of FTLD including Mendelian, sporadic and GWAS FTLD 

genes. DDR, DNA damage response; ER, endoplasmic reticulum. Adapted from ‘Genetics and molecular mechanisms 

of frontotemporal lobar degeneration: an update and future avenues’ by R. Ferrari, 2019, Neurobiology of Aging, 

Volume 78, Pages 98-110. Copyright 2022 Elsevier, Inc. Adapted with permission. 

 

Several genes, namely CHMP2B, C9ORF72, GRN, VCP, UBQLN2, OPTN, SQSTM1, TBK1, 

CCNF, TMEM106 and RAB38 have been shown to underpin cellular waste disposal (i.e., the 

process of breaking down damaged cellular components and debris), which encompasses 

a number of specialised subprocesses such as the endolysosomal pathway, 

macroautophagy and the unfolded protein response (UPR)9,78–81. Although alterations of 

the waste disposal process have been often associated to various NDs, the underlying 

detailed molecular mechanisms are still unknown78.  However, it is widely accepted that 

one of the major causes for neuronal damage and death is the toxic accumulation of 

misfolded proteins within the subcellular environment driven by dysfunctional waste 

disposal, due to mutations in one or more of these genes. Briefly, GRN encodes for a 

glycoprotein product (progranulin [PGRN]) that is taken up by the cell from the 

extracellular space and subsequently cleaved into seven units of granulins (GRNs) within 

the endolysosomal pathway82–84. The function of PGRN and GRNs is still not completely 
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clear, but several links have been made with modulation of inflammatory response and 

lysosomal homeostasis82,85. The protein product of CHMP2B, another FTLD Mendelian 

gene, has been shown to be involved in endosomal trafficking while SQSTM1, whose 

protein product is known as p62, plays a key role in recognising polyubiquitinated 

cargoes for delivery to the autophagy machinery and subsequent degradation23,86. Both 

VCP and UBQLN2 are responsible for ubiquitin-mediated proteostasis control, mostly 

delivering substrates tagged for degradation to the proteasome10,14. OPTN and TBK1 act 

in synergy to recognise protein aggregates in a ubiquitin-independent fashion and deliver 

them for autophagy – lysosome-mediated degradation87–89. CCNF mediates proteasomal 

targeting of specific substrates during the G2 phase of the cell cycle9. Interestingly, only 

more recently C9ORF72 has been linked to autophagy and proteostasis, while most 

studies have indicated that pathological expansions might reduce mRNA expression or 

generate toxic nuclear foci62. CHCHD10 has been associated with maintenance of 

mitochondrial quality control and mitophagy49,90. Finally, the transmembrane protein 

TMEM106B is involved in the maintenance of endolysosomal trafficking, while RAB38 

regulates vesicle trafficking9,82,91. 

GRN, TBK1, BTNL2 and HLA-DRA genes appear to support signalling pathways involved 

in immune response9. Interestingly, two genes strongly implicated in waste disposal-

associated processes have also showed to be involved in immune system signalling: in 

fact, upregulation of PGRN has been shown by several studies to have an anti-

inflammatory effect and to regulate innate immunity gene expression in microglial cells, 

while TBK1 plays several roles in the innate immune system response, suggesting a 

potentially ubiquitous role for both genes in FTLD pathogenesis that warrants additional 

focused studies23. The ubiquitously expressed membrane protein BTLN2 is involved in 

repressing T-cell proliferation, while the transmembrane receptor HLA-DRA impacts 

modulation and regulation of immune responses in the brain, especially in microglia92,93.  

Despite TDP-43 and FUS being major pathological hallmarks of FTLD, their associated 

genes (i.e., TARDBP and FUS respectively) display extremely rare genetic variability. Both 

appear to be functionally involved in RNA metabolism and regulation of gene expression 

as well as in in the regulation of mRBP (mRNA-binding proteins) granules (i.e., stress 

granules) relocalisation within the cell, which associated to neuronal health94,95. 
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Other processes that might be impacted on the basis of genetic variability affecting both 

Mendelian and GWAS genes are neuronal physiology and development. Mutations in the 

MAPT gene lead to alterations in tau protein splicing, which results in: i) increased free 

cytosolic population of dysfunctional tau isoforms, which are very prone to aggregation; 

ii) unstable microtubules, which are essential structural cellular components that rely on 

tau-binding for stabilisation96. Furthermore, the recent GWAS-associated locus GFRA2 

supports additional processes related to neuronal development and protection68. 

Finally, recent bioinformatics work raised the importance of DNA damage response (DDR) 

as a key molecular mechanism underlying FTLD pathology97. The DDR is the processes 

through which DNA integrity is maintained, through mechanisms of damage recognition, 

repair and tolerance98. Several studies have shown that mutations in MAPT result in 

alteration of the cellular cycle, chromatin damage and impaired DNA repair, which could 

possibly be linked to brain cell death and neurodegeneration observed in FTLD9. 

Interestingly, in addition to its role in the waste disposal-related processes (see section 

1.1.4.2), CCNF appears to control genome stability through cell-cycle check points98. 

Similarly VCP, which is known for its crucial role in proteostasis, has been shown to be 

part of a complex of proteins recruited to the DNA double-strand breaks for repair83. 

Clearly, these avenues need to be further explored, yet it is relevant to note that many 

Mendelian, FTLD-ALS and GWAS FTLD genes point toward different yet convergent 

components of the broader waste disposal pathway, indicating that both dominant 

mutations (high penetrance) as well as common markers with small effect size (low 

penetrance) support a common process involved in disease pathogenesis. Formation and 

deposition of insoluble protein deposits is another common principle not only for FTLD 

but also for most NDs, where dysfunctional protein quality control and generally waste 

disposal mechanisms have been shown to underpin disease pathology (e.g., PD), and thus 

reinforcing their relevance in disease pathology.  

 

1.1.4.1. Protein quality control systems  

Protein homeostasis, also known as proteostasis, refers to maintenance of a stable and 

functional proteome to allow a myriad of cellular functions99. Biogenesis, folding, 

trafficking and degradation are precisely coordinated and controlled so that proteins can 
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maintain their specific three-dimensional structural conformation, abundance and 

subcellular localisation within the cell100. In particular, protein folding represents a key 

component of proteostasis as it determines protein final conformation and subsequent 

functionality. As a result protein folding is tightly regulated by a complex network of 

molecular chaperones that are at constant surveillance of proteins and assist in folding 

efficiently99,100. Chaperones aim to prevent protein aggregation during the folding 

process by recognising exposed hydrophobic amino acid patches of unfolded or partially 

folded proteins that should normally be buried within their interior. When misfolded 

proteins cannot be refolded to their native state, some chaperones can act to target them 

for degradation or sequestration from the cellular environment, thus protecting the rest 

of the proteome from faulty interactions99. Stably folded proteins can also unfold and 

aggregate under stress conditions, such as reactive oxygen species (ROS)-associated 

stress or elevated temperatures101. In any of these instances, misfolded proteins often 

acquire aberrant or even toxic functions, which frequently result in pathogenic 

phenotypes such as those of age-related neurodegenerative diseases including AD, PD, 

ALS, HD and FTLD102,103.  

In order to respond to imbalances in proteostasis and adjust their proteome status in 

response to metabolic and environmental changes, cells have a wide range of protein 

quality control and degradation strategies in place. These strategies have been identified 

as multiple distinct pathways including: i) molecular chaperones; ii) the ubiquitin-

proteasome system (UPS); iii) ER and Golgi apparatus; iv) ER-associated degradation 

(ERAD); v) stress granules (SGs) and vi) autophagy (Figure 1.6)100. 
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Figure 1.6. Illustrative representation of protein quality control mechanisms in the cell. Following translation, 

newly synthesized nascent polypeptides are constantly at risk of misfolding and aggregation. Chaperones facilitate 

folding of proteins or refolding misfolded proteins. Approximately one-third of newly folded proteins transit through 

the endoplasmic reticulum (ER)–Golgi pathway for post-translational modification and secretion. Proteins which are 

not correctly folded are recognized by ER-associated degradation (ERAD), targeted for ubiquitin–proteasome 

degradation, autophagy, or a smaller proportion are degraded by chaperone mediated autophagy (CMA). In case of 

protein aggregation, stress granules (SGs) form transiently and are cleared through macroautophagy. Adapted from 

‘Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum’ by H. 

Shahheydari, 2017, Front. Mol. Neurosci. Copyright 2017 Shahheydari, Ragagnin, Walker, Toth, Vidal, Jagaraj, Perri, 

Konopka, Sultana and Atkin. Adapted with permission. 

  

Molecular chaperones can be classified into several families based on their specific 

biological function and localisation within the cell. Among the most common ones is the 

heat shock proteins (Hsps) family, which protects intracellular proteins from denaturing 

stress conditions, apoptosis and inflammatory damage, especially during hyperthermic, 

hypoxic and oxidative stress conditions103–105. Members of the Hsp family (e.g., Hsp70 and 

Hsp90) provide a natural protective system for the cell against excessive damage by 

preventing additional protein aggregation. By contrast other chaperones, such as the 

protein disulfide isomerases, can facilitate protein folding by catalysing disulfide bond 

formation between different protein domains100,106,107. 
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The ubiquitin proteasome system (UPS) is the primary route for degradation of short-lived 

proteins and always involves a three-step enzymatic cascade of reactions that activate 

(E1 ubiquitin-activating enzyme), conjugate (E2 ubiquitin-conjugating enzyme) and 

ligate (E3 ubiquitin-ligating enzyme) a polyubiquitin chain to the target substrate100,105. 

In turn, the polyubiquitin chain signal targets the substrate to the proteasome (i.e., a 

highly sophisticated protease complex designed to carry out hydrolysis of selected client 

proteins105), followed by proteolysis by the 26S proteasome subunit. During degradation, 

ubiquitin moieties are removed and recycled while the target protein is cleaved into small 

peptides while passing through the proteasome. 

The ER – Golgi compartments play a central role in cellular protein quality control, as they 

are the sites where post-translational modifications of newly synthesised proteins take 

place, leading to protein activation and maturation. While most proteins are transferred 

to Golgi and then exocytosed when properly folded and functional, misfolded/unfolded 

proteins accumulate in the ER saturating its folding capacity. This perturbation of ER 

homeostasis activates the unfolding protein response (UPR), which attempts to relieve 

ER stress by reducing protein synthesis and increasing translation of ER chaperones, and 

thus augmenting its protein folding capacity. When these measures are not enough, 

defective proteins are transported back to the cytosol, degraded via the ERAD pathway 

and eventually by the UPS100. 

The endoplasmatic reticulum-associated degradation (ERAD) pathway is a critical stress 

response mechanism that gets activated when misfolded proteins accumulate within the 

ER obstructing its crucial homeostatic functions. In this scenario, the ER recognises, 

selects and retrotranslocates misfolded proteins into the cytosol and directs them 

towards UPS-mediated degradation100. 

Stress granules (SGs) are dynamic, membrane-less organelles that can rapidly and 

reversibly assemble and disassemble, assuring a quick response to stress conditions 

within the cell. SGs accumulate under stress conditions and are able to alleviate 

translational burden on cells by sequestering mRNA molecules, RNA-binding proteins, 

translation initiation factors and small ribosomal subunits53,100. Once they re-establish 

cellular homeostasis by regulating protein expression, SGs are cleared through 

autophagy. 
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Autophagy is a lysosomal degradation process used to recycle obsolete cytoplasmic 

content, such as damaged organelles and proteins, that encompasses three different 

subprocesses, namely macroautophagy, chaperone mediate autophagy (CMA) and 

microautophagy100 (Figure 1.7).  

 

 

Figure 1.7. The autophagy lysosomal pathway. The lysosome is the hub of a network of pathways that feed cargo 

into its lumen for degradation. These include pathways depicted here to deliver intracellular cargo such as 

macroautophagy, chaperone-mediated autophagy and microautophagy, as well as others that deliver extracellular 

cargo to the lysosome including endocytosis and micropinocytosis. Cargo delivered to the lysosome can undergo 

degradation into molecular building blocks that can return to the cytoplasm to be catabolized further to supply 

cellular energy needs or to be reused in the synthesis of new macromolecules. Contents of lysosomes can also be 

extruded extracellularly by a Ca2+-dependent exocytic process. LAMP2A, Lysosome-associated membrane 

glycoprotein 2; HSC70, heat shock cognate 71. Adapted from ‘The Autophagy Lysosomal Pathway and 

Neurodegeneration’ by S. Finkbeiner, 2020, Cold Spring Harb. Perspect. Biol. Copyright 2020 Cold Spring Harbor 

Laboratory Press. Adapted with permission. 

 

Macroautophagy, the most common form of autophagy, involves a multi-step process79. 

Briefly, it begins with the de novo formation of an isolation membrane, named 

phagophore, following inhibition of the master regulator of macroautophagy, mTOR, and 
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the resulting activation of its downstream target, the Unc-51-like kinase (ULK) complex 

(ULK1, ULK2, Atg13, FIP200 and Atg101)108. Activation of the ULK complex induces 

elongation of the phagophore around a region of the cytoplasm encompassing the 

misfolded protein/damaged organelle and closure of the membrane lipid bilayer to form 

a double membrane autophagosome. Cargo engulfment by the autophagosome is 

mediated by p62/SQSTM1, which interacts with the adaptor protein light chain 3 II (LC3-

II, an active form of LC3), on the surface of the autophagosome. Finally, the 

autophagosome fuses with the lysosome, a membrane-bound organelle characterised by 

an acidified milieu (pH~4.5), resulting in the formation of the autophagolysosome, which 

leads to degradation of its content by lysosomal hydrolases109,110.  

CMA is another form of autophagy that targets soluble misfolded proteins directly to the 

lumen of the lysosome for digestion. Protein substrates of the CMA always carry a 

polypeptide motif (i.e., KFERQ) on their surface that is recognised by the molecular 

chaperone Hsc70, which translocates them to the lysosome111. Interestingly, the KFERQ 

motif is found in ~30% of the proteome including several proteins involved in NDs, such 

as α-synuclein, suggesting that CMA might be critical to accelerate the clearance of some 

disease-relevant proteins and presumably reduce their propensity to accumulate and 

aggregate79. 

The third form of autophagy is microautophagy, which involves the recruitment of 

cytosolic components in proximity with the lysosome and their invagination by the 

lysosomal membrane79,112.  

Recent research in the field has brought to light the dual nature of the autophagy 

pathway: both macro- and microautophagy can be either selective, meaning substrate-

specific, or non-selective79,100. While non-selective autophagy targets any type of cargo 

for degradation, selective autophagy is characterised by the removal of specific 

organelles or cellular components; in this scenario, several subtypes exist: among others, 

aggrephagy for instance refers to the removal of insoluble protein aggregates; mitophagy 

is dedicated to the selective removal of damaged mitochondria (refer to section 1.1.4.3).  

Finally, additional pathway to the lysosome, including micropinocytosis, phagocytosis 

and endocytosis can deliver extracellular material to the lysosome for degradation. These 

pathways have been reported in the context of neurodegenerative disease as important 
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routes by which extracellular aggregation-prone proteins enter neurons and propagate 

proteinopathy between neighbouring cells79. 

 

1.1.4.2. Autophagy and proteostasis in 

neurodegenerative diseases 

The abnormal intraneuronal accumulation of misfolded aggregated proteins and/or 

faulty intracellular components represent a common thread cutting across multiple 

neurodegenerative disorders, including AD, PD, HT, ALS and FTLD78,79. Given the critical 

role of macroautophagy in the clearance of aggregated proteins and organelles, it stands 

to reason that autophagic dysfunction might be a common mechanism underlying several 

NDs pathologies. In this scenario, the autophagy pathway represents an intuitive 

therapeutic target, but most importantly it also presents with a remarkable genetic 

association with many NDs, where mutations in several different genes result in 

alterations at different steps of the autophagic process, from early steps of 

autophagosome formation through autolysosome formation45,113–115 (Figure 1.8).  
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Figure 1.8. Genetic links between autophagy and neurodegenerative disease. Mutations in many genes that 

encode proteins that play a role in the autophagy lysosomal pathway (ALP) lead to neurodegenerative disease 

syndromes in humans, indicating that impairment of the ALP can be sufficient to produce neurodegenerative disease. 

Some examples are shown in this figure. AD, Alzheimer's disease; ALS/FTD, amyotrophic lateral 

sclerosis/frontotemporal dementia; BPAN, β-propeller protein-associated neurodegeneration; CMT2, Charcot-Marie-

Tooth disease 2; HD, Huntington's disease; HSP, hereditary spastic paraplegia; PD, Parkinson's disease. An increasing 

number of genes associated with neurodegenerative diseases have now been implicated in autophagy function. These 

genes act at a number of different steps throughout the autophagic process, from early steps of autophagosome 

formation through autolysosome formation. Their proposed sites of action are indicated, along with the 

neurodegenerative disease with which they are associated. Adapted from ‘The Autophagy Lysosomal Pathway and 

Neurodegeneration’ by S. Finkbeiner, 2020, Cold Spring Harb. Perspect. Biol. Copyright 2020 Cold Spring Harbor 

Laboratory Press. Adapted with permission. 

 

Autophagy is a complex pathway that presents with multiple steps and modes of 

regulation, which makes identification of potentially minor perturbations within the 

pathway very difficult78. The mechanisms by which disease-associated genetic alteration 

in the autophagy pathway cause neurodegeneration have not been fully unravelled yet 

and are currently under investigation. Several studies have shown that mutations in these 

genes are often sufficient to cause NDs, either by disrupting autophagic clearance or by 

causing overproduction of misfolded proteins79. It is important to consider that the 



56 
 

mismatch between the production and autophagic clearance of misfolded proteins might 

be the key to interpret disease phenotypes, meaning that many forms of disease may be 

caused by an overproduction of misfolded proteins and/or by reduced clearance79. By 

contrast, compelling evidence supporting a role for dysfunctional autophagy as a 

causative factor in neurodegenerative disease has been produced from studies of 

mitophagy in PD: the importance of mitophagy in metabolising damaged mitochondria, 

and its associated genetics are now well-established, further underscoring that deficits in 

autophagy, and mitophagy specifically, may represent the most important risk factors for 

NDs114,116,117.  

Notably, in the past two decades the genetics of autophagy were characterised in non-

neuronal models, raising the question on whether autophagy might differ in neurons118. 

Due to their unique longilineal morphology and post-mitotic nature, neurons must 

manage the degradation of cargo at distant sites (i.e., autophagosomes are biosynthesised 

at axon terminals and then trafficked to the cell body) and they have lost one important 

mechanism for clearance of long-lived proteins, namely cell division119,120. Furthermore, 

several studies have showed that other brain cell-types (i.e., astrocytes) could contribute 

to induce starvation-dependent activation of mTOR-dependent autophagy, adding 

further layers of complexity to the study and characterisation of neuronal autophagy and 

its association with neurodegenerative disease121,122. 

More broadly, it is important to consider that a link between autophagy and ageing has 

been demonstrated: to date, ageing represents the major risk factor for NDs and has been 

shown to be often associated to significant downregulation of autophagy in the brain123–

125. Conversely, several studies showed that autophagy induction and upregulation 

increase longevity and quality of life, conferring a substantial improvement in the quality 

of function of brain tissue and thus further supporting the autophagy pathway as an 

intriguing therapeutic target in NDs123,124. Additionally, given the late-onset nature of the 

majority of NDs, it is possible that small alterations in proteins turnover could have 

cumulative effects that manifest later in like, as suggested by Menzies et al.78, further 

reinforcing the contribution of autophagy dysfunction and ageing to disease progression. 

To summarise, there is increasing evidence for the physiological importance of 

autophagy in neuronal health, raising the possibility that autophagy dysfunction may play 

a role in neurodegenerative diseases. The critical role of proteostasis and autophagic 
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clearance in maintaining a functional proteome and in disposing of aggregated proteins 

and other damaged organelles respectively, implies that autophagy dysfunction is likely 

a common mechanism in NDs and warrants further investigation for the design of 

targeted therapeutic strategies79,108,116,126. Additionally, mitophagy dysfunction 

specifically has been shown to have an established role as a major pathological 

mechanism in NDs: deficits in bioenergetics, excessive ROS and cytoplasmic calcium, 

dysregulations of cellular redox balances are only few of the conditions associated to 

mitochondrial damage and accumulation127. 

 

1.1.4.3. Mitochondria and mitochondrial quality 

control mechanisms 

Aside from the degradation of cytosolic aggregates, the autophagic pathway is also 

involved in the turnover of entire organelles such as mitochondria. Mitochondria are 

double-membraned organelles, with an outer and inner mitochondrial membrane (OMM 

and IMM respectively) separated by an intermembrane space, and a central matrix 

enclosed by the IMM127. Long regarded as individual, ‘bean-shaped’ organelles, they are 

now understood as dynamic interconnected networks (i.e., mitochondrial network) 

linked to other organelles and shifting from innumerable punctate organelles to cell-wide 

tubular networks to regulate energy production and generally mitochondrial 

functions128. While the shape of the mitochondrial network is governed by a complex 

fission/fusion machinery, its size is regulated by de novo mitochondrial biogenesis and 

macroautophagy127,128.  

Mitochondria are highly multifunctional organelles also known as the ‘powerhouses’ of 

the cell, as they are the cellular site of oxidative phosphorylation (OXPHOS), thus 

generating the bulk of adenosine triphosphate (ATP) required for cell activities129. 

Besides cellular bioenergetics, they are responsible for several other biosynthetic 

reactions, including regulation of ROS levels and calcium homeostasis, and biosynthesis 

of macromolecules including lipids, amino acids and nucleotides127,128,130. These essential 

processes generate reactive intermediates and oxidising agents as by-products, which in 

turn damage mitochondrial proteins and lipids128,131,132. In order to maintain 

mitochondrial integrity and mitigate mitochondrial damage, cells have evolved a number 
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of elaborate mitochondrial quality control mechanisms. These cellular defence 

mechanisms against mitochondrial damage are organised in several lines of defence as 

follows: i) mitochondrial-associated degradation (MAD); ii) mitochondrial dynamics and 

quality control (QC); iii) the ubiquitin-proteasome system (UPS); iv) mitochondria-

derived vesicles (MDVs); v) mitochondrial unfolded protein response (mtUPR); vi) 

mitophagy87,128,131–133 (Figure 1.9). 

 

Figure 1.9. Major pathways of mitochondrial quality control. A) The UPS: mitochondrial proteins are conjugated 

with polyubiquitin chains (in purple) by E3 ubiquitin ligases like MARCH5 and are targeted for degradation by the 

proteasome; B) MAD involves the extraction, refolding and reinsertion of misfolded precursor proteins, such as in the 

case of cytosolic ribosomes (60S) localised on the OMM and of mitochondrial translocases with/without the 

assistance of AAA+ ATPases (e.g., Cdc48); if unsuccessful, such proteins are targeted for proteasomal degradation; C) 

Mitochondrial proteases carry out both quality control and regulatory functions; D) Mitochondrial morphology is 

regulated by fission and fusion events (green circles); E) Mitophagy: mitochondrial fragments destined for 

degradation are first engulfed in autophagosomes that eventually fuse with lysosomes; F) MDVs are small vesicles 

formed from the OMM, and at times IMM, and contain select mitochondrial proteins that are destined for 

peroxisomes or lysosomes; G) The mtUPR induces chaperone and protease gene expression in response to 

mitochondrial stress through activation of transcription factors such as ATFS-1. Adapted from ‘Quality control of the 

mitochondrion’ by M. Ng at al., 2021, Developmental Cell. Volume 56, Issue 7, Pages 881-905. Copyright 2022 Elsevier 

B.V. Adapted with permission. 

 

The first line of defence consists in the selective degradation of non-assembled and 

misfolded mitochondrial proteins, also known as MAD87. Key components of this process 

are the mitochondrial proteases, also known as mitoproteases, that exclusively localise 

to the mitochondria and that regulate substrate proteolysis, mitophagy, apoptosis, lipid 
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biosynthesis, OXPHOS and protein import. The best studied are the ATP-dependent AAA+ 

proteases (e.g., presenilin-associated rhomboid-like protein [PARL], VCP/p97, CDC48 

etc.), which recognise and degrade through ATP hydrolysis damaged mitochondrial 

membrane proteins into smaller peptides to be exported from the organelle or to be 

further digested into amino acids by oligopeptidases133. Degradation of cytosolic and 

outer membrane mitochondrial proteins is also carried out by the cytosolic UPS, where 

the E3 ubiquitin ligase MARCH5 mediates ubiquitination of misfolded proteins on the 

OMM to initiate their proteasomal degradation 131,133. 

Additional players of mitochondrial QC are MDVs, small vesicles originating from either 

the OMM or IMM that selectively incorporate mitochondrial cargo and deliver it to 

different destinations (e.g., multivesicular bodies or lysosomes) for degradation133. 

Although MDVs occur at baseline housekeeping levels, their biogenesis can be rapidly  

upregulated in response to stress, hypoxia and mitochondrial insults to carry out their 

mito-protective role133.  

Upon accumulation of misfolded proteins, mitochondria can induce nuclear 

transcriptional responses aimed at decreasing the mitochondrial protein burden. 

Specifically, the mtUPR is involved in the upregulation of nuclear transcribed 

mitochondrial chaperones and proteases, that can then carry out their protective 

functions under mitochondrial stress conditions133. 

The dynamic nature of the mitochondrial network provides additional protection against 

mitochondrial damage. Two distinct protein machineries mediate cycles of fission and 

fusion of mitochondrial membranes and determine the shape of the mitochondrial 

network: Mitofusin 1 and 2 (MFN1 and MFN2) and OPA1 (Optic Atrophy 1, a 

mitochondrial dynamin-like GTPase) regulate mitochondrial membrane fusion in the 

outer and inner membranes respectively, while DRP1 (Dynamin-related Protein 1) 

controls fission events. While fusion allows content mixing between intact and damaged 

mitochondria, thereby replacing damaged material and contributing to the integrity of 

the intracellular mitochondrial population, fission allows sequestration of 

catastrophically and irreversibly damaged mitochondria and their subsequent 

degradation via mitophagy (see section below)87,131. 
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Extensive mitochondrial damage and fragmentation results in the activation of another 

line of response, the mitophagy pathway, which sequesters damaged mitochondria from 

the intact mitochondrial network. Mitophagy can be defined as ‘the specific and selective, 

targeted removal of excess or damaged mitochondria from the cell via autophagy’134,135 

and is characterised by the engulfment of dysfunctional or depolarised mitochondria by 

autophagosomes and their degradation through the lysosome. How damaged 

mitochondria are specifically selected is not clear yet, however increasing evidence 

suggests that mitochondrial dysfunction could trigger mitophagy by itself via 

mitochondria-derived ROS, which act as signalling molecules of dysfunctional 

mitochondrial homeostasis131,136. The mitochondrial membrane potential (Δψm) also 

works as an indicator of mitochondrial health: depolarisation of the mitochondrial 

membrane indicates altered mitochondrial function (e.g., halted ATP production) and, if 

persisting, mitochondrial damage, which as a results triggers mitophagy initiation129.  

In mammals, mitophagy can generally be classified into two main functionally distinct 

groups on the basis of the requirement for the kinase PINK1 and the E3 ubiquitin ligase 

Parkin, referred to as PINK1-dependent mitophagy and PINK1-independent 

mitophagy133. The two pathways use different sets of autophagy receptors and their 

activation is dependent on different factors: while PINK1-dependent mitophagy can only 

be initiated by loss of the Δψm, initiation of PINK1-independent mitophagy does not 

require mitochondrial membrane depolarisation. Despite these clear differences, cross-

talk between the two pathways has been reported several times133,137. Overall, mitophagy 

is crucial to maintain a healthy mitochondrial population and thus a high metabolic 

activity, which is particularly important for post-mitotic cells such as neurons and 

cardiomyocytes that have high energy demands and cannot dispose of dysfunctional 

mitochondria by cell division87.  

 

1.1.4.4. PINK1-dependent mitophagy 

In the last decade, several lines of research reported that the decline in mitochondrial 

function observed in PD patients may stem from the genetic deregulation of 

mitochondrial quality control mechanism128. In this scenario, a number of genes 

associated with autosomal recessive and early onset PD  have been implicated in the 
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mitophagic degradation of dysfunctional, depolarized mitochondria: PINK1 (Pten-

induced kinase 1), a mitochondrially targeted serine/threonine kinase, and PRKN 

(Parkin), an E3 ubiquitin ligase117,138,139. PINK1 is the sensor of mitochondrial damage 

and triggers a signalling cascade that activates mitophagy134. Briefly, under basal 

conditions, the N-terminal mitochondrial targeting sequence (MTS) directs PINK1 to 

mitochondria, where it translocates across the outer OMM to the IMM through the 

TOM20/TIM23 complex. Following cleavage of the MTS by the mitochondrial processing 

peptidase (MPP) in the matrix, PINK1 is cleaved within its transmembrane domain by the 

IMM-bound PARL mitoprotease, its resulting 52 kDa fragment is released into the cytosol 

and subsequently degraded by the proteasome, leading to undetectable basal levels of 

PINK1 in the cell. Under mitochondrial stress conditions, such as membrane 

depolarisation, mitochondrial complex dysfunction and proteotoxicity, Δψm-dependent 

mitochondrial import of PINK1 is compromised, leading to its rapid accumulation and 

stabilisation outside the OMM. Subsequent PINK1 homodimerisation and auto-

/transphosphorylation on the OMM promotes the functional kinase activity of PINK1 (i.e., 

active state) and the subsequent phosphorylation on serine 65 (Ser65) of ubiquitin (pUb) 

molecules anchored to some OMM proteins at low abundance. This PINK1-dependent 

phosphorylation of pre-existing ubiquitin at the OMM is required for the recruitment of 

the E3 ubiquitin ligase Parkin from the cytosol to depolarised mitochondria, where 

Parkin is activated by direct phosphorylation by PINK1 (Ser65) on its ubiquitin-like 

domain. Upon transition into an active conformation, Parkin ubiquitinates several 

substrates at the mitochondrial surface assembling K63-, K48-, K11-, AND K6-linked 

ubiquitin chains, that in turn are further phosphorylated by PINK1 in a ubiquitin-driven 

feed-forward mechanism, thereby amplifying the damage detection signal from PINK1. 

Once recruited to damaged mitochondria, Parkin carries out ubiquitination and 

proteasomal degradation of several OMM, notably MFNs (1 and 2), VDACs (voltage-

dependent anion channels; 1,2 and 3), HKs (Hexokinases; 1 and 2), TOM20, Miro proteins 

etc. The accumulation of ubiquitinated proteins at the OMM ultimately triggers the 

recruitment of autophagy receptors (e.g., OPTN, NDP52, ATG5) and ubiquitin-binding 

adaptor proteins (e.g., p62/SQSTM1) to the mitochondrial surface, which bridge 

ubiquitinated cargo proteins with autophagosomes via the LC3 or GABARAP family 

members located on the outer surface of the autophagosomal membranes. OPTN and 

NBD52 recruited to ubiquitinated proteins at the OMM activate TANK-binding kinase 1 
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(TBK1) that in turn phosphorylates OPTN which as a result enhances its binding to 

polyubiquitin chains and further promotes TBK1 activation, thereby establishing a 

second feed-forward mechanism. Finally, after the rupture of the OMM follows the 

assembly of the phagophore, engulfment of cargo and, as a result, degradation via 

canonical macroautophagy (Figure 1.10)87,128,134,140. 

 

 

 

Figure 1.10. PINK1-dependent and mitophagy. (A) Under basal conditions, PINK1 is imported by the 

TOM20/TIM23 pathway and cleaved by PARL at the IMM. The resulting 52 kDa PINK1 fragment is then degraded in 

the cytoplasm by the proteasome. (B) Upon mitochondrial depolarization, PINK1 is stabilized at the OMM and 

phosphorylates ubiquitin molecules constitutively attached to OMM proteins. Parkin is recruited to the OMM by 

binding to phospho-ubiquitin and is activated by PINK1-dependent phosphorylation within its UBL domain. (C) 

Activated Parkin ubiquitinates several OMM proteins (green objects) that in turn are phosphorylated by PINK1, 

triggering a feed-forward activation loop. The autophagy machinery is recruited by autophagy receptors, such as 

OPTN and NDP52, which bind to LC3 via their LIR domains. A second feed-forward loop is established by activated 

TBK1 that phosphorylates OPTN and thereby enhances binding of OPTN to ubiquitinated cargo and activation of 

TBK1 by OPTN. Adapted from ‘PINK1 and Parkin: team players in stress-induced mitophagy’ by V. Bader, 2020, 

Biological Chemistry. Copyright Walter de Gruyter GmbH 2022. Adapted with permission. 

 

1.1.5. Modelling FTLD in vitro 

Currently, there are no disease-modifying treatments for FTLD. This may be due, in part, 
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to a lack of disease models that accurately recapitulate the genetic and molecular 

landscape of the disease141. In fact, the extreme complexity of FTLD pathology as well as 

the heterogeneity of affected cell-types significantly hamper progress towards disease-

modifying therapies141.  

Several culture systems have been developed to investigate the pathogenesis of NDs and 

to identify candidate drug targets, each carrying its own advantages and limitations. 

Traditional in vitro culture systems involve 2D monolayers often based on immortalised 

cell lines, such as human embryonic kidney 293 (HEK293) cells, human neuroglioma (H4) 

cells, pheochromocytoma (PC12) cells derived from the rat adrenal medulla or the human 

neuroblastoma cell line SH-SY5Y142. Although such models are widely used in 

neurodegeneration research because they can differentiate into neuron-like cells , their 

major limitation lies in the lack of a standardised protocol to maintain them in culture, 

which leads to variable cell growth and inconsistent experimental outcomes142.  

Primary cultures of neurons are also commonly used models, as they have the potential 

to overcome many of the difficulties inherent to immortalised cell lines, but isolation and 

culture of primary neurons from human post-mortem brains is challenging. Therefore, 

primary neurons are usually obtained from embryonic murine brain tissue, due to their 

easy and rapid differentiation and formation of neurites and synapses in culture. Notably, 

primary neurons in this type of system are often contaminated with glial cells, such as 

microglia, which represents a fundamental advantage when investigating NDs: in fact, 

mixed cultures better reproduce the shared environment neurons belong to, allowing for 

more accurate characterisation of neuronal function and survival in a more similar 

physiological context142. Although in vitro immortalised cell lines and primary cultures 

have provided important insights into the mechanisms of numerous diseases, they are 

relatively simple systems that do not accurately replicate cellular organisation nor 

recapitulate disease-specific pathological features, leaving room for more advanced 

systems that are more closely related to human pathophysiology. 

Notably, the development of induced pluripotent stem cell (iPSC) technology in 2006 by 

Takahashi et al.,143,144 has revolutionised in vitro modelling of complex traits and 

especially of NDs, for which cultures of human neurons are not available141,145. Briefly, 

differentiated somatic cells, such as fibroblasts or peripheral blood mononuclear cells, 

can be taken from an individual presenting with a genotype and/or phenotype of interest, 

and are subsequently reprogrammed to a pluripotent state by inducing exogenous 
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overexpression of the pluripotency-associated transcription factors Oct4, Klf4, Sox2 and 

c-Myc143,146. The resulting iPSCs retain the ability for unlimited self-renewal and the 

potential to differentiate into cells of all three germ layers: they can therefore be 

differentiated into disease-relevant cell types, including multiple subclasses of functional 

neurons, astrocytes, oligodendrocytes and microglia146. This way, researchers are now 

able to generate reproducible disease models containing the patient's precise genome in 

the cell type that selectively degenerates in disease. These human iPSC-neurons have the 

advantage of endogenous expression of the mutant gene of interest, in the cell type 

specifically affected by disease, thus enabling the development of patient-specific in vitro 

models of familial and sporadic FTLD145. This approach has been successfully used in an 

ever-increasing number of studies to model the most common genetic causes of pure 

FTLD and of the FTLD-ALS continuum, including mutations in MAPT, TARDBP, GRN and 

C9ORF72. Nonetheless, several limitations apply: i) on a technical level, iPSC culture has 

considerably high costs and is very time-inefficient, limiting the number of patient and 

control lines that can be used in a single study; ii) although iPSC neurons do recapitulate 

the genetics of disease and present with some key FTLD pathological markers, these 

models do not faithfully recapitulate the full pathologies and phenotypes observed in 

FTLD patients; iii) iPSCs present with different degrees of inter and intra-patient 

variability due to cellular and epigenetic heterogeneity; iv) iPSC-neurons show a foetal 

rather than adult nature, which means that investigating age-related disorders (i.e., 

FTLD) is very challenging; v) iPSCs can be differentiated into a single cell type of interest 

at a time, which limits biological accuracy and relevance141,146.  

While some of these limitations still remain unsolved, many are currently being 

addressed, making iPSCs an extremely valuable, physiologically relevant model to 

investigate the molecular mechanisms underpinning FTLD and other NDs. Notably, to 

date FTLD research has largely focused on characterising pathological mechanisms in 

neurons, notwithstanding the emerging evidence supporting a role in pathogenesis for 

different neuronal subtypes as well as glial cells147.  Fortunately, recent progress in iPSC 

research has led to protocols that efficiently derive microglia from human iPSCs148, which 

will have major implications in future studies investigating the role of neuroinflammation 

in FTLD146. 

While iPSC models still represent the ‘golden standard’ for modelling complex traits, 

increased optimisation of cell culture techniques is bringing forward 3D cell cultures, 



65 
 

such as organoids, as a valuable tool to model neurodegeneration. The fundamental 

advantage of employing organoids is that they reproduce the complex structural 

architecture and microenvironment of the brain much more accurately than simpler 2D 

models, by recapitulating different cell types together and thus replicating cellular cross-

talk in disease. Although extremely advantageous, organoids also present with a major 

limitation: the lack of tissue maturity and vascularisation limits their usefulness. An 

alternative ex vivo modelling system closer to in vivo animal disease models is 

organotypic slice cultures, which consists of cutting and culturing of tissue-specific brain 

slices that represent the main areas affected by disease142,149. Despite the significant 

advantages carried by organotypic models, which include a well-controlled genetic 

background and an accurate replication of physiological processes, they lack in 

reproducibility; in fact, dissection procedures require high precision, and variability 

between slices as well as mechanical damage during slice preparation are difficult to 

avoid. Additionally, these models originate from animals and thus present with 

significant differences in neural anatomy, physiology, gene expression patterns and drug 

metabolism compared to humans142. 

In conclusion, current experimental models of FTLD recapitulate different aspects of the 

diverse phenotypes observed in patients, with different models recapitulating some 

disease aspects, but no model faithfully recapitulating all disease aspects. This does not 

come as a surprise given the genetic and molecular complexity of the disease, but it 

should be noted that many of the current models being pursued are driven by genetic 

mutations either observed in only a small minority of patients, or that are known to have 

divergent disease mechanisms, thus not representing the majority of cases or the most 

common overlapping pathologies145. In this scenario, it could be argued that it might be 

slightly unrealistic to expect a ‘perfect’ model (i.e., a perfect replica of human FTLD 

pathology in the majority of cases), as it is likely that all models will continue to fail in this 

aspect. These diseases are complex and multigenic, indicating that experimental models 

may need to be targeted to different disease aspects. This would allow information to be 

gathered from a variety of different yet relevant models, each of which has the capacity 

to capture a specific aspect of the disease, and together can provide a more complete 

understanding of these complex and multi-layered diseases. 
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1.2. Emerging technologies powering the genetic and 

molecular dissection of complex diseases 

The last decade was characterised by tremendous advances in the technologies and 

informatics tools for generating and processing large biological datasets (omics data), 

resulting in a critical shift in the study of biomedical sciences150. High throughput 

technologies have now generated an extensive catalogue of genes and genetic variations 

associated with complex disorders and in recent years we have been witnessing the rise 

of interdisciplinary data integration strategies to support a better understanding of 

biological systems151–153. Whilst the study of genomics, transcriptomics and proteomics, 

combined with informatics and biostatistics, is progressing at an unprecedented pace, 

they are still, for the most part, evaluated separately with distinct approaches generating 

sectorial rather than integrated information150,154.  

Genome wide association studies (GWAS), DNA microarray, exome and genome 

sequencing technologies have helped identifying large numbers of genetic loci and 

variants that significantly associate with increased risk of developing diseases. However, 

translating genetic knowledge into the understanding of the molecular mechanisms 

underlying complex traits has to date proved to be a major challenge. Indeed, while 

genetic association has greatly aided shedding light on wide variety of neurological 

disorders, such knowledge is still insufficient to fully explain disease pathogenesis97.  At 

present, there is no straightforward translation of genetic knowledge into its 

corresponding functional landscape of biochemistry and cell biology, constituting a 

substantial gap in our understanding of the molecular mechanisms underpinning disease. 

In this scenario, bioinformatics coupled with data-driven frameworks operating at a 

system or a network level represent an emerging and powerful tool to improve genetic 

and expression analyses before wet laboratory work is performed, thus constituting a 

valuable support to guide cellular and biochemical investigations97,155.   

 

1.2.1. Using networks for biological inference  

For over a century, reductionism has been the most preeminent approach in biological 

research, generating an enormous wealth of knowledge on individual cellular 

components and their functions154. Despite its vast success, it is becoming increasingly 

apparent that distinct biological functions only rarely can be ascribed to a single effector 
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gene product4,156. Instead, most of the biological dynamics arise from complex 

interactions between the cell’s various constituents, including proteins, DNA, RNA and 

small molecules. As a result, a major challenge in modern biomedicine is now to 

understand the organisation and the dynamics of the complex inter/intracellular 

interaction networks that determine the structure and functioning of living cells4,156–158.  

Recent advancements in the study of network biology revealed that cellular networks are 

governed by universal organising principles that are shared to a great extent by other 

complex systems (e.g. the Internet, computer chips, society), implying that similar 

principles may govern most complex networks in nature156,159. This research has had 

huge implications in the cell biology field, indicating that expertise from well-mapped 

non-biological systems could be implemented to characterise the intricate web of 

interactions underlying cellular functions.  

In summary, by measuring existing or predicted relationships among genes, gene 

network methods provide an essential organising framework that places each gene in the 

context of its cellular or tissue system, providing valuable insights into the different levels 

of molecular organisation within the hierarchy of brain region, cell type, organelle and 

molecular pathways (Figure 1.11)155. 
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Figure 1.11. Measuring existing or predicted relationships among genes/proteins. Network analysis involves 

connecting genetic or molecular nodes with information about: i) pairwise relationships (i.e., statistical associations 

relating molecular patterns measured across experiments such as gene expression level variation or co-expression); 

ii) physical interaction data from experiments or curated from literature (e.g., transcription factors [TFs], RNA-

binding proteins [RBPs] or protein-protein interactions [PPIs]); or iii) computational predictions about TFs or RBPs 

using motif enrichment analysis. 

 

1.2.2. Network theory and topological properties 

Network theory offers several quantifiable tools to explore and understand complex 

networks and thus the cell’s internal organisation and evolution. Within network theory, 

the network components can be reduced to a series of nodes, or vertices, that are 

connected to each other by edges, or links, with each edge representing the interaction 

between two components156,158,159. Mathematically, the network formed by a set of edges 

and a set of nodes is called ‘graph’160. A node is an entity to which we can ascribe some 

value and static properties. Edges can be defined as a relation of some sort between two 

nodes. These relations can be tangible, such as physical protein-protein interactions 

(PPI), or intangible, as in they may reflect statistical similarity (e.g., correlation) or 

computational inference155. The nodes belonging to an edge are called the ‘ends’, 

‘endpoints’ or ‘end-vertices’ of the edge. Depending on the nature of the interactions, 

graphs can be directed or undirected159. Within an undirected graph, edges have no 

assigned orientation and represent a mutual binding relationship, meaning that if protein 

A binds to protein B, then protein B also binds to protein A. Directed graphs are set of 
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nodes connected by edges that have a well-defined direction associated to them, 

representing for instance the activation cascade of a signalling pathway; these are 

typically denoted with arrows indicating the direction156. In this study, we will be using 

only undirected networks.  

 

1.2.3. Modularity in biological networks 

Networks provide a framework for deriving information from a set of relationships 

among biological entities161. In this scenario, edges play a key role in the interpretation 

of the biological implications underlying networks: they define the connectivity of nodes 

to each other in a network, and such connectivity can be used to organise the nodes into 

smaller collections of highly interconnected and differentially activated 

modules3,155,161,162. Inter-modular connectivity reflects the topology and the non-random 

organisation of biological networks, both of which encode information about how 

molecular interactions contribute to biological phenotypes, and can identify which genes 

are biological hubs within modules155,161. In biological networks, hubs are highly 

interconnected genes that are highlighted as relevant in the molecular process or disease 

of interest155. As a matter of fact, molecular interaction networks within the cell have 

often been shown to be modular, meaning that genes/proteins implicated in the same 

biological process or disease often segregate to form modules within networks4,161,163. 

Therefore, in this scenario modularity is very useful because it provides a general 

organising principle in the study of biological networks by either highlighting key 

molecular drivers in disease, such as transcriptional regulators that drive genes 

differential expression, or by functionally annotating a module and suggesting its 

predominant biological role155,161. As a result, inference based on network architecture 

can be used to: i) prioritise candidate disease genes and pathways; ii) annotate unknown 

cell types or biological processes on the basis of their proximity to marker genes of known 

function (following the ‘guilt by association’ principle); iii) evaluate how a module or the 

topology of specific genes within a module change in health and disease; iv) elucidate 

pathway architecture by extracting relevant modules161,162,164.  

From a structural perspective, modules in a network can be defined using either a seed-

based (prior-based) or a genome-wide approach155. The seeded approach requires a set 
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of genes of interest to start with (selected using prior knowledge), expanding edges to 

bring in additional unannotated genes and clustering highly connected components into 

modules. The unseeded approach involves starting with unannotated genes, using edges 

to pinpoint interconnected components (modules) and then assessing where genes of 

interest fall in the resulting network structure. Importantly, both these approaches allow 

for integration of external information (e.g., genetic associations, functional enrichments) 

to further annotate modules and can both used to prioritise candidate genes and 

pathways for experimental validation. The prioritisation process generally involves 

integrating diverse data sources to determine the ranking of the nodes in the network 

and to identify groups of functionally related genes, down to a smaller set of putative 

regulatory genes165.  

 

1.2.4. Gene co-expression networks 

Gene co-expression networks (GCNs) are networks based on similarity in gene 

expression.  They are context-specific by definition, as they directly leverage phenotype-

specific transcriptomic data to construct the network and then correlations between the 

expression profiles of each gene pair are calculated3. Briefly, a similarity score (i.e., 

correlation coefficient) is calculated from the pairwise comparison of the gene expression 

patterns for each possible pair of genes. Above a certain threshold, gene pairs form a list 

of nodes and corresponding edges from which the network is constructed. As a rule, the 

main assumption underlying the interpretation of GCNs is the guilt-by-association 

principle, which affirms that genes presenting similar expression profiles are generally 

involved in the same regulatory processes, and hence will form modules within the 

network. On these grounds, although correlation is not causation, genes with coordinated 

expression can be assumed to have functional linkages between them, either by being 

parts of the same molecular complex or mechanism, or by playing a regulatory role 

modulating their reciprocal expression3,166. This way, within the same module, genes of 

known function can be used to predict the biological function of unknown co-expressed 

genes in an intuitive way, help discerning gene transcriptional regulatory mechanisms in 

vivo and prioritising candidate regulatory genes or modules of disease traits166,167. An 

increasing number of studies have supported the versatility of co-expression analysis for 
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inferring and annotating gene functions, making them a very promising tool to further 

enhance the elucidation of gene regulatory relationships165. 

 

1.2.5. Protein-protein interaction networks 

The subcellular environment hosts a dynamic network of molecular events that regulates 

cell homeostasis and coordinates signal transduction168. In this scenario, proteins are the 

main agents of most of the distinct biological phenomena and their functionality is based 

on their interaction with a variety of other molecules, including other proteins, DNA and 

RNA169. The term protein–protein interaction (PPI) refers to a variety of events 

happening inside the cell involving two or more proteins physically interacting with each 

other to form stable or transient protein complexes168,169. PPI networks store the 

information about the protein-protein interactome of a given organism, that is the whole 

set of its PPIs, by recapitulating evidence of proteins forming complexes through 

experimentally proven biochemical events and/or electrostatic forces or as a result of a 

computational prediction169. 

PPI networks are particularly useful to elucidate how PPIs are wired together and 

mediate cellular response to environmental and genetic cues, and their study is crucial to 

understand when and where these proteins perform their functions determining healthy 

and diseased states of organisms169. Every single interaction within the PPI network can 

be mathematically evaluated to shed light on the global relationships among candidate 

contributors to disease mechanisms, where the network is considered an in silico model 

system that can be used to i) better understand the proteome landscape underlying 

disease, ii) generate novel hypotheses and iii) further support functional research and 

disease modelling153,168. Similarly to GCNs, the guilt-by-association principle also applies 

to PPI networks, implying that nodes interacting with each other or topologically 

segregated within the network generally act together in the same biological processes. 

Dissecting the biological complexity of these interactomes is crucial to improve 

prediction of gene function and cellular behaviour in response to diverse signals, but to 

realize this potential, comprehensive mapping and functional annotation of PPIs is key170.  
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1.3. Ongoing and future efforts to tackle FTLD: the rise 

of systems-level computational approaches 

When compared to other neurodegenerative diseases such as AD or PD, FTLD is a rather 

rare condition with an insidious clinical presentation that embraces a wide spectrum of 

syndromes. Such complexity translates to several analytical, technical and 

interpretational challenges which remain a fundamental gap in our understanding of its 

pathophysiology. Although large-scale genetic studies have begun to decipher the genetic 

architecture FTLD by identifying hundreds of genetic loci and variants involved in disease 

risk, their contribution to disease is still unclear. To unravel a hierarchically organised 

complex system such as the central nervous system (CNS) and understand how genetic 

variability contributes to disease, experimental scientists currently rely on models that 

only account for a few features of the CNS at a time155. While this approach has been 

successful to characterise some highly penetrant variants that result in clear phenotypes, 

it has been less fruitful for genetically complex disorders, such as FTLD and other 

neurodegenerative diseases155. 

Recent studies suggested that the adoption of integrative omics as well as the expansion 

and wider characterisation of FTLD syndromes cohorts are critical to allow powered 

genetic and functional studies of sporadic and familial FTLD9,77. In this instance, large 

international collaborations involving multiple research centres worldwide allow for 

such expansion. The International Frontotemporal Dementia Genomics Consortium 

(IFGC; https://ifgcsite.wordpress.com/) is among the largest consortia for the study of 

sporadic FTLD, comprising groups from Europe, North America and Australia who share 

an interest in the genetics and understanding of sporadic FTLD. Its vision entails the use 

of: i) genetics, to expand on genes and genetic markers that cause or increase the risk of 

developing FTLD and ii) bioinformatics, to interpret genetic data and predict risk 

pathways in silico9.  By allowing well-powered cross-disciplinary studies, this and other 

consortia clearly represent valuable resources for the wider research community with an 

interest in FTLD and neurodegeneration. Additionally, these efforts also promote large-

scale meta-analyses which help dissecting syndrome-specific genetic fingerprints and 

molecular phenotypes and allow a better understanding of FTLD and closely related 

neurodegenerative conditions.  

However, we have still not succeeded in translating this wealth of genetic and functional 

https://ifgcsite.wordpress.com/
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knowledge into actionable information about impacted biological processes and 

molecular mechanisms at the basis of disease, and this is currently among the major and 

most debated topic in biomedical research when investigating complex disorders, 

including FTLD.  

Mendelian FTLD genes are particularly informative to functional biologists to design 

experiments around their protein products and further characterise them in in vitro and 

in vivo models9. Although it might be argued that familial genes account for ‘just’ a 

minority of cases (all together ~30-40% of all FTLD), an intriguing hypothesis proposed 

by Ferrari et al.9 suggests that Mendelian genes could indicate functions and processes 

whose alteration is necessary and sufficient to trigger FTLD pathogenesis. This would 

imply that such genes could play a crucial role to define the global pathogenic 

mechanisms leading to FTLD and, as a result, to be informative also for the vast majority 

of sporadic cases (~60-70% of all FTLD). In this scenario, in fact, the genetics underlying 

sporadic cases are still widely understudied especially due to the nature of GWASs, which 

do not provide clear causative links to specific genes9. 

The study and functional characterisation of Mendelian and sporadic/GWAS genes’ 

protein products is also, in the first instance, very informative on the potential impacted 

biological processes, but similarly to the genetic studies mentioned above, it tends to take 

into consideration ‘one gene at the time’, resulting reductionist in the long run. 

Additionally, proteins encoded by candidate disease-risk genes are generally involved in 

multiple subcellular processes/pathways, making it very hard to determine whether they 

are truly involved in disease pathogenesis.  

While clearly the study of FTLD genes and their protein product has and is still giving an 

essential contribution to drive research efforts aimed at better characterising FTLD 

pathology, they tend to lean towards a more reductionist approach, thus substantially 

failing to globally evaluate the genetic and molecular players contributing to the 

phenotype. In this scenario, innovative methods relying on data integration and 

bioinformatics analysis have emerged as an alternative to classical reductionist studies, 

allowing for a simultaneous and comprehensive evaluation of the genetic and molecular 

landscape of disease.  Application of computational approaches has also allowed for in 

silico simulations of different pathogenic scenarios on the basis of previously generated 

biomolecular profiles (mRNA expression, miRNA, and noncoding RNA profiling, 

proteomics and metabolomics measurements) and, as a consequence, for the  isolation of 
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the most promising risk-pathway for validation in a functional setting9,163.  

From a genetics perspective, the currently available and emerging high-throughput 

technologies such as genome-wide, exome-chip arrays and next generation sequencing 

(NGS) techniques, are becoming more cost-effective, enabling a better characterisation of 

common and rare genetic variability contributing to complex diseases9,163. These 

technologies will be essential to fine-map classical GWAS loci for identification of causal 

variants, to explore in more depth the (likely) oligogenic nature of disease and to aid the 

identification of novel causative genes, contributing to unfold and define the genetic risk 

architecture of FTLD9,25. Additionally, implementation of these techniques on larger 

cohorts representative of the different FTLD subtypes (i.e., clinical variants bvFTLD, SD, 

PNFA and FTLD-MND as well as pathologically defined cohorts [e.g. FTLD-tau or FTLD-

TDP]) will be crucial to aid improvement of genotype-phenotype correlation defining 

syndrome and/or subtype-specific genetic fingerprinting. Undoubtedly, improved 

subtype clinical and genetic classification will considerably benefit patient diagnostics as 

well as our mechanistic understanding of disease, allowing for the identification of 

suitable patient cohorts qualifying for tailored clinical trials.  

Furthermore, better study designs have the potential to reduce the gap between 

transcriptomics and proteomics when coupled with multi-omics technologies that can be 

applied to the same disease-relevant tissue(s), minimising inter-sample and tissue 

specificity issues150.  

From a functional perspective, mechanistic understanding of disease continues to lag 

behind the pace of gene discovery, and progress in experimental technologies is 

hampered by specimen availability and cost as well as its time-inefficient nature155. More 

time-effective ways to coherently translate genetic into functional knowledge need to be 

found by using more integrative and systems-level approaches to interpret the present 

genome data and to guide functional studies for targeted investigation of risk cellular 

pathways163. These include examination of genetic variability’s influencing gene 

expression modulation (e.g. expressed quantitative trait loci [eQTLs], methylation 

quantitative trait loci [mQTLs]150,171, allele-specific expression, transcriptome-wide 

association study [TWAS]) and its association with a trait, as well as evaluation of 

molecular interactions and functional annotation analyses of gene co-expression and 

protein-protein interaction (PPI) networks that can aid the prioritisation of biological 

processes that are impacted by genetic variability153. New avenues are currently being 
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explored in the context of single-cell (-nucleus) RNA sequencing (sc or snRNAseq), which 

has significantly advanced our understanding of several neurodegenerative disorders by 

identifying major brain cell types affected by degeneration. Importantly, cell-type-

specific transcriptomic profiling can help dissecting the complexity and heterogeneity of 

molecular mechanisms underlying FTLD pathology and suggest basis for selective 

vulnerability and resilience of brain cell types by delineating cell-type-specific FTLD-

linked gene expression and molecular signatures in brain tissues of interest (e.g., 

FCTX)172. As a result, undoubtedly this multi-level knowledge will provide solid ground 

for the development of testable hypotheses and help functional biologists designing more 

accurate experimental models.  

Standardising all such strategies will require some time, nevertheless this paradigm shift 

is essential to improve basic and translational research and pave the way to for 

advancements in preventive, monitoring and therapeutic measures for FTLD and other 

complex diseases. 

 

1.4. Significance of the research and objectives of this 

thesis 

Despite tremendous progress in characterising the genetics of FTLD and related 

pathology over the past 20 years, the lack of understanding of how genetics, phenotypic, 

and pathological features are wired by underlying molecular mechanisms represents the 

major gap to the dissection of FTLD pathogenesis9. Importantly, advances in omics 

technologies — such as genomics, transcriptomics, proteomics and metabolomics — and 

the development of innovative methods relying on data integration and bioinformatics 

analyses have begun to aid our understanding of the biological complexity of most human 

diseases77. These are emerging alternatives to the classical studies in that they allow to 

evaluate altogether the genetic players contributing to the phenotype and to isolate the 

most likely risk pathways to be validated and tested in the functional setting. For instance, 

network analyses based on gene co-expression and protein-protein interactions (PPIs) 

are becoming suitable methods to serve these purposes.  

 

This thesis aims to build on these emerging alternatives to further dissect the genetic and 

molecular underpinnings of FTLD. Here I present an integrative pipeline that combines 
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weighted protein-protein interaction network analysis (WPPINA)97 and weighted gene 

co-expression network analysis (WGCNA)173 to analyse the specific interactome and co-

expression transcriptome of known FTLD-associated genes/proteins. The current work 

uses current state-of-the-art genetics associated with a trait (i.e., FTLD) and projects it 

into the transcriptome and protein domains. By integrating genomic, transcriptomic and 

proteomic data, this cross-disciplinary pipeline supports the global understanding of the 

FTLD-associated biological processes as well as of the genes/proteins contributing to 

those processes, and that might therefore play a pivotal role in controlling the shift in 

balance between the healthy and the pathological scenarios.  

 

Here I hypothesise that there might be a network of genes/proteins functionally linked 

with the major FTLD Mendelian and GWAS genes which: i) contribute to the alteration of 

biological processes impacted in FTLD and ii) might hold critical relevance to the 

functional pathogenesis of FTLD. The major aims of this project are to: i) investigate the 

functional environment of FTLD in silico by identifying disease-specific biological 

processes and genes/proteins connecting the majority of the FTLD genes; ii) carry the 

prioritised biological processes and genes/proteins forward for hypothesis-driven 

functional validation using in vitro cellular models. Additionally, a separate study aims at 

specifically characterising C9ORF72 repeat expansions as a potential genetic modifier of 

FTLD clinical variants in relation to genetic ancestry and AAO in an international sporadic 

FTLD cohort. 
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Chapter 2 

2. Material and methods 

2.1. C9ORF72 repeat expansion screening 

2.1.1. Cohort, clinical phenotyping and patients 

consent 

FTLD cases were collected between 2016 and 2018 (within the IFGC phase-III project 

[https://ifgcsite.wordpress.com/ongoing-projects/]). The samples were recruited by 

clinicians and research groups who are part of the IFGC network and based in Italy, Spain, 

Germany, the Netherlands, Belgium, UK, Sweden, Norway, Slovenia, and USA 

(Supplementary Table 1 [Supplementary File 1]). Patients were diagnosed at each 

contributing site (Supplementary Table 2 [Supplementary File 1]) in a harmonised 

fashion according to international consensus criteria such as the Neary et al (for FTLD), 

Rascovsky et al (for bvFTLD), Gorno-Tempini et al (for PPA [SD or PNFA]) and Strong et 

al (for FTLD-MND) criteria15,174,175. Each contributing site obtained written informed 

consent from all patients to be part of extended genetic studies (and IRB approval 

#9811/001). 

2.1.2. Genotyping, C9ORF72 repeat expansions and 

analysis cohorts 

Thousand four-hundred and fifty-four (1454) cases were successfully genotyped by 

means of the NeuroArray176 on the Illumina Infinium platform. Genotypes were used to 

inform on population substructure via standard principal component analysis (PCA) 

(Supplementary Figure 1 [Supplementary File 1]), which led to the exclusion of 44 

population outliers, and allowed to address population-substructure within the cohort 

(we identified 2 distinct [‘Nordic’ and ‘Mediterranean’] clusters; Supplementary Figure 

2 [Supplementary File 1]). I also assessed cryptic relatedness and excluded 14 first- or 

second-degree related individuals, leaving a cohort of 1396 cases (group 0) – for which 

C9ORF72 expansion status (i.e., presence/absence of pathogenic expansions) was known 

– for analyses. Frequencies of pathogenic expansions were assessed in group 0 and 

further analyses were performed in: i) 1295 cases (group 1: n = 800 bvFTLDs and n = 495 

PPAs) with known C9ORF72 expansion status; ii) 1179 cases (group 2; n = 756 bvFTLDs 
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and n = 423 PPAs) with known C9ORF72 expansion status and age at onset (AAO) data 

available, and; iii) 734 cases (group 3; n = 462 bvFTLDs and n = 272 PPAs) with AAO and 

repeat counts (rc; screened via repeat-primed PCR [RP-PCR] [c.f.19,33], see 

Supplementary Materials and Methods and Supplementary Figure 3 

[Supplementary File 1]) data available (Figure 2.1). 

 

Figure 2.1. Study cohorts. AAO, age at onset; bvFTD, behavioural variant frontotemporal dementia; PPA, primary 

progressive aphasia; FTD-MND, frontotemporal dementia with motor neuron disease. Adapted from ‘C9ORF72, age at 

onset, and ancestry help discriminate behavioural from language variants in FTLD cohorts’ by B. Costa, 2020, 

Neurology. Copyright 2022 American Academy of Neurology. Adapted with permission. 
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2.1.3. Statistical analyses 

I first assessed the frequency of pathogenic expansions in the entire cohort (group 0). The 

information on presence/absence of expansions was used as a binary variable (0 = 

absence of expansion; 1 = presence of expansion). I then investigated differences in the 

frequencies of pathogenic expansions across bvFTLDs and PPAs, and the ‘Nordic’ and 

‘Mediterranean’ clusters in group 1 (Fisher’s Exact test) and in group 3 (logistic 

regression); in the latter, I used repeat counts (rc) as a categorical variable (using ‘no’, 

‘short’, ‘intermediate’ and ‘long’ as factor levels) considering the following 4 categories: 

‘no’ expansions (rc = 2/3), ‘short’ expansions (4 ≤ rc ≤ 8), ‘intermediate’ expansions (9 ≤ 

rc ≤ 24) and ‘long’ expansions (rc ≥ 25), the latter representing expansions in the 

pathogenic range (c.f.35,177); see also Supplementary Materials and Methods and 

Supplementary Figure 3 [Supplementary File 1]).  

I then evaluated association between AAO and syndrome, genetic ancestry and 

expansions (i.e., presence/absence used as a binary variable, see above) alone and with 

genetic ancestry as a covariate in group 2 (t-test and logistic regression) and in group 3 

(t-test, ANOVA with Tukey post-hoc test, and logistic and linear mixed-effects model). In 

the latter case, I used rc as a categorical variable (see above). 

Finally, I sought to build a model to predict syndrome (bvFTLD vs. PPA) using (i) 

presence/absence of pathogenic expansions (as binary variable [see above] for group 2) 

or (ii) rc (as categorical variable [see above] for group 3), ancestry as binary variable and 

AAO as continuous variable using logistic regression models (i.e. the leave-one-out cross 

validation [LOOCV] and the K-fold models). A summary of the analyses workflow can be 

found in Figure 2.2. 
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Figure 2.2. Analysis workflow. AAO, age at onset; logistic/cluster = logistic regression using cluster as covariate; 

logistic/PC1 = logistic regression using PC1 as covariate; LOOCV = leave one out cross validation regression model; k-

fold regression model. Adapted from ‘C9ORF72, age at onset, and ancestry help discriminate behavioural from 

language variants in FTLD cohorts’ by B. Costa, 2020, Neurology. Copyright 2022 American Academy of Neurology. 

Adapted with permission. 

 

I individually performed the genetic screening of the samples, whilst all the statistical 

analyses (R studio [version 3.6.0, studio version 1.2.1335]) and data interpretation were 

carried out in collaboration with Drs. Raffaele Ferrari and Claudia Manzoni. All data 

generated or analysed during this study are included in Supplementary File 2. 

Supplementary files are available at 

https://rdr.ucl.ac.uk/articles/dataset/Supplementary-Files-Neurology_pdf/12418157.  

 

https://rdr.ucl.ac.uk/articles/dataset/Supplementary-Files-Neurology_pdf/12418157
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2.2. Bioinformatics 

2.2.1. Weighted Gene Co-expression Network 

Analysis (WGCNA)  

Data for WGCNA were collected from GTEx and UKBEC databases using the CoExp Web 

application178. Details of these resources are provided below. 

The Genotype-Tissue Expression (GTEx) project is an ongoing effort to build a 

comprehensive public resource to study tissue-specific gene expression and regulation. 

Samples were collected from 54 non-diseased tissue sites across nearly 1000 individuals, 

primarily for molecular assays including WGS, WES, and RNA-Seq. The GTEx Portal 

provides open access to data including gene expression, expression quantitative trait loci 

(eQTLs), and histology images. 

The UK Brain Expression Consortium (UKBEC) studies the regulation and alternative 

splicing of gene expression in multiple tissues from human brains. 

This dataset currently comprises 134 brains from individuals free of neurodegenerative 

disorders. Up to twelve brain regions were extracted per brain in parallel for mRNA 

quantification. DNA was also collected to enable genotyping and eQTL analysis. Data were 

generated through microarrays. Braineac - the Brain eQTL Almanac – is the web server 

for data from UKBEC. 

Gene co-expression networks were generated by WGCNA and modules of highly 

correlated genes were determined in an unsupervised manner based on co-expression 

patterns in frontal cortex (FCTX), the classically affected brain area93. The CoExp Web 

application (https://snca.atica.um.es/coexp/Run/Catalogue/, accessed on 05-12-19) 

was employed to extract gene co-expression modules, annotate gene sets of interest using 

GTEx V6 (47 co-expression networks on control tissue including 13 brain areas 

http://github.com/juanbot/CoExpGTEx) and 10UKBEC (10 Illumina microarray based 

gene expression profiling networks from brain tissue, 

http://github.com/juanbot/CoExp10UKBEC) as catalog categories. To identify highly 

interconnected genes within each module I used the measure of module membership 

(MM), a Pearson correlation between gene-expression level and module-eigengene93,173; 

an elevated MM (≥0.5) suggests strong inter-correlations between genes in a module. I 

https://snca.atica.um.es/coexp/Run/Catalogue/
http://github.com/juanbot/CoExpGTEx
http://github.com/juanbot/CoExp10UKBEC
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finally evaluated whether modules’ consistency and preservation were observed across 

the two datasets (GTEx vs UKBEC). 

Furthermore, I performed functional annotation analysis for the FTLD-genes containing 

modules to characterise their biological relevance by means of the bioinformatics tool 

gProfiler (accessed on 10-02-20) (please refer to the functional enrichment section for 

more details).  

 

2.2.2. Weighted Protein – Protein Interaction 

Network analysis (WPPINA) 

The entire FTLD protein-protein interaction network (entire-FTLD-PPIN) was 

constructed in a multilayer fashion. FTLD Mendelian, FTLD-GWAS and FTLD-ALS 

spectrum genes (from now onwards identified as seeds) were used to extract their first 

layer interactor proteins. The proteins in the first layer were then used as seeds to 

download a second layer of PPIs. To summarise, the entire-FTLD-PPIN is composed of all 

FTLD seeds, plus their first layer interactors, plus their second layer interactors. Each 

seed’s complete interactome is constituted by the seed under investigation, plus its first 

layer of interactor proteins, plus its second layer of interactor proteins.  

The web server PINOT (Protein Interaction Networks Online Tool179; 

https://doi.org/10.1186/s12964-020-00554-5, accessed on 24-12-19) was employed to 

extract the PPIs associated with each seed protein. PINOT is a web-source that optimises 

the collection and processing of PPI data from the IMEx consortium associated 

repositories. PPI data is downloaded live from PSICQUIC (the Proteomics Standard 

Initiative Common QUery InterfaCe) and then merged, quality checked, and confidence 

scored based on the number of detection methods and publications in which each 

interaction has been reported. Of note, all the interactions with a final score < 3 were 

removed as they are not reproduced in literature (identified with just 1 method or 1 

publication or 1 method + 1 publication). Ubiquitin(s) (UBB, UBC) were also removed as 

they normally conjugate to proteins flagging them for degradation and thus they likely 

introduced false positive interactions180.  

https://doi.org/10.1186/s12964-020-00554-5
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In line with the pipeline presented by Ferrari et al.97,151,153, I sought to identify inter-

interactome hubs (IIHs), which are highly interconnected genes within the entire-FTLD-

PPIN that are responsible for keeping network cohesion. The IIHs and their related 

interactomes were extracted from the entire-FTLD-PPIN to obtain a network of nodes 

which are highly shared in FTLD (core-FTLD-PPIN) and thus likely to be relevant for 

FTLD disease phenotype. I performed Gene Ontology (GO) terms enrichment analyses in 

gProfiler (accessed on 24-12-19) to analyse the functional enrichment of the core-FTLD-

PPIN (please refer to the functional enrichment session for more details). The network 

was visualised using the software Cytoscape 3.7.1.  

 

2.2.3. Functional enrichment analysis 

I performed functional enrichment analyses for GO terms in gProfiler (g:GOSt, 

https://biit.cs.ut.ee/gprofiler/gost). gProfiler settings were used as follows: enrichment 

for GO–BP terms only; Fisher’s one-tailed tests as statistical method for enrichment, SCS-

threshold as multiple testing correction; I considered significant those GO terms with 

p<0.05. Enriched GO-BP terms were grouped into custom-made classes based on 

semantic similarity (semantic class). For each semantic class, all of the contributing single 

GO terms were merged to identify the list of proteins within the network that contribute 

to the enrichment of that specific semantic class. Semantic classes were categorized into 

more general “functional blocks”, in order to highlight the main biological processes 

enriched for our genes. 

 

2.2.4. Evaluation of gene expression in brain 

Gene expression levels in FCTX were evaluated using both Braineac and GTExV6. We 

downloaded FCTX expression data from microarray provided by Braineac (available on 

http://www.braineac.org/, accessed on 02-03-20), mapped all the exprIDs to their 

correspondent HUGO gene names using RStudio and averaged all the expression values 

derived from each probe and sample. The same procedure was followed for the GTExV6 

data, from which I downloaded the RNA-seq data file “Gene TPMs” (Transcripts Per 

Millions) (available on https://www.gtexportal.org/home/datasets, accessed on 02-03-

20) and I extracted expression data for my genes of interest using RStudio. 

https://biit.cs.ut.ee/gprofiler/gost
http://www.braineac.org/
https://www.gtexportal.org/home/datasets
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2.2.5. Software 

Data were handled, filtered and scored through in-house R scripts (available at 

https://github.com/bbeacosta/Upgrade_scripts.git) (RStudio version 3.6.0, studio 

version 1.2.1335). Gene co-expression networks exploration and hierarchical clustering 

of the modules were performed using the CoExpNets suite of R packages (available at 

https://github.com/juanbot/CoExpNets). The PPI networks were visualised through the 

freely available Cytoscape 3.7.1 software (http://www.cytoscape.org/). Graphs were 

generated through either RStudio or GraphPad Prism 9, while pipelines were designed 

using Lucidchart (available at https://www.lucidchart.com) or Microsoft PowerPoint. 

 

2.2.6. Re-evaluation of WGCNA networks 

After having assessed the functional environment of CDC37 in vitro, I sought to: i) assess 

whether the relationships found in cellular models were also true in in silico models; ii) 

evaluate CDC37 co-expression with the major FTLD Mendelian genes to aid FTLD model 

selection. To this end, I performed follow-up WGCNA analyses to re-evaluate the co-

expression networks of CDC37 specifically in frontal cortex. I selected the gene-co-

expression network modules from both gtexv6 and UKBEC where CDC37 falls into, and I 

sought to evaluate co-expression and specific modules relatedness of CDC37 with: i) 

genes associated to PINK1-dependent mitophagy (i.e., PINK1); ii) the major FTLD 

Mendelian genes (i.e., MAPT, C9ORF72, GRN). Garcia-Ruiz et al.178 created a suite of R 

packages to source co-expression networks and modules from gtexv6 and UKBEC 

databases and assess their relationship. These packages were used to evaluate the 

relatedness of the different modules between each other within each network: this 

knowledge was used to infer module proximity, correlation, similarity and thus potential 

co-expression patterns among their genes.  

 

2.3. Molecular biology 

2.3.1. Materials 

Reverse transcription: Superscript IV reverse transcriptase, dNTPs, random hexamers, 

https://www.lucidchart.com/
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1M DTT and RNaseOUT RNase inhibitor were all purchased from Invitrogen. 

Quantitative PCR: Fast SYBR Green mastermix and probes were purchased from Applied 

Biosystems.  

 

2.3.2.  Quantitative PCR  

2.3.2.1. RNA extraction 

Cells were immediately lysed for RNA extraction by resuspension in lysis buffer provided 

with the Monarch® Total RNA Miniprep kit (New England Biolabs, #T2010). Genomic 

DNA was removed by first spinning through a gDNA binding column and optional on-

column DNAse treatment. Lysates were then homogenised and RNA was extracted using 

the using Monarch RNA Purification Columns according to the manufacturer’s protocol. 

 

2.3.2.2. Reverse transcription 

For production of cDNA, 500 ng extracted RNA was reversed transcribed using 

SuperScript™ IV First-Strand Synthesis System (ThermoFisher, #18091050), according 

to the manufacturer’s protocol. Briefly, RNA was combined with random hexamer 

primers (final concentration 2.5 µM) and dNTP mix (final concentration 0.5 mM) in an 

initial volume of 7 µl and incubated at 65°C for 5 min. The mixture was then incubated on 

ice for 1 min before addition of 2 µl 5x SSIV buffer, 0.5 µl 100 mM DTT, 0.5 µl RNase OUT 

and 0.125 µl 200 U SSIV reverse transcriptase enzyme, bringing the total reaction volume 

to 10 µl. The reaction was incubated at 25°C for 10 min, then at 50°C for 40 min and finally 

the enzyme was inactivated at 80°C for 10 min. 

 

2.3.2.3. Quantitative real-time PCR 

mRNA expression of STUB1, CUL2, CDC37, PINK1 and GRN was measured using SYBR 

quantitative PCR, performed on a QuantStudio™ 7 Flex system (Applied Biosystems™). 10 

ng cDNA were combined with 2x SYBR Green PCR Master Mix (ThermoFisher, #4309155) 

and 5 µM of forward + reverse primers mix in a total reaction volume of 10 µl in 0.1-ml 

MicroAmp™ Fast Optical 96-well plates. Thermal cycling conditions are specified in the 

following Table 2.1. 
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Step Temperature (°C) Time (sec) Cycles (#) 

DNA polymerase activation 95 20 HOLD 

Denature 95 3 
40 

Anneal/Extend 60 30 

 

Table 2.1. Quantitative PCR thermal cycling protocol (SYBR). 

 

Relative quantitation of the target genes was performed against an internal standard to 

measure gene expression. Data were analysed using the 2-ΔΔCT method181, using RPL18A 

as an internal standard.  

 

2.3.3. Cell culture 

2.3.3.1. Materials 

Cell lines: The cell lines used, their origin and associated mutations are listed in Table 

2.2. 

 

Line name Cell type Disease Mutation Origin 

SH-SY5Y POE Human neuroblastoma N/A N/A HPF lab 

H4 Human astrocytoma N/A N/A HPF lab 

mt-keima SH-SY5Y POE Human neuroblastoma N/A N/A Luft lab 

CRISPR isogenic series iPSC-derived cortical 

neurons 

FTLD GRN (R493X) iNDI 

 

Table 2.2. Characterisation of cell lines used. iNDI, iPSC Neurodegenerative Disease Initiative. 

 

Media for cell lines: For culture of SH-SY5Y Parkin over-expressing (POE), mt-Keima SH-

SY5Y POE and H4 cell lines, Dulbecco’s modified Eagle medium (DMEM, Gibco, 11995-

065) containing high glucose, sodium pyruvate and 2 mM L-glutamine was purchased 

from Invitrogen and supplemented with 10% (v/v) foetal bovine serum (FBS). 0.25% 

trypsin-EDTA and sterile phosphate buffered saline (PBS) were purchased from 

Invitrogen. Right before live-cell imaging, mt-Keima SH-SY5Y POE cells were cultured 

with phenol red-free DMEM supplemented with 10% FBS. Patient iPSC lines were 
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cultured in Essential 8 media (Thermofisher). Tris-buffered saline (TBS; Corning) was 

used to perform washes on iPSC-derived cortical neurons. 

Transfection reagents: DharmaFECT1 transfection reagent and siRNAs were purchased 

as pre-designed siGENOME SMARTpools from Dharmacon (Horizon Discovery): non-

targeting (SCR [D-001206-13]), PINK1 (M-004030-02), CDC37 (M-003231-01), GRN (M-

009285-02), STUB1(M-007201-02), CUL2 (M-007277-00). siRNAs were diluted in sterile 

RNase free water to a stock concentration of 20 µM. 

Trypan blue: 0.4% trypan blue solution was purchased from Sigma-Aldrich. 

Oligomycin/Antimycin A (O/A): Oligomycin (mitochondrial complex V inhibitor) was 

purchased from Cayman Chemicals (11341) and from Sigma-Aldrich (O4876), and 

antimycin A (mitochondrial complex III inhibitor) was purchased from Sigma-Aldrich 

(A8674).  

 

2.3.3.2. Culture of immortalised cell lines 

Neuroblastoma and astrocytoma cell lines were cultured in the appropriate media (see 

section 2.3.3.1) at 37°C in 5% CO2/95% air. Cells were passaged every 3-5 days (usually 

1:10 for both SH-SY5Ys and H4s). Cells were used at passage numbers no higher than 20. 

iPSC lines were maintained in Essential 8 media on plates that had been coated overnight 

with 1:100 geltrex (Thermofisher) in DMEM/F12 at 37°C. The cells were passaged every 

3-5 days with 0.5mM EDTA (ThermoFisher) at a split ratio of 1:6 and maintained in small 

colonies to prevent spontaneous differentiation. Cells were fed daily with Essential 8 

media. 

 

2.3.3.3. Differentiation of iPSC into cortical neurons 

An isogenic CRISPR iPSC series (control, heterozygous and homozygous GRN R493X 

mutant lines) from the human iPSC Neurodegenerative Disease Initiative (iNDI) was 

available to the Wray lab. Shi et al.’s182 dual SMAD (small mothers against 

decapentaplegic) inhibition protocol was followed to induce neuronal differentiation 

(Figure 2.3).  
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Figure 2.3. Cortical neurons differentiation protocol. DIV, days in vitro. 

 

Briefly, iPSCs were pooled into 1:100 geltrex (Thermofisher) coated wells until they 

reached 100% confluency. They were then fed daily with neural induction media for 10-

11 days. The induction media is a 1:1 mix of N2 and B27 (DMEM/F-12 GlutaMAX, 1 N2 

supplement, 5 g ml−1 insulin (Sigma-Aldrich), 1mM L-glutamine, 100 m nonessential 

amino acids, 100 M 2-mercaptoethanol, 50 U ml−1 penicillin and 50 mg ml−1 

streptomycin. B27: Neurobasal, 1 B27, 200 mM l-glutamine, 50 U ml−1 penicillin and 

50 mg ml−1 streptomycin [all from Thermofisher unless stated otherwise]), 

supplemented with 1 M Dorsomorphin (Tocris) and 10 M SB431543 (Tocris), dual 

SMAD inhibitors. 

200l of dispase (10mg/ml) (Invitrogen) was added to the media to lift the 

neuroepithelial layer, which was then broken into clumps with approximately 300-500 

cells to allow rosettes to form and enable neurogenesis of cortical progenitor cells. From 

this point on, the cells were maintained in N2B27 on laminin (Sigma-Aldrich) coated 12 

well plates (1:50 laminin for the first dispase, then 1:100 laminin for other splits). The 

cells were passaged with dispase 2-4 times at approximately 10, 18 and 24 days in vitro 

(DIV), to expand the cultures. They were then passaged twice with accutase 

(Invitrogen) to dissociate the cultures into single cells, including the final passage at day 

35 when they were plated on poly-L-ornithine/ 1:100 laminin coated plates. Finally, 

cortical neurons were maintained in N2B27 until treatment at 80 DIV. 
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2.3.3.4. Characterisation of cortical neurons derived 

from PSCs 

At day 30 after neural induction, PSC-derived cortical neurons were assessed by 

immunofluorescence staining to characterise their neuronal fate, as per Shi et al.’s 

protocol182. Briefly, cells were fixed in culture in 4% (wt/vol) PFA for 10 min. Following 

removal of PFA, cells were washed three times for 5 min each with TBS, permeabilised 

with three 5-min washes with 0.3% (vol/vol) Triton X-100 in TBS and then blocked for 

1h with 5% (vol/vol) donkey serum in 0.3% (vol/vol) Triton X-100–TBS. Cortical 

neurons were then stained with primary antibodies to MAP2, Tuj1, FOXg1 (Abcam, 

ab18259), PAX6 (Covance, PRB-278P) and OTX2 (Millipore, AB9566) diluted in blocking 

solution at 4 °C overnight. Visualisation of the neuron-specific markers by confocal 

microscopy was used to determine their neuronal fate. 

 

2.3.3.5. Freezing and thawing 

For long-term storage of immortalised cell lines, the cells were detached by incubation in 

0.025% trypsin, resuspended in warm medium and pelleted by centrifugation at 240 g 

for 5 min. The cell pellet was resuspended in 90% FBS with 10% sterile DMSO and 

transferred to cryovials for freezing at a rate of -1°C/min using a Nalgene Mr Frosty at -

80°C. After 24 hr, the cells were transferred to liquid nitrogen for storage. 

To resuscitate frozen cells, cells were thawed rapidly and resuspended in 5 ml warm 

growth medium. Cells were again pelleted by centrifugation at 400 g for 5 min, 

resuspended in fresh growth medium and transferred to a cell culture flask. 

 

2.3.3.6. Cell counting 

Where necessary, cells were counted using a Neubauer haemocytometer. Dead cells were 

detected using 0.4% trypan blue solution at a 1:1 ratio with the cell suspension. Trypan 

blue is excluded from intact cells, therefore any stained cell was disregarded. 

 

2.3.3.7. siRNA-mediated gene silencing 

Cells were reverse-transfected (meaning transfected when still in suspension as opposed 

to forward-transfected when already plated) with siRNA at 80-90% confluency using 
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DharmaFECT according to the manufacturer’s protocol. Briefly, for one well of a 6 well 

plate 10 μl of 20 μM siRNA and 6 μl DharmaFECT were each diluted in a total of 200 μl 

serum free media. The two solutions were incubated separately for 5 min at room 

temperature, then combined and incubated for a further 20 min at room temperature 

during which time the cells were trypsinised and counted. After 20 min, 1.6 ml of cell 

suspension was added dropwise to the entire 400 μl siRNA/DharmaFECT solution to get 

a final concentration of 0.55x106/ml. For transfection in a 24 well plate, the protocol was 

as described above except all volumes were divided by four. 

 

2.3.3.8. Mitophagy induction 

For all western blotting and immunocytochemistry experiments, after 72h siRNA 

transfection cells were treated with 1 μM oligomycin/antimycin (O/A) to depolarise 

mitochondria. 

 

2.3.4. Protein biochemistry  

2.3.4.1. Materials 

Buffers:  

• Whole cell lysis buffer: 50 mM Tris (pH 7.4), 0.1 mM EGTA, 0.27 M 

sucrose, 1% Triton-X100, 1mM EDTA in ddH2O. Protease and 

phosphatase inhibitor cocktail (Roche) were added immediately before 

cell lysis to get 1X concentration. 

• Mitochondrial fractionation buffer: 10 mM Tris base, 0.25 M sucrose, 1 

mM EDTA (pH 7.4) in ddH2O. Protease and phosphatase inhibitor 

cocktail (1/2 protease tablet and 1 phosphatase tablet for 50 ml of 

buffer) (Roche) were added immediately before cell lysis. 

• Sample loading buffer: NuPAGE 4x LDS Sample buffer (Invitrogen) was 

combined with 40 mM Dithiothreitol (DTT) to get a final concentration 

of 1 mM. which was then diluted 1:4 to get 1X LDS in 10mM DTT. 

• Gel running buffer: NuPAGE MOPS SDS (Invitrogen). 

• Transfer buffer: Tris-glycine (National Diagnostics, Georgia, USA) plus 

20% (v/v) methanol. 
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• Hydrophilic polyvinylidene fluoride (PVDF) membrane (Sigma-

Aldrich). 

• PBST: 1x phosphate buffered solution (PBS) was made from tablets 

(Invitrogen) dissolved in deionised ultrapure water with 0.1% (v/v) 

Tween-20 detergent (Sigma-Aldrich). 

• Milk: Marvel skimmed milk powder was dissolved in PBST to the 

appropriate percentage. 

 

Antibodies: A list of primary and secondary antibodies used for immunoblotting is shown 

in Table 2.3 overleaf. Primary antibodies were prepared at the specified dilution in 1-3% 

(w/v) milk/PBST whilst secondary antibodies were diluted in PBST. 

 

Table 2.3. List of antibodies for immunoblotting. 

 

Consumables: Bio-Rad DC (detergent compatible) protein assay kit was purchased from 

Bio-Rad (CA, USA). NuPAGE 4-12% Bis-Tris protein gels, NuPAGE LDS sample buffer was 

purchased from Invitrogen and the Chameleon Duo Pre-stained protein ladder was 

purchased from LICOR. The iBlot 2 Dry Blotting System and the pre-packaged ready-to-

use transfer stacks were purchased from Thermo Fisher Scientific. 

 

Name Species Dilution Cat. No. Supplier 

GAPDH Mouse 1:10,000 ab8245 Abcam 

Mfn2 Rabbit 1:1000 9482 Cell Signaling 

Pink1 Rabbit 1:1000 - Takeda 

TOM20 Rabbit 1:5000 sc-17764 Santa Cruz 

TIM23 Mouse 1:1000 611223 BD Biosciences 

Phospho-ubiquitin 

(Ser65) 

Rabbit 1:1000 37642 Cell Signaling 

Stub1/Chip Rabbit 1:1000 ab2917 Abcam 

Cul2 Rabbit 1:1000 A302-476A ThermoFisher 

Cdc37 Mouse 1:1000 sc-17758 Santa Cruz 

TBK1 Rabbit 1:1000 3504 Cell Signaling 

Phospho-TBK1 (Ser172) Rabbit 1:1000 5483 Cell Signaling 

IRDye 800CW anti rabbit Donkey 1:20,000 925-32213 LI-COR Biosciences 

IRDye 680LT anti mouse Donkey 1:20,000 925-68022 LI-COR Biosciences 
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2.3.4.2. Harvesting and lysing of cells 

Cells were first washed with PBS, then harvested by adding whole cell lysis buffer with 

protease inhibitors on ice and scraping into an eppendorf. Lysates were vortexed and 

incubated on ice for 20 min 3 consecutive times to ensure complete lysis. Insoluble 

cellular components were removed by centrifugation at 16,000 g for 20 min at 4°C, then 

the supernatant was transferred to a fresh eppendorf and stored at -20°C. Protein 

concentration was measured using the Bio-Rad DC protein assay kit, using protein 

standards prepared by diluting BSA to concentrations of 1.0, 2.0, 3.0, 4.0 and 5.0 mg/ml 

in lysis buffer. 

 

2.3.4.3. Mitochondrial fractionation for biochemistry 

To isolate mitochondria from cultured cells, the media was aspirated from the cells and 

the monolayer rinsed once with PBS. 100 μl of mitochondrial fractionation buffer was 

added directly to the cells, they were scraped into an eppendorf and the well was washed 

with another 100 μl of mitochondrial fractionation buffer to collect cell residues. The cells 

pelleted at 1500 g for 20 min to remove intact cells and debris. The supernatant was then 

centrifuged at 12,500 g for 20 min to separate the mitochondrial pellet from the cytosolic 

fraction (the supernatant). The cytosolic fraction was removed, quantified and diluted 

directly in sample buffer for western blot analysis, while the mitochondrial pellet was 

rinsed twice with ice-cold mitochondrial fractionation buffer, resuspended in 1X LDS 

10mM DTT and sonicated before loading. 

 

2.3.4.4. Protein electrophoresis and western blotting 

Samples were diluted in 4x sample buffer containing DTT, boiled at 100°C for 5 min and 

loaded on a precast 4-12% NuPAGE polyacrylamide gel. Bands were separated by 

electrophoresis at 180 V, then transferred to a PVDF microporous membrane for 7 min 

at 80 V. The membrane was blocked by incubation in PBST/5% milk for 30 min, then 

incubated in primary antibody either overnight at 4°C or for 2 hr at room temperature. 

The membrane was washed three times in PBST, incubated with the appropriate 

secondary antibody for 1 hr at room temperature, and washed again two times in PBST 

and one last time in PBS before imaging. Imaging of the membrane and quantification 

analysis of the bands were carried out by using the LICOR western blot imager and LICOR 
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Image Studio Lite 5.2 software respectively. 

 

2.3.5. Immunocytochemistry 

2.3.5.1. Materials 

Antibodies: Stains, primary and secondary antibodies used for immunocytochemistry are 

listed in Table 2.4 below.  

 

Name Species Dilution Cat. No. Supplier 

Phospho-ubiquitin (Ser65) Rabbit 1:1000 37642 Cell Signaling 

TOM20 Mouse 1:1000 ab56783 Abcam 

TOM20 Rabbit 1:1000 sc- 17764 Santa Cruz 

CDC37 Mouse 1:1000 sc-17758 Santa Cruz 

p62 Mouse 1:1000 ab155686 Abcam 

Hoechst 33342 - 1:2000 875756-97-1 Sigma Aldrich 

AlexaFluor 488 anti rabbit Goat 1:2000 A11008 ThermoFisher 

AlexaFluor 568 anti mouse Goat 1:2000 A11004 ThermoFisher 

 

Table 2.4. Primary antibodies used for immunofluorescence. 

 

Reagents: 4% paraformaldehyde (PFA) solution was made with 37% formaldehyde in 1X 

PBS buffer. 

Consumables: FBS and PBS were made as described previously (section 2.3.3.1). Triton 

X-100 and Hoechst 33342 were purchased from Sigma-Aldrich.  

 

2.3.5.2. Cell staining 

POE SHSY5Y cells for immunofluorescent analysis were cultured in a 96-well plate, 

transfected as previously described (section 2.3.3) and fixed for 15 min in 4% (w/v) 

PFA/PBS. Unless otherwise stated, for all of the incubation steps the 96-well plate was 

placed in an orbital shaker (40 rpm) and covered in tinfoil to protect it from light and 

prevent fading of the signal. Cells were permeabilised and blocked with 0.5% (v/v) triton 

X-100/PBS solution in 10% (v/v) FBS/PBS for 30 min to prevent non-specific antibody 

binding. Primary antibodies were diluted in 10% (v/v) FBS/PBS and pipetted into each 

well to get a 40 μl final volume and incubated for 2h at room temperature. Cells were 
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rinsed three times in PBS, then incubated for 1h at room temperature with fluorescently 

labelled secondary antibodies and Hoechst in 10% (v/v) FBS/PBS. Excess antibody was 

removed by washing the wells three times with PBS; Finally, 70 μl of PBS was added to 

all of the wells and the plate was kept at 4°C until imaging.  

 

2.3.5.3. Visualisation of protein relocation and image 

analysis 

Stained 96-well plates were imaged using the Opera Phenix (Perkin Elmer): 5x fields of 

view and 4x 1 µm Z-planes were acquired per well, using the 40X water immersion 

objective. Excitation/emission wavelengths are shown in Table 2.5 below. 

 

Dye Excitation (nm) Emission (nm) 

Hoechst 33342 350 510-540 

Alexa Fluor 488 (anti-rabbit) 488 496-573 

Alexa Fluor 568 (anti-mouse) 568 573-630 

 

Table 2.5.  Excitation and emission wavelength for immunocytochemistry. 

 

Image analysis was performed in an automated way using Columbus 2.8 analysis system 

(Perkin Elmer) to measure the integrated intensity of pUb(Ser65) within the whole cell.  

Briefly, images were loaded in Columbus as maximum projections and the Hoechst 33342 

channel was used to find the nuclei and exclude those at the image border. The cytoplasm 

was found using Hoechst 33342 + Alexa Fluor 568 tagging TOM20, whereas pUb (Ser65) 

spots were identified within the whole cell using Alexa Fluor 488 and their intensity 

measured. The mean integrated pUb (Ser65) intensity was calculated as follows:  

 

Total cell area covered by PuB spots x Corrected PuB spots intensity 

 

The outputs of the analysis were i) the number of selected nuclei and ii) the mean 

integrated pUb (Ser65) spot intensity.  



95 
 

2.3.6. Live cell imaging: mt-Keima 

2.3.6.1. Materials 

Reagents:   

• Hoechst 33342 was used to stain cells nuclei at a concentration of 1:2000. 

• O/A was diluted in phenol-free DMEM to obtain a concentration of 1 μM to 

depolarise mitochondria. 

 

2.3.6.2. Cells treatment and imaging 

Keima-expressing SHSY5Y cells were plated in a 96-well plate. After 72h siRNA 

transfection, cells were treated with 1 μM O/A and were imaged using Opera Phenix with 

a 63x water objective. The Opera Phenix was set so that CO2 concentration was 5% at and 

the temperature was 37°C at the start of imaging. Pictures were taken at 5 different 

timepoints (0, 2, 6, 9, 12h). 

 

2.3.7. Statistical analysis 

Unless otherwise stated, experiments were performed at least three times (n ≥ 3) and 

data is presented as mean ± standard deviation (StD). A two-way ANOVA was used to 

measure differences between groups for all the wet-lab experiments except for qPCR 

experiments, where an ordinary one-way ANOVA was used. For all statistical tests, 

multiplicity adjusted p-values were computed for each comparison using Dunnett’s 

multiple comparisons test. Scientific significance was assumed at p-value < 0.05. 
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Chapter 3 

3. Results 

3.1. C9ORF72, AAO, and genetic ancestry discriminate 

behavioural from language variant FTLD syndromes 

3.1.1. Introduction 

3.1.2. C9ORF72 repeat expansions 

It has become clear over the past several decades that expansions of simple intronic 

sequence repeats, such as microsatellites, correlate with the onset of many human 

diseases in individuals of European descent183. Trinucleotide repeat expansions were the 

first to be discovered and are the most frequent cause of many common genetic 

disorders: specifically, to date, tri-, tetra-, penta-, hexa-, and even dodeca-nucleotide 

repeat expansions have been identified as the cause of human diseases such as 

FTLD/ALS, Huntington disease, Friedreich ataxia and fragile X syndrome.  

Repeat expansion diseases arise from normally existing polymorphic repeats and, despite 

their sequence and size heterogeneity, they show multiple phenotypic similarities.  

The mutation related to FTLD/ALS onset is a hexanucleotide (GGGGCC)n expansion 

whose pathogenicity can vary depending on a broad spectrum of determining factors, 

such as repeat length, its position within the gene, the age of the patient and epigenetic 

modulation97. It has been established that a convenient cut-off to discriminate between 

‘normal’ repeat alleles and pathogenic expanded repeats could be 30 repeats (using the 

repeat-prime PCR method), being typically unaffected the individuals carrying fewer than 

30 repeats30,177. In fact, patients with ALS and/or FTLD pathologies have shown to 

harbour several hundreds to thousands of repeats. 

Repeat expansions in C9ORF72184 have been formerly reported to occur in 

~25%9,14,35,62,185 of familial and ~6%63 of sporadic FTLD cases (i.e., individuals with no 

clear familial history and/or genetic aetiology29). 

FTLD patients with abnormal C9ORF72 repeat expansions exhibit considerable 

phenotypical and pathological heterogeneity, therefore suggesting presence of additional 

(genetic and environmental) modifiers55. In spite of contradictory studies reporting 

either positive or inverse correlation between repeat length and age at onset (AAO), 
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C9ORF72 expansions have been suggested to act as a genetic modifier of AAO186–190. 

I here analysed 1396 FTLD cases gathered through the IFGC (International FTLD-

Genetics Consortium; https://ifgcsite.wordpress.com/) phase-III initiative, aiming at (i) 

characterising C9ORF72 expansions in relation to genetic ancestry and AAO, and (ii) 

assessing the usefulness of these parameters in discriminating the behavioural from the 

language variant syndrome. 

 

3.2. Results 

3.2.1. C9ORF72 expansions frequency and 

syndromes 

I assessed the frequency of pathogenic expansions in the entire cohort and across the 

different syndromes in the group 0 cases (Figure 2.1). Four percent of all cases (56/1396 

[4%]) carried pathogenic expansions. These were most frequent in FTLD-MNDs (12/101 

[11.9%]) followed by bvFTLDs (40/800 [5%]) and PPAs (4/495 [0.8%]). The higher 

prevalence of pathogenic expansions in bvFTLDs vs. PPAs was statistically significant 

(Fisher’s Exact test: p = 2.17x10-5; OR = 6.4; 95% CI: 2.31 – 24.99 Table 3.1).  

 

Cohort n of cases Expansion carriers Frequency 

bvFTLD 800 40 5%* 

PPA 495 4 0.8%* 

FTLD-MND 101 12 11.9% 

Total 1396 56 4% 

 

Table 3.1. Frequency of expansion carriers in the entire cohort and by syndrome. Summary of expansions 

carriers frequency in the entire cohort (n = 1396) and across syndromes. The higher prevalence of expansion carriers 

in bvFTLD vs. the PPA is statistically significant: *Fisher’s exact test performed to statistically evaluate the difference 

between the occurrence of pathogenic expansions in the bvFTLD vs. the PPA syndromes: p = 2.17x10-5; odds ratio 

(OR) = 6.4; 95% confidence interval (CI): 2.31-24.99. Adapted from ‘C9ORF72, age at onset, and ancestry help 

discriminate behavioural from language variants in FTLD cohorts’ by B. Costa, 2020, Neurology. Copyright 2022 

American Academy of Neurology. Adapted with permission. 

 

https://ifgcsite.wordpress.com/
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I further explored this finding in the group 3 cases using logistic regression to assess 

association between expansion length (represented by 4 repeat counts [rc] factor levels 

– ‘short’, ‘intermediate’ and ‘long’ expansions, tested against ‘no’ expansions) and 

syndromes (bvFTLD vs. PPA). Expansion length discriminated bvFTLD from PPA with a 

trend that was significant in the ‘intermediate’ (p = 4.7x10-2; OR = 1.6; CI: 0.0061 [2.5%] 

– 0.94 [97.5%]) and ‘long’ (p = 1.9x10-3; OR = 7.2; CI: 0.86 [2.5%] – 3.45 [97.5%]) rc ranges 

(with a ~90% probability of a bvFTLD diagnosis supported by the latter; Supplementary 

Table 3 [Supplementary File 1]; Supplementary files are available at 

https://rdr.ucl.ac.uk/articles/dataset/Supplementary-Files-Neurology_pdf/12418157). 

 

3.2.2. C9ORF72 expansions (and repeat counts [rc]) 

and genetic ancestry 

I performed PCA (PC1 vs. PC2, Supplementary Figure 2A [Supplementary File 1]; PC1 

vs. PC3, Supplementary Figures 2B [Supplementary File 1]) to cluster the group 1 

cases based on their genetic make-up. There were 2 major clusters: cluster-1 

(‘Mediterranean’) included most of the cases (439/500 [87.8%]) recruited from Southern 

European sites (Italy and Spain); cluster-2 (‘Nordic’) included most of the cases (627/795 

[78.8%]) recruited from Central and Northern European sites (Belgium, The Netherlands, 

Germany, UK, Norway and Sweden). Samples recruited from Eastern European 

(Slovenia) and North American sites distributed across both clusters – although with a 

higher prevalence within cluster-2 (167/795 [21%]) vs. cluster-1 (42/500 [8.4%]). 

I observed a significantly higher prevalence of pathogenic expansions in the ‘Nordic’ 

(35/795 [4.4%]) vs. the ‘Mediterranean’ (9/500 [1.8%]) cluster (Fisher’s Exact test: p = 

1.1x10-2; OR = 2.5; CI: 1.17 – 5.99 Table 3.2).  

  

https://rdr.ucl.ac.uk/articles/dataset/Supplementary-Files-Neurology_pdf/12418157


99 
 

Genetic ancestry n of cases 
Expansion 

carriers 
Frequency 

Nordic 795 35 4.4%* 

Mediterranean 500 9 1.8%* 

 

Table 3.2. Frequency of expansion carriers in the ‘Nordic’ and ‘Mediterranean’ clusters. The higher prevalence 

of expansion carriers in the ‘Nordic’ vs. the ‘Mediterranean’ cluster is statistically significant: *Fisher’s exact test: p = 

1.1x10-2; OR = 2.5; 95% CI: 1.17-5.99. Adapted from ‘C9ORF72, age at onset, and ancestry help discriminate 

behavioural from language variants in FTLD cohorts’ by B. Costa, 2020, Neurology. Copyright 2022 American 

Academy of Neurology. Adapted with permission. 

 

I further evaluated this finding in the group 3 cases using logistic regression to assess 

association between expansion length (see above) and genetic ancestry. Expansion 

length discriminated the ‘Nordic’ from ‘Mediterranean’ cluster with a trend that was 

significant in the ‘intermediate’ (p = 9.7x10-4, OR = 2.2; CI: 0.32 [2.5%] – 1.25 [97.5%]) 

and ‘long’ (p = 4.7x10-4, OR = 9.3; CI: 1.12 [2.5%] – 3.7 [97.5%]) rc ranges (with a ~90% 

probability of ‘Nordic’ ancestry supported by the latter; Supplementary Table 4 

[Supplementary File 1]). 

Provided differences in syndromes prevalence and distribution across the ‘Nordic’ and 

‘Mediterranean’ clusters – bvFTLD (469/795 [59%] vs. 331/500 [66.2%]) and PPA 

(326/795 [41%] vs. 169/500 [33.8%]), respectively (Supplementary Table 5 

[Supplementary File 1]) – I analysed the distribution of pathogenic expansions across 

syndromes and clusters. Stratified Fisher’s Exact test showed significant differences in 

the distribution of the pathogenic expansions between bvFTLD and PPA in the’ Nordic’ 

(but not the ‘Mediterranean’) cluster (p = 1x10-4; OR = 7.87; 95% CI: 2.43 – 40.52), and 

between the ‘Nordic’ and the ‘Mediterranean’ clusters for the bvFTLD (but not PPA) 

syndrome (p = 1.9x10-2; OR = 2.95; 95% CI: 1.31 – 7.52), suggesting that ancestry 

(‘Nordic’) and syndrome (bvFTLD) are independently associated with pathogenic 

expansions (Table 3.3). 
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Subtype/Ancestry Expansion range 
Fisher's Exact Test 

bvFTLD pathogenic non-pathogenic 

Mediterranean 8 323 
p = 1.9x10-2* 

Nordic 32 437 
    

Ancestry/Subtype Expansion range 
Fisher's Exact Test 

Mediterranean pathogenic non-pathogenic 

bvFTLD 8 323 
p = 1 

PPA 1 168 

Nordic    

bvFTLD 32 437 
p = 1x10-4# 

PPA 3 323 

 

Table 3.3. Stratified Fisher’s exact tests comparing prevalence of pathogenic expansions across bvFTLD and PPA and the ‘Nordic’ and ‘Mediterranean’ clusters. P-values 

presented in the table are corrected for multiple testing statistics. Prior correction p-values were as follows: * (uncorrected) Fisher’s exact test: p = 4.7x10-3; OR = 2.95; 95% CI: 1.31-

7.52 → significant difference in the prevalence of bvFTLD expansion carriers in the ‘Nordic’ vs. the ‘Mediterranean’ cluster; # (uncorrected) Fisher’s exact test p = 2.7x10-5; OR = 7.87; 

95% CI: 2.43-40.52 → significant difference in the prevalence of expansion carriers in bvFTLDs vs. PPAs within the Nordic cluster. Adapted from ‘C9ORF72, age at onset, and ancestry 

help discriminate behavioural from language variants in FTLD cohorts’ by B. Costa, 2020, Neurology. Copyright 2022 American Academy of Neurology. Adapted with permission. 
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3.2.3. C9ORF72 repeat expansions (and counts [rc]) 

and age at onset (AAO) 

I assessed AAO in the group 2 cases (Figure 2.1). Mean AAO was significantly different 

between the bvFTLD (61.7) and PPA (64) syndromes (t-test: p = 1.86x10-5; CI: -3.34 – -

1.25), and the ‘Nordic’ (61.3) and ‘Mediterranean’ (64.3) clusters (t-test: p = 1.16x10-7; 

CI: 1.86 – 4.03) (Supplementary Table 6A and B [Supplementary File 1]; Figure 

3.1[A]; Supplementary files are available at 

https://rdr.ucl.ac.uk/articles/dataset/Supplementary-Files-Neurology_pdf/12418157). 

https://rdr.ucl.ac.uk/articles/dataset/Supplementary-Files-Neurology_pdf/12418157
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Figure 3.1. Association between AAO and: ancestry; syndrome; expansion length. A. AAO in the group 2 cases. 

Mean AAO bvFTLD (61.7) and PPA (64) (t-test: p = 1.86x10-5; CI: -3.34--1.25); mean AAO ‘Nordic’ (61.3) and 

‘Mediterranean’ (64.3) clusters (t-test: p = 1.16x10-7; CI: 1.86-4.03); B. AAO in the group 3 cases. Mean AAO bvFTLD 

(61.7) and PPA (63.5) (t-test: p = 9.1x10-3; CI: -3.11--0.44), mean AAO ‘Nordic’ (60.9) and ‘Mediterranean’ (64.6) (t-

test: p = 2.1x10-7; CI: 2.32-5.09); C. AAO in the group 3 cases. Mean AAO for both ‘no’ and ‘short’ expansions (63.2), for 

‘intermediate’ expansions (61) and for ‘long’ expansions (58) evaluated via ANOVA test. Adapted from ‘C9ORF72, age 

at onset, and ancestry help discriminate behavioural from language variants in FTLD cohorts’ by B. Costa, 2020, 

Neurology. Copyright 2022 American Academy of Neurology. Adapted with permission. 
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I then assessed the relationship between pathogenic expansions and AAO via logistic 

regression. First, I identified a significant correlation between a decrease in AAO and 

presence of pathogenic expansions (p = 7.7x10-4; R2 = 0.008; CI: -8.05 [2.5%] – -2.13 

[97.5%]). When I included genetic ancestry in the model we observed a significant 

correlation with a decrease in AAO, no difference in using either cluster (p = 2.3x10-3; CI: 

-7.5 [2.5%] – -1.63 [97.5%] for pathogenic expansions; p = 2.3x10-7 ; CI: -3.9 [2.5%] – -

1.77 [97.5%] for cluster; R2=0.03) or PC1 (p = 2.1x10-3; CI: -7.5 [2.5%] – -1.66 [97.5%] for 

pathogenic expansions; p = 6.4x10-7; CI: 30.1 [2.5%] – 68.9 [97.5%] for PC1; R2=0.028) as 

covariate and an almost 4-fold goodness of fit increase (Supplementary Table 7A, B and 

C [Supplementary File 1]). Of note, when comparing the two regression models 

(with/without genetic ancestry as covariate) through the log-likelihood R2 ratio test, the 

difference (between the 2 models) appeared not to be due to chance (p < 10-12) 

(Supplementary Table 7B and C [Supplementary File 1]). 

I further evaluated the relationship between expansion length (represented by 4 repeat 

counts [rc] factor levels – ‘short’, ‘intermediate’ and ‘long’ expansions, tested against ‘no’ 

expansions) and AAO in the group 3 cases (Figure 3.1). First, I independently analysed 

association between AAO and: i) genetic ancestry – mean AAO 60.9 and 64.6 in the 

‘Nordic’ and ‘Mediterranean’ cluster, respectively (t-test: p = 2.1x10-7; CI: 2.32 – 5.09; 

Supplementary Table 8A [Supplementary File 1]); ii) syndrome – mean AAO 61.7 and 

63.5 in the bvFTLD and PPA syndromes, respectively (t-test: p = 9.1x10-3; CI: -3.11 – -

0.44; Supplementary Table 8B [Supplementary File 1]), and; iii) expansion length – 

mean AAO 63.2 for both ‘no’ and ‘short’ expansions, 61 for ‘intermediate’ expansions and 

58 for ‘long’ expansions (ANOVA: p = 3.6x10-2; CI: -10.2 – -0.23 for ‘long’ vs. ‘no’ 

expansions) (Supplementary Table 8D [Supplementary File 1]; Figure 3.1 B and C).  

I then assessed the relationship between expansion length (see above) and AAO via 

logistic regression. First, I identified a significant correlation between a decrease in AAO 

and both ‘intermediate’ and ‘long’ expansions (p = 4x10-2; CI: -4.36 [2.5%] – -0.96 [97.5%] 

for ‘intermediate’ and p = 7x10-3; CI: -9.05 [2.5%] – -1.43 [97.5%] for ‘long’ expansions; 

R2 = 0.017) (Supplementary Table 9A [Supplementary File 1]). When I included 

genetic ancestry in the model I observed a significant correlation with a decrease in AAO, 

no difference in using either cluster (p = 4.7x10-2; CI: -7.65 [2.5%] – -0.05 [97.5%] for 

‘long’ vs. ‘no’ expansion; p = 2.38x10-6; CI: -4.73 [2.5%] – -1.97 [97.5%] for cluster; R2 = 
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0.045) or PC1 (p = 5.98x10-2; CI: -7.5 [2.5%] – 0.14 [97.5%] for ‘long’ vs. ‘no’ expansion; 

p = 1.2x10-6; CI: 39.8 [2.5%] – 92.9 [97.5%] for PC1; R2=0.047) as covariate and an almost 

3-fold goodness of fit increase (Supplementary Table 9A, B and C [Supplementary File 

1]). Of note, when comparing the two regression models (with/without genetic ancestry 

as covariate) through the log-likelihood R2 ratio test, the difference (between the 2 

models) appeared not to be due to chance (p < 10-12) (Supplementary Table 9B and C 

[Supplementary File 1]). These findings were further supported by non-linear mixed-

effects model regression using genetic ancestry as random effect covariate (for ‘long’ vs. 

‘no’ expansion; see Supplementary Table 10 [Supplementary File 1]). 

 

3.2.4. Syndrome prediction 

I then sought to build a model to predict syndrome (bvFTLD vs. PPA) and assess its 

accuracy. I analysed both groups 2 and 3 cases using expansion status (presence/absence 

of expansion for group 2, and the 4 rc factor levels for group 3 [see materials and 

methods]), genetic ancestry (using either ‘cluster’ or ‘PC1’) as binary variables, and AAO 

as a continuous variable in logistic regression models. I observed an accuracy of ~0.64 

(group 2; Supplementary Table 11 [Supplementary File 1]) and ~0.62 (group 3; 

Supplementary Table 12 [Supplementary File 1]) in predicting bvFTLD, whilst there 

were no differences in the outcome when using either ‘cluster’ or ‘PC1’ as covariates in 

both (LOOCV and K-fold) models. 

 

3.3. Discussion and conclusions 

This study aimed to characterise C9ORF72 expansions in relation to genetic ancestry and 

age at onset (AAO), and to assess the usefulness of these parameters in discriminating the 

behavioural from the language variant syndrome, in a large pan-European cohort of 1396 

FTLD cases. 

To the best of my knowledge, the present study is unique in that, prior characterising the 

expansions, I excluded population-substructure bias using genome-wide genotyping data 

to cluster the cases on the basis of their genetic ancestry. I performed principal 

component analysis (PCA) and I identified two distinct clusters including samples with 

geographical ancestry corresponding to Southern Europe (‘Mediterranean’ cluster) and 
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Central/Northern Europe (‘Nordic’ cluster). These analyses showed that patients from 

the ‘Nordic’ cluster presented significantly higher frequency of pathogenic C9ORF72 

expansions compared to the ‘Mediterranean’ cluster. 

Globally, I found a pathogenic expansions frequency of about ~4% and that the 

proportion of expansion carriers was significantly higher in bvFTLDs compared to PPAs. 

These findings report significant association between pathogenic expansions, a diagnosis 

of bvFTLD and Central/Northern European ancestry – findings for the most in line with 

previous studies34,35,42,55,62,191–194– suggesting that C9ORF72 expansions might serve as 

valuable genetic marker to define subpopulations of FTLD patients (Figure 3.2).  

 

Figure 3.2. Patient subpopulations (bvFTLD and PPA syndromes) based on C9ORF72 expansions genetic 

signatures and ancestry. Adapted from ‘C9ORF72, age at onset, and ancestry help discriminate behavioural from 

language variants in FTLD cohorts’ by B. Costa, 2020, Neurology. Copyright 2022 American Academy of Neurology. 

Adapted with permission. 

 

Of note, I observed a trend of association with syndrome (bvFTLD) and genetic ancestry 

(Central/Northern European) already supported by the ‘intermediate’ repeat counts (9 ≤ 

rc ≤ 24) category. This finding seems in line with previous studies suggesting that 

individuals with 7 to 24 alleles might have an increased risk to become carriers of 

pathological repeat expansions35,188 and may, altogether, be useful information in the 

context of diagnostics. 
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Despite some previous conflicting reports of direct (or inverse) correlation between 

C9ORF72 expansions and AAO186,187,189, I (as others188,190) found a significant inverse 

correlation between C9ORF72 expansion length and AAO.  

Additionally, and interestingly, these data also indicates that Central/Northern European 

genetic ancestry contributes to a decreased AAO (independently from the expansions) 

possibly implying to a more complex genetic signature (or architecture), and 

subsequently molecular mechanisms, underlying this very feature. Undoubtedly, disease 

mechanisms that involve C9ORF72 expansion length and AAO are complex, thus it is likely 

that additional factors might further modulate their relationship and effect on the 

phenotype184. 

I used expansion length, genetic ancestry and AAO in a regression model to discriminate 

behavioural from language variant subtypes, and I found that such parameters did 

support a prediction of bvFTLD with 64% accuracy. 

These results have several implications. First, provided that significant variation exists in 

the genetic architecture of the Caucasian population195, genetic variability characterising 

and differentiating ‘Nordic’ vs. ‘Mediterranean’ subjects (such as in the case of our cohort) 

might influence predisposition to harbouring longer repeat expansions. In other repeat 

expansion diseases – e.g. Huntington’s disease (HD) or other microsatellite diseases, 

including myotonic dystrophy and spinocerebellar  ataxias195 – the presence of specific 

haplogroups in Western European populations occurs with a manifold increase in 

prevalence of repeats compared to other ethnic groups and populations196. Second, 

different genetic risk-architectures underlying different (and possibly genetically more 

homogeneous) subpopulations of patients may exist within the FTLD population. 

In summary, these findings indicate that a significantly higher proportion of FTLD cases, 

with ‘Nordic’ rather than ‘Mediterranean’ genetic ancestry, is likely to develop bvFTLD in 

presence of  ‘intermediate’ and ‘long’ (pathogenic) expansions, whilst ‘long’ (pathogenic) 

expansions are (almost) negligible in PPAs, regardless of ancestry. Clearly, multiple 

factors including genetic heterogeneity, epigenetic changes, ethnicity, as well as 

environmental factors and habits that may exist within and across multicultural cohorts, 

all together, contribute to disease predisposition, onset and progression76,188,197. These 

concepts, reinforced by this study, warrant further characterisation of genetic, 

environmental, and additional clinical measures to fine-tune models able to predict 



108 
 

disease outcome to complement diagnostic criteria, and possibly assist, in the near future, 

in the identification of informative cohorts for tailored clinical trials and the development 

of effective personalised therapies.  
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Chapter 4  

4. Results 

4.1. Stratification of FTLD-risk candidate genes using 

WPPINA and WGCNA 

4.1.1. Introduction 

As described in section 1.4, this thesis proposes a multi-omics network approach 

integrating genetics, transcriptomics and proteomics to investigate the common 

pathogenic mechanisms and their associated genes/proteins underlying Mendelian and 

sporadic forms of FTLD. To this end, protein-protein interaction (PPINs) and gene co-

expression (GCNs) networks were used to identify the susceptibility processes conserved 

across familial and sporadic FTLD cases through the recently developed WPPINA and 

WGCNA pipelines. 

4.1.2. WPPINA and WGCNA 

In 2017 Ferrari et al.97 presented a novel approach, Weighted Protein-Protein Interaction 

Network Analysis (WPPINA), to highlight key functional players within relevant 

biological processes associated with a given trait. This approach is based on the current 

state of the art of genetics and proteomics, using genes known to be associated with a 

given trait (i.e. FTLD) to build multiple layers interactomes and subsequently to identify 

proteins that represent the backbone of biological processes (BP) likely impacted in 

disease pathogenesis97. Most importantly, while such approach generates additional 

knowledge, it also fosters cross-disciplinary work (e.g., genomics, transcriptomics, 

proteomics)198. 

Similarly, other system biology methods have been developed to improve our 

understanding of disease pathogenesis; the possibility of using gene expression profiling 

(Weighted Gene Co-expression Network Analysis [WGCNA]) for diagnostic and 

prognostic purposed has generated much excitement in past few years and has proven to 

be critical to model and characterise biological systems in novel ways152. WGCNA 

describes the correlation patterns among genes across microarray or sequencing data 

and it can be used to find clusters (modules) of highly correlated genes, to relate modules 

to one another and to a certain trait, to calculate module membership measures173. 
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Correlation networks are valuable tools to facilitate network-based gene screening 

methods that have been already successfully used to identify candidate biomarkers and 

therapeutic targets in several biological contexts10,173. In this study I used microarray 

expression data generated from 134 control individuals (UKBEC) and sequencing (whole 

exome sequencing [WES], whole genome sequencing [WGS], RNA-sequencing [RNA-seq]) 

expression data generated from nearly 1000 non-diseased brain tissue (GTEx) to: i) 

evaluate co-expression patterns of FTLD Mendelian genes in frontal cortex (FCTX); ii) 

annotate and highlight biological processes potentially implicated in FTLD pathogenesis; 

iii) identify novel potential risk factors for FTLD. While both these methods have been 

known for some time, the novelty of this approach lies in the unprecedented integration 

of WPPINA and WGCNA, providing a framework for interpreting and leveraging big 

genomic, transcriptomic and proteomic datasets in neurobiology (Figure 4.1). 

 

 

Figure 4.1. Holistic bioinformatics approach employed in this chapter. The scheme exemplifies the holistic 

approach used to define communal functional features across multiple gene(s)/risk marker(s), as opposed to 

studying one gene/risk marker at the time, to interpret genetics and subsequently assist and drive functional studies. 

 

The aims of this chapter is to gain a global perspective on FTLD pathogenesis by 

identifying: i) disease-specific biological processes on the basis of known FTLD 
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Mendelian and GWAS genes and ii) their associated molecular players, to be carried 

forward for hypothesis-driven functional validation using in vitro cellular models. 

 

4.2. Results 

4.2.1. Seeds selection 

For the purpose of this study, 18 Mendelian (familial), and GWAS genes associated with 

the pure FTLD and FTLD-ALS spectrum were selected as ‘seeds’ (Table 4.1) to generate 

two seeded networks (GCN and PPIN). The seeds were selected on the basis of their 

relevance and degree of characterization as reported in the most recent FTLD literature 

reviews9 and FTLD GWAS199 at the beginning of the project (04-02-2019).  

 

gene name 
frequency 

(Mendelian%) 
pathology phenotype 

C9ORF72 common (7-20%) FTLD-TDP pure FTLD 

GRN common (5-11%) FTLD-TDP pure FTLD 

MAPT common (2-11%) FTLD-Tau pure FTLD 

VCP rare (<1%) FTLD-TDP FTLD-ALS 

CHMP2B rare (<1%) FTLD-UPS FTLD-ALS 

SQSTM1 rare (<1%) FTLD-TDP FTLD-ALS 

UBQLN2 rare (<1%) FTLD-TDP FTLD-ALS 

IFT74 rare (<1%) not known; possibly FTLD-TDP FTLD-ALS 

OPTN rare (<1%) FTLD-TDP FTLD-ALS 

CHCHD10 rare (<1%) FTLD-TDP FTLD-ALS 

DCTN1 
rare (<1%) 

not understood; possibly FTLD-
TDP 

FTLD-ALS 

FUS rare (<1%) FTLD-FUS FTLD-ALS 

TARDBP rare (<1%) FTLD-TDP FTLD-ALS 

TBK1 rare (<1%) not known FTLD-ALS 

TIA1 rare (<1%) not known FTLD-ALS 

RAB38 GWAS not known pure FTLD 

HLA-DRA GWAS not known pure FTLD 

TMEM106B GWAS FTLD-TDP pure FTLD 
 

Table 4.1. Mendelian (familial) and GWAS FTLD-ALS genes used as seeds for downstream bioinformatics 

analyses. 

 



112 
 

Of note, although mutations in the FUS and TARDBP genes are more commonly found in 

ALS and ALS-FTLD cases, their protein products FUS and TDP-43 are both known 

pathological hallmarks of the FTLD spectrum, thus these genes are likely to hold 

functional relevance in the pathogenesis of FTLD. For this reason, they were included in 

the downstream bioinformatics analyses (Figure 4.2).  

 

Figure 4.2. Workflow exemplifying the bioinformatics pipeline implemented in the present study. 

 

4.2.2. Construction of the gene co-expression 

networks (WGCNA) 

I performed the WGCNA with a primary focus on frontal cortex (FCTX) to investigate any 

relationship between FCTX expression networks and FTLD Mendelian genes and to 

identify gene co-expression groups (modules). I used the CoExp Web application178 to 

extract the gene co-expression modules (in FCTX) containing the FTLD seeds and 

retrieved 19 distinct modules of interest (Figure 4.3). 
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Figure 4.3. Gene co-expression patterns for the FTLD genes (seeds) and their relevance within modules. 
Genes showing a substantial co-expression overlap across the gtexv6 and UKBEC databases are framed. Module 
membership (MM) values are displayed.  

 

Of note, co-expression data were sourced from two different transcriptomics databases: 

GTEx V6 from which 9/19 modules were obtained and UKBEC providing 10/19 modules. 

The genes that were not found in both datasets were excluded from further analyses. 

These were CHCHD10, which was found in GTEx V6 only (‘gtexv6 darkred’), HLA-DRA, 

which was found in UKBEC only (‘UKBEC grey60’), and RAB38, which was not present in 

any of the two. As the ‘UKBEC grey60’ module did not present with the expression of any 

other FTLD Mendelian gene, it was excluded from further analyses. As a result, I obtained 

in a list of 18 modules of interest. 

I assessed co-expression profiles for the most relevant modules (‘relevant’ are defined 

those modules containing one or more FTLD-genes with MM ≥ 0.5; see Methods section 

for details)93. Interestingly, I identified the ‘conserved’ modules as those pairs of modules 

that, independently from their derivation (from GTEx or UKBEC) showed similar results. 

In particular ‘gtexv6 brown’ and ‘UKBEC red’ were identified as a conserved pair both 
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containing UBQLN2 (MMgtexv6=0.9441; MMUKBEC=0.5721) C9ORF72 (MMgtexv6=0.8238; 

MMUKBEC=0.7562) and OPTN (MMgtexv6=0.8715; MMUKBEC=0.5724). I observed similar co-

expression patterns also in the modules ‘gtexv6 lightcyan’ and ‘UKBEC yellow’, both of 

which included CHMP2B (MMgtexv6=0.7075; MMUKBEC=0.7284) and TMEM106B 

(MMgtexv6=0.6635; MMUKBEC=0.8173). 

 

4.2.3. Construction of the PPI FTLD network 

(WPPINA) 

The FTLD seeds (Table 4.1) were used to download the direct PPI from peer review 

literature (first layer FTLD interactome). The first layer interactome for each seed was 

built based on experimentally proven interactions (i.e., biochemical, physical, imaging), 

whilst interactions inferred from text mining algorithms or de novo prediction were 

excluded. PPIs were downloaded from the PINOT platform and filtered as described in 

the Material and methods section to remove non-validated interactions and ubiquitins.  

First layer interactors of each seed were subsequently employed for downloading the 

second layer of interactions via the PINOT server. The second layer was then filtered and 

processed as described for the first layer. The complete FTLD-PPIN was therefore 

composed of the FTLD seeds, their direct interactors (first layer FTLD interactome) and 

the proteins interacting directly with the first layer (second layer interactome). The 

complete FTLD-PPIN was composed of 13274 single nodes and 87543 edges (Figure 4.4) 

and represents the state-of-the-art protein interactors gravitating around the FTLD-

spectrum genes/proteins.   
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Figure 4.4. Entire-FTLD-PPIN. The network shows the seeds and their first and second layer interactors. pink, 

seeds; turquoise, first + second layer interactors.  
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There were no disconnected components in the second layer, showing great cohesion of 

the complete FTLD-PPIN. Notably, the second layer construction is not directly influenced 

by the seeds, because the nodes within such layer are extracted on the basis of the first 

layer interactors rather than the seeds, that indeed no longer act as hubs (this role being 

undertaken by the first layer genes/proteins). Inter-interactome hubs (IIHs, i.e., ‘hub’ 

proteins having special topological and functional significance) were extracted from the 

complete FTLD-PPIN by creating a pivot table to calculate the recurrence of every node 

in each seed’s interactome (inter-interactome degree) and plotting a degree distribution 

graph (Figure 4.5).  

 

 

Figure 4.5. Inter-interactomes degree distribution. The number of nodes (x axis) is plotted as a function of the 

number of seed interactomes they belong to (y axis). The interactors shared across a minimum of 12 different seeds 

interactomes (highlighted in red) were selected as IIHs.  

 

Specifically, IIHs are defined as those proteins within the FTLD-PPIN that are interactors 

shared across a minimum of 12 different seeds (12/18); IIHs are therefore able to bridge 

and keep the cohesion for at least 66% of the entire network. The analysis led to the 

selection of 26 nodes to be defined IIHs. I combined the list of different seeds bridged by 
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the IIHs reaching a total number of 17/18 seeds connected via the 26 IIHs (each of the 

IIHs connecting at least 12 different seeds) (Table 4.2).
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IIHs inter interactome 
degree 

C9ORF72 CHCHD10 CHMP2B DCTN1 FUS GRN HLA-DRA IFT74 MAPT OPTN SQSTM1 TARDBP TBK1 TIA1 TMEM106B UBQLN2 VCP 

EGFR 14 1 - - 1 1 1 1 1 1 1 1 1 1 1 1 - 1 

PDHA1 14 1 1 1 1 1 1 - 1 - 1 1 1 1 1 - 1 1 

VCAM1 14 - 1 1 1 1 1 - 1 1 1 1 1 1 1 - 1 1 

VCP 14 - 1 1 1 1 1 - 1 1 1 1 1 1 1 - 1 1 

HSPA5 14 - - - 1 1 1 1 1 1 1 1 1 1 1 - 1 1 

ARRB2 13 - 1 1 1 1 1 - - 1 1 1 1 1 1 - 1 1 

CTNNB1 13 1 1 - 1 1 - - - 1 1 1 1 1 1 1 1 1 

ESR1 13 - 1 1 - 1 1 - 1 1 1 1 1 1 1 - 1 1 

GRB2 13 - 1 - 1 1 1 - 1 1 1 1 1 1 1 - 1 1 

HNRNPD 13 - 1 1 1 1 1 - 1 1 1 1 1 1 1 - 1 - 

HSP90AA1 13 - 1 1 1 1 1 - 1 1 1 1 1 1 1 - - 1 

HSPA4 13 - 1 - 1 1 1 - 1 1 1 1 1 1 1 - 1 1 

HSPA8 13 - 1 1 1 1 1 - 1 1 1 1 1 1 1 - - 1 

SQSTM1 13 1 1 - 1 1 1 - 1 1 1 1 1 1 - - 1 1 

YWHAZ 13 - 1 - 1 1 1 - 1 1 1 1 1 1 1 - - 1 

ACTB 12 - - 1 1 1 1 - 1 1 1 1 1 1 - - 1 1 

BAG6 12 - - - 1 1 1 - 1 1 1 1 1 1 1 - 1 1 

CDK2 12 - - 1 1 1 1 - - 1 1 1 1 1 1 - 1 1 

EP300 12 - - 1 1 1 - - 1 1 1 1 1 1 1 - 1 1 

FLNA 12 - - 1 1 1 1 - 1 1 1 1 1 1 1 - - 1 

HSP90AB1 12 - - - 1 1 1 - 1 1 1 1 1 1 1 - 1 1 

HSPB1 12 - - - 1 1 1 - 1 1 1 1 1 1 1 - 1 1 

TARDBP 12 - - - 1 1 1 - 1 1 1 1 1 1 1 - 1 1 

TCP1 12 - - 1 1 1 1 - 1 1 1 1 1 1 1 - - 1 

TP53 12 1 - 1 - 1 1 - 1 1 1 1 1 1 - - 1 1 

XRCC6 12 - - 1 1 1 1 - 1 1 1 1 1 1 1 - - 1 

 

Table 4.2. Inter-interactome hubs (IIHs) (n=26) interacting with ≥12 seeds interactomes.
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Notably, the interactomes of RAB38 showed no interaction with any of the IIHs. This 

could be due to the fact that: i) these proteins do not genuinely share interactors with this 

FTLD seed or ii) literature does not report much information about it because it has not 

been extensively studied yet (ascertainment bias). Intriguingly, as shown in the previous 

section, gene co-expression analyses (WGCNA) showed poor co-expression module 

assignment for the same seed. 

The IIHs were used to extract the most interconnected core of the network (core-FTLD-

PPIN) containing the 26 IIHs, the seeds they connect to and any additional protein that 

act as a bridge between the seeds and the IIHs. The core-FTLD-PPIN was composed of 

410 single interactors, connected by 1570 edges and 17 seeds (out of the total number of 

18 FTLD seeds) (Figure 4.6).  
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Figure 4.6. Workflow to generate the core-FTLD-PPIN. IIHs plus their first- and second-layer interactors 

combined in the core-FTLD-PPIN (n=410). Briefly, seeds’ human protein-protein interactions (PPI) were downloaded 

from the PINOT platform. Only PPIs presenting with a confidence score > 2 (e.g., one publication + experimental 

validation) were retained. PPIs with ubiquitins (UBB, UBC) as well as nodes interacting with less than 11 seeds were 

removed from the analyses. The resulting PPIs formed the core FTLD-PPIN. Pink = seeds, green = core FTLD 

interactome. 

 

While often biological networks can be partitioned into topological and /or functional 

clusters (modules) on the basis of the connectivity and functional similarity of their 

nodes, the core-FTLD-PPIN constitutes already a functional module per se, as it 

recapitulates all of the (known) genetic and pathological features of FTLD. Indeed, it 

presents with a high density of connections among the seeds and relatively few private 

partners, showing great cohesiveness and connectivity among the core FTLD proteins 
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and thus supporting the hypothesis that they could share a number of common 

mechanisms underlying FTLD pathology. 

 

4.2.4. Functional enrichment and prioritisation of 

FTLD-risk genes/pathways 

Functional enrichment was performed for the proteins in the core-FTLD-PPIN using 

gProfiler. All of the significantly enriched Gene-Ontology Biological Processes (GO-BP) 

terms (p < 0.05) were grouped firstly into semantic classes and then into functional 

blocks to ease the evaluation of the results. The analysis of the structure and content of 

the functional blocks revealed notable BPs, collectively implicating: (i) adhesion, (ii) cell 

cycle, (iii) cell death, (iv) chromatin, (v) development, (vi) DNA metabolism, (vii) enzyme, 

(viii) exocytosis, (ix) histone, (x) immune system, (xi) intracellular organisation, (xii) 

membrane, (xiii) motility, (xiv) protein metabolism, (xv) response to stimulus, (xvi) RNA 

metabolism, (xvii) synapse, (xviii) telomers, (xix) transport, (xx) waste disposal (Figure 

4.7).  
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Figure 4.7. Functional enrichment analysis of core-FTLD-PPIN. Functional enrichment analysis extrapolates the functions that are driven by proteins shared at least by 66% of 

the seeds interactomes.  The bar charts show the proportion of proteins enriched for specific cellular processes and their associated GO term size, which corresponds to the number 

of genes/proteins annotated for a specific GO term. Waste disposal showed the smallest term size (term size = 6), followed by protein and RNA metabolism (term size = 7) and cell 

death (term size = 8), implying that these processes are likely highly specific to FTLD pathogenesis.
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On the basis of this analysis, these functional blocks indicated susceptibility processes 

shared by at least 66% of the core-FTLD-PPIN seeds suggesting processes of critical 

relevance to deepen our understanding of the molecular mechanisms underlying FTLD 

pathogenesis. The semantic classes contributing to (iii), (xiv), (xv) and (xx) revealed 

convergent information, particularly cell death-related activities indicated apoptotic 

processes in response to both ER and oxidative stress and included regulation of 

mitochondrial activity in the apoptotic signalling pathway. Interestingly, these 

combinations suggest a univocal process, such as that of endogenous/exogenous cellular 

stress response resulting in either the positive regulation of mitochondria degradation 

pathway or cell death (apoptosis), as relevant BPs underlined by elements of the core-

FTLD-PPIN. As a result, these semantic classes suggest the critical importance of waste 

disposal and apoptosis-related pathways in cell survival and homeostasis in an FTLD-risk 

scenario. To further dissect the relevance of the semantic classes for FTLD, I not only 

evaluated the proportion of enriched proteins (%) enriched for a specific cellular function 

but also ranked the ‘term size’ of each enrichment. The term size is a GO  attribute which 

illustrates the number of genes/proteins annotated for a specific GO term (or pathway, 

i.e., to FTLD-specific processes): the greater the size of the GO term, the broader and non-

specific it will be (many genes have been annotated for that term), while the least 

genes/proteins annotated for a specific term, the more specific the enrichment will be 

(few genes have been annotated for that term). Therefore, it could be argued that ‘term 

size’ is a proxy for the specificity of the GO term and that it is inversely proportional to 

the specificity. Out of a total of 19 cellular processes, waste disposal showed the smallest 

term size (term size = 6), followed by protein and RNA metabolism (term size = 7) and cell 

death (term size = 8), implying these four pathways as highly specific key biological 

processes implicated in FTLD pathogenesis and potential candidates for functional 

validation.  

I then proceeded with functional enrichment for every WGCNA module to gain insight 

into their biological significance in the context of FTLD using gProfiler and then grouped 

all of the significantly enriched GO-BP terms (p ≤ 0.05) into semantic classes, similarly to 

what was done to WPPINA enrichments (Figure 4.8). 
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Figure 4.8. Functional enrichment analysis of GCNs. The bar chart shows the number of modules enriched for a specific cellular process their associated GO term size, which 

corresponds to the number of genes/proteins annotated for a specific GO term. Immune system showed the smallest term size (term size = 15), followed by enzyme (term size = 21) 

and waste disposal (term size = 23), implying that these processes are likely highly specific to FTLD pathogenesis.
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Between 10 and 30% of the genes in each module was lost because it was not recognised 

by gProfiler, due to ambiguous GO ID or misleading annotation within GTEx and UKBEC 

datasets. Two of the modules (‘UKBEC royalblue’; ‘UKBEC blue’) were removed from the 

analysis because gProfiler did not provide any significant enrichment. The module 

‘gtexv6 magenta’ was also removed because the GO-BPs did not survive quality control. 

As a result, I obtained a list of GO-BPs enriched for 15 modules of interest (Table 4.3). 

 

Module 
Genes lost in 

gProfiler 
Module size % Loss 

gtexv6 brown 306 2305 13.27% 

UKBEC black 106 808 13.11% 

UKBEC blue 440 1816 24.22% 

gtexv6 cyan 110 952 11.55% 
UKBEC darkgreen 99 634 15.61% 

gtexv6 
greenyellow 

134 1218 11% 

gtexv6 lightcyan 160 835 19.16% 
UKBEC lightyellow 89 669 13.30% 

gtexv6 magenta 363 1143 31.75% 

UKBEC magenta 101 785 12.86% 
gtexv6 

midnightblue 
215 919 23.39% 

gtexv6 red 257 1464 17.55% 
UKBEC red 107 877 12.20% 

UKBEC royalblue 172 561 30.65% 

UKBEC tan 142 580 24.48% 
gtexv6 turquoise 459 2045 22.44% 
gtexv6 darkred 291 1474 19.70% 

UKBEC yellow 92 719 12.79% 
 

Table 4.3. Absolute values and associated percentages of gene losses in gProfiler for each module. Framed are 

the modules that were not enriched for any particular BP and that were dropped as a result.  

 

After having performed functional enrichment in gProfiler, generic terms (classified in 

the functional blocks of: General – Metabolism – Physiology) were discarded from further 

analyses. When considering the totality of the modules, functional enrichment showed 

the higher proportion of modules being related to protein metabolism (n = 10 modules) 

and transport (n = 9 modules), followed by waste disposal and RNA metabolism, which 

were both enriched for by n = 8 modules. Functional annotation analysis for the modules 
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(‘gtexv6 brown’, ‘UKBEC red’) containing UBQLN2, C9ORF72 and OPTN mainly pointed to 

(i) protein metabolism entailing proteolysis and protein localisation, (ii) transport, 

particularly hinting to exocytosis and ER to Golgi vesicle-mediated transport, (iii) 

intracellular organisation associated with organelle biogenesis and localisation, as well 

as waste disposal-related processes (i.e. macroautophagy, cellular response to unfolded 

proteins and ubiquitin-dependent protein catabolic processes) when analysing the 

‘UKBEC red’ module. Interestingly, the CHMP2B-TMEM106B-containing modules showed 

a similar functional enrichment, indicating protein metabolism, transport and waste 

disposal as the most significantly enriched BPs; major overlap between GO terms was 

observed across the four modules, particularly intriguing is the frequent recurrence of 

terms related to Golgi vesicle-trafficking activities (in transport), which could hint to a 

subtle involvement/function of the Golgi apparatus in FTLD-related pathways.  

Also in this instance, I sought to further dissect the relevance of the semantic classes for 

FTLD by evaluating the ‘term size’ of each enrichment, which revealed high enrichment 

specificity for modules associated to immune system (n = 15), enzyme (n = 21) and waste 

disposal (n = 23). It is interesting to notice how waste disposal clearly seems a recurring 

biological process in two independent analyses, which cross-support each other and 

provide substantial evidence that this process might underpin FTLD pathogenesis. 

Therefore, I pursued the waste disposal-related pathways for functional validation, which 

are among the processes that have been shown by several studies to hold high relevance 

in neurodegeneration, including FTLD78,200, and that I here particularly prioritized in the 

context of FTLD. All of the GO terms assigned to the waste disposal functional block, as 

well as the complete list of proteins directly contributing to such enrichment (n=165) 

were extracted from the enrichment results obtained from the core-FTLD-PPIN 

functional annotation (Figure 4.7). Similarly, all the GO terms classified as waste disposal 

from the functional annotations of the WGCNA modules containing the core-FTLD-PPIN 

seeds were extracted (Figure 4.8).  
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Of note, the modules (i) ‘UKBEC darkgreen’, (ii) ‘gtex lightcyan’, (iii) ‘UKBEC lightyellow’, 

(iv) ‘gtex midnightblue’’, (v) ‘UKBEC tan’, (vi) ‘gtex turquoise’, were not enriched for 

waste disposal, so they were not included in further analyses. Finally, the waste disposal 

GO-BP terms obtained from the analysis of the core-FTLD-PPIN and the co-expression 

modules were compared. The greatest level of overlap was identified for two critical 

semantic classes: autophagy – mitophagy (Atg – Mito) and ubiquitin proteasome system 

(UPS) (Figure 4.9). 

 

 

Figure 4.9. Functional enrichment for waste disposal of WPPINA and WGCNA. WGCNA modules and WPPINA 

proteins (y axis) enrichments are shown for the most relevant waste disposal semantic classes (x axis). The strength 

of the contribution to the enrichment is shown by the colour gradient, with yellow indicating a stronger enrichment 

(more GO terms associated to a specific BP) and dark purple indicating a lower enrichment (fewer GO terms 

associated to a specific BP). Blank fields indicate no enrichment at all for those semantic classes/modules.  

 

Figure 4.9 indicates there are overlaps between functional blocks in WGCNA and 

WPPINA functional enrichments. Their associated GO terms were manually curated in 

order to double-check that the semantic classes had been accurately associated to the GO 
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terms. Finally, the 157 genes/proteins contributing to the functional enrichment in Atg-

Mito/UPS pathways were used to generate a highly specific network (Atg-Mito/UPS FTLD 

PPIN) shown in Cytoscape (Figure 4.10).  
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Figure 4.10. Topological features and functional patterns of the Atg - Mito/UPS-FTLD-PPIN. The Atg – Mito/UPS FTLD PPIN network is a subset of the waste disposal macro-

network including only nodes that show functional enrichment for the Autophagy – Mitophagy (Atg – Mito) pathways and the Ubiquitin Proteasome System (UPS) (all shown in 

green). Some of the nodes composing this network had previously identified as seeds (blue, n=7) and IIHs (orange circle, n=15). 
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In order to functionally validate the waste disposal-related pathways prioritized in the 

context of FTLD, I sought to prioritize a small set of candidate FTLD-risk genes/proteins 

(from the Atg-Mito /UPS-FTLD-PPIN) to be modelled in a wet-lab experimental setting. 

To aid the prioritisation of the candidate genes/proteins, I created a number of ranking 

variables to filter the Atg-Mito /UPS-FTLD-PPIN, which we applied to each node as 

follows: (i) how many seeds interactomes is each node connecting (n=x), (ii) is the node 

enriched for Atg – Mito in WPPINA analyses (yes=1, no=0), (iii) is the node enriched for 

UPS in WPPINA analyses (yes=1, no=0), (iv) is the node found in any UKBEC module 

(yes=1, no=0), (v) is the node found in any GTEx module (yes=1, no=0), (vi) how many 

seeds are co-expressed in its UKBEC module (n=x), (vii) how many seeds are co-

expressed in its GTEx module (n=x), (viii) is the node enriched for Atg – Mito in its UKBEC 

module (yes=1, no=0), (ix) is the node enriched for UPS in its UKBEC module (yes=1, 

no=0), (x) is the node enriched for Atg – Mito in its GTEx module (yes=1, no=0), (xi) is 

the node enriched for UPS in its UKBEC module (yes=1, no=0), (xii) is the node expressed 

in FCTX in UKBEC and to what extent (n=x), (xiii) is the node expressed in FCTX in GTEx 

and to what extent (n=x).  

The genes/proteins that were previously shown to be pathogenic for neurodegenerative 

disorders (i.e., APP, LRRK2, APOE, SNCA, HTT) were removed, as there is already strong 

evidence supporting their involvement in the pathogenesis of one or more 

neurodegenerative diseases. A final score was assigned to each node based on the sum of 

the binary scores of the functional enrichments obtained from WPPINA+WGCNA. The top 

nine genes/proteins with the highest final score were selected as prioritised genes. 

Finally, their expression levels in brain were checked (in GTEx and UKBEC) to make sure 

that the values were high enough to allow successful in vitro modelling of the candidate 

genes/proteins. I then highlighted the three candidate genes/proteins with the highest 

score (n≥3): CUL2, STUB1 and CDC37 (Figure 4.11). 
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Figure 4.11. Workflow to prioritise FTLD-risk candidate genes and Venn diagram showing the three prioritised nodes (STUB1, CUL2 and CDC37).

Prioritised nodes Prioritisation pipeline 
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These genes represent the molecular bridges connecting the majority of the FTLD 

Mendelian genes and have been prioritised for their involvement in the UPS and Atg – 

Mito pathways, which are the most relevant GO terms within the FTD functional 

enrichment. As a result, all three genes are predicted to be relevant in both biological 

processes, which means that their functional validation can be conducted in both 

pathways. In this study, the prioritised genes/proteins were first characterised in the Atg 

– Mito pathway; future work will be necessary to evaluate their role in the UPS pathway.
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4.2.5. Re-evaluation of WGCNA to improve FTLD in 

vitro modelling 

As FTLD presents with a particularly heterogeneous clinical and pathological phenotype, 

I sought to further define the functional environment of the prioritised candidate 

genes/proteins by investigating: i) their relationship with the Atg – Mito pathways; ii) 

their potential association with the main FTLD Mendelian genes (e.g., C9ORF72, MAPT, 

GRN). This re-evaluation will guide and support a more hypothesis-driven investigation 

prior to functional validation by suggesting a set of genetic and molecular markers likely 

to be involved in the functional environment of the candidate genes/proteins in the 

context of FTLD/Atg – Mito. 

First, I sought to investigate the relationship between the prioritised candidate 

genes/proteins and mitophagy, using the PINK1 gene as a representative marker for 

PINK1-dependent mitophagy. For this analysis, I used the previously generated GCNs in 

both GTEx V6 and UKBEC for FCTX (Table 4.4).  

 

Gene Category MM 

PINK1 
gtexv6 darkred 0.7 

UKBEC darkturquoise 0.2 

STUB1 
gtexv6 darkred 0.8 

UKBEC magenta 0.5 

CDC37 
gtexv6 red  0.8 

UKBEC black 0.5 

CUL2 
gtexv6 brown 0.9 

UKBEC red 0.8 
 

Table 4.4. Comparing co-expression patterns between PINK1 (Mito marker) and the prioritised genes in 

FCTX. For each gene, GTEx V6 and UKBEC module names and associated module membership (MM) values are 

reported. 

 

By further dissecting the associated GCNs, it can be observed that PINK1 and STUB1 fall 

in the same ‘gtexv6 darkred’ module (MMPINK1=0.7; MMSTUB1=0.8), suggesting a potential 

functional link between these two genes. Interestingly, in this instance UKBEC did not 

replicate these results. 
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By contrast, CDC37 and CUL2 can be found into the ‘gtexv6 red’ and ‘gtexv6 brown’ 

modules respectively (MMCDC37=0.8; MMCUL2=0.9), implying that neither of them might be 

associated to the mitophagy pathway.  

Another useful feature of the CoExp web application is that GCN inter-modular similarity 

in terms of gene expression can be visually inspected using the homonym package in R. 

To investigate the higher order organisation among gene co-expression modules in GTEx 

V6 I hierarchically clustered module eigengenes (MEs), which are defined as the first 

principal component of the expression matrix of the corresponding module. To guarantee 

scale free topology for the network, WGCNA generates an adjacency matrix and a 

Topology Overlap Matrix (TOM), with 1-TOM being used as the ‘distance’ or ‘height’ 

between modules for hierarchical clustering. The smaller the distance (1-TOM, y-axis) 

between different modules, the greater their similarity. In summary, the modules hanging 

from the same root are very similar in terms of expression while they tend to be 

increasingly different the further apart they lie (Figure 4.12).  
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Figure 4.12. Dendrogram comparing inter-modular relationships among GTEx V6 modules. The dendrogram 

shows the results of hierarchically clustering gtexv6 module eigengenes (MEs) to examine higher-order relationships 

between the modules. “Leaves” along “branches” represent MEs. The y-axis represents network distance as 

determined by 1 – TOM, where values closer to 0 indicate greater similarity between main sources of expression 

perturbation in the modules.  

 

In this instance I observed that the ‘gtexv6 darkred’ (which includes both PINK1 and 

STUB1) and the ‘gtexv6 red’ (which includes CDC37) modules are closely related in the 

Eigengene correlation dendrogram (height [network distance, 1-TOM] = 0.1), indicating 

greater similarity between main sources of expression perturbation in such modules, and 

therefore in the genes composing them. By contrast, the ‘brown’ modules in gtexv6 

(where CUL2 falls into) seems to not to be related in any way to the ‘gtexv6 darkred) 

module as it presents with a considerable network distance. Notably, further 

investigation of the inter-modular connectivity between UKBEC modules did not lead to 

validation of what found in GTEx V6, as the ‘UKBEC black’ and the ‘UKBEC darkturquoise’ 

modules, where CDC37 and PINK1 are found respectively, are very distant from each 

other (Figure 4.13).  
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Figure 4.13. Dendrogram comparing inter-modular relationships among UKBEC modules. The dendrogram 

shows the results of hierarchically clustering UKBEC module eigengenes (MEs) to examine higher-order relationships 

between the modules. “Leaves” along “branches” represent MEs. The y-axis represents network distance as 

determined by 1 – TOM, where values closer to 0 indicate greater similarity between main sources of expression 

perturbation in the modules.  

 

Furthermore, similarly to previous analyses, I sought to investigate the relationship 

between the prioritised candidate genes/proteins and the main Mendelian FTLD genes, 

namely C9ORF72, MAPT and GRN, in order to guide a more targeted experimental 

validation in an FTLD model (Table 4.5). 
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Gene Category MM 

C9ORF72 
gtexv6 brown 0.8 

UKBEC red 0.7 

MAPT 
(LOC100130148) 

NA NA 

UKBEC black 0.8 

GRN 
gtexv6 cyan 0.7 

UKBEC black 0.7 

STUB1 
gtexv6 darkred 0.8 
UKBEC magenta 0.5 

CDC37 
gtexv6 red  0.8 

UKBEC black 0.5 

CUL2 
gtexv6 brown 0.9 

UKBEC red 0.8 
 

Table 4.5. Comparing co-expression patterns between the FTLD Mendelian and the prioritised genes in FCTX. 

For each gene, GTEx V6 and UKBEC module names and associated module membership (MM) values are reported. 

 

The two more notable features that can be observed from Table 4.5 are that: i) C9ORF72 

and CUL2 co-expression pattern in the GTEx V6 dataset is fully mirrored by UKBEC, 

respectively in the ‘gtexv6 brown’ (MMC9ORF72=0.8; MMCUL2=0.9) and ‘UKBEC red’ 

(MMC9ORF72=0.7; MMCUL2=0.8) modules, strongly implying that they could be co-expressed 

and thus involved in the same biological processes; ii) CDC37 is co-expressed with both 

MAPT and GRN in the ‘UKBEC black’ (MMCDC37=0.5; MMMAPT=0.8; MMGRN=0.7) module, 

suggesting that its involvement in FTLD might be associated to mutations associated to 

either gene. Notably, LOC100130148 currently acts as a surrogate gene ID for MAPT in 

the CoExp application and has been found to be expressed in the UKBEC dataset only. 

 

4.3. Discussion  

The objective of my PhD project was to test whether a holistic approach integrating 

genetics, transcriptomics and proteomics is an effective strategy to predict disease-

specific processes on the basis of known FTLD-risk genes and, as a result, to guide and 

support hypothesis-driven functional validation in a cell biology setting. Future 

implementation of this very pipeline to identify and further investigate other key 

biological process implicated in the FTLD-trait (i.e., protein metabolism, DNA damage 

response, immune system) might be suggested if this approach is successful. 
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In this chapter, I used a WGCNA-WPPINA-combined approach to integrate knowledge 

generated within the related yet distinct field of genomics and proteomics, aiming at 

identifying and highlighting key protein players and biological processes in FTLD 

pathogenesis.  

As reported above, I constructed the entire-FTLD-PPIN first and second layer interactors 

for 18 seeds (C9ORF72, DCTN1, FUS, GRN, IFT74, MAPT, OPTN, SQSTM1, TARDBP, TIA1, 

TBK1, VCP, TMEM106B, UBQLN2, CHMP2B, HLA-DRA, CHCHD10 and RAB38). I first 

analysed the entire-FTLD-PPIN and identified 26 IIHs - the nodes that bridge 66% of the 

complete network - that hold structural, and possibly functional, significance in the 

disease context. Interestingly, several genetic and functional studies reported that many 

of such IIHs (VCAM1, VCP, HSPA8, CDK2, EP300, TCP1, ESR1, TP53, TARDBP, SQSTM1, 

CDK2, PDHA1, GRB2, YWHAZ, ARRB2, FLNA, HSP90AA1, HSP90AB1, HSPA4, HSPB1; 

20/26 [77%])93,201–209 have been widely associated with dementia (across the spectrum 

of AD, dementia with Lewy bodies [DLB], vascular, and HIV-1-induced dementia). It is 

remarkable to note that 9 (VCAM1, VCP, HSPA8, CDK2, EP300, TCP1, ESR1, TP53, CDK2) 

IIHs replicated the findings from a previous WPPINA-WGCNA study93, further validating 

the inference power of our approach. I expect that the remainder of the IIHs (HSPA5, 

HSPA8, EGFR, ACTB, BAG6, XRCC6) for which no link to dementia is established yet, might 

hold relevance to FTLD or dementias and should be prioritised in both genetic 

assessments and for further investigation and characterisation at the molecular level.  

From a functional perspective, I assessed BPs for the nodes composing the relevant 

WGCNA modules, the core-FTLD-PPIN and subsequently the Atg - Mito/UPS-FTLD-PPIN. 

The first analysis revealed up to 21 BPs, strongly implying the following susceptibility 

processes: (i) protein metabolism, (ii) transport, (iii) intracellular organisation, (iv) waste 

disposal. Even more strikingly, I observed that these four functional blocks highlighted by 

my gene co-expression data through WGCNA replicated the results I obtained through 

WPPINA, in particular from the functional enrichment of the core-FTLD-PPIN, implying 

the potential extent of the translation of co-expression patterns into the protein domain. 

I therefore gather that these four functional blocks are, collectively, the most common 

BPs associated with the entire-FTLD-PPIN and are therefore likely to represent the core 

functional architecture impacted in FTLD for a proportion of cases. Among these 

functional blocks, I identified waste disposal as the most biologically intriguing and data-

driven BP. Waste disposal encompasses GO terms, such as Atg - Mito and UPS (particularly 
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referring to ubiquitin-dependent catabolic processes, macroautophagy and cellular [ER] 

response to misfolded proteins [UPR]), that seem to be acting in a synergistic fashion: 

activation of UPR causes transient attenuation of protein synthesis, increased capacity 

for protein trafficking and processing through ER-associated degradation (ERAD) and 

macroautophagy78,200. These are the BPs I suggest being worthy of attention for further 

investigation and characterisation at the molecular level. 

I further assessed WGCNA and WPPINA together and not only I identified, again, a high 

level of overlap between Atg - Mito and UPS -associated GO terms within the waste 

disposal functional block, but also a considerable number of nodes shared across the two 

BPs, further confirming that Atg - Mito and UPS might represent sensitive FTLD-risk 

pathways to be targeted for wet-lab validation. 

These results imply that the identical biological processes and/or nodes defining the 

overlapping genes/proteins between WGCNA and WPPINA represent the elements 

where the transcriptome (WGCNA) and the proteome (WPPINA) fully match in a cross-

supportive fashion93, lending support to the inference that these very elements are key 

functional factors in FTLD to be carried forward in the cell biology setting for hypothesis-

driven functional validation. This all together reinforces the view that this pipeline is able 

to extract and integrate orthogonal information contributing to the generation of novel 

and more comprehensive awareness about the implication of genes/proteins in the 

pathobiology of a trait.  

Furthermore, I developed a pipeline which integrates convergent multi-omics data to 

prioritise key functional players implicated in complex disease traits. This pipeline is 

helpful to emphasise pivotal components/hallmarks (genes, proteins, BPs) of disease 

pathogenesis (i.e., FTLD) and yields a comprehensive view of the biological context of 

disease. In the current study, I identified three candidate genes/proteins (STUB1, CDC37, 

CUL2) that are highly shared, through WPPINA and WGCNA analyses, by the FTLD seeds 

interactomes and transcriptomes, and that are enriched for FTLD-risk processes, 

corroborating their structural significance within such processes and, most importantly, 

suggesting that they may hold functional relevance in FTLD. These three genes will be 

carried forward for functional validation in a wet-lab experimental setting. 
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At present, in vitro modelling of complex diseases, such as neurodegenerative disorders, 

presents with many challenges. The fact that multiple genetic and environmental factors 

variably contribute to disease pathogenesis makes it very difficult to design a functional 

model that truly recapitulates most of the pathogenic signatures of disease. As FTLD 

presents with a particularly heterogeneous clinical and pathological phenotype, I sought 

to further define the functional environment of the prioritised candidate genes/proteins 

by re-evaluating their co-expression profiles and their associated modules’ relatedness. 

Several studies have shown that having more information about the connection 

(adjacency) between two nodes and/or two modules and about their topological overlap 

provides a more robust and sensitive measure of interconnectedness, informing on their 

degree of belonging to the same functional class210. With this in mind, I was particularly 

interested in investigating the candidate genes/proteins’ relationship with the Atg – Mito 

pathways and their potential association with the main FTLD Mendelian genes (e.g., 

C9ORF72, MAPT, GRN), in order to better guide and support a more hypothesis-driven 

investigation prior to functional validation. This characterisation will be helpful to 

predict which genetic and molecular markers are likely to be involved in the functional 

environment of the candidate genes/proteins and leverage them in the context of 

FTLD/Atg – Mito during experimental validation. 

A further dissection of the FTLD-GCNs in FCTX revealed that PINK1 and STUB1 fall into 

the same ‘gtexv6 darkred’ module, suggesting that they likely share similar 

transcriptional expression patterns and therefore they are likely to regulate similar 

biological processes (i.e., PINK1-dependent mitophagy). Few studies have already 

reported about the role of STUB1 in mitochondrial regulation and clearance in response 

to stress106,211, in mitochondrial homeostasis, morphological reorganisation and re-

localisation within the cell106,211, proteasomal degradation (UPS)212 and autophagy213,214, 

cross-supporting the co-expression data I obtained and thus reinforcing its strong 

functional implication in mitophagy. It is worth noting that, out of the three candidate 

genes/proteins, STUB1 is the one that has been most extensively studied and well-

characterised, which implies that I might be incurring in an ascertainment bias by 

prioritising this gene over the others. 

By contrast, CDC37 and CUL2 fall into the ‘red’ and ‘brown’ modules respectively in GTEx 

V6, suggesting different co-expression patterns from PINK1. Interestingly, by 

hierarchically clustering the GTEx V6 modules in FCTX, I observed that the ‘gtexv6 red’ 
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and the ‘gtexv6 darkred’ modules, where CDC37 and PINK1 (and STUB1) fall into 

respectively, are very closely related in the Eigengene correlation dendrogram, indicating 

a great degree of topological overlap and thus functional similarity across the genes 

composing them. These results are supported, although to a lesser extent than for STUB1, 

by literature, which shows that PINK1 is a client kinase of CDC37 and their interaction is 

crucial for PINK1 stability and as a result for mitochondrial homeostasis215–218. Although 

not fully characterised yet, the relationship between CDC37 and mitophagy is intriguing 

and it would be interesting to follow up in a wet-lab experimental setting.  

By contrast, CUL2 exhibits the weakest link to PINK1 and generally mitophagy: as an E3 

ubiquitin ligase, it has been shown to act as a key player in responding to hypoxic 

stress219,220 and clearance of misfolded protein aggregates221 but according to current 

literature it does not seem to be involved in mitochondrial clearance in any way.  

These results further reinforce the hypothesis of a potential involvement of these three 

genes/proteins, with a particular focus on STUB1 and CDC37, in PINK1-dependent 

mitophagy and supports their further investigation in this molecular pathway. 

Further re-evaluation of the GCNs showed that C9ORF72 and CUL2 are co-expressed in 

both the GTEx V6 and the UKBEC datasets. Replication of these data in two different 

datasets (GTEx V6 and UKBEC) increasingly strengthens the idea of a potential link 

between C9ORF72 and CUL2. Interestingly, Uchida et al.221 had identified CUL2 as a novel 

ubiquitin ligase for fragmented forms of TDP-43, which is a typical protein inclusion 

characterising FTLD-ALS patients carrying C9ORF72 repeat expansions222,223. Another 

important finding is that CDC37 is found in the same module as both MAPT and GRN. 

Although no significant link has been made with these specific genes yet, its involvement 

in the molecular mechanisms of neurodegenerative diseases has been reported several 

times. Specifically, CDC37 has been suggested to play a critical role in regulating the 

phosphorylation of disease-associated proteins by a number of kinases, thus provoking 

their pathological aggregation and potentially contributing to neurodegeneration by: i) 

altering tau and TDP-43 clearance, hence supporting a link with FTLD-ALS and AD218,224; 

ii) contributing to the regulation of α-synuclein phosphorylation, which is linked to its 

pathological aggregation in PD224. 
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Given the complexity of genetic and molecular landscape of FTLD and the lack of disease 

models that accurately recapitulate the complex pathologies of disease141, these results 

have a number of implications when projecting them on a potential in vitro model for 

FTLD; when generating or choosing in vitro models of genetic FTLD and other complex 

disorders, this type of analysis can guide the most adequate choice by aiding the selection 

of the FTLD Mendelian genes mutation on the basis of its association with the prioritised 

candidate genes/proteins. In this instance, for example, I would expect to find changes in 

CDC37 transcriptional regulation or proteostasis in a GRN or MAPT model rather than a 

C9ORF72 model. Similarly, if I would decide to further investigate CUL2 in a disease-

relevant model I would probably select a C9ORF72 mutant rather than any other. 

Additionally, increasing progress in annotating cell-type-specific transcriptome data will 

further improve the accuracy of models for complex diseases by recapitulating the cell 

type(s) that degenerate in disease and in specific genetic scenarios. 

All this taken together opens the way for at least two opportunities: (i) to further explore 

and corroborate susceptible BPs and their associated key protein players using in silico 

approaches (i.e. Panther, David, Reactome) and validate such pathways in vitro through 

hypothesis-driven cell biology investigations; (ii) to integrate FTLD-risk BPs and 

associated proteins with pharmacogenomics data by using compounds/drugs that 

already modulate relevant protein targets (or BPs) and could potentially positively 

correct disease trait. 

In summary, this study presents a novel integrative approach to improve our 

understanding of neurological disorders by guiding wet-laboratory experiments with 

multidisciplinary knowledge and by supporting drug discovery and prospective 

implementation for patient benefit. 

 

It is important to note that a number of limitations apply to this approach and to WPPINA 

particularly. First, this is a seeded approach, which means that it carries a fundamental 

bias associated to the choice of the genes used to create the networks. Secondly, in the 

context of neurodegenerative diseases it is very difficult to define which genes are 

‘Mendelian’: most of these diseases are relatively rare, with few families carrying a 

specific genetic mutation, therefore there are widespread disagreements across the 

scientific community regarding which genes are to be considered Mendelian. Also, FTLD 

specifically is a very heterogeneous disease from a clinical, genetic and pathological 
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perspective9, and strikingly it presents with a clinical spectrum overlapping with ALS, 

which makes it even harder for researchers to select genes truly associated to FTLD 

pathogenesis. To minimise this bias as much as possible, I selected the genes using the 

most recent review of FTLD Mendelian genes9 at the time. Furthermore, since I 

acknowledge that in the past three years more genes could have been identified as 

potentially associated to FTLD pathology, I performed a literature review to pinpoint any 

additional FTLD gene. A recent genetic study by Wagner and colleagues225 detected 

through exome sequencing analysis pathogenic variants in the CTSF and ABCA7 genes in 

a German FTLD cohort, suggesting  that they might be linked to risk of developing FTLD. 

Notably, several lines of evidence (e.g., GWASs, sequencing) had previously identified 

ABCA7 as a risk locus for AD, reinforcing its possible implications in NDs226–230. In the 

same study, mutations in the RBM33 and TET2 genes were found in a number of FTLD 

and/or ALS cases, indicating a potential causal role for these genes in FTLD. Altogether, 

these genes might confer risk of developing FTLD and should be considered as FTLD 

candidate seeds for future re-implementation of this approach. 

 

With regards limitations applying to WPPINA, it is important to note that PPI network 

data are essentially a static representation of these interactions and do not include 

information about the organisation of protein dynamics as well as the effect of post-

translational modifications (PTMs)157. Second, many of the PPI data are collected from 

wet-lab approaches that are low-throughput and hypothesis-driven, therefore they are 

biased by a limited number of proteins selected on the basis of research-driven priorities. 

As a result, PPI networks generally contain false positive and false negative interactions, 

distorting our understanding of the cell’s functional organisation93,157. To mitigate the 

impact of this issue, I complied with the approach pursued by Ferrari et al.93, which 

constructed the first layer of the network as a basis of the second layer to (i) dilute the 

above-mentioned bias and (ii) minimise the effect of seed-centrality, an issue that is 

intrinsic in networks of this kind (i.e. generated on the basis of trait-specific known 

associated genes). Additionally, the same bias applies to the functional enrichment 

analysis because GO is based on current literature, therefore some of the known PPIs 

might not have been comprehensively studied and/or annotated, and thus the 

enrichment analysis queries partial annotation data (ascertainment bias). 
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Chapter 5 

5. Results 

5.1. Validation of FTLD-risk candidate genes in vitro 

5.1.1. Introduction 

Several diseases have been associated with alterations of the biological processes related 

to waste disposal, such as defective autophagosome formation and/or fusion with the 

lysosome or deficiency in autophagosomal/lysosomal enzymes, chaperones or 

receptors9,78,199. As a result, a deeper understanding of the mechanisms and factors 

involved in the maintenance of a balanced proteome and their dysregulation can provide 

invaluable insights into the possible application of therapeutic strategies in disease. FTLD 

pathology is characterised by the presence of intracellular, insoluble inclusions 

composed of misfolded proteins which is associated to a number of cellular defects 

including ER and/or oxidative stress, excitotoxicity, disruption of the ER-Golgi trafficking, 

RNA processing defects and mitochondrial dysfunction (Figure 5.1). 
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Figure 5.1. Schematic representation highlighting the involvement of various genetic risk factors associated 

to ALS/FTD in defective mechanisms of nutrient sensing and autophagy. In ALS/FTD, alterations in the 

autophagic flux caused by mutations in TBK1, OPTN, SQSTM1, UBQLN2, VCP, C9ORF72 or GRN may lead to the 

accumulation of misfolded proteins into pathological inclusions, and the improper recycling of damaged organelles, 

as for example mitochondria, to produce micronutrients. Damaged mitochondria or mutations in CHCHD10 or VCP 

that are associated with defective mitochondria phenotypes, would further aggravate the energy crisis that is 

precipitated by the failure of energy-sensing pathways, such as defective lysosomal signaling or dysregulated AMPK 

activation. Adapted from ‘Defects of Nutrient Signaling and Autophagy in Neurodegeneration’ by J. Ondaro, 2022, 

Frontiers in Cell and Developmental Biology. Adapted with permission. 

 

In this thesis, I implemented a bioinformatics pipeline to prioritise FTLD-risk candidate 

genes/proteins to guide their experimental validation in vitro. Protein-protein 

interaction (PPIN) and gene co-expression (GCN) networks resulted to be enriched for a 

number of biological processes (BPs) associated with FTLD: BPs associated to waste 

disposal and in particular to the autophagy-mitophagy (Atg – Mito) and ubiquitin-

proteasome system (UPS) pathways were highlighted as disease (FTLD)-specific 

processes. Additionally, three candidate genes/proteins were identified as likely relevant 

molecular players within these FTLD-specific processes. As a result, I sought to further 

characterise the three candidate genes/proteins (STUB1, CUL2, CDC37) in the context of 

PINK1-dependent mitophagy, which is a type of selective autophagic degradation of 

damaged mitochondria (see Section 1.1.4.4). Association between the three candidate 

genes/proteins and mitophagy has been partially documented and further gene co-
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expression network analyses (refer to Section 5.1.1.1) suggested that they are likely to 

regulate similar biological processes and that they might be relevant in the mitophagy 

pathway.  

 

5.1.1.1. The prioritised genes/proteins: STUB1, CUL2 

CDC37 

The integrated bioinformatics approach deployed in this study and outlined in Chapter 

4 allowed for systematic prioritisation of three candidate genes/proteins that might be 

involved in the pathogenesis of FTLD. Their main structural and functional features as 

well as their potential implications in neurodegenerative disorders are reported below. 

STIP1 Homology And U-Box Containing Protein 1 (STUB1), also known as CHIP, (C-

terminus of HSC70-interacting protein), is a ubiquitously expressed cytosolic 35 kDa 

protein with dual function of co-chaperone and E3 ubiquitin ligase activity, thus acting as 

a connecting link between molecular chaperones and proteasomes231,232. From a 

structural perspective, STUB1 contains three tetratricopeptide repeats (TPR domains) at 

its N-terminal and a U-box domain at its C-terminal. The TPR domain mediates the 

interaction with major cytoplasmic chaperones such as HSC/HSP70 and HSP90, while the 

U-box modulates the proteasomal degradation of numerous chaperone-bound misfolded 

protein substrates via ubiquitination. Through the action of both domains, STUB1 plays 

a pivotal role in mediating triage decisions between protein refolding and degradation, 

as well as a regulatory role in immunity and necroptosis232. Consistently, deficiency or 

mutations in the STUB1 gene can lead to disorders which involve misfolding and 

aggregation of proteins, such as spinocerebellar autosomal‐recessive ataxia type 16 

(SCAR16), Gordon‐Holmes syndrome, and spinocerebellar ataxia type 48 (SCA48)231,233. 

Interestingly, several studies have shown that STUB1 overexpression can have 

neuroprotective functions in neurological diseases by enhancing clearance of pathogenic 

Aβ, α-synuclein and mutant huntingtin deposits respectively in AD, PD, and HD, making 

it a promising therapeutic strategy to rescue disease toxicity103,232,234,235. 

Cullin 2 (CUL2) is a core component of multiple cullin-RING-based ECS (ElonginB/C-

CUL2/5-SOCS-box protein) E3 ubiquitin-protein ligase complexes. Cullin-RING ligases 

(CRLs, the largest family of E3 ubiquitin ligases), are multiprotein complexes involved in 



147 
 

protein degradation through 26S proteasome236. They are assembled on a cullin scaffold 

(CUL1, CUL2, CUL3, CUL4A, CUL4B, and CUL5) and contain a RING finger protein (RBX1 

or RBX2), a substrate receptor and adaptor proteins236,237. CUL2 serves as a rigid scaffold 

in the CRL2 complex and contributes to the catalysis through positioning of the substrate 

and the ubiquitin-conjugating enzyme. The E3 ubiquitin-protein ligase activity of the 

complex is dependent on the neddylation (the process of conjugating the ubiquitin-like 

protein NEDD8 onto a substrate) by the cullin subunit leading to substrate proteasomal 

degradation. The most well-known CRL2 substrate recognition receptor is the tumour 

suppressor protein VHL, that is mutated in von Hippel–Lindau (VHL) syndrome, and that 

interestingly has been reported to ubiquitinate misfolded forms of TDP-43 and promote 

its clearance221. Additionally, a recent study by Yasukawa et al.237 showed that CRLs are 

involved in the regulation of Aβ production and fibrillation in neurons by targeting BRI2 

and BRI3 (i.e., physiological inhibitors of amyloid precursor protein [APP] processing and 

Aβ oligomerisation)  for degradation. Finally, hypoxia inducing factors (HIFs) have been 

shown to undergo CRL2-VHL complex-dependent degradation, and it is the most studied 

role of CRL2 ubiquitin ligase in tumorigenesis221. 

Cell division cycle 37 (CDC37) is a ubiquitous protein that often forms a complex with the 

90 kDa heat shock protein (Hsp90), a molecular chaperone that requires a partner (or co-

chaperone) to assist with client triage102. The Hsp90/Cdc37 complex interacts with 

~60% of the kinome and by doing so promotes the stabilisation and activation of a variety 

of client kinases including CDK4, CDK6, SRC, RAF-1, MOK, as well as eIF2 alpha kinases, 

that are collectively critical regulators of cell cycle progression, signal transduction and 

transcriptional regulation224. To date, several studies have shown that CDC37 is 

implicated in cancer and neurodegenerative disease-related pathways, as its depletion 

can stabilise tau and TDP-43 by promoting their clearance via autophagy102,218,238. 

Additionally, the Hsp90/CDC37 complex has been shown to regulate ULK1 and other 

kinases involved in macroautophagy, suggesting a potential role of CDC37 in 

autophagy/mitophagy and, in the context of NDs, as a candidate drug target for clearance 

of toxic accumulation of misfolded proteins102,239. Interestingly, while CDC37 mainly 

functions in conjunction with Hsp90 as an active scaffold for protein kinase recruitment, 

it seems to also have independent chaperone activity, thanks to which it maintains the 

homeostasis of a number of proteins, such as the beta-galactosidase enzyme and the 

mitochondrial serine/threonine-protein kinase PINK1, which has been shown to depend 
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on CDC37 for stabilisation on the OMM upon mitochondrial stress and correct subcellular 

distribution215,216,240,241. 

 

5.1.1.2. Modelling PINK1-dependent mitophagy  

As described in section 1.1.4.4, PINK1-dependent mitophagy is the selective autophagy 

of mitochondria which plays a key role in maintaining the quality of the mitochondrial 

pool as well as regulating the abundance of intracellular mitochondria upon 

environmental cues133. Nowhere is the requirement for effective mitochondrial quality 

control systems more important than in neurons, where proper mitochondrial function 

is paramount to satisfy the high energetic demands and need for high calcium-buffering 

capacity due to action potential-driven calcium influxes. Such strong dependence on 

mitochondrial function exponentially increases neuronal vulnerability to mitochondrial 

insults, and, in turn, makes efficient and properly functioning mitochondrial quality 

control pathways essential for their survival128. In this scenario, it is evident that when 

investigating the implications of PINK1-dependent mitophagy in neurodegenerative 

disease, characterisation of the pathway in the relevant cell-type is key. 

Although studies examining PINK1-dependent mitophagy in heterologous cell cultures 

have provided seminal insights on the molecular mechanisms of PINK1 and Parkin 

activation and action in the past, the existence and relevance of such a pathway in 

neurons has remained elusive, making its characterisation in neuronal disease models 

very challenging87,128. Generally, studies investigating PINK1-dependent mitophagy 

predominantly rely on Parkin over-expression (POE) models in combination with 

chemical uncouplers to induce mitochondrial depolarisation242,243; however studies 

conducted in neuronal models were not able to show recruitment at mitochondria of 

overexpressed Parkin nor endogenous Parkin-mediated mitophagy, raising an ongoing 

debate on a possibly different role for Parkin recruitment in neuronal PINK1-dependent 

mitophagy87,128,244,245. Clearly, these data indicate that the physiological and 

pathophysiological role of Parkin recruitment and, as a result, of PINK1-dependent 

mitophagy in neurons differs from that of cultured cell lines; a possibility is that 

differences in bioenergetics between neurons and cultured cell lines might contribute to 

these different responses, as suggested by Van Laar et al.245 An additional factor worth 
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considering is that neuronal culture protocols carry many more variables than those for 

immortalized cells (e.g., neuronal media components), and many of them could influence 

Parkin translocation128. Cai and colleagues243 for instance used a cocktail of apoptosis 

inhibitors in their neuronal culture (e.g., the caspase inhibitor Z-VAD-FMK) to counter the 

effects of high doses of chemical uncouplers triggering apoptosis in an environment 

devoid of protective glia. While these conditions do lead to parkin translocation in 

neurons, they may also mask the normal physiological reaction of neurons to gross 

depolarization of the mitochondrial network. It is unlikely that neurons have evolved to 

adapt to this type of insult, and apoptosis may be the resulting physiological response. By 

contrast, the absence of antioxidants (in the form of the B-27 supplement)  showed a 

significantly increased ratio of Parkin recruitment128,246. Taken together, these factors 

might explain why some studies show such variability in detecting Parkin translocation 

upon mitochondrial depolarization in neurons. 

This study aims to investigate the molecular implications of the three prioritised 

candidate FTLD-risk genes/proteins in PINK1-dependent mitophagy using biochemical 

techniques and fixed/live cell imaging approaches to dissect mitophagy and 

mitochondrial clearance upon genetic silencing of the prioritised genes. PINK1-

dependent mitophagy will be investigated by pharmacologically disrupting Δψm using the 

mitochondrial uncoupler O/A (oligomycin/antimycin), which has been shown to provide 

a robust and effective experimental paradigm, although PINK1-dependent mitophagy has 

also been observed under less severe conditions128.  Immortalised as well as iPSC 

(induced pluripotent stem cell) lines will be used to model neurons as closely as possible. 

5.1.2. Results 

5.1.2.1. CDC37 KD increases pUb (Ser65) accumulation 

in SH-SY5Y cell line and increases PINK1 mRNA 

expression 

Based on my bioinformatics analyses (see Results section in Chapter 4), I sought to 

validate the three candidate genes/proteins (STUB1, CUL2, CDC37) for their involvement 

in autophagy/mitophagy processes by evaluating their possible implication in PINK1-

dependent mitophagy. 
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In order to test whether the three prioritised genes may play a role in PINK1-dependent 

mitophagy, I individually knocked them down (KD) using siRNA in Parkin over-

expressing (POE)-SH-SY5Y human neuroblastoma cells and immunoblotted for 

phosphorylation of ubiquitin on serine 65 (pUb [Ser65]), a PINK1-dependent mitophagy 

marker140, following mitochondrial depolarization. Increased mitochondrial clearance 

following mitochondrial depolarization induced by treatment with 1 µM of 

oligomycin/antimycin (O/A; mitochondrial stressors inhibiting respectively complex V 

and III of the electron transport chain) for 3h was validated as an endpoint for mitophagy. 

To confirm siRNA efficiency, individually transfected POE SH-SY5Y cells were 

immunoblotted with specific STUB1, CUL2, and CDC37 antibodies. Extensive testing by 

the HPF lab and others has shown endogenous PINK1 is difficult to detect in untreated 

whole cell lysate (WCL) as it is rapidly degraded under basal conditions. PINK1 KD in WCL 

was therefore assessed either by qPCR to measure PINK1 mRNA levels or by assessing 

PINK1-dependent phosphorylation of ubiquitin at Ser65 (pUb [Ser65]). Hits were 

identified as those candidate genes for which associated O/A-induced pUb (Ser65) was 

significantly altered following specific siRNA KD when compared scrambled (SCR) 

negative control siRNA. Throughout this chapter, additional mitochondrial markers were 

employed to evaluate relevant phenotypes: i) the OMM protein TOM20 was used to assess 

mitochondrial load in the sample; ii) TIM23, a major protein translocase embedded in the 

IMM247, was used to assess mitochondrial degradation; iii) MFN2, a mitochondrial protein 

that participates in mitochondrial, which is phosphoubiquitinated by PINK1/Parkin and 

rapidly degrades during mitophagy248 and whose degradation was used to assess 

mitophagy initiation upon O/A treatment (refer to section 1.1.4.4). 

Out of the three candidate genes tested, only CDC37 KD showed significant changes in 

accumulation of pUb (Ser65) at mitochondria. IB in WCL showed that upon CDC37 KD, 

pUb (Ser65) accumulation at mitochondria was significantly increased following O/A-

induced mitochondrial depolarisation (Figure 5.2). These results suggest that CDC37 

might play a regulatory role in PINK1-dependent mitophagy. As a result, CDC37 was 

taken forward for further functional analyses. 
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Figure 5.2. CDC37 KD increases pUb (Ser65) accumulation in POE SH-SY5Y cells (WCL). Representative IB of 

WCL from SCR, STUB1, CUL2, CDC37, PINK1 siRNA KDs in POE SH-SY5Y treated with 1 µM O/A for 3 h. IB for phospho-

ubiquitin (pUb) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) control was performed. pUb protein 

expression upon siRNA KDs was quantified by densitometry and expressed as fold change relative to the SCR 

negative control. Histograms indicate mean of n=4 independent experiments ± StD. quantification data were 

normalised against a non-transfected control and analysed with an ordinary two-way ANOVA with Dunnett’s 

correction. * p ≤ 0.05, ** p ≤ 0.01 compared to scrambled control. 

 

It was further shown that STUB1 and CUL2 KD had no impact on degradation of the outer 

mitochondrial membrane (OMM; MFN2, TOM20) and inner mitochondrial membrane 

(IMM; TIM23) markers, further suggesting that these genes do not regulate the 

mitophagy process (data not shown). As a result, STUB1 and CUL2 were discarded from 

further investigation. 
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In order to better understand the biochemical processes underlying CDC37 and 

mitophagy, the effect of CDC37 KD on pUb (Ser65) was further evaluated in POE SH-SY5Y 

mitochondria-enriched fractions, allowing for improved detection of mitochondrial 

markers, in particular PINK1. IB of mitochondria-enriched fractions following CDC37 KD 

confirmed that pUb (Ser65) is significantly increased after 3h O/A treatment when 

compared to SCR control (Figure 5.3). 
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Figure 5.3. CDC37 KD increases pUb (Ser65) accumulation in POE SH-SY5Y cells (mitochondria-enriched 

fractions). Representative IB of mitochondria-enriched fractions from SCR, CDC37, PINK1 siRNA KDs in POE SH-SY5Y 

treated with 1 µM O/A for 3 h. IB for phospho-ubiquitin (pUb), mitofusin 2 (MFN2), PTEN-induced kinase 1 (PINK1), 

cell-division cycle 37 (CDC37), translocase of the outer membrane protein 20 (TOM20) and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) control was performed. pUb protein expression upon siRNA KDs was quantified 

by densitometry and expressed as fold change relative to the SCR negative control. Histograms indicate mean of n=7 

(pUb) and n=4 (PINK1) independent experiments ± StD. Quantification data were normalised against non-transfected 

control and analysed with an ordinary two-way ANOVA with Dunnett’s correction. * p ≤ 0.05, ** p ≤ 0.01 compared to 

scrambled control. 
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Interestingly, PINK1 protein expression in mitochondria-enriched fractions shows an 

increasing trend upon CDC37 KD, and although it does not display statistical significance 

(p = 0.0674) it might at least partially explain the increase in pUb (Ser65). With regards 

the remaining mitochondrial markers, both MFN2 (mitophagy marker) and TOM20 

(mitochondrial load marker) showed reduced degradation upon PINK1 silencing, 

confirming its successful KD, but no significant changes upon CDC37 KD. 

The effect of CDC37 KD on pUb (Ser65) was further assessed in POE SH-SY5Y cells treated 

with 1 µM O/A using immunofluorescence (IF). However, CDC37 KD did not have any 

effect on pUb (Ser65) (Figure 5.4). 
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Figure 5.4. CDC37 KD does not significantly increase pUb (Ser65) accumulation in POE SH-SY5Y cells (IF). 

Representative IF images from SCR, CDC37, PINK1 siRNA KDs in POE SH-SY5Y treated with 1 µM O/A for 3 h. Insets 

show the nuclei for the same fields, pUb signal is shown in green while TOM20 signal is displayed in magenta. pUb 

and TOM20 protein expression upon siRNA KDs were quantified by measuring the intensity of the fluorescence signal 

using the Columbus software and expressed as integrated intensity relative to the SCR negative control. Histograms 

indicate mean of n= 3 independent experiments ± StD. quantification data were normalised against non-transfected 

control and analysed with an ordinary two-way ANOVA with Dunnett’s correction. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 

0.001, **** p ≤ 0.0001 compared to scrambled control. Scale bar: 20 μm. 

 

Given the decrease in PINK1 protein expression following CDC37 KD observed in 

mitochondria-enriched fractions, I further assessed whether PINK1 mRNA levels could 
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be regulated by CDC37. To this end, I knocked down CDC37 in POE SH-SY5Y cells before 

extracting RNA and performing qPCR. KD of CDC37 significantly increased PINK1 mRNA 

levels ( 

Figure 5.6), suggesting that CDC37 KD may affect PINK1-mitophagy by modulating 

PINK1 mRNA levels. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. CDC37 KD increases PINK1 mRNA expression in POE SH-SY5Y while transcriptional levels of CDC37 

remain unchanged upon PINK1 KD. Quantification of PINK1 mRNA levels in SCR, CDC37, PINK1 KDs. Histograms 

indicate mean of n=5 independent experiments ± StD. quantification data were normalised against non-transfected 

control and analysed with an ordinary one-way ANOVA with Dunnett’s correction. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 

compared to scrambled control. 

 

These qPCR data might explain the increase in pUb (Ser65) upon CDC37 KD observed in 

the previous IB screening (Figure 5.3); an increase in PINK1 mRNA expression following 

CDC37 KD could result in an increased PINK1 protein expression, leading to increased 

PINK1 recruitment at mitochondria upon mitophagy initiation and, as a consequence, 

increased pUb (Ser65) recruitment at mitochondria, consistently with what observed in 

IB analyses. Additionally, analysis of CDC37 mRNA expression upon PINK1 KD showed no 

significant change, suggesting that CDC37 is likely to act above of PINK1 as opposed to the 

other way around.  
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5.1.2.2. CDC37 KD does not increase pUb (Ser65) 

accumulation in H4 cell line  

The effect of CDC37 KD on pUb was also assessed in the human astrocytoma H4 cell line. 

Western blotting carried out by the HPF lab showed that the H4 cell line seems to have 

higher PINK1 protein availability when compared to the SH-SY5Y line, thus in this 

instance I was able to detect it more easily with the PINK1 antibody in WCL. No 

significant change in pUb levels was detected in CDC37 KD cells when compared to SCR 

control in this cell model ( 

Figure 5.6), suggesting that increased levels of pUb following CDC37 KD might be cell-

type specific.  

 

 

 

Figure 5.6. CDC37 KD does not significantly increase pUb (Ser65) accumulation in H4 cells (WCL). 

Representative IB of WCL from SCR, CDC37, PINK1 siRNA KDs in H4s treated with 1 µM O/A for 3 h. IB for phospho-

ubiquitin (pUb), mitofusin 2 (MFN2), PTEN-induced kinase 1 (PINK1), cell-division cycle 37 (CDC37), translocase of 

the outer membrane protein 20 (TOM20) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) control was 
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performed. pUb protein expression upon siRNA KDs was quantified by densitometry and expressed as fold change 

relative to the SCR negative control. Histograms indicate mean of n=3 independent experiments ± StD. quantification 

data were normalised against non-transfected control and analysed with an ordinary two-way ANOVA with Dunnett’s 

correction. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 compared to scrambled control. 

 

The lack of effect of CDC37 KD on pUb (Ser65) was mirrored by PINK1 IB, which showed 

no significant changes when compared to scrambled control. 

 

5.1.2.3. CDC37 KD increases mitochondrial clearance 

after 12h in mt-Keima but not in WB 

In order to further explore the role of CDC37 in the mitophagy pathway, mitochondrial 

clearance upon CDC37 KD was assessed in live POE SH-SY5Y cells expressing the 

mitophagy reporter mt-Keima, a pH-sensitive, fluorescent protein that exhibits 

resistance to lysosomal degradation and that can be excited by two different wavelengths. 

At the physiological pH of the mitochondria (pH 8.0), the shorter-wavelength excitation 

predominates and is displayed in blue. Within the acidic lysosome when the pH lowers 

(pH 4.5) after mitophagy initiation, mt-Keima undergoes a gradual shift to the longer-

wavelength excitation, which is displayed in red249. Therefore, mt-keima provides a 

measure of the mitophagic state at a single-cell level by comparing levels of free cytosolic 

mitochondria versus those in acidic lysosomes250. The rate of mitochondrial clearance for 

the different siRNA KDs was measured at five different timepoints (0, 3, 6, 9, 12h) of O/A 

treatment. In order to quantify mitochondrial clearance, the mitophagy index, namely the 

ratio between lysosomal and cytoplasmic mitochondria, was calculated across the five 

different timepoints (Figure 5.7).  
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Figure 5.7. CDC37 KD increases mitochondrial clearance. Representative images of Keima-green, Keima-red, and 
cell nuclei (blue) following siRNA KD of SCR, PINK1, CDC37 KDs in POE keima-expressing SH-SY5Y cells treated with 1 
μM O/A for 0, 3, 6, 9, 12 h. Keima-green signal is shown in green while keima-red signal is displayed in magenta. The 
mitophagy index for each siRNA KD was quantified on the basis of the signal intensity and compared against SCR O/A. 
the plot indicates mean of n=5 independent experiments ± StD. Quantification data were normalised against non-
transfected control and analysed with an ordinary two-way ANOVA with Dunnett’s correction. * p ≤ 0.05, ** p ≤ 0.01, 
*** p ≤ 0.001, **** p ≤ 0.0001 compared to scrambled control. Scale bar: 20 μm. 
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Mt-keima data showed a significant decrease of the mitophagy index after 3 and 6h O/A 

treatment upon PINK1 KD, my positive control. The data also show that after 9 and 12h 

there is a significant difference in mitochondrial clearance between SCR and CDC37 KD, 

further supporting the data previously obtained through IB and qPCR and reinforcing a 

potential role of CDC37 in the regulation of PINK1-dependent mitochondrial clearance.  

Since the increase in pUb (Ser65) was assessed only after 3h O/A treatment with IB, and 

the increase in mitochondrial clearance was observed after 9 and 12h only in live cells 

mt-Keima, I sought to investigate whether a significant increase in pUb (Ser65) levels 

could be also detected at different timepoints with IB. To this end, POE SH-SY5Y cells 

were transfected with CDC37 siRNA and then treated with O/A for 3, 6, 9, 12h (Figure 

5.8). 
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Figure 5.8. CDC37 KD does not significantly increase pUb (Ser65) accumulation in POE SH-SY5Ys at different 

timepoints (WCL). Representative IB of WCL from SCR, CDC37, PINK1 siRNA KDs in POE SH-SY5Y cells treated with 

1 µM O/A for 3 h. IB for phospho-ubiquitin (pUb), mitofusin 2 (MFN2), PTEN-induced kinase 1 (PINK1), cell-division 

cycle 37 (CDC37), translocase of the outer membrane protein 20 (TOM20) and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) control was performed. pUb protein expression upon siRNA KDs was quantified by 

densitometry and expressed as fold change relative to the 3h SCR O/A negative control. Histograms indicate mean of 

n=3 independent experiments ± StD. Quantification data were normalised against non-transfected control and 

analysed with an ordinary two-way ANOVA with Dunnett’s correction. * p < 0.05, ** p < 0.01, *** p ≤ 0.001 compared 

to scrambled control. 
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pUb (Ser65) IB showed significant increase in pUb (Ser65) after 3h O/A treatment, as 

previously shown in Figure 5.2, but was not significantly different at following 

timepoints.  

I then sought to investigate whether a significant increase in pUb (Ser65) levels could be 

detected at different timepoints with IF. For this purpose, POE SH-SY5Y cells were 

transfected with CDC37 siRNA and imaged following treatment with O/A at 3, 6, 9, 12h 

(Figure 5.9).



163 
 

 



164 
 

 

 

 

Figure 5.9. CDC37 KD does not significantly increase pUb (Ser65) accumulation in POE SH-SY5Ys at different 

timepoints (IF). Representative IF images from SCR, CDC37, PINK1 siRNA KDs in POE SH-SY5Y treated with 1 µM 

O/A for 3, 3, 9, 12h. Insets show the nuclei for the same fields, pUb signal is shown in green while TOM20 signal is 

displayed in magenta. pUb and TOM20 protein expression upon siRNA KDs were quantified by measuring the 

intensity of the fluorescence signal using the Columbus software and expressed as integrated intensity relative to 3h 

SCR O/A. Histograms indicate mean of n= 3 independent experiments ± StD. quantification data were normalised 

against non-transfected control and analysed with an ordinary two-way ANOVA with Dunnett’s correction. * p ≤ 0.05, 

** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 compared to scrambled control. Scale bar: 20 μm. 

 

Similarly to what observed in the previous IF experiment (Figure 5.4), no significant 

increase in pUb (Ser65) upon CDC37 KD could be detected with IF at any timepoint 

(PINK1 KD was used as a positive control) after 3h O/A induction. Collectively, these data 

suggest that CDC37 KD leads to an increase in mitophagy initiation (pUb [Ser65]) after 3h 
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and a subsequent increase of mitochondrial clearance at 9 and 12h following O/A 

treatment. This is likely due to the fact that phosphorylation of ubiquitin at Ser65 occurs 

upstream of mitochondrial clearance, therefore implying that a phenotype observed 

upon mitophagy initiation is not necessarily mirrored upon mitochondrial clearance. 

 

5.1.2.4. CDC37 KD increases GRN mRNA expression but 

decreases its protein expression in FTLD iPSC 

model. 

After having prioritised CDC37 through cellular work as the most promising 

gene/protein candidate, I sought to assess its relevance in an FTLD context. Given the 

complexity of the genetic landscape of FTLD, generating or choosing relevant in vitro 

models of genetic FTLD is very challenging. In this specific instance, I selected GRN as 

likely relevant FTLD-risk gene to be modelled in vitro in combination with CDC37 for a 

number of reasons: i) GRN was reported in literature to be implicated in the autophagy-

lysosome pathway (ALP)32,79,81,91 as well as by unpublished studies to modulate 

mitophagy (Jacqueline Casey, UCL Institute of Neurology); ii) previous analyses 

performed on GCNs (see Discussion section in Chapter 4) indicated CDC37 to be co-

expressed with both MAPT and GRN, two of the most common Mendelian genes 

associated with FTLD pathology, making them interesting candidates to study CDC37 

implications in mitophagy in a FTLD-relevant model; iii) cortical neurons induced from 

an isogenic CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) series 

carrying a R493X GRN mutation were available to me thanks to the Wray lab (particularly 

in collaboration with Selina Wray and Jacqueline Casey, UCL), providing me with a 

comprehensive set of isogenic cell lines for FTLD investigation.  

I performed individual siRNA KD of GRN and CDC37 in POE SH-SY5Y cells and measured 

their relative mRNA expression. qPCR data showed that GRN mRNA expression 

significantly increases when CDC37 is KD (Figure 5.10), suggesting that CDC37 might 

play a role in regulating GRN transcriptional expression.  
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Figure 5.10. CDC37 KD increases GRN mRNA expression in POE SH-SY5Y. Quantification of GRN mRNA levels in 

SCR, CDC37, PINK1, GRN KDs. Histograms indicate mean of n=5 independent experiments ± StD. Quantification data 

were normalised against non-transfected control and analysed with a one-way ANOVA with Dunnett’s correction. * p 

< 0.05, ** p < 0.01 compared to scrambled control. 

 

By contrast, CDC37 mRNA expression seems to not to be influenced by GRN silencing, 

identifying CDC37 as a potential novel regulator of GRN mRNA.  

I then sought to investigate PGRN involvement in PINK1-dependent mitophagy. To this 

end, I performed a GRN siRNA KD in mt-Keima-expressing POE SH-SY5Y cells to monitor 

the rate of mitochondrial clearance upon GRN deficiency (Figure 5.11).  



167 
 

 

 

Figure 5.11. GRN KD increases mitochondrial clearance. Representative images of Keima-green, Keima-red, and 

cell nuclei (blue) following siRNA KD of SCR, PINK1, GRN KDs in POE keima-expressing SH-SY5Y cells treated with 1 

μM O/A for 0, 3, 6, 9, 12 h. Keima-green signal is shown in green while keima-red signal is displayed in magenta. The 

mitophagy index for each siRNA KD was quantified on the basis of the signal intensity and compared against SCR O/A. 

The plot indicates mean of n=4 independent experiments ± StD. Quantification data were normalised against non-

transfected control and analysed with a two-way ANOVA with Dunnett’s correction. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 

0.001, **** p ≤ 0.0001 compared to scrambled control. Scale bar: 20 μm. 
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Again, mitochondrial clearance was significantly reduced after 3 and 6h O/A treatment 

upon PINK1 KD, confirming successful KD of PINK1. I also observed that mitochondrial 

clearance upon GRN KD was significantly increased after 9 and 12h O/A treatment when 

compared to SCR O/A, implying that GRN may be involved in the selective clearance of 

dysfunctional mitochondria. 

In order to further unravel the relationship between CDC37 and GRN in an FTLD-relevant 

model, I used iPSC-derived cortical neuron derived from patients carrying GRN 

mutations. An isogenic CRISPR series (control, heterozygous and homozygous GRN 

R493X mutation) from the human iPSC Neurodegenerative Disease Initiative (iNDI) was 

available to me thanks to the work of Jacqueline Casey in the Wray’s lab and was used in 

this study as an FTLD model. Neuronal differentiation was carried out following Shi et 

al.’s182 ( see Chapter 2 section 2.3.3.3 for more detail) dual SMAD (small mother against 

decapentaplegic) inhibition protocol. Cortical neuron characterisation was carried out by 

assessing the appearance of synapses by microscopy as described in the protocol. The 

R493X GRN mutation causes progranulin haploinsufficiency due to nonsense-mediated 

decay of mRNA, resulting in lysosomal dysfunction, increases in lipofuscin and thalamic 

neurodegeneration251. The homozygous line has a bi-allelic R493X mutation, that should 

result in a complete knock-out (KO) of the progranulin protein.  

The following work was performed by Jacqueline Casey and is still ongoing in the Wray 

lab, therefore quantification is not yet available for the IB of mitochondrial markers in 

iNDI iPSC neurons and in the H4 cell line. Data must therefore be interpreted cautiously. 

CDC37 and mitophagy levels were assessed in iPSC-derived, GRN-deficient neurons using 

western blotting. To assess mitophagy, mitochondrial depolarisation was induced with 1 

µM O/A for 6, 12, 24h at 80 DIV and levels of PINK1, MFN2 and TIM23 were measured 

(Figure 5.12). Specifically, MFN2 top bands show PINK1-dependent ubiquitination while 

TIM23 is used as a mitochondrial marker (not yet degraded after 24h mitophagy 

induction); in this instance, β-actin was used as WCL marker instead of GAPDH. 
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Figure 5.12. Mitophagy and CDC37 expression decrease in GRN-/- iPSC-derived neurons (WCL). Representative 

IB of WCL from an isogenic GRN mutation CRISPR series from the iNDI (control, heterozygous and homozygous GRN 

R493X mutation). IB was performed for the mitochondrial markers mitofusin 2 (MFN2), PTEN-induced kinase 1 

(PINK1), translocase of the inner membrane 23 (TIM23), phospho-ubiquitin (pUb, Ser65) and for the candidate 

gene/protein cell-division cycle 37 (CDC37). CDC37 protein expression was quantified by densitometry and 

expressed as fold change relative to the control DMSO. Histograms indicate mean of n=3 independent experiments ± 

StD. Quantification data were normalised against the control and analysed with a two-way ANOVA with Dunnett’s 

correction. * p < 0.05 compared to control DMSO. These data were generated by Jacqueline Casey (Wray lab, UCL) and 

quantification for the mitochondrial markers was not available. 

 

A significant reduction in PINK1 and pUb (Ser65) accumulation and decreased 

ubiquitination and degradation of MFN2 were observed in the homozygous 

GRNR493X/R493X neurons with reduced progranulin, implying a downregulation of PINK1-

dependent mitophagy upon GRN complete loss, as previously suggested by Casey’s 

unpublished data. No significant difference in mitophagy regulation was detected 

between control GRN+/+and heterozygous GRN+/R493X iNDI iPSC neurons, which may be 

due to the upregulation of progranulin protein from the wild-type allele. These results 

suggest that PGRN might play a role in mitophagy by regulating stability and/or activity 

of PINK1. CDC37 IB revealed a significant reduction in its expression in the homozygous 

GRNR493X/R493X neurons, while no significant change was observed in the heterozygous 

mutants when compared to control. As previously discussed in section 5.1.1.1 of this 

Chapter, CDC37 has been shown to influence the maturation and subcellular distribution 

of PINK1215,216. With this knowledge in mind, these results might imply that PGRN plays 

a role in mitophagy by regulating the trafficking and stability of PINK1 at mitochondria 

via CDC37.  

Interestingly, similar levels of expression in control and heterozygous GRN mutants (i.e., 

in mitophagy markers PINK1, pUb as well as CDC37) suggest that the heterozygous 

R493X iNDI line could have a potentially compensatory upregulation of progranulin 

protein levels despite reduced GRN mRNA levels. 

The relationship between mitophagy, PGRN and CDC37 accumulation was further 

explored in an H4 GRN siRNA KD astrocytic model, also available to me thanks to 

Jacqueline Casey. H4s were transfected with GRN siRNA to perform its KD and they were 

probed for mitochondrial markers and CDC37 (Figure 5.13). 
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Figure 5.13. CDC37 expression is not significantly decreased in GRN siRNA KD H4s (WCL). Representative IB of 

WCL from H4s treated with GRN siRNA. IB was performed for the mitochondrial mitofusin 2 (MFN2), PTEN-induced 

kinase 1 (PINK1), translocase of the inner membrane 23 (TIM23), phospho-ubiquitin (pUb, Ser65) and for the 

candidate gene/protein cell-division cycle 37 (CDC37).  CDC37 protein expression was quantified by densitometry 

and expressed as fold change relative to the scrambled DMSO negative control. Histograms indicate mean of n=3 

independent experiments ± StD. Quantification data were normalised against the scrambled DMSO and analysed with 

a two-way ANOVA with Dunnett’s correction. These data were generated by Jacqueline Casey (Wray lab, UCL) and 

quantification for the mitochondrial markers was not available. 

 



172 
 

A decrease in PINK1 accumulation and increased ubiquitination and degradation of 

MFN2 were observed in the H4 model as well, suggesting an overall decrease in 

mitophagy. Although not significant, a reduction in CDC37 was also observed in H4s upon 

GRN siRNA KD (p=0.0865), further suggesting a role for GRN in regulating mitophagy and 

CDC37 expression. 

 

5.1.3. Discussion 

In this study, I implemented a novel bioinformatics pipeline to prioritise FTLD-risk 

candidate genes and molecular pathways. In order to identify novel risk genes for FTLD, 

I used a combination of multi-omics approaches based on a selection of FTLD Mendelian, 

FTLD-ALS spectrum and GWAS candidate genes: i) WPPINA and ii) WGCNA. 13% of these 

genes were selected through multiple techniques, and three out of 157 genes/proteins 

(STUB1, CUL2, CDC37) were identified through a prioritization pipeline (see Chapter 4 

Results section). These three genes were taken forward for functional analysis. BPs 

associated with waste disposal, in particular autophagy/mitophagy”, were enriched in 

FTLD-associated PPI and GC networks 

Damaged organelle turnover (e.g., autophagy) and mitochondrial integrity are critical for 

cellular health and maintenance, and as a result their impairment underlies the onset of 

several neurodegenerative diseases (NDs). Among others, oxidative stress has been 

shown to be strongly implicated in PD, AD, ALS and FTLD pathogeneses, and 

mitochondrial damage and/or dysfunction represent major sources of such stress252–254. 

Several studies have shown that alterations in the mitochondrial protein PINK1 

compromise the removal of mitochondria by mitophagy and are associated to recessive 

PD87,127,134,138,255. In this scenario, while the PINK1-dependent mitophagy pathway has 

been well characterised, its transcriptional and molecular regulation as well as its 

implications in other NDs (e.g., FTLD) are still widely unexplored. 

On the basis of the bioinformatics results obtained in this study, I sought to characterise 

the relationship between the three candidate genes/proteins and PINK1-dependent 

mitophagy. These data show that out of the three candidate genes/proteins, CDC37 in 

particular modulates PINK1 nuclear transcription and subsequent translation, suggesting 

its role as potential regulator of PINK1-dependent mitophagy. I also showed that 
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depletion of CDC37 causes significant increase in the accumulation of the mitochondrial 

marker phospho-ubiquitin (pUb; Ser65) under mitochondrial stress conditions, 

ultimately improving mitochondrial clearance. Finally, both a transcriptional and a 

functional link were identified between CDC37 and the lysosomal protein PGRN, a known 

FTLD Mendelian gene, providing a potential mechanistic insight on the molecular 

underpinnings of FTLD pathogenesis.  

These data raise several intriguing questions. How do we explain pUb (Ser65) increase 

when CDC37 is depleted? What is the relationship between CDC37 and PINK1 in the 

context of mitophagy? What is the mechanism through which CDC37 and GRN could lead 

to neurodegeneration and FTLD pathology? 

qPCR data suggest that transcriptional regulation of PINK1 by CDC37 is a possibility, 

implying a potential mechanism for regulation of PINK1 trafficking by CDC37. This 

hypothesis is reinforced and cross-supported by gene co-expression network analysis 

showing PINK1 and CDC37 sharing transcriptional and thus functional overlap (refer to 

section 4.2.5) and by several studies that highlight PINK1 as a client kinase of the 

Hsp90/CDC37 complex215,216,256. Since the identification of the serine/threonine kinase 

PINK1 as a Parkinson’s disease (PD)-associated gene in 2004, a lot of efforts have been 

directed towards identifying its biological role in health and disease to aid therapeutic 

advances for the treatment of PD138. Several studies revealed PINK1’s pivotal role in 

mitochondrial removal via autophagy and showed that its interaction with a number of 

chaperone proteins is key for its stability and proper functioning138. Chaperone proteins 

are the first line of defence against protein misfolding and degradation and therefore in 

this context are likely to be key players in disease pathogenesis138. Moriwaki et al. and 

others138,215,216 reported that the interaction between PINK1 and the Hsp90/Cdc37 

molecular chaperones complex is required to: i) stabilise the full-length PINK1 at the 

OMM and the 42 kDa cleavage product; ii) drive the subcellular distribution of PINK1 and 

ii) regulate the ratio of full-length to cleaved protein (63/55 kDa ratio). Therefore, it is 

possible that PINK1 dependency on the interaction with the Hsp90/Cdc37 complex could 

explain PINK1 and pUb accumulation at mitochondria, as observed in the present study, 

and as a result enhanced mitophagy. Surprisingly, IF assays did not confirm IB findings: 

future studies will have to be designed to validate the accumulation of PINK1 and pUb 

observed through IB. Interestingly, Watzlawik et al.257, recently developed a sandwich 
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enzyme-linked immunosorbent assay (ELISA) targeting pUb (Ser65) specifically, which 

is able to assess very low baseline mitophagy levels and that could be useful to confirm 

pUb (Ser65) changes upon CDC37 KD. 

Finally, I sought to confirm whether CDC37-dependent accumulation of PINK1 and pUb 

at damaged mitochondria might be specific to neuronal populations or could be observed 

in different cell types, such as astrocytes. For this reason, I used an H4 astrocytic model 

to investigate CDC37 implications in PINK1-dependent mitophagy: interestingly, no 

significant changes in either PINK1 or pUb (Ser65) could be detected in this instance, 

suggesting this phenotype to be cell-type specific. Future studies will have to determine 

whether this phenotype is specific to neurons by looking at, for instance, primary neurons 

from GRN KO mice or CRISPR neurons; additionally, other iPSC neuronal types should be 

evaluated to confirm whether this phenotype can be observed in cortical neurons only.  

Furthermore, since mitophagy is a multistep process, I looked towards the progressive 

effects of mitochondrial toxicity and subsequent degradation in live cells, to evaluate 

mitochondrial clearance (mitophagy endpoint) at later timepoints. Live cell imaging with 

mt-keima reporter displayed significantly increased mitochondrial clearance upon 

CDC37 silencing after 9 and 12h mitophagy induction. The greater mitochondrial 

turnover observed in live cells after 9 and 12h can be interpreted as a direct consequence 

of increased accumulation of pUb at mitochondria after 3h, implying that mitochondrial 

clearance can be observed following several hours of O/A induction. Interestingly, Evans 

et al.258 reported that in basal and induced conditions, engulfed mitochondria tend to 

remain in non-acidified organelles for hours to days, illustrating fast and efficient 

autophagosome sequestration but delayed lysosomal fusion or acidification, which might 

explain why mitochondrial clearance can only be observed several hours after mitophagy 

initiation.  

Notably, most of these data were obtained from POE SH-SY5Y, which was chosen because 

of its suitability to study PINK1-dependent mitophagy. In fact, endogenous Parkin 

expression is generally quite low: extensive western blotting carried out by the HPF lab 

showed that assessing downstream steps of mitophagy process (e.g., ubiquitination of 

proteins, degradation of mitochondria) is very challenging in wild-type SH-SY5Ys. 

However it important to note that protein over-expression can often generate artifacts: 

POE will likely ‘prime’ the cells towards preferentially utilising the PINK1/Parkin 
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pathway of mitochondrial degradation, thus potentially masking any impairments in 

alternate pathways of mitochondrial quality control towards Parkin-dependent 

processes244. Therefore, these findings will need to be replicated in cell lines expressing 

endogenous Parkin as well as in other cell types (e.g., neurons, glia). 

Since an interesting CDC37-associated phenotype was found in a set of immortalised cell 

lines (i.e., POE SH-SY5Y and H4 lines), I sought to confirm these findings in an 

experimental system that recapitulates FTLD genetic and pathological signatures. The 

GRN gene was chosen as candidate FTLD Mendelian gene to be modelled in vitro based 

on literature and on hypothesis-driven bioinformatics analyses performed in this study. 

Growing evidence suggests a role for PGRN  in the lysosome82,121,259, which includes 

regulation of lysosomal trafficking pathways and both direct and indirect regulation of 

lysosomal hydrolases biosynthesis, globally being responsible of lysosome-related 

mechanistic dynamics82. Following an assessment of transcriptional expression of GRN, 

qPCR data showed that GRN mRNA expression is significantly upregulated upon CDC37 

siRNA KD in POE SH-SY5Y cells. These data imply that not only CDC37 is involved in PINK1 

transcriptional regulation but also in GRN’s, making CDC37 a potential master regulator 

of the ALP by modulating the rate of mitochondrial degradation at different stages in the 

pathway. Additionally, assessment of mitochondrial clearance in live cells showed that 

GRN KD increased mitochondrial turnover at both 9 and 12h timepoints after mitophagy 

induction, suggesting an increased ratio of mitochondria in acidic lysosomes. This 

phenotype could reflect an increase in lysosomal clearance for the end stage of 

mitophagy.  

However, how PGRN loss alters lysosomal functions it is still unclear. Given the 

importance of PGRN in the maintenance of healthy functional lysosomes as well as its role 

in regulating differential expression of lysosomal hydrolases, one could argue that GRN 

deficiency might impair effective intralysosomal processing of digested material, such as 

in the case of many lysosomal storage disorders (LSDs), resulting in aberrant 

accumulation of undegraded substrate within the lysosome260–262. As a result, the 

increase in lysosomal acidification caused by GRN deficiency at late timepoints might take 

place concurrently to impaired lysosomal enzymatic function, leading to suppressed 

digestion in and efflux from lysosomes262.  
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Intriguingly, a study by Beel et al.263 showed that PGRN may directly bind to and modulate 

lysosomal enzymes, such as cathepsin D, thus suggesting that PGRN might regulate the 

rate of lysosomal digestion of cargo81. This finding could be suggestive of a time-

dependent inability of the cell to efficiently recycle the dysfunctional mitochondria upon 

GRN loss following continued exposure to mitochondrial toxin O/A. From a global 

disease-oriented perspective, it would appear that mutations or removal of GRN might be 

responsible for exacerbating the slow kinetics of neuronal mitophagy, leading to 

disrupted mitochondrial network integrity, oxidative stress and eventually 

neurodegeneration. This hypothesis is in line with previous research which showed GRN 

deficiency to alter neuronal lysosome abundance, morphology and functionality by 

impairing lysosomal lipid metabolism260. Importantly, further work is needed to confirm 

impairment of intralysosomal processing, for instance by evaluating later timepoints in 

mt-keima (e.g., 24 and 36h). Altogether, these results strongly support the role of PGRN 

in mitophagy regulation and future studies should aim to understand whether cellular 

homeostasis is able to rescue PGRN deficit and carry out efficient lysosomal digestion.  

Mitophagy and CDC37 accumulation were then examined in an H4 GRN KD model and in 

an isogenic CRISPR series carrying the GRN-associated R493X mutation. CDC37 protein 

levels were found to be significantly reduced during mitophagy in R493X homozygous 

mutation neurons, while no effect was observed in H4 astrocytomas. These results have 

a number of implications: i) PGRN plays a role in neuronal mitophagy, in particular PGRN 

complete deletion seems to downregulate the mitophagy pathway by decreasing PINK1 

and subsequent pUb (Ser65) accumulation at mitochondria; ii) CDC37 expression is also 

regulated by PGRN, as its expression decreases upon GRN deficiency; iii) collectively, 

these findings seem to point towards a shared neuron-specific mechanism between 

PGRN, PINK1 and CDC37, where GRN modulation might be regulating the trafficking and 

stability of PINK1 via CDC37. Recent studies had already pointed at a potential 

involvement of PGRN in mitophagy, but a solid link between the two has not been 

established yet264,265. Zhou et al.264 found that PGRN deficiency exacerbated 

mitochondrial damage and dysfunction in a murine diabetic nephropathy model, showing 

that basal PGRN levels have protective effects by attenuating mitochondrial dysfunction 

and enhancing mitochondrial biogenesis; Chang et al.265 showed that GRN KO mice exhibit 

reduced xenophagy (i.e., the selective clearance of intracellular pathogens) which notably 

relies on a set of proteins and chaperones that also regulate mitophagy (e.g., OPTN, Rab7, 
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TBK1 etc.). The present study is among the first studies showing PGRN implications in 

neuronal PINK1-dependent mitophagy and suggesting a molecular mechanism via 

CDC37.  

These results support a role for CDC37 as a gene regulating the activity of both PINK1 and 

GRN at the transcriptome level as well as PINK1 stability and trafficking at mitochondria 

in neurons.  

Further studies should aim at further characterising PGRN implications in a CDC37 KD 

model to confirm transcriptional data obtained through qPCR and at further dissecting 

cell-type specific contributions of PGRN to mitophagy in iPSC-derived neurons, astrocytes 

and microglia. Additionally, as CDC37 KD seems to enhance mitophagy, future studies will 

need to determine whether CDC37-dependent modulation of PINK1-dependent 

mitophagy is able to rescue mitophagy-deprived disease phenotypes. More work is 

needed to explain why no effect on pUb (Ser65) accumulation was shown in IF 

experiments upon CDC37 KD; in this instance, it might be useful to: i) evaluate more 

timepoints; ii) increase the number of biological replicates to increase the statistical 

power of the analysis; iii) confirm CDC37 KD in a neuronal model (e.g., CRISPRi, etc.). 

In the past ten years, numerous studies have identified pathogenic mitochondrial 

pathways in FTLD-ALS and have suggested that mitochondrial defects could be one of the 

primary causes of FTLD, ALS and related diseases; in particular, mutations in the TBK1, 

CHCHD10 and OPTN genes have shown to prevent efficient mitochondrial engulfment and 

translocation88,90,266,267, making them suitable candidates for investigation in the context 

of FTLD pathogenesis. Clearly to address these gaps there is still need for a better 

molecular understanding of mitochondrial quality control and more precise clinical 

phenotyping.  

To summarise, these findings implicate mitophagy and CDC37 as novel therapeutic 

targets for GRN-associated FTLD and highlight the emerging theme of defective 

autophagy in the broader FTLD-ALS spectrum of neurodegenerative disease. 
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Chapter 6 

6. Discussion and future directions 

After over a century since FTLD was first described, our understanding of the pathogenic 

mechanisms that underlie the disease has substantially improved but it has failed to 

translate into effective therapeutic strategies. As discussed in Chapter 1, FTLD appears 

to result from a combination of defective pathways arising from both genetic and 

environmental factors. Waste disposal, and mitochondrial dysfunction as previously 

discussed, is by no means the only biological process impacted in disease pathogenesis 

(see section 1.1.4). However, it has been strongly implicated in both familial and sporadic 

FTLD and as such has been previously suggested as a potential therapeutic target9,79,97. 

Looking to the future, it is useful to consider which questions still need to be answered, 

and how existing knowledge may be applied to treating the disease. In this thesis, on the 

basis of known Mendelian genes, I presented a bioinformatics multi-omics pipeline aimed 

at defining and prioritising biological processes and candidate genes/proteins impacted 

in FTLD on the basis of known Mendelian genes, to be carried forward for functional 

validation in disease-relevant models. This final chapter will be considering major 

implications, limitations and future directions to be undertaken following what has been 

shown in the present work.  

 

6.1. General limitations  

The current study presents a newly developed approach providing a novel insight on the 

biological processes and molecular drivers underlying a multifactorial disease (i.e., 

FTLD). Despite the promise of this approach, it is important to mention that several 

limitations apply.  

Time always is a major limitation when experimental biology is involved. While the 

bioinformatics pipeline was successful in identifying candidate biological processes and 

genes/proteins impacted in FTLD, experimental validation was conducted only in 

immortalised cell lines (e.g., SH-SY5Y and H4s), which do not recapitulate FTLD markers 

and pathological features. In this instance, validation in a disease-relevant model would 

be essential for an adequate evaluation of the pipeline performance. While the work 

conducted by J. Casey has been helpful to further define the relationship between CDC37 



179 
 

(candidate gene/protein), GRN (FTLD) and PINK1 (mitophagy), further experiments 

conducted in disease-relevant models would be required to better characterise the link 

between the prioritised gene/protein and mitophagy, as well as their implications in 

FTLD.  

Another important limitation applying to my approach is represented by the 

controversial definition of genes ‘associated to FTLD’. Defining what genes can be 

considered Mendelian (outside of the three most frequently mutated genes i.e., MAPT, 

GRN and C9ORF72) is very challenging, especially for such a genetically, pathologically, 

clinically heterogenous disease. In order to attempt to overcome this issue, I used the 

most recent FTLD review at the time (i.e., February 2019; Ferrari et al.9) to select the most 

up-to-date FTLD-risk gene list known to date.  Notably, these bottlenecks can be partially 

considered as a direct consequence of the current degree of characterisation of FTLD 

etiology, and thus potentially inherent to FTLD itself. In fact, FTLD being a rarer condition 

when compared to other neurodegenerative diseases, such as AD and PD, proportionately 

less efforts and resources have been directed towards elucidating the pathogenic 

mechanisms underlying disease and identifying candidate therapeutic targets. It is 

notable that only five FTLD GWASs64–68 have been conducted in the past two decades (see 

section 1.1.3.2), which generally included hundreds to few thousands of cases-controls, 

against over 20 GWAS studies for AD268–274 and nearly ten for PD275–282, which by contrast 

present with several thousands to a million cases each. Additionally, availability of FTLD 

RNA expression datasets is very limited, making it increasingly difficult to investigate 

variability in gene expression in health and disease as well as to determine genes and 

pathways involved in the disease process. Finally, the considerable size of the FTLD 

clinical spectrum as well as its significant overlap with ALS add an extra level of 

complexity when trying to better define and characterise a single disease.  

Altogether, these factors contribute to the several challenges encountered when 

approaching and investigating FTLD and generally neurodegeneration. Fortunately, the 

rise of new sequencing and omics technologies as well as the creation of larger sample 

sets will increasingly overcome many of these limitations, allowing for a better definition 

of the genetic and molecular components of disease. 
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6.2. Future directions in FTLD research 

Following directly from this thesis, the directions for future research are multi-faceted. 

From a bioinformatics perspective, the multi-omics approach used in the present study 

has proven to be particularly useful in dissecting complex traits such as 

neurodegenerative diseases, that present with very heterogeneous clinical and molecular 

phenotypes. Importantly, it paves the way to novel pipelines that aim at integrating 

multidisciplinary fields and orthogonal data to identify disease candidate markers and 

therapeutic targets by evaluating the global aspects of the disease. Fine-tuning of the 

pipeline to increase its power to identify true disease markers will be essential by: i) 

integrating additional layers of information (e.g., evaluation of cell-type specificity 

expression, eQTLs etc.) to increase the resolution and accuracy of candidate gene-protein 

selection as well as to better characterise the cellular and molecular context the are 

involved in to aid experimental validation; ii) focusing on characterising the complexity 

and connectivity of biological processes associated to apparently distinct 

pathophenotypes which likely share common mechanisms underpinning disease. 

Indeed, it is hard to miss that FTLD bears numerous similarities to the other common 

neurodegenerative disorders, such as AD, PD and ALS. For instance, all four diseases 

commonly occur in later life, indicating a slow disease progression prior to onset of 

symptoms; all have strong hereditary components, at least in some forms of the 

disease283; all are characterised pathologically by aberrant intracellular protein 

inclusions284; many of them are found on similar or even the very same clinical and 

pathological continuum283,285; and all have been associated with alterations in waste 

disposal and mitochondrial dysfunction286. Furthermore, the highly interconnected 

nature of the proteins and genes interactomes means that, at the molecular level, it is 

difficult to consider diseases as being independent of one another. Interestingly, the 

mapping of network-based dependencies between pathophenotypes has culminated in 

the concept of the diseasome, which represents disease networks where nodes represent 

diseases and edges represent various molecular relationships between the disease-

associated cellular components, collectively encoding for the intrinsic features of 

diseases and cognate ‘disease’ genes4,287. It is therefore evident that an integrated 

understanding of the interactions among the genome, the transcriptome, the proteome, 

the epigenome and the pathophenome, mediated by the underlying genetic and 

molecular network, offers a basis for future advancements in our understanding of the 
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structure and workings of global polygenic diseases and in elucidating the intrinsic 

complexity of genotype-phenotype associations related with human disease4,287. 

 

With regards to the experimental validation, further investigation of the mitophagy 

pathway in a disease-relevant setting is of paramount importance. The discovery that 

CDC37 participates in this pathway requires further study along the lines previously 

discussed in section 5.1.3 in order to fully elucidate its role along the different steps of 

the ALP and its relationship with mitophagy molecular components. Additionally, CDC37 

implications with PGRN provide a potential insight into the disease mechanism where 

CDC37 is likely to be involved in and, as a result, it gives an indication of the genetic 

features that a suitable disease-relevant model should carry in this instance (i.e., GRN-

linked FTLD model). However, genetic signatures are not the only features that need to 

be recapitulated in a relevant model: selective cell-type vulnerability in disease as well as 

age-associated markers of mature human neurons are only few of the features to be 

evaluated in a relevant NDs model.  

In view of future studies carrying on investigating these findings, I propose using the 

CRISPR interference (CRISPRi) platform developed by Tian and co-authors288 to further 

elucidate CDC37 implications in mitophagy and GRN-linked FTLD. Briefly, a human iPSC 

line is stably transduced with a constitutively expressed dead Cas9 (dCas9) nuclease 

conjugated to the transcriptional repressor KRAB. Following introduction of a single 

guide RNA (sgRNA) targeting promoter regions of a gene of interest, expression of such 

gene is repressed by the dCas9 (KD), virtually allowing for effective and controlled KD of 

any gene. Additionally, transduction with a dox-inducible system forces the over-

expression of the neuronal differentiation master regulator neurogenin 2 (NGN2), thus 

forcing the pluripotent cells to rewire their transcriptional program to that of a 

glutamatergic neuron following doxycycline treatment. This protocol allows for a 

neuronal model with KD of one or more genes of interest and presents with numerous 

advantages: i) provides rapid yield of large numbers of homogeneous neurons; ii) it does 

not cause p53-mediate toxicity and DNA damage; iii) it is inducible and reversible; iv) it 

has the potential of uncovering novel cell-type-specific gene functions; v) it has the 

potential of using additional combinations of transcription factors driving specific 

neuronal fates, allowing for dissection of neuronal subtype-specific gene function. By 

using these CRISPR-inducible neurons, it will be possible to assess PGRN expression and 
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mitophagy upregulation upon CDC37 KD in a neuronal model. Validation of the findings 

obtained by J. Casey (CDC37 expression reduction upon GRN R493X homozygous 

mutation) is also warranted, eventually followed by double KD of GRN and CDC37 to 

assess whether CDC37 suppression might contribute to rescue FTLD-linked GRN 

deficiency, making it a valuable therapeutic target for GRN-linked FTLD.  

Finally, thanks to the continuous advances in the development of 3D cell culture models, 

the gap between pre-clinical animal and human studies is increasingly being bridged, 

providing a new paradigm for investigating the specific biology of complex traits and 

allowing for more accurate predictions of the effects of new therapies in models that 

replicate human pathophysiology as well as some aspects of the brain microenvironment, 

such as neurons and glia cross-talk and vascularisation of the tissue142. In the event that 

CDC37 modulation yielded promising results in the CRISPRi model, organ-like cultures 

might be useful to target CDC37 with an inhibitor and perform drug testing in a more 

complex high-throughput 3D system.  

Notably, the present in silico approach had identified not only the autophagy/mitophagy 

pathway but also the UPS as candidate FTLD-risk pathway: further validation of the three 

candidate genes/proteins should be carried out in the context of the UPS to confirm their 

functional relevance. It goes without saying that all of the top biological processes and 

their top-ranked, associated proteins identified during the functional enrichment 

analysis are likely to hold variable degrees of functional relevance within FTLD and 

should be carried forward for validation. Future studies should aim at dissecting the 

functional implications of these pathways guided by the prioritisation pipeline.  

Whilst in silico analyses can imply to the structural significance of the prioritised 

genes/proteins, genetic analysis might shed light on their possible involvement in the 

genetic risk (or components of the genetic heritability) of the FTLD trait. Future studies 

should use candidate genes/proteins to prioritise genetic markers in order to: i) gain 

genetic evidence on whether the identified genes/proteins are implicated in the FTLD 

trait, as they are closely linked to many seeds within relevant pathways; ii) provide cross-

supporting data for in silico analyses and reinforce the validity of the present approach. 

Thanks to the IFGC initiative, an exceptionally large cohort is available to the public, with 

more than 6000 FTLD cases, for which genetic data is available for genetic analyses. 

Additionally, the three genes/proteins may potentially harbour genetic burden 

associated with an increased risk of developing FTLD; future studies should be 
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performing exploratory genetic analyses (i.e., rare variant discovery, burden analyses) to 

identify novel genetic risk factors which are contributing to disease development and 

progression. Identification of FTLD-specific and disease-associated rare variants might 

imply that the candidate genes/proteins tend to carry a burden of coding markers that 

could constitutively predispose patients to develop FTLD. All this taken together, would 

support the candidate genes/proteins importance in FTLD phenotype and would 

generate sufficient evidence to suggest that this approach is a valuable tool to guide lab-

based hypothesis-driven experimental work, as well as genetic discovery analyses.  

 

6.3. Current therapeutic approaches to treat FTLD and 

the waste disposal pathway as a therapeutic target 

The clinical and molecular heterogeneity of FTLD has always represented a significant 

challenge for the development of effective treatments. To date, most treatments available 

for FTLD are purely symptomatic and have shown to have very little efficacy, sometimes 

even exacerbating behavioural symptoms as in the case of anticholinesterases289,290. 

Similarly, selective serotonin reuptake inhibitors and antipsychotic therapies are 

generally considered helpful for mood and behaviour management in individual patients, 

despite lack of evidence289–292.  

It is worth mentioning that given their tightly related clinical and molecular phenotypes, 

often the therapeutic interventions of FTLD and ALS share common targets289,290. In this 

scenario, therapies targeting the expression of heat shock proteins Hsp70 and Hsp90, 

which help newly synthesised proteins to properly fold, have long held potential for the 

treatment of neurodegenerative diseases, with the small molecule arimoclomol showing 

encouraging results at phase II clinical trials in reducing the levels of protein aggregates 

in motor nerves, a possible cause for ALS and FTLD-MND284,291. In addition, arimoclomol 

was recently found to induce a HSF1-mediated reduction of the TDP-43 aggregates, a 

common pathological signature of both FTLD and ALS293. A phase III randomized, double 

blind, placebo-controlled trial is currently underway in order to further evaluate the 

efficacy and safety of arimoclomol as well as the therapeutic benefit of this molecule290.  

In the last decade, tauopathy has also become a target for novel disease-modifying 

treatments for FTLD: the Methylene Blue drug is currently under evaluation in a phase III 
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clinical trial after it was shown to be effective in arresting age-related cognitive decline 

of tau-transgenic mice294. Of interest, a number of therapeutic approaches has emerged 

on the basis of other genetic factors contributing to FTLD pathology, where the 

identification of dominant mutations in TARDBP (TDP-43), C9ORF72, FUS and GRN 

represented the starting point to highlight alterations in biological processes underlying 

disease pathology.  

A major bottleneck hampering the use of TDP-43 as a therapeutic target is that it is still 

not clear whether its pathology is driven by a mechanism of loss- or gain-of-function, and 

most importantly that TDP-43 is a ubiquitous protein that plays several roles within the 

cell295,296. As a result, it may be difficult to target this protein in a generalised manner, 

although it might be possible to target the regions responsible for triggering the 

aggregation process, such as RNA Recognition Motif 1 (RRM-1)290. An alternative 

therapeutic option could consist of targeting eventual mutations in the protein sequence, 

which has been suggested to inhibit stress granule formation and thus suppress TDP-43-

mediated toxicity.   

By contrast, C9ORF72 haploinsufficiency might be addressed by gene therapy approaches 

and particularly by using oligonucleotide-based antisense aimed at decreasing aberrant 

RNA expression, which to date has been shown to be one of the more successful 

approaches for the treatment of various NDs289.  

Interestingly, autophagy enhancement using small molecules has been shown to 

successfully reduce cytoplasmic FUS inclusions, to restore mRBP homeostasis and rescue 

motor function in vivo290. Finally, gene therapy has been suggested as an obvious 

therapeutic target for GRN haploinsufficiency to restore proper GRN expression levels. 

Studies have shown promising results using adeno associated vectors (AAV) capable of 

expressing PGRN in the brain of GRN-/- mice, thus improving lysosomal dysfunction and 

microglial pathology290,297,298. Interestingly, Elia et al.81 found that a number of potential 

genetic modifiers of GRN seem to increase intracellular PGRN levels by either regulating 

PGRN expression at the transcriptional or at a post-translational level, suggesting that 

PGRN levels are regulated by multiple mechanisms. Elia and colleagues tested two small 

molecule drug inhibitors targeting Foxo1 (PsammaplyseneA [PSA]299, AS1842856300) for 

efficacy in increasing PGRN levels in neurons, and found that not only they increased 

PGRN intracellular levels but also suppress lysosome enlargement-induced 
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neuropathology caused by PGRN deficiency, showing that that their administration 

would be sufficient to reverse PGRN haploinsufficiency and thus that they could be of 

therapeutic utility. TRAP1, a member of the HSP90 family of molecular chaperones, was 

also shown to regulate proinflammatory cytokine TNFα-mediated neurodegeneration in 

GRN-linked FTLD301. As a result, two HSP90 inhibitors, currently used as anti-cancer 

agents in multiple phase I and II clinical trials (17AAG and AUY92232,302–304), were used 

to inhibit TRAP1 and both showed dose-dependent increases in PGRN32, implying that 

they could eventually be transitioned for testing in humans to treat FTLD. 

Considering the findings of the present study, modulation of CDC37 might also represent 

a potential therapeutic target able to reverse the loss of PGRN in disease. Inhibitors of 

CDC37 might effectively upregulate GRN mRNA expression as well as GRN deficiency-

mediated mitochondrial dysfunction, thereby partially restoring PGRN levels and 

boosting mitochondrial clearance, both of which are likely to reverse the loss of PGRN 

and selective functional deficits in the ALP in GRN-linked FTLD.  

While the identification of a role for autophagic and proteostasis dysregulation in the 

pathogenesis of neurodegenerative diseases is well established and has provided a 

rationale for interventions aiming to enhance autophagy, therapeutic strategies based on 

autophagy modulation have not been systematically explored yet for FTLD. Importantly, 

the development of therapeutic strategies that directly target the ALP presents with a 

number of major challenges: i) establishing whether upregulation or repair of the 

autophagy pathway is needed to restore autophagy function and reinstate neuronal 

proteostasis; ii) examining potential detrimental effects resulting from exogenous 

autophagy induction; iii) the difficulty to dynamically evaluate autophagy in vivo305. 

Unfortunately, in many experimental models, the non-specific nature of the agents used 

to stimulate macroautophagy makes it difficult to directly link the toxic effect to 

pharmacological autophagy enhancement305. Determining at which point the autophagy 

pathway fails and focusing on pathways-specific activation of autophagy will be essential 

for therapy development for neurogenerative disorders306. 
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6.4. Concluding remarks 

Despite the established role of defective autophagy in the pathogenesis and progression 

of NDs and the promise of autophagy-based therapies, clinical translation of this wealth 

of knowledge is still at an early stage. Importantly, as mentioned in the previous section, 

several methodological limitations apply to such therapies, which become relevant both 

when diagnosing patients and monitoring efficiency of any autophagy-based 

intervention. Additionally, capturing and addressing early phases of pathophysiological 

molecular cascades is crucial for successful therapeutics: the fact that clinical 

presentation of disease is not evident until a large percentage of the frontal and temporal 

cortex is already lost represents a huge step-back in the effective implementation of such 

interventions, as they will not be able to bring those neurons back308. For this reason, it 

is essential to identify the molecular signatures of defective autophagy through fluid 

biomarkers (i.e., cerebrospinal fluid [CSF] or serum) to allow earlier diagnosis, constant 

monitoring and effective management of disease307. Developing effective autophagy 

biomarkers will be of paramount importance for early diagnosis, as autophagy failure 

might precede clinical presentation of disease. These might also include non-invasive, 

image-based methods for dynamic measurement of CNS autophagy (e.g., autophagic 

flux)305. To conclude, a fuller understanding and identification of the molecular factors 

and biomarkers underlying autophagy as well as FTLD pathophysiology at different 

stages are among the most urgent challenges that should be overcome in the next years, 

so that therapies based on autophagy modulation can be implemented to treat NDs and 

improve quality of life for a large number of people. 

 

  



187 
 

References 

1. Munafò, M. R. & Davey Smith, G. Robust research needs many lines of evidence. 

Nat. 2021 5537689 553, 399–401 (2018). 

2. Baker, M. & Penny, D. Is there a reproducibility crisis? Nature 533, 452–454 

(2016). 

3. Paci, P. et al. Gene co-expression in the interactome: moving from correlation 

toward causation via an integrated approach to disease module discovery. npj 

Syst. Biol. Appl. 2021 71 7, 1–11 (2021). 

4. Barabási, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based 

approach to human disease. Nat. Rev. Genet. 2011 121 12, 56–68 (2010). 

5. Warren, J. D., Rohrer, J. D. & Rossor, M. N. Frontotemporal dementia. BMJ (Online) 

vol. 347 (2013). 

6. Clarimon, J. et al. Genetic architecture of neurodegenerative dementias. 

Neuropharmacology vol. 168 108014 (2020). 

7. Spatt, J. Arnold Pick’s concept of dementia. Cortex 39, 525–531 (2003). 

8. Rabinovici, G. D. & Miller, B. L. Frontotemporal lobar degeneration: epidemiology, 

pathophysiology, diagnosis and management. CNS Drugs 24, 375–398 (2010). 

9. Ferrari, R., Manzoni, C. & Hardy, J. Genetics and molecular mechanisms of 

frontotemporal lobar degeneration: an update and future avenues. Neurobiol. 

Aging 78, 98–110 (2019). 

10. Ferrari, R. et al. Frontotemporal dementia: insights into the biological 

underpinnings of disease through gene co-expression network analysis. Mol 

Neurodegener 11, 21 (2016). 

11. Young, J. J., Lavakumar, M., Tampi, D., Balachandran, S. & Tampi, R. R. 

Frontotemporal dementia: latest evidence and clinical implications. Ther. Adv. 

Psychopharmacol. 8, 33–48 (2018). 

12. Josephs, K. A. Frontotemporal dementia and related disorders: deciphering the 

enigma. Ann Neurol 64, 4–14 (2008). 

13. Boeve, B. F., Boxer, A. L., Kumfor, F., Pijnenburg, Y. & Rohrer, J. D. Advances and 

controversies in frontotemporal dementia: diagnosis, biomarkers, and 

therapeutic considerations. Lancet Neurol. 21, 258–272 (2022). 

14. Seelaar, H., Rohrer, J. D., Pijnenburg, Y. A., Fox, N. C. & van Swieten, J. C. Clinical, 

genetic and pathological heterogeneity of frontotemporal dementia: a review. J 



188 
 

Neurol Neurosurg Psychiatry 82, 476–486 (2011). 

15. Neary, D. et al. Frontotemporal lobar degeneration: a consensus on clinical 

diagnostic criteria. Neurology 51, 1546–1554 (1998). 

16. O’Rourke, J. G. et al. C9orf72 is required for proper macrophage and microglial 

function in mice. Science (80-. ). 351, 1324–1329 (2016). 

17. Lattante, S., Ciura, S., Rouleau, G. A. & Kabashi, E. Defining the genetic connection 

linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). 

Trends in Genetics vol. 31 263–273 (2015). 

18. Kurz, A. & Perneczky, R. Neurobiology of cognitive disorders. Curr Opin Psychiatry 

22, 546–551 (2009). 

19. Ferrari, R. et al. Screening for C9ORF72 repeat expansion in FTLD. Neurobiol 

Aging 33, 1850 e1–11 (2012). 

20. Mackenzie, I. R. & Neumann, M. Molecular neuropathology of frontotemporal 

dementia: insights into disease mechanisms from postmortem studies. J 

Neurochem 138 Suppl, 54–70 (2016). 

21. Ferrari R  Momeni P, T. A. Molecular Genetics of Frontotemporal Dementia. eLS 

(2013) doi:10.1002/9780470015902.a0024457. 

22. Raz, L., Knoefel, J. & Bhaskar, K. The neuropathology and cerebrovascular 

mechanisms of dementia. Journal of Cerebral Blood Flow and Metabolism vol. 36 

172–186 (2016). 

23. van Swieten, J. C. & Heutink, P. Mutations in progranulin (GRN) within the 

spectrum of clinical and pathological phenotypes of frontotemporal dementia. 

Lancet Neurol 7, 965–974 (2008). 

24. Jiang, Y. X. et al. Amyloid fibrils in FTLD-TDP are composed of TMEM106B and not 

TDP-43. Nat. 2022 6057909 605, 304–309 (2022). 

25. Hardy, J. & Singleton, A. Genomewide association studies and human disease. N 

Engl J Med 360, 1759–1768 (2009). 

26. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 

461, 747–753 (2009). 

27. Blauwendraat, C. et al. The wide genetic landscape of clinical frontotemporal 

dementia: Systematic combined sequencing of 121 consecutive subjects. Genet. 

Med. 20, 240–249 (2018). 

28. Snowden, J. S., Neary, D. & Mann, D. M. Frontotemporal dementia. Br J Psychiatry 



189 
 

180, 140–143 (2002). 

29. Turner, M. R. et al. Genetic screening in sporadic ALS and FTD. J Neurol Neurosurg 

Psychiatry (2017) doi:10.1136/jnnp-2017-315995. 

30. Freibaum, B. D. & Taylor, J. P. The role of dipeptide repeats in C9ORF72-related 

ALS-FTD. Frontiers in Molecular Neuroscience vol. 10 (2017). 

31. Gijselinck, I. et al. Progranulin locus deletion in frontotemporal dementia. Hum 

Mutat 29, 53–58 (2008). 

32. Elia, L. P., Mason, A. R., Alijagic, A. & Finkbeiner, S. Genetic Regulation of Neuronal 

Progranulin Reveals a Critical Role for the Autophagy-Lysosome Pathway. 39, 

3332–3344 (2019). 

33. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of 

chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011). 

34. Majounie, E. et al. Frequency of the C9orf72 hexanucleotide repeat expansion in 

patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-

sectional study. Lancet Neurol 11, 323–330 (2012). 

35. van der Zee, J. et al. A pan-European study of the C9orf72 repeat associated with 

FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum 

Mutat 34, 363–373 (2013). 

36. Al-Chalabi, A., van den Berg, L. H. & Veldink, J. Gene discovery in amyotrophic 

lateral sclerosis: implications for clinical management. Nat Rev Neurol 13, 96–104 

(2017). 

37. Cooper-Knock, J., Shaw, P. J. & Kirby, J. The widening spectrum of C9ORF72-

related disease; genotype/phenotype correlations and potential modifiers of 

clinical phenotype. Acta Neuropathol 127, 333–345 (2014). 

38. Galimberti, D. et al. Incomplete penetrance of the C9ORF72 hexanucleotide repeat 

expansions: frequency in a cohort of geriatric non-demented subjects. J 

Alzheimers Dis 39, 19–22 (2014). 

39. Hensman Moss, D. J. et al. C9orf72 expansions are the most common genetic cause 

of Huntington disease phenocopies. Neurology 82, 292–299 (2014). 

40. Lindquist, S. G. et al. Corticobasal and ataxia syndromes widen the spectrum of 

C9ORF72 hexanucleotide expansion disease. Clin Genet 83, 279–283 (2013). 

41. Majounie, E. et al. Large C9orf72 repeat expansions are not a common cause of 

Parkinson’s disease. Neurobiol Aging 33, 2527 e1–2 (2012). 



190 
 

42. Simon-Sanchez, J. et al. The clinical and pathological phenotype of C9ORF72 

hexanucleotide repeat expansions. Brain 135, 723–735 (2012). 

43. Smith, B. N. et al. The C9ORF72 expansion mutation is a common cause of ALS+/-

FTD in Europe and has a single founder. Eur J Hum Genet 21, 102–108 (2013). 

44. van der Zee, J. et al. CHMP2B C-truncating mutations in frontotemporal lobar 

degeneration are associated with an aberrant endosomal phenotype in vitro. Hum 

Mol Genet 17, 313–322 (2008). 

45. Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit 

CHMP2B in frontotemporal dementia. Nat Genet 37, 806–808 (2005). 

46. Le Ber, I. et al. SQSTM1 mutations in French patients with frontotemporal 

dementia or frontotemporal dementia with amyotrophic lateral sclerosis. JAMA 

Neurol 70, 1403–1410 (2013). 

47. Synofzik, M. et al. Screening in ALS and FTD patients reveals 3 novel UBQLN2 

mutations outside the PXX domain and a pure FTD phenotype. Neurobiol Aging 

33, 2949 e13–7 (2012). 

48. Pottier, C. et al. Whole-genome sequencing reveals important role for TBK1 and 

OPTN mutations in frontotemporal lobar degeneration without motor neuron 

disease. Acta Neuropathol 130, 77–92 (2015). 

49. Bannwarth, S. et al. A mitochondrial origin for frontotemporal dementia and 

amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137, 2329–

2345 (2014). 

50. Gijselinck, I. et al. Loss of TBK1 is a frequent cause of frontotemporal dementia in 

a Belgian cohort. Neurology 85, 2116–2125 (2015). 

51. Momeni, P. et al. Analysis of IFT74 as a candidate gene for chromosome 9p-linked 

ALS-FTD. BMC Neurol 6, 44 (2006). 

52. Münch, C. et al. Heterozygous R1101K mutation of the DCTN1 gene in a family 

with ALS and FTD. Ann. Neurol. 58, 777–780 (2005). 

53. Mackenzie, I. R. et al. TIA1 Mutations in Amyotrophic Lateral Sclerosis and 

Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule 

Dynamics. Neuron 95, 808-816 e9 (2017). 

54. Hardy, J. & Rogaeva, E. Motor neuron disease and frontotemporal dementia: 

sometimes related, sometimes not. Exp Neurol 262 Pt B, 75–83 (2014). 

55. Van Mossevelde, S., Engelborghs, S., Van Der Zee, J. & Van Broeckhoven, C. 



191 
 

Genotype-phenotype links in frontotemporal lobar degeneration. Nature Reviews 

Neurology vol. 14 363–378 (2018). 

56. Watts, G. D. et al. Inclusion body myopathy associated with Paget disease of bone 

and frontotemporal dementia is caused by mutant valosin-containing protein. Nat 

Genet 36, 377–381 (2004). 

57. Koppers, M. et al. Screening for rare variants in the coding region of ALS-

associated genes at 9p21.2 and 19p13.3. Neurobiol Aging 34, 1518 e5–7 (2013). 

58. Benajiba, L. et al. TARDBP mutations in motoneuron disease with frontotemporal 

lobar degeneration. Ann Neurol 65, 470–473 (2009). 

59. Borroni, B. et al. Mutation within TARDBP leads to frontotemporal dementia 

without motor neuron disease. Hum Mutat 30, E974-83 (2009). 

60. Borroni, B. et al. TARDBP mutations in frontotemporal lobar degeneration: 

frequency, clinical features, and disease course. Rejuvenation Res 13, 509–517 

(2010). 

61. Sellami, L., Saracino, D. & Le Ber, I. Genetic forms of frontotemporal lobar 

degeneration: Current diagnostic approach and new directions in therapeutic 

strategies. Rev. Neurol. (Paris). 176, 571–581 (2020). 

62. Pottier, C., Ravenscroft, T. A., Sanchez-Contreras, M. & Rademakers, R. Genetics of 

FTLD: overview and what else we can expect from genetic studies. J Neurochem 

138 Suppl, 32–53 (2016). 

63. LT, T. The Genetics of Monogenic Frontotemporal Dementia. Dement 

Neuropsychol  219–229 (2015). 

64. Ferrari, R. et al. Frontotemporal dementia and its subtypes: a genome-wide 

association study. Lancet. Neurol. 13, 686–699 (2014). 

65. Ferrari, R. et al. A genome-wide screening and SNPs-to-genes approach to identify 

novel genetic risk factors associated with frontotemporal dementia. Neurobiol 

Aging 36, 2904 e13–26 (2015). 

66. Reus, L. M. et al. Genome-wide association study of frontotemporal dementia 

identifies a C9ORF72 haplotype with a median of 12-G4C2 repeats that 

predisposes to pathological repeat expansions. Transl. Psychiatry 2021 111 11, 1–

8 (2021). 

67. Van Deerlin, V. M. et al. Common variants at 7p21 are associated with 

frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 42, 234–



192 
 

239 (2010). 

68. Pottier, C. et al. Potential genetic modifiers of disease risk and age at onset in 

patients with frontotemporal lobar degeneration and GRN mutations: a genome-

wide association study. Lancet Neurol. 17, 548–558 (2018). 

69. Cruchaga, C. et al. Association of TMEM106B gene polymorphism with age at 

onset in granulin mutation carriers and plasma granulin protein levels. Arch 

Neurol 68, 581–586 (2011). 

70. Finch, N. et al. TMEM106B regulates progranulin levels and the penetrance of 

FTLD in GRN mutation carriers. Neurology 76, 467–474 (2011). 

71. Vass, R. et al. Risk genotypes at TMEM106B are associated with cognitive 

impairment in amyotrophic lateral sclerosis. Acta Neuropathol 121, 373–380 

(2011). 

72. Lattante, S. et al. Defining the association of TMEM106B variants among 

frontotemporal lobar degeneration patients with GRN mutations and C9orf72 

repeat expansions. Neurobiol Aging 35, 2658 e1-2658 e5 (2014). 

73. Takahashi, M. The GDNF/RET signaling pathway and human diseases. Cytokine 

Growth Factor Rev. 12, 361–373 (2001). 

74. Costa, B. et al. C9orf72, age at onset, and ancestry help discriminate behavioral 

from language variants in FTLD cohorts. Neurology 95, E3288–E3302 (2020). 

75. Mok, K. et al. Chromosome 9 ALS and FTD locus is probably derived from a single 

founder. Neurobiol Aging 33, 209 e3–8 (2012). 

76. Zhang, M., Ferrari, R., Tartaglia, M. C., Keith, J. & et al. C6orf10/LOC101929163 

locus is associated with age of onset in C9orf72 carriers | Brain | Oxford 

Academic. https://academic.oup.com/brain/article/141/10/2895/5106718 

(2018). 

77. Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. 

Genet. 2018 195 19, 299–310 (2018). 

78. Menzies, F. M. et al. Autophagy and Neurodegeneration: Pathogenic Mechanisms 

and Therapeutic Opportunities. Neuron vol. 93 1015–1034 (2017). 

79. S, F. The Autophagy Lysosomal Pathway and Neurodegeneration. Cold Spring 

Harb. Perspect. Biol. 12, (2020). 

80. Sirkis, D. W., Geier, E. G., Bonham, L. W., Karch, C. M. & Yokoyama, J. S. Recent 

advances in the genetics of frontotemporal dementia. Curr. Genet. Med. Rep. 7, 41 



193 
 

(2019). 

81. Elia, L. P., Reisine, T., Alijagic, A. & Finkbeiner, S. Approaches to develop 

therapeutics to treat Frontotemporal Dementia. Neuropharmacology 166, 107948 

(2020). 

82. Paushter, D. H., Du, H., Feng, T. & Hu, F. The lysosomal function of progranulin, a 

guardian against neurodegeneration. Acta Neuropathol. 136, 1 (2018). 

83. Nguyen, A. D. et al. Murine knockin model for progranulin-deficient 

frontotemporal dementia with nonsensemediated mRNA decay. Proc. Natl. Acad. 

Sci. U. S. A. 115, E2849–E2858 (2018). 

84. Casey, J. M. et al. Haploinsufficiency of progranulin causes impairments in 

PINK/PARKIN mitophagy. Alzheimer’s Dement. 16, e042104 (2020). 

85. Klein, Z. A. et al. Loss of TMEM106B Ameliorates Lysosomal and Frontotemporal 

Dementia-Related Phenotypes in Progranulin-Deficient Mice. Neuron 95, 281-296 

e6 (2017). 

86. Mackenzie, I. R. & Rademakers, R. The molecular genetics and neuropathology of 

frontotemporal lobar degeneration: recent developments. Neurogenetics 8, 237–

248 (2007). 

87. Bader, V. & Winklhofer, K. F. PINK1 and Parkin: Team players in stress-induced 

mitophagy. Biol. Chem. 401, 891–899 (2020). 

88. Harding, O. et al. ALS- And FTD-associated missense mutations in TBK1 

differentially disrupt mitophagy. Proc. Natl. Acad. Sci. U. S. A. 118, (2021). 

89. Richter, B. et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub 

chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. 

Acad. Sci. U. S. A. 113, 4039–4044 (2016). 

90. Baek, M. et al. TDP-43 and PINK1 mediate CHCHD10 S59L mutation–induced 

defects in Drosophila and in vitro. Nat. Commun. 12, 1–20 (2021). 

91. Root, J., Merino, P., Nuckols, A., Johnson, M. & Kukar, T. Lysosome dysfunction as a 

cause of neurodegenerative diseases: Lessons from frontotemporal dementia and 

amyotrophic lateral sclerosis. Neurobiol. Dis. 154, 105360 (2021). 

92. Tan, C. C. et al. Association of Frontotemporal Dementia GWAS Loci with Late-

Onset Alzheimer’s Disease in a Northern Han Chinese Population. J Alzheimers Dis 

52, 43–50 (2016). 

93. Ferrari, R. et al. Frontotemporal dementia: Insights into the biological 



194 
 

underpinnings of disease through gene co-expression network analysis. Mol. 

Neurodegener. 11, 21 (2016). 

94. Ratti, A. & Buratti, E. Physiological functions and pathobiology of TDP-43 and 

FUS/TLS proteins. J. Neurochem. 138 Suppl, 95–111 (2016). 

95. Corrado, L. et al. High frequency of TARDBP gene mutations in Italian patients 

with amyotrophic lateral sclerosis. Hum Mutat 30, 688–694 (2009). 

96. Ferrari, R., Hardy, J. & Momeni, P. Frontotemporal dementia: from Mendelian 

genetics towards genome wide association studies. J Mol Neurosci 45, 500–515 

(2011). 

97. Ferrari, R., Lovering, R. C., Hardy, J., Lewis, P. A. & Manzoni, C. Weighted Protein 

Interaction Network Analysis of Frontotemporal Dementia. J Proteome Res 16, 

999–1013 (2017). 

98. Giglia-Mari, G., Zotter, A. & Vermeulen, W. DNA Damage Response. Cold Spring 

Harb. Perspect. Biol. 3, a000745 (2011). 

99. Klaips, C. L., Jayaraj, G. G. & Hartl, F. U. Pathways of cellular proteostasis in aging 

and disease. J. Cell Biol. 217, 51–63 (2018). 

100. Shahheydari, H. et al. Protein Quality Control and the Amyotrophic Lateral 

Sclerosis/Frontotemporal Dementia Continuum. Front. Mol. Neurosci. 10, (2017). 

101. Pickles, S., Vigié, P. & Youle, R. J. Mitophagy and Quality Control Mechanisms 

in Mitochondrial Maintenance. Curr. Biol. 28, R170–R185 (2018). 

102. Narayan, M. & Jinwal, U. K. Cdc37: Implications in Regulation of Kinases and 

Proteins Linked to Neurodegenerative and Other Diseases. Autophagy Cancer, 

Other Pathol. Inflammation, Immunity, Infect. Aging 187–196 (2016) 

doi:10.1016/B978-0-12-805421-5.00009-4. 

103. Watanabe, Y., Taguchi, K. & Tanaka, M. Ubiquitin, Autophagy and 

Neurodegenerative Diseases. Cells 9, (2020). 

104. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for 

monitoring autophagy. Autophagy vol. 8 445–544 (2012). 

105. Tanaka, K. The proteasome: Overview of structure and functions. Proc. Jpn. Acad. 

Ser. B. Phys. Biol. Sci. 85, 12 (2009). 

106. Lizama, B. N. et al. Neuronal preconditioning requires the mitophagic activity of C-

terminus of HSC70-interacting protein. J. Neurosci. 38, 6825–6840 (2018). 

107. Kumar, P., Jha, N. K., Jha, S. K., Ramani, K. & Ambasta, R. K. Tau phosphorylation, 



195 
 

molecular chaperones, and ubiquitin E3 Ligase: Clinical relevance in Alzheimer’s 

disease. Journal of Alzheimer’s Disease vol. 43 341–361 (2015). 

108. Klionsky, D. J. Autophagy: from phenomenology to molecular understanding in 

less than a decade. Nat. Rev. Mol. Cell Biol. 2007 811 8, 931–937 (2007). 

109. Rubinsztein, D. et al. Mendelian neurodegenerative disease genes involved in 

autophagy. Cell Discov. 2020 61 6, 1–13 (2020). 

110. Li, R. et al. Serine/hreonine Kinase Unc-51-like Kinase-1 (Ulk1)phosphorylates 

the co-chaperone cell division cycle protein 37 (Cdc37) and thereby disrupts the 

stability of Cdc37 client proteins. J. Biol. Chem. 292, 2830–2841 (2017). 

111. Martinez-Vicente, M. et al. Dopamine-modified alpha-synuclein blocks chaperone-

mediated autophagy. J. Clin. Invest. 118, 777–778 (2008). 

112. Shpilka, T. & Elazar, Z. Shedding light on mammalian microautophagy. Dev. Cell 

20, 1–2 (2011). 

113. Wong, Y. C. & Holzbaur, E. L. F. The regulation of autophagosome dynamics by 

huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to 

defective cargo degradation. J. Neurosci. 34, 1293–1305 (2014). 

114. Manzoni, C. The LRRK2-macroautophagy axis and its relevance to Parkinson’s 

disease. Biochem. Soc. Trans. 45, 155–162 (2017). 

115. Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations 

in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38, 1184–

1191 (2006). 

116. Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 

9 (2011). 

117. Malpartida, A. B., Williamson, M., Narendra, D. P., Wade-Martins, R. & Ryan, B. J. 

Mitochondrial Dysfunction and Mitophagy in Parkinson’s Disease: From 

Mechanism to Therapy. Trends in Biochemical Sciences (2020) 

doi:10.1016/j.tibs.2020.11.007. 

118. Kim, J. & Klionsky, D. J. Autophagy, Cytoplasm-to-Vacuole Targeting Pathway, and 

Pexophagy in Yeast and Mammalian Cells. 

http://dx.doi.org/10.1146/annurev.biochem.69.1.303 69, 303–342 (2003). 

119. Maday, S. & Holzbaur, E. L. F. Autophagosome biogenesis in primary neurons 

follows an ordered and spatially regulated pathway. Dev. Cell 30, 71–85 (2014). 

120. Eden, E. et al. Proteome half-life dynamics in living human cells. Science (80-. ). 



196 
 

331, 764–768 (2011). 

121. Huang, M. et al. Network analysis of the progranulin-deficient mouse brain 

proteome reveals pathogenic mechanisms shared in human frontotemporal 

dementia caused by GRN mutations. Acta Neuropathol. Commun. 8, 163 (2020). 

122. Ondaro, J. et al. Defects of Nutrient Signaling and Autophagy in 

Neurodegeneration. Front. Cell Dev. Biol. 10, 836196 (2022). 

123. Dröge, W. Autophagy and aging--importance of amino acid levels. Mech. Ageing 

Dev. 125, 161–168 (2004). 

124. Meléndez, A. et al. Autophagy genes are essential for dauer development and life-

span extension in C. elegans. Science 301, 1387–1391 (2003). 

125. Carnio, S. et al. Autophagy impairment in muscle induces neuromuscular junction 

degeneration and precocious aging. Cell Rep. 8, 1509–1521 (2014). 

126. Urwin, H., Ghazi-Noori, S., Collinge, J. & Isaacs, A. The role of CHMP2B in 

frontotemporal dementia. Biochem Soc Trans 37, 208–212 (2009). 

127. Ge, P., Dawson, V. L. & Dawson, T. M. PINK1 and Parkin mitochondrial quality 

control: a source of regional vulnerability in Parkinson’s disease. Mol. 

Neurodegener. 2020 151 15, 1–18 (2020). 

128. Grenier, K., McLelland, G. L. & Fon, E. A. Parkin- and PINK1-Dependent Mitophagy 

in Neurons: Will the Real Pathway Please Stand Up? Front. Neurol. 4, (2013). 

129. Aklima, J. et al. Effects of Matrix pH on Spontaneous Transient Depolarization and 

Reactive Oxygen Species Production in Mitochondria. Front. cell Dev. Biol. 9, 

(2021). 

130. Rossi, A., Pizzo, P. & Filadi, R. Calcium, mitochondria and cell metabolism: A 

functional triangle in bioenergetics. Biochimica et Biophysica Acta - Molecular Cell 

Research vol. 1866 1068–1078 (2019). 

131. Tatsuta, T. & Langer, T. Quality control of mitochondria: protection against 

neurodegeneration and ageing. EMBO J. 27, 306 (2008). 

132. Karbowski, M. & Neutzner, A. Neurodegeneration as a consequence of failed 

mitochondrial maintenance. Acta Neuropathol. 123, 157–171 (2012). 

133. Ng, M. Y. W., Wai, T. & Simonsen, A. Quality control of the mitochondrion. Dev. Cell 

56, 881–905 (2021). 

134. Deas, E., Wood, N. W. & Plun-Favreau, H. Mitophagy and Parkinson’s disease: The 

PINK1–parkin link. Biochim. Biophys. Acta 1813, 623 (2011). 



197 
 

135. Lemasters, J. J. Selective Mitochondrial Autophagy, or Mitophagy, as a Targeted 

Defense Against Oxidative Stress, Mitochondrial Dysfunction, and Aging. 

https://home.liebertpub.com/rej 8, 3–5 (2005). 

136. Kim, I., Rodriguez-Enriquez, S. & Lemasters, J. J. Selective degradation of 

mitochondria by mitophagy. Arch. Biochem. Biophys. 462, 245–253 (2007). 

137. Villa, E. et al. Parkin-Independent Mitophagy Controls Chemotherapeutic 

Response in Cancer Cells. Cell Rep. 20, 2846–2859 (2017). 

138. Deas, E., Plun-Favreau, H. & Wood, N. W. PINK1 function in health and disease. 

EMBO Mol. Med. 1, 152–165 (2009). 

139. Fiesel, F. C. et al.  (Patho‐)physiological relevance of PINK 1‐dependent ubiquitin 

phosphorylation . EMBO Rep. 16, 1114–1130 (2015). 

140. Hou, X. et al. Age- and disease-dependent increase of the mitophagy marker 

phospho-ubiquitin in normal aging and Lewy body disease. Autophagy 14, 1404–

1418 (2018). 

141. Lines, G., Casey, J. M., Preza, E. & Wray, S. Modelling frontotemporal dementia 

using patient-derived induced pluripotent stem cells. Mol. Cell. Neurosci. 109, 

103553 (2020). 

142. Slanzi, A., Iannoto, G., Rossi, B., Zenaro, E. & Constantin, G. In vitro Models of 

Neurodegenerative Diseases. Front. Cell Dev. Biol. 8, 328 (2020). 

143. Takahashi, K. & Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse 

Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126, 663–676 

(2006). 

144. Takahashi, K. et al. Induction of pluripotent stem cells from adult human 

fibroblasts by defined factors. Cell 131, 861–872 (2007). 

145. Tan, R. H., Ke, Y. D., Ittner, L. M. & Halliday, G. M. ALS/FTLD: experimental models 

and reality. Acta Neuropathol. 2017 1332 133, 177–196 (2017). 

146. Kühn, R., Mahajan, A., Canoll, P. & Hargus, G. Human Induced Pluripotent Stem 

Cell Models of Frontotemporal Dementia With Tau Pathology. Front. Cell Dev. Biol. 

9, 2927 (2021). 

147. Leskelä, S. et al. FTLD Patient–Derived Fibroblasts Show Defective Mitochondrial 

Function and Accumulation of p62. Mol. Neurobiol. 58, 5438–5458 (2021). 

148. Guttikonda, S. R. et al. Fully defined human pluripotent stem cell-derived 

microglia and tri-culture system model C3 production in Alzheimer’s disease. Nat. 



198 
 

Neurosci. 24, 343–354 (2021). 

149. Jawaid, A., Khan, R., Polymenidou, M. & Schulz, P. E. Disease-modifying effects of 

metabolic perturbations in ALS/FTLD. Mol. Neurodegener. 2018 131 13, 1–16 

(2018). 

150. Manzoni, C. et al. Genome, transcriptome and proteome: the rise of omics data 

and their integration in biomedical sciences. Br. Bioinform (2016) 

doi:10.1093/bib/bbw114. 

151. Ferrari, R. et al. Stratification of candidate genes for Parkinson’s disease using 

weighted protein-protein interaction network analysis. BMC Genomics 19, 452 

(2018). 

152. Wong, L. Using Biological Networks in Protein Function Prediction and Gene 

Expression Analysis. Internet Mathematics vol. 7. 

153. Manzoni, C., Lewis, P. A. & Ferrari, R. Network Analysis for Complex 

Neurodegenerative Diseases. Curr. Genet. Med. Rep. 8, 17–25 (2020). 

154. Bray, D. Molecular networks: The top-down view. Science vol. 301 1864–1865 

(2003). 

155. Parikshak, N. N., Gandal, M. J. & Geschwind, D. H. Systems biology and gene 

networks in neurodevelopmental and neurodegenerative disorders. Nat. Rev. 

Genet. 16, 441 (2015). 

156. Barabási, A. L. & Oltvai, Z. N. Network biology: Understanding the cell’s functional 

organization. Nature Reviews Genetics vol. 5 101–113 (2004). 

157. Snider, J. et al. Fundamentals of protein interaction network mapping. Mol. Syst. 

Biol. 11, 848 (2015). 

158. Stoney, R., Robertson, D. L., Nenadic, G. & Schwartz, J. M. Mapping biological 

process relationships and disease perturbations within a pathway network. npj 

Syst. Biol. Appl. 4, (2018). 

159. Dorogovtsev, S. N. & Mendes, J. F. F. Evolution of Networks: From Biological Nets to 

the Internet and WWW. (Oxford University Press, 2003). 

doi:10.1093/acprof:oso/9780198515906.001.0001. 

160. Taylor, I. W. & Wrana, J. L. Protein interaction networks in medicine and disease. 

Proteomics 12, 1706–1716 (2012). 

161. Carter, H., Hofree, M. & Ideker, T. Genotype to phenotype via network analysis. 

Curr. Opin. Genet. Dev. 23, 611–621 (2013). 



199 
 

162. Califano, A., Butte, A. J., Friend, S., Ideker, T. & Schadt, E. Leveraging models of cell 

regulation and GWAS data in integrative network-based association studies. Nat. 

Genet. 2012 448 44, 841–847 (2012). 

163. Furlong, L. I. Human diseases through the lens of network biology. Trends Genet 

29, 150–159 (2013). 

164. Ideker, T. & Sharan, R. Protein networks in disease. Genome Res. 18, 644 (2008). 

165. Serin, E. A. R., Nijveen, H., Hilhorst, H. W. M. & Ligterink, W. Learning from co-

expression networks: Possibilities and challenges. Front. Plant Sci. 7, 444 (2016). 

166. Ma, X. et al. Co-expression Gene Network Analysis and Functional Module 

Identification in Bamboo Growth and Development. Front. Genet. 9, 574 (2018). 

167. van Dam, S., Võsa, U., van der Graaf, A., Franke, L. & de Magalhães, J. P. Gene co-

expression analysis for functional classification and gene-disease predictions. Br. 

Bioinform 19, 575–592 (2017). 

168. Tomkins, J. E. et al. Comparative Protein Interaction Network Analysis Identifies 

Shared and Distinct Functions for the Human ROCO Proteins. Proteomics 18, 

(2018). 

169. Fionda, V. Networks in Biology. Encycl. Bioinforma. Comput. Biol. ABC Bioinforma. 

1–3, 915–921 (2019). 

170. Silverbush, D. & Sharan, R. A systematic approach to orient the human protein–

protein interaction network. Nat. Commun. 2019 101 10, 1–9 (2019). 

171. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide 

association studies. Nat. Genet. 2016 483 48, 245–252 (2016). 

172. Ahmadi, A., Gispert, J. D., Navarro, A., Vilor-Tejedor, N. & Sadeghi, I. Single-cell 

Transcriptional Changes in Neurodegenerative Diseases. Neuroscience 479, 192–

205 (2021). 

173. Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation 

network analysis. BMC Bioinformatics 9, 559 (2008). 

174. Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its 

variants. Neurology 76, 1006–1014 (2011). 

175. Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural 

variant of frontotemporal dementia. Brain 134, 2456–2477 (2011). 

176. Blauwendraat, C. et al. NeuroChip, an updated version of the NeuroX genotyping 

platform to rapidly screen for variants associated with neurological diseases. 



200 
 

Neurobiol Aging 57, 247 e9-247 e13 (2017). 

177. Van Mossevelde, S., van der Zee, J., Cruts, M. & Van Broeckhoven, C. Relationship 

between C9orf72 repeat size and clinical phenotype. Current Opinion in Genetics 

and Development vol. 44 117–124 (2017). 

178. García-Ruiz, S. et al. CoExp: A Web Tool for the Exploitation of Co-expression 

Networks. Front. Genet. 0, 218 (2021). 

179. Tomkins, J. E. et al. PINOT: An intuitive resource for integrating protein-protein 

interactions. Cell Commun. Signal. 18, 1–11 (2020). 

180. Bonham, L. W. et al. Protein network analysis reveals selectively vulnerable 

regions and biological processes in FTD. Neurol. Genet. 4, e266 (2018). 

181. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative 

CT method. Nat. Protoc. 3, 1101–1108 (2008). 

182. Shi, Y., Kirwan, P. & Livesey, F. J. Directed differentiation of human pluripotent 

stem cells to cerebral cortex neurons and neural networks. Nat. Protoc. 2012 710 

7, 1836–1846 (2012). 

183. Harms, M. B. et al. Lack of C9ORF72 coding mutations supports a gain of function 

for repeat expansions in amyotrophic lateral sclerosis. Neurobiol. Aging 34, 

2234.e13-2234.e19 (2013). 

184. Babic Leko, M. et al. Molecular Mechanisms of Neurodegeneration Related to 

C9orf72 Hexanucleotide Repeat Expansion. Behav Neurol 2019, 2909168 (2019). 

185. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in 

noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. 

Neuron 72, 245–256 (2011). 

186. Beck, J. et al. Large C9orf72 hexanucleotide repeat expansions are seen in 

multiple neurodegenerative syndromes and are more frequent than expected in 

the UK population. Am. J. Hum. Genet. 92, 345–353 (2013). 

187. Fournier, C. et al. Relations between C9orf72 expansion size in blood, age at onset, 

age at collection and transmission across generations in patients and 

presymptomatic carriers. Neurobiol. Aging 74, 234.e1-234.e8 (2019). 

188. Gijselinck, I. et al. The C9orf72 repeat size correlates with onset age of disease, 

DNA methylation and transcriptional downregulation of the promoter. Mol. 

Psychiatry 21, 1112–1124 (2016). 

189. van Blitterswijk, M. et al. Association between repeat sizes and clinical and 



201 
 

pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-

72): A cross-sectional cohort study. Lancet Neurol. 12, 978–988 (2013). 

190. Van Mossevelde, S. et al. Clinical evidence of disease anticipation in families 

segregating a C9 orf 72 repeat expansion. JAMA Neurol. 74, 445–452 (2017). 

191. Benussi, L. et al. C9ORF72 hexanucleotide repeat number in frontotemporal lobar 

degeneration: A genotype-phenotype correlation study. J. Alzheimer’s Dis. 38, 

799–808 (2014). 

192. Devenney, E. et al. Progression in behavioral variant frontotemporal dementia: A 

longitudinal study. JAMA Neurol. 72, 1501–1509 (2015). 

193. Galimberti, D. et al. Autosomal dominant frontotemporal lobar degeneration due 

to the C9ORF72 hexanucleotide repeat expansion: Late-onset psychotic clinical 

presentation. Biol. Psychiatry 74, 384–391 (2013). 

194. Ramos, E. M. et al. Genetic screen in a large series of patients with primary 

progressive aphasia. Alzheimer’s Dement. 15, 553–560 (2019). 

195. Ralph, P. & Coop, G. The Geography of Recent Genetic Ancestry across Europe. 

PLoS Biol. 11, (2013). 

196. Warby, S. C. et al. CAG Expansion in the Huntington Disease Gene Is Associated 

with a Specific and Targetable Predisposing Haplogroup. Am. J. Hum. Genet. 84, 

351–366 (2009). 

197. Huang, T., Shu, Y. & Cai, Y. D. Genetic differences among ethnic groups. BMC 

Genomics 16, (2015). 

198. Manzoni, Claudia; Kia, Demis A.; Vandrocova, Jana; Hardy, John; Wood, Nicholas 

W.; Lewis, Patrick A.; Ferrari, R. Genome, transcriptome and proteome: the rise of 

omics data and their integration in biomedical sciences | Briefings in 

Bioinformatics | Oxford Academic. Briefings in Bioinformatics 

https://academic.oup.com/bib/article/19/2/286/2562648 (2018). 

199. Ferrari, R. et al. Frontotemporal dementia and its subtypes: a genome-wide 

association study. Lancet Neurol 13, 686–699 (2014). 

200. Liu, D., Ke, Z. & Luo, J. Thiamine Deficiency and Neurodegeneration: the Interplay 

Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy. 

Molecular Neurobiology vol. 54 5440–5448 (2017). 

201. Miki, Y. et al. Alteration of mitochondrial protein PDHA1 in Lewy body disease 

and PARK14. Biochem. Biophys. Res. Commun. 489, 439–444 (2017). 



202 
 

202. Yang, F. et al. Identification of Key Regulatory Genes and Pathways in Prefrontal 

Cortex of Alzheimer’s Disease. Interdiscip. Sci. Comput. Life Sci. 12, 90–98 (2020). 

203. Thathiah, A. et al. β-Arrestin 2 regulates Aβ generation and γ-secretase activity in 

Alzheimer’s disease. Nat. Med. 19, 44–49 (2013). 

204. Smith, A., Bourdeau, I., Wang, J. & Bondy, C. A. Expression of Catenin family 

members CTNNA1, CTNNA2, CTNNB1 and JUP in the primate prefrontal cortex 

and hippocampus. Mol. Brain Res. 135, 225–231 (2005). 

205. Burns, L. H. & Wang, H.-Y. Altered filamin A enables amyloid beta-induced tau 

hyperphosphorylation and neuroinflammation in Alzheimer’s disease. 

Neuroimmunol. Neuroinflammation 4, 263 (2017). 

206. Haase, M. & Fitze, G. HSP90AB1: Helping the good and the bad. Gene vol. 575 171–

186 (2016). 

207. Mao, Y., Fisher, D. W., Yang, S., Keszycki, R. M. & Dong, H. Protein-protein 

interactions underlying the behavioral and psychological symptoms of dementia 

(BPSD) and Alzheimer’s disease. PLoS One 15, (2020). 

208. Silva, P. N. et al. Analysis of HSPA8 and HSPA9 mRNA expression and promoter 

methylation in the brain and blood of Alzheimer’s disease patients. J. Alzheimer’s 

Dis. 38, 165–170 (2014). 

209. Conway, M., Nafar, F., Straka, T. & Mearow, K. Modulation of amyloid-β protein 

precursor expression by HspB1. J. Alzheimer’s Dis. 42, 435–450 (2014). 

210. Yip, A. M. & Horvath, S. Gene network interconnectedness and the generalized 

topological overlap measure. BMC Bioinformatics 8, 1–14 (2007). 

211. Palubinsky, A. M. et al. CHIP Is an Essential Determinant of Neuronal 

Mitochondrial Stress Signaling. Antioxid. Redox Signal. 23, 535–549 (2015). 

212. Ullah, K. et al. The E3 ubiquitin ligase STUB1 attenuates cell senescence by 

promoting the ubiquitination and degradation of the core circadian regulator 

BMAL1. J. Biol. Chem. 295, jbc.RA119.011280 (2020). 

213. Rao, L., Sha, Y. & Eissa, N. T. The E3 ubiquitin ligase STUB1 regulates autophagy 

and mitochondrial biogenesis by modulating TFEB activity. Mol. Cell. Oncol. 4, 

(2017). 

214. Sha, Y., Rao, L., Settembre, C., Ballabio, A. & Eissa, N. T. STUB1 regulates TFEB-

induced autophagy-lysosome pathway. EMBO J. 36, 2544–2552 (2017). 

215. Moriwaki, Y. et al. L347P PINK1 mutant that fails to bind to Hsp90/Cdc37 



203 
 

chaperones is rapidly degraded in a proteasome-dependent manner. Neurosci. 

Res. 61, 43–48 (2008). 

216. A, W. et al. Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin 

all influence the maturation or subcellular distribution of Pink1. 17, 602–616 

(2008). 

217. Joo, J. H. & Kundu, M. ULK1-Hsp90-Cdc37 and AMPK: Novel Insight Into the 

Regulation of Mitophagy. Blood 120, 987–987 (2012). 

218. Jinwal, U. K. et al. Cdc37/Hsp90 protein complex disruption triggers an 

autophagic clearance cascade for TDP-43 protein. J. Biol. Chem. 287, 24814–

24820 (2012). 

219. Heir, P. et al. DCNL1 Functions as a Substrate Sensor and Activator of Cullin 2-

RING Ligase. Mol. Cell. Biol. 33, 1621–1631 (2013). 

220. Cai, W. & Yang, H. The structure and regulation of Cullin 2 based E3 ubiquitin 

ligases and their biological functions. Cell Division vol. 11 (2016). 

221. Uchida, T. et al. CUL2-mediated clearance of misfolded TDP-43 is paradoxically 

affected by VHL in oligodendrocytes in ALS. Sci. Rep. 6, (2016). 

222. Cook, C. N. et al. C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy. Sci. 

Transl. Med. 12, (2020). 

223. De Boer, E. M. J. et al. TDP-43 proteinopathies: a new wave of neurodegenerative 

diseases. J. Neurol. Neurosurg. Psychiatry 92, 86–95 (2020). 

224. Gracia, L., Lora, G., Blair, L. J. & Jinwal, U. K. Therapeutic Potential of the 

Hsp90/Cdc37 Interaction in Neurodegenerative Diseases. Frontiers in Neuroscience 

vol. 13 1263 (Frontiers Media S.A., 2019). 

225. Wagner, M. et al. Clinico-genetic findings in 509 frontotemporal dementia 

patients. Mol. Psychiatry 2021 2610 26, 5824–5832 (2021). 

226. Guennec, K. Le et al. ABCA7 rare variants and Alzheimer disease risk. Neurology 

86, 2134–2137 (2016). 

227. Zhao, Q. F. et al. ABCA7 Genotypes Confer Alzheimer’s Disease Risk by Modulating 

Amyloid-β Pathology. J. Alzheimer’s Dis. 52, 693–703 (2016). 

228. Cuyvers, E. et al. Mutations in ABCA7 in a Belgian cohort of Alzheimer’s disease 

patients: A targeted resequencing study. Lancet Neurol. 14, 814–822 (2015). 

229. Steinberg, S. et al. Loss-of-function variants in ABCA7 confer risk of Alzheimer’s 

disease. Nat. Genet. 47, 445–447 (2015). 



204 
 

230. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, 

CD33 and CD2AP are associated with Alzheimer’s disease. Nat. Genet. 43, 429–

436 (2011). 

231. De Michele, G. et al. Spinocerebellar ataxia type 48: last but not least. Neurol. Sci. 

41, 2423–2432 (2020). 

232. Zhang, S., Hu, Z. wei, Mao, C. yuan, Shi, C. he & Xu, Y. ming. CHIP as a therapeutic 

target for neurological diseases. Cell Death and Disease vol. 11 1–12 (2020). 

233. Kanack, A. J., Newsom, O. J. & Scaglione, K. M. Most mutations that cause 

spinocerebellar ataxia autosomal recessive type 16 (SCAR16) destabilize the 

protein quality-control E3 ligase CHIP. J. Biol. Chem. 293, 2735–2743 (2018). 

234. Oddo, S. et al. Blocking Aβ42 Accumulation Delays the Onset and Progression of 

Tau Pathology via the C Terminus of Heat Shock Protein70-Interacting Protein: A 

Mechanistic Link between Aβ and Tau Pathology. J. Neurosci. 28, 12163 (2008). 

235. Imai, Y. et al. CHIP is associated with Parkin, a gene responsible for familial 

Parkinson’s disease, and enhances its ubiquitin ligase activity. Mol. Cell 10, 55–67 

(2002). 

236. Mahrour, N. et al. Characterization of Cullin-box Sequences That Direct 

Recruitment of Cul2-Rbx1 and Cul5-Rbx2 Modules to Elongin BC-based Ubiquitin 

Ligases. J. Biol. Chem. 283, 8005–8013 (2008). 

237. Yasukawa, T. et al. NRBP1-Containing CRL2/CRL4A Regulates Amyloid β 

Production by Targeting BRI2 and BRI3 for Degradation. Cell Rep. 30, 3478-

3491.e6 (2020). 

238. Jinwal, U. K. et al. The Hsp90 kinase co-chaperone Cdc37 regulates tau stability 

and phosphorylation dynamics. J. Biol. Chem. 286, 16976–16983 (2011). 

239. Joo, J. H. et al. Hsp90-Cdc37 Chaperone Complex Regulates Ulk1- and Atg13-

Mediated Mitophagy. Mol. Cell 43, 572–585 (2011). 

240. Kimura, Y. et al. Cdc37 is a molecular chaperone with specific functions in signal 

transduction. Genes Dev. 11, 1775–1785 (1997). 

241. Ando, M. et al. The PINK1 p.I368N mutation affects protein stability and ubiquitin 

kinase activity. 12, (2017). 

242. Seibler, P. et al. Mitochondrial Parkin Recruitment Is Impaired in Neurons 

Derived from Mutant PINK1 Induced Pluripotent Stem Cells. J. Neurosci. 31, 

5970–5976 (2011). 



205 
 

243. Cai, Q., Zakaria, H. M., Simone, A. & Sheng, Z. H. Spatial parkin translocation and 

degradation of damaged mitochondria via mitophagy in live cortical neurons. 

Curr. Biol. 22, 545–552 (2012). 

244. Rakovic, A. et al. Phosphatase and Tensin Homolog (PTEN)-induced Putative 

Kinase 1 (PINK1)-dependent Ubiquitination of Endogenous Parkin Attenuates 

Mitophagy: STUDY IN HUMAN PRIMARY FIBROBLASTS AND INDUCED 

PLURIPOTENT STEM CELL-DERIVED NEURONS. J. Biol. Chem. 288, 2223–2237 

(2013). 

245. van Laar, V. S. et al. Bioenergetics of neurons inhibit the translocation response of 

Parkin following rapid mitochondrial depolarization. Hum. Mol. Genet. 20, 927–

940 (2011). 

246. Joselin, A. P. et al. ROS-dependent regulation of Parkin and DJ-1 localization 

during oxidative stress in neurons. Hum. Mol. Genet. 21, 4888–4903 (2012). 

247. Mokranjac, D. & Neupert, W. The many faces of the mitochondrial TIM23 complex. 

Biochim. Biophys. Acta - Bioenerg. 1797, 1045–1054 (2010). 

248. McLelland, G. L. et al. Mfn2 ubiquitination by PINK1/parkin gates the p97-

dependent release of ER from mitochondria to drive mitophagy. Elife 7, (2018). 

249. Sun, N. et al. Measuring in vivo mitophagy. Mol. Cell 60, 685 (2015). 

250. Winsor, N. J., Killackey, S. A., Philpott, D. J. & Girardin, S. E. An optimized 

procedure for quantitative analysis of mitophagy with the mtKeima system using 

flow cytometry. Biotechniques 69, 249–256 (2020). 

251. Frew, J. & Nygaard, H. B. Neuropathological and behavioral characterization of 

aged Grn R493X progranulin-deficient frontotemporal dementia knockin mice. 

Acta Neuropathol. Commun. 9, 1–16 (2021). 

252. Gerst, J. L. et al. Role of oxidative stress in frontotemporal dementia. Dement. 

Geriatr. Cogn. Disord. 10 Suppl 1, 85–87 (1999). 

253. Jenner, P. et al. Oxidative stress in Parkinson’s disease. Ann. Neurol. 53, S26–S38 

(2003). 

254. Huang, W. J., Zhang, X. & Chen, W. W. Role of oxidative stress in Alzheimer’s 

disease. Biomed. Reports 4, 519 (2016). 

255. Gómez-Sánchez, R. et al. PINK1 deficiency enhances autophagy and mitophagy 

induction. Mol. Cell. Oncol. 3, (2016). 

256. Klein, C. et al. PINK1-interacting proteins: Proteomic analysis of overexpressed 



206 
 

PINK1. Parkinsons. Dis. (2011) doi:10.4061/2011/153979. 

257. Watzlawik, J. O. et al. Sensitive ELISA-based detection method for the mitophagy 

marker p-S65-Ub in human cells, autopsy brain, and blood samples. Autophagy 

17, 2613–2628 (2021). 

258. Evans, C. S. & Holzbaur, E. L. F. Degradation of engulfed mitochondria is rate-

limiting in optineurin-mediated mitophagy in neurons. Elife 9, (2020). 

259. Mendsaikhan, A., Tooyama, I. & Walker, D. G. Microglial Progranulin: Involvement 

in Alzheimer’s Disease and Neurodegenerative Diseases. Cells 8, 230 (2019). 

260. Evers, B. M. et al. Lipidomic and Transcriptomic Basis of Lysosomal Dysfunction 

in Progranulin Deficiency. Cell Rep. 20, 2565–2574 (2017). 

261. Sun, A. Lysosomal storage disease overview. Ann. Transl. Med. 6, 476.-476. (2018). 

262. Tanaka, Y. et al. Progranulin regulates lysosomal function and biogenesis through 

acidification of lysosomes. Hum. Mol. Genet. 26, 969–988 (2017). 

263. Beel, S. et al. Progranulin functions as a cathepsin D chaperone to stimulate 

axonal outgrowth in vivo. Hum. Mol. Genet. 26, 2850–2863 (2017). 

264. Zhou, D. et al. PGRN acts as a novel regulator of mitochondrial homeostasis by 

facilitating mitophagy and mitochondrial biogenesis to prevent podocyte injury in 

diabetic nephropathy. Cell Death Dis. 2019 107 10, 1–16 (2019). 

265. Chang, M. C. et al. Progranulin deficiency causes impairment of autophagy and 

TDP-43 accumulation. J. Exp. Med. 214, 2611 (2017). 

266. Oakes, J. A., Davies, M. C. & Collins, M. O. TBK1: a new player in ALS linking 

autophagy and neuroinflammation. Mol. Brain 10, 1–10 (2017). 

267. Weil, R., Laplantine, E., Curic, S. & Génin, P. Role of Optineurin in the 

Mitochondrial Dysfunction: Potential Implications in Neurodegenerative Diseases 

and Cancer. Front. Immunol. 9, (2018). 

268. Wightman, D. P. et al. A genome-wide association study with 1,126,563 

individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 2021 539 

53, 1276–1282 (2021). 

269. Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease 

and related dementias. Nat. Genet. 2022 544 54, 412–436 (2022). 

270. Lee, B., Yao, X. & Shen, L. Genome-Wide association study of quantitative 

biomarkers identifies a novel locus for alzheimer’s disease at 12p12.1. BMC 

Genomics 23, 1–13 (2022). 



207 
 

271. Kunkle, B. W. et al. Novel Alzheimer Disease Risk Loci and Pathways in African 

American Individuals Using the African Genome Resources Panel: A Meta-

analysis. JAMA Neurol. 78, 102–113 (2021). 

272. Bertram, L. & Tanzi, R. E. Genome-wide association studies in Alzheimer’s disease. 

Hum. Mol. Genet. 18, R137 (2009). 

273. Homann, J. et al. Genome-Wide Association Study of Alzheimer’s Disease Brain 

Imaging Biomarkers and Neuropsychological Phenotypes in the European 

Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker 

Discovery Dataset. Front. Aging Neurosci. 14, 195 (2022). 

274. Schwartzentruber, J. et al. Genome-wide meta-analysis, fine-mapping, and 

integrative prioritization identify new Alzheimer’s disease risk genes. 

275. Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data 

identifies six new risk loci for Parkinson’s disease. Nat Genet 46, 989–993 (2014). 

276. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk 

for Parkinson’s disease: a meta-analysis of genome-wide association studies. 

Lancet. Neurol. 18, 1091–1102 (2019). 

277. Alfradique-Dunham, I. et al. Genome-Wide Association Study Meta-Analysis for 

Parkinson Disease Motor Subtypes. Neurol. Genet. 7, e557 (2021). 

278. Chang, D. et al. A meta-analysis of genome-wide association studies identifies 17 

new Parkinson’s disease risk loci. Nat. Genet. 49, 1511–1516 (2017). 

279. Foo, J. N. et al. Identification of Risk Loci for Parkinson Disease in Asians and 

Comparison of Risk Between Asians and Europeans: A Genome-Wide Association 

Study. JAMA Neurol. 77, 746–754 (2020). 

280. Foo, J. N. et al. Genome-wide association study of Parkinson’s disease in East 

Asians. Hum. Mol. Genet. 26, 226–232 (2017). 

281. Fan, L. et al. Analysis of 12 GWAS-Linked Loci With Parkinson’s Disease in the 

Chinese Han Population. Front. Neurol. 12, 404 (2021). 

282. (IPDGC), I. P. D. G. C. & (WTCCC2), W. T. C. C. C. 2. A Two-Stage Meta-Analysis 

Identifies Several New Loci for Parkinson’s Disease. PLOS Genet. 7, e1002142 

(2011). 

283. Lill, C. M. & Bertram, L. Towards unveiling the genetics of neurodegenerative 

diseases. Semin. Neurol. 31, 531–541 (2011). 

284. Weydt, P. & La Spada, A. R. Targeting protein aggregation in neurodegeneration – 



208 
 

lessons from polyglutamine disorders. 

http://dx.doi.org/10.1517/14728222.10.4.505 10, 505–513 (2006). 

285. Ahmed, R. M. et al. Neuronal network disintegration: common pathways linking 

neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry 87, 1234–1241 

(2016). 

286. Kamat, P. K., Kalani, A., Kyles, P., Tyagi, S. C. & Tyagi, N. Autophagy of 

mitochondria: a promising therapeutic target for neurodegenerative disease. Cell 

Biochem. Biophys. 70, 707–719 (2014). 

287. Goh, K. Il & Choi, I. G. Exploring the human diseasome: the human disease 

network. Brief. Funct. Genomics 11, 533–542 (2012). 

288. Tian, R. et al. CRISPR Interference-Based Platform for Multimodal Genetic Screens 

in Human iPSC-Derived Neurons. Neuron 104, 239-255.e12 (2019). 

289. Liscic, R. M. Als and Ftd: Insights into the disease mechanisms and therapeutic 

targets. Eur. J. Pharmacol. 817, 2–6 (2017). 

290. Liscic, R. M., Alberici, A., Cairns, N. J., Romano, M. & Buratti, E. From basic research 

to the clinic: innovative therapies for ALS and FTD in the pipeline. Mol. 

Neurodegener. 2020 151 15, 1–17 (2020). 

291. Kalmar, B., Lu, C. H. & Greensmith, L. The role of heat shock proteins in 

Amyotrophic Lateral Sclerosis: The therapeutic potential of Arimoclomol. 

Pharmacol. Ther. 141, 40–54 (2014). 

292. Boxer, A. L. et al. Frontotemporal degeneration, the next therapeutic frontier: 

Molecules and animal models for frontotemporal degeneration drug 

development. Alzheimer’s Dement. 9, 176–188 (2013). 

293. Wang, P., Wander, C. M., Yuan, C. X., Bereman, M. S. & Cohen, T. J. Acetylation-

induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone 

program. Nat. Commun. 8, (2017). 

294. Hochgräfe, K. et al. Preventive methylene blue treatment preserves cognition in 

mice expressing full-length pro-aggregant human Tau. Acta Neuropathol. 

Commun. 3, 25 (2015). 

295. Liscic, R. M., Grinberg, L. T., Zidar, J., Gitcho, M. A. & Cairns, N. J. ALS and FTLD: two 

faces of TDP-43 proteinopathy. Eur J Neurol 15, 772–780 (2008). 

296. Rutherford, N. J. et al. Novel mutations in TARDBP (TDP-43) in patients with 

familial amyotrophic lateral sclerosis. PLoS Genet 4, e1000193 (2008). 



209 
 

297. Rhinn, H., Tatton, N., McCaughey, S., Kurnellas, M. & Rosenthal, A. Progranulin as a 

therapeutic target in neurodegenerative diseases. Trends Pharmacol. Sci. 0, 

(2022). 

298. Castillo, K. et al. Measurement of autophagy flux in the nervous system in vivo. 

Cell Death Dis. 2013 411 4, e917–e917 (2013). 

299. Mojsilovic-Petrovic, J. et al. FOXO3a Is Broadly Neuroprotective In Vitro and In 

Vivo against Insults Implicated in Motor Neuron Diseases. J. Neurosci. 29, 8236 

(2009). 

300. Nagashima, T. et al. Discovery of Novel Forkhead Box O1 Inhibitors for Treating 

Type 2 Diabetes: Improvement of Fasting Glycemia in Diabetic db/db Mice. Mol. 

Pharmacol. 78, 961–970 (2010). 

301. Altieri, D. C., Stein, G. S., Lian, J. B. & Languino, L. R. TRAP-1, the mitochondrial 

Hsp90. Biochim. Biophys. Acta 1823, 767–773 (2012). 

302. Hong, D. S. et al. Targeting the molecular chaperone heat shock protein 90 

(HSP90): lessons learned and future directions. Cancer Treat. Rev. 39, 375–387 

(2013). 

303. Kong, A. et al. Phase 1B/2 study of the HSP90 inhibitor AUY922 plus trastuzumab 

in metastatic HER2-positive breast cancer patients who have progressed on 

trastuzumab-based regimen. Oncotarget 7, 37680–37692 (2016). 

304. Banerji, U. et al. Phase I pharmacokinetic and pharmacodynamic study of 17-

allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. 

J. Clin. Oncol. 23, 4152–4161 (2005). 

305. Scrivo, A., Bourdenx, M., Pampliega, O. & Cuervo, A. M. Selective autophagy as a 

potential therapeutic target for neurodegenerative disorders. Lancet Neurol. 17, 

802–815 (2018). 

306. Xu, W. et al. Selective autophagy as a therapeutic target for neurological diseases. 

Cell. Mol. Life Sci. 78, 1369–1392 (2021). 

307. del Campo, M. et al. New developments of biofluid-based biomarkers for routine 

diagnosis and disease trajectories in frontotemporal dementia. Alzheimer’s 

Dement. (2022) doi:10.1002/ALZ.12643. 

308. Ehrenberg, A. J. et al. Relevance of biomarkers across different 

neurodegenerative. Alzheimer’s Res. Ther. 12, 1–11 (2020). 

 



210 
 

 

 

 


