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Abstract: Microcalcification clusters (MCs) are among the most important biomarkers for breast
cancer, especially in cases of nonpalpable lesions. The vast majority of deep learning studies on digital
breast tomosynthesis (DBT) are focused on detecting and classifying lesions, especially soft-tissue
lesions, in small regions of interest previously selected. Only about 25% of the studies are specific
to MCs, and all of them are based on the classification of small preselected regions. Classifying the
whole image according to the presence or absence of MCs is a difficult task due to the size of MCs and
all the information present in an entire image. A completely automatic and direct classification, which
receives the entire image, without prior identification of any regions, is crucial for the usefulness of
these techniques in a real clinical and screening environment. The main purpose of this work is to
implement and evaluate the performance of convolutional neural networks (CNNs) regarding an
automatic classification of a complete DBT image for the presence or absence of MCs (without any
prior identification of regions). In this work, four popular deep CNNs are trained and compared
with a new architecture proposed by us. The main task of these trainings was the classification of
DBT cases by absence or presence of MCs. A public database of realistic simulated data was used,
and the whole DBT image was taken into account as input. DBT data were considered without and
with preprocessing (to study the impact of noise reduction and contrast enhancement methods on
the evaluation of MCs with CNNs). The area under the receiver operating characteristic curve (AUC)
was used to evaluate the performance. Very promising results were achieved with a maximum AUC
of 94.19% for the GoogLeNet. The second-best AUC value was obtained with a new implemented
network, CNN-a, with 91.17%. This CNN had the particularity of also being the fastest, thus becoming
a very interesting model to be considered in other studies. With this work, encouraging outcomes
were achieved in this regard, obtaining similar results to other studies for the detection of larger
lesions such as masses. Moreover, given the difficulty of visualizing the MCs, which are often spread
over several slices, this work may have an important impact on the clinical analysis of DBT images.

Keywords: digital breast tomosynthesis; microcalcifications; deep-learning; convolutional neural
network; virtual clinical trial

1. Introduction

Breast cancer is the most commonly diagnosed type of cancer worldwide [1]. Over
the last three decades, mortality rates for breast cancer have dropped from their peak by
41%, likely reflecting advancements in treatment and earlier detection through increased
screening programs [2]. However, in women, this disease is still the leading cause of cancer
death [1].

Breast screening is crucial in identifying breast cancer at an early stage, when it can
be better located and treated, thus reducing the breast cancer mortality. It is estimated
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that women who chose to participate in an organized breast cancer screening programs
have 60% lower risk of dying from breast cancer within 10 years after diagnosis [3]. Until
recently, these screenings and breast cancer detection in general were mainly performed
using digital mammography (DM). However, as a result of its 2D nature, DM presents two
major limitations: low sensitivity in dense breasts with pathology and low specificity due
to normal tissue superposition [4].

The use of digital breast tomosynthesis (DBT) has been confirming the potential of DBT
to address these limitations. Initially, DBT was studied and approved in conjunction with
DM, demonstrating an increase in breast cancer detection rates and a significant reduction
in recall rates [4–9], particularly with dense breasts [6]. Currently, by including synthetic
mammography (SM) generated from DBT data, DBT alone is approved as a stand-alone
modality to replace DM [10–15].

One major drawback with DBT is its increase in interpretation time when compared
to DM [16,17]. Computer-aided detection (CAD) systems with DBT were implemented
and evaluated in an attempt to shorten the reading time while maintaining the radiologist
performance. In fact, some results are very encouraging with reading time reductions
between 14% and 29.2% without loss of diagnostic performance [18–20].

On the other hand, there are mixed observations with respect to DBT technology for
the detection of microcalcification clusters (MCs). Some studies have revealed inferior
image quality for visibility of MCs with DBT [21–23] while others have not [24–26]. As
MCs are among the most important biomarkers for breast cancer [27,28], especially in
cases of nonpalpable lesions, another CAD approach that has been extensively studied
with DBT is the use of these conventional CAD systems to assist in the correct detection of
MCs [29–37]. However, despite the efforts and improvements already achieved (such as
decreasing the false negative rate), due to the high false positive rates and low specificity,
these CAD systems have not reached a level of performance that can be translated into a
true improvement in the real screening of breast cancer [38–41].

In recent years, the increase in computational power has allowed the development of
deep learning artificial intelligence (AI) algorithms composed of multilayered convolutional
neural networks (CNNs). These AI systems have emerged as a potential solution in the
field of automated breast cancer detection in DM and DBT [41]. In fact, recently, there have
been several published large-scale studies where the aim was to analyze the performance
of AI systems alone, as well as the performance of breast radiologists with and without
AI [20,42–49]. The AI systems under evaluation achieved a comparable or even improved
cancer detection accuracy when compared with the human experts. With these promising
results and the need for an automatic detection system for lesions in DBT and in screening,
much research has been carried out in this regard. A brief summary of these studies is
presented in Table 1.

Table 1. Summary of deep learning DBT studies (ROI: region of interest, AUC: area under the curve,
pAUC: partial AUC).

Ref. Classification Task ROI/Patch/Image Model Best Metric

[50] True MCs vs. false positives ROI (16 × 16) Own AUC: 0.93

[51] Presence/absence of masses and
architectural distortions Patch (256 × 256) Based on AlexNet Accuracy: 0.8640

[52] Presence/absence of masses ROI (32 × 32 × 25) Own AUC: 0.847

[53] True masses vs. false positives ROI (128 × 128) Own AUC: 0.90

[54] True masses vs. false positives ROI (64 × 64) Based on VGG16 AUC: 0.919

[55] Positive (malignant, benign
masses) vs. negative images Image (224 × 224) Based on AlexNet AUC: 0.6632

[56] Malignant vs. benign masses ROI (128 × 128) Based on AlexNet AUC: 0.90
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Table 1. Cont.

Ref. Classification Task ROI/Patch/Image Model Best Metric

[57] Malignant vs. benign masses Image (256 × 256) Own AUC: 0.87

[58] Presence/absence of MCs Patch (29 × 29 × 9) Based on [59] pAUC: 0.880

[60] Positive vs. negative volumes Image (1024 × 1024) Based on AlexNet,
ResNet50, Xception AUC: 0.854 (AlexNet)

[61] Positive vs. negative volumes Image (832 × 832)
Based on AlexNet,

ResNet, DenseNet and
SqueezeNet

AUC: 0.91 (DenseNet)

[62] Benign vs. malignant lesions ROI (224 × 224) Based on VGG19 AUC (MCs): 0.97

[63] Positive vs. negative patches Patch (512 × 512) Based on ResNet AUC: 0.847

[64] Malignant vs. benign
vs. normal masses ROI (256 × 256) Based on VGG16

AUC: 0.917, 0.951, 0.993
(malignant, benign,

normal)

[65] Malignant vs. benign masses ROI (224 × 224) Based on DenseNet121 AUC: 0.8703

[66] BIRADS 0 vs. BIRADS 1
vs. BIRADS 2 Image (2200 × 1600) Based on ResNet50 AUC: 0.912 (BIRADS 0

vs. non-0)

[67] Predict breast density Image Based on ResNet34 AUC: 0.952

[68] True MCs vs. false positives ROI (128 × 128) Based on ResNet18 AUC: 0.9765

[69] Malignant vs. benign
vs. normal images Image (150 × 150) Own AUC: 0.89

[70] Malignant vs. benign MCs Patch (224 × 224)
Ensemble CNN (2D

ResNet34 and
anisotropic 3D Resnet)

AUC: 0.8837

[71]
Malignant vs. benign vs. normal

slices based on masses and
architectural distortions

Image (input size of
each CNN: 224 × 224,

227 × 227)

ResNet18, AlexNet,
GoogLeNet, VGG16,

MobileNetV2,
DenseNet201,
Mod_AlexNet

Accuracy: 0.9161
(Mod_AlexNet)

The vast majority of these studies focused on detecting and classifying soft-tissue
lesions, such as masses [51–57,64,65]. In addition to the fact that these are important lesions
for the characterization of breast cancer, in this type of lesion, it is possible to greatly reduce
the data input size through interpolation, without losing the spatial resolution required to
observe the lesion (the same does not occur with MCs). In this way, faster transfer learning
solutions, useful when there is a lack of available training data (as in the case of DBT),
can be used with very positive results [53–56,64,65]. Even in cases where only regions
of interest (ROIs) and not full images are selected, such resizing is usually carried out.
Furthermore, the vast majority of the works use ROIs or patches where objectively there
is or is not a lesion [55,57,60,61,66,67,69,70], instead of using the whole image or volume.
The use of the whole image or volume is important to contextualize the lesions but also
to make the classification a useful and quick tool in screening, where an image/volume
should ideally give some type of direct outcome.

One of the biggest challenges involving DBT in AI is the lack of a large, properly
labeled public database. All studies mentioned in the Table 1, except one [71], used
private databases, making generalization and a fair comparison between different studies
impractical [72]. Recently, two publicly accessible annotated DBT datasets that will facilitate
the evaluation and validation of AI algorithms were released. Buda et al. made publicly
available a large-scale dataset of DBT data. It contains 5610 studies from 5060 patients:
5129 normal cases (no abnormal findings), 280 cases where additional imaging was needed
but no biopsy was performed, 112 benign biopsied cases, and 89 cases with proven cancer.
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This dataset includes masses and architectural distortions and was used to train and test a
single-phase deep learning detection model that reached a baseline sensitivity of 65% at
two false positives per DBT volume [73]. El-Shazli et al. used this database to propose a
computer-aided multiclass diagnosis system for classifying DBT slices as benign, malignant,
or normal considering masses and architectural distortions [71]. The other public dataset
resulted from the advancement of in silico tools. The Virtual Imaging Clinical Trial for
Regulatory Evaluation (VICTRE) project was created for the evaluation of the imaging
performance of DBT as a replacement to DM for breast cancer screening. In VICTRE, the
whole imaging chain was simulated with state-of-the-art tools, and a total of 2986 virtual
realistic patients were generated and imaged with both modalities. The positive cohort
(that comprises malignant spiculated masses and MCs) included 1944 and 1042 virtual
patients with and without lesions, respectively [74].

In this paper, fully automatic methods based on deep learning were studied for
classifying DBT data. The aim is to input a whole DBT image and have a direct answer
about the absence or presence of MCs, without the need for prior identification of lesions
in specific regions and, thus, completely automate the process of DBT classification. Four
existing popular networks were considered and compared with a new network proposed
by us for this purpose. In order to study the impact of some preprocessing methods
in increasing the visibility of MCs, the input data were considered with and without
preprocessing. The VICTRE public database was used. To the best of our knowledge, this is
the first study of automatic classification specifically dedicated to the presence or absence
of MCs in whole DBT images.

2. Materials and Methods
2.1. Database

This study was centered on the database created for the VICTRE trial [74]. Synthetic
images of virtual patients were obtained using an in silico version of the Siemens Mammo-
mat Inspiration DBT system using Monte Carlo X-ray simulations. These data are available
to the public in the Cancer Imaging Archives [75]. Physical compression of left breasts was
considered in the craniocaudal (CC) orientation. In this database, the cases are divided
into the absence and presence of lesions, as well as according to the density of the breast
(fatty, scattered, heterogeneous, and dense). The absent cases have no findings, and each
case with lesions present contains four spiked masses with a 5 mm nominal diameter and
mass density 2% higher than normal glandular tissue, and four MCs consisting of five
calcified lesions modelled as 195, 179, and 171 µm of solid calcium oxalate. In this study,
we included cases without (“absent”) and with MCs (“present MCs”).

Table 2 presents a detailed summary of the dataset selected for this work. The re-
constructed cases had different dimension in x, y, and z, depending on breast density:
1624× 1324× 62, 1421× 1024× 57, 1148× 753× 47, and 1130× 477× 38 for fatty, scattered,
heterogeneous, and dense breasts, respectively, with a voxel size of 0.085 × 0.085 × 1 mm3.
For the absent category, five slices proportionally spaced between the first and the last
slice were selected for each case (for example, as fatty cases have 62 slices: slices 1, 17, 33,
49, and 62 were selected; as dense cases have 38 slices: slices 1, 11, 21, 31, and 38 were
chosen). On the other hand, for the presentMCs class, slices containing the center of the
cluster were selected for each case (in some cases, two clusters had their center on the same
slice). Numerically, we adopted the usual distribution of breast density in the population:
10% fatty, 40% scattered, 40% heterogeneous, and 10% dense, with an approximate balance
between cases without and with lesions.



J. Imaging 2022, 8, 231 5 of 19

Table 2. Detailed summary of the VICTRE data selected for this study.

Absent Present MCs

Density Number of
Cases

Number of
Slices

Number of
Cases

Number of
Slices

Fatty 20 100 25 99
Scattered 80 400 100 386

Heterogeneous 80 400 100 371
Dense 20 100 25 93
Total 1000 949

2.2. Data PreProcessing

In the VICTRE database, the reconstructed data have signal contamination outside
the breast region, i.e., in the background (BG). This information is worthless for training
the networks and, when present, slows down the process, as pixels without any useful
information end up contributing to the mathematical operations involved. In this way,
through binarization and region-growing operations, binary masks that keep information
belonging to the breast and make everything else zeros were created (“BG suppression”).
This step was applied to the original data and after all the other types of processing.

The very-low-dose projections acquired within a limited angular range in a DBT
examination result in low statistics (high noise level) in the reconstructed images and data
insufficiency. For this reason, image denoising methods are very important in order to
improve the image quality of DBT data. Total variation (TV) minimization algorithms
have attracted considerable attention in the field because of their ability to smooth images
while preserving the edges. Studies applying TV minimization to DBT data have shown
excellent results so far [76–80]. This methodology was applied during the preprocessing
step. Minimization of TV greatly improves the contrast-to-noise ratio by reducing the noise.
In this way, in order to also increase the contrast, two other techniques were studied. The
contrast-limited adaptive histogram equalization (CLAHE) technique was implemented to
increase the contrast of all breast structures in general, and a simpler operation was applied
to increase the contrast of structures with greater intensity, such as MCs, in particular.
Since we wanted to study whether image noise reduction or contrast has any impact on
CNN training, some combinations of these methods were made, resulting in six different
preprocessing approaches (Figure 1), as described below.
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Figure 1. The six preprocessing methodologies implemented in order to reduce noise and amplify
the visibility of the MCs (BG: background, normData: data normalized between 0 and 1).

PreProcessing 1: As DBT data are composed of a high level of noise resulting from
the acquisition of low-dose projections, the application of a noise reduction filter was
analyzed. This filter consists of minimizing the TV of the data, allowing the noise to be
significantly reduced while preserving the edges and lesion resolution (which is a very
important factor when the structures under analysis are small MCs). TV is a measure of
pixel intensity variation in an image and increases significantly in the presence of noise.
In each preprocessing that included this filter, several Lagrange multipliers were tested
to study which allowed the minimum TV value [78], and 14 was the chosen value for the
application of the filter in all cases.
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PreProcessing 2: The CLAHE technique [81] was implemented using the MATLAB
R2020a function adapthisteq [82] to enhance the contrast of the images and the MCs. With
this technique, the contrast in homogeneous areas is limited to avoid the amplification
of noise. The contrast transformation function is calculated in small regions of the image
individually, rather than in the whole image, and neighboring regions are then combined
through bilinear interpolation to eliminate artificially induced boundaries. The contrast
enhancement limit was 0.01, and a uniform distribution of the histogram was used with a
distribution parameter of 0.4.

PreProcessing 3 and 4: The techniques described for preprocessing 1 and 2 were
combined and used together by varying the order in which each one was applied. These
steps (3 and 4) were also included since techniques 1 and 2 could complement each other
and, through preliminary studies, it was possible to conclude that their order of imple-
mentation showed differences in the appearance of the final image. In preprocessing 3,
the TV minimization filter for noise reduction was first applied, followed by the contrast
enhancement technique. For preprocessing 4, the application was in the opposite order,
with contrast enhancement technique first and then noise reduction.

PreProcessing 5: The data intensity was first normalized between 0 and 1 and then
squared to attenuate the lower values, highlighting the higher ones belonging to the
MCs. With this filter, our aim was to specifically increase the contrast of regions of
higher intensities.

PreProcessing 6: The method applied in preprocessing 5 was followed by the TV
minimization filter, as described in preprocessing 1.

In order to homogenize the data, as well as to find a balance between training
time/memory and the necessary spatial resolution for the visibility and conspicuity of MCs,
all data were resized in x and y to 512 × 512. No adjustments were made in the z-direction
since training was performed slice-by-slice. The images were converted into TIFF slices of
8 bits, and input data were normalized using the zero center method.

2.3. CNNs

Since it was crucial to maintain image spatial resolution under certain limits to allow
the detection of the small MCs, it was not possible to reduce the image dimension to values
such as 224 × 224 or 227 × 227, which are the most used in pretrained networks for transfer
learning. Our approach was then to train from scratch four architectures that already exist:
AlexNet [83], GoogLeNet [84], ResNet18 [85], and SqueezeNet [86]. The choice of these
popular networks was based on the comparison of each model’s speed and accuracy [87].

In addition, to alleviate some computational effort, one faster and lighter new architec-
ture, based on AlexNet, is proposed by us: CNN-a (Figure 2).

In CNN-a, the channel-wise local response normalization layers were replaced by
batch normalization layers (“norm”) and a new max pooling layer with a stride of 2,
padding of 0, and size of 3 × 3 was added between the two grouped convolutional layers.
These modifications were the result of several empirical trial-and-error studies conducted
by us during the experiment.
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2.4. Methodology Pipeline

Figure 3 shows the pipeline followed in this work. Absent and presentMCs data
samples were selected, and the described preprocessing techniques were applied. The
training dataset was used to train the CNNs from scratch, and the testing dataset was used
after training to evaluate the performance of the trained CNNs.
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2.5. Training Options

The k-fold technique was used as the cross-validation method to estimate the general-
ization error of the learning process. The dataset used was divided into k = 3 subsets, i.e.,
each network was trained and tested three times with different datasets, always according
to the proportion of two-thirds of the cases for training and one-third for testing. Since the
split was performed at the patient level, all the images of the same patient were in either the
training set or the test set. Training data augmentation was used through random reflection
in the left–right direction (to simulate the inclusion of examples of right breasts) and data
rotation between ±20◦.
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The CNNs were trained using the stochastic gradient descent optimizer with momen-
tum 0.9 to minimize the cross-entropy loss for classification. The maximum number of
epochs was 200 with a mini-batch size of 32 and a learning rate of 1 × 10−3. In addition to
the threefold cross-validation, an L2 regularization term of 5 × 10−3 was introduced in the
loss function to prevent overfitting.

2.6. Evaluation Metrics

Classification problems usually involve distinguishing between two classes. In the
case of medical imaging, this distinction is usually made between the absence or presence
of abnormalities or between benign/malignant lesions. In our work, the objective was
to distinguish between the absence or presence of MCs. Sensitivity, specificity, accuracy,
and area under the receiver operating characteristic (ROC) curve (AUC) were considered
to evaluate the performance. The analysis of only the first three metrics can be limitative
because they depend on the defined threshold to accept a case as presentMCs or absent. In
this way, we used the AUC (positive class: presentMCs) as a summary tool that contains
the space of all these possible thresholds.

Differences in the performance of each classifier were tested using a statistical t-test. A
two-tailed p-value < 0.05 was considered to indicate a significant difference.

3. Results
3.1. Data Preprocessing

All the steps involved in the BG suppression are presented through an example case
in Figure 4. The original data were first binarized (Figure 4b) by thresholding, the holes in
the image were filled (Figure 4c), the largest resultant object was selected (Figure 4d), and
the complete binary mask was achieved by performing region growing in (Figure 4e). The
profile traced for the white ROI (lower right corner of (a) and (f)) shows the cleaning effect.
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Figure 4. (a) Data with contaminated BG; (b) first binary image; (c) filled binary image; (d) largest
object extracted from binary image; (e) result from region growing; (f) final image with BG corrected
after binary mask from (e) applied to (a).

This methodology was included in all preprocessing approaches, as mentioned in
Section 2.2. Zooming in on one MC (Figure 5), we can see the different results achieved in
this type of lesions with each preprocessing method.
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Figure 5. (a) Original data without preprocessing; (b) preprocessing 1 (minimization of TV);
(c) preprocessing 2 (CLAHE); (d) preprocessing 3 (minTV + CLAHE); (e) preprocessing 4 (CLAHE +
minTV); (f) preprocessing 5 (dataNorm2); (g) preprocessing 6 (dataNorm2 + minTV).

3.2. Performance Analysis

Our research was guided by the AUC results obtained for the different architectures
and preprocessing methods. As mentioned above, the training and testing were repeated
three times (threefold cross-validation) using three distinct datasets. The averaged perfor-
mances and standard deviation values found over the three folds are shown in Table 3.

Table 3. Performance results of CNNs trained with original data and with data resulting from the
preprocessing methodologies, in terms of mean AUC.

AUC (%): Mean ± SD

AlexNet GoogLeNet ResNet18 SqueezeNet CNN-a

Original data 87.92 ± 2.01 90.14 ± 0.38 86.84 ± 2.62 87.43 ± 0.78 89.79 ± 1.23
Preprocessing 1 87.35 ± 1.63 88.38 ± 1.12 87.96 ± 0.96 88.78 ± 0.99 90.66 ± 0.15
Preprocessing 2 87.29 ± 0.78 93.02 ± 3.59 86.42 ± 3.26 86.84 ± 3.82 86.95 ± 0.97
Preprocessing 3 88.61 ± 0.43 94.19 ± 1.12 86.33 ± 1.46 82.15 ± 1.51 85.80 ± 1.73
Preprocessing 4 90.82 ± 1.29 94.15 ± 1.54 90.13 ± 0.32 86.33 ± 6.31 89.07 ± 1.62
Preprocessing 5 87.62 ± 0.35 88.65 ± 4.27 90.44 ± 0.41 85.18 ± 2.78 89.54 ± 2.63
Preprocessing 6 87.47 ± 1.13 89.76 ± 1.76 89.00 ± 1.33 84.09 ± 3.13 91.17 ± 0.07

In Table 4 presents the p-values calculated to study the measurable statistical differ-
ences between the best mean AUCs obtained in Table 3.
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Table 4. Levels of significance (p-values) obtained from the statistical analysis of the difference
between the best mean AUCs found.

p-Value
GoogLeNet PreProc3 ResNet18 PreProc5 SqueezeNet PreProc1 CNN-a PreProc6

(94.19 ± 1.12) (90.44 ± 0.41) (88.78 ± 0.99) (91.17 ± 0.07)

AlexNet
preProc4 0.027 0.654 0.095 0.662

(90.82 ± 1.29) (AlexNet < GoogLeNet)

GoogLeNet
preProc3 0.006 0.003 0.010

(94.19 ± 1.12) (GoogLeNet > ResNet18) (GoogLeNet >
SqueezeNet) (GoogLeNet > CNN-a)

ResNet18
preProc5 0.055

0.038

(90.44 ± 0.41) (ResNet18 < CNN-a)

SqueezeNet
preProc1 0.014

(88.78 ± 0.99) (SqueezeNet < CNN-a)

p-Values <0.05 (in bold) indicate a significant difference; preProc—preProcessing.

Considering only the best results obtained for averaged AUC, Figure 6 shows the ROC
curves of the CNN network trained with the respective data. These curves were obtained by
averaging between the ROC curves of each fold. Additionally, Figure 7 analyzes the values
of the respective sensitivities, specificities, and accuracy in detecting the cases with MCs.
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3.3. Influence of Breast Density on Classification

Breast density interferes with the detection of lesions [88]. In this way, it was important
to explore the influence of density on the specific detection of MCs with these CNNs trained
by these datasets. For this purpose, the training dataset were not changed, i.e., the CNNs
were trained including all breast densities, but they were tested separately with specific
datasets for each breast density. The results, in form of AUC values, are shown in Figure 8.
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The training that provided the best performance (GoogLeNet @ preprocessing 3)
required a training time of approximately 9 h for all three folds (using an NVIDIA Quadro
P4000 GPU). On the other hand, the fastest training and second-best performance were
obtained, simultaneously, for our CNN-a with data from preprocessing 6. Table 5 shows
the training and inference times for all CNNs.
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Table 5. Training times, in hours, needed for each CNN after threefold cross-validation and mean
inference time (in seconds) needed to classify each image.

Training Time (h) Inference Time/Slice (s)

CNN-a 2.4 0.0057
AlexNet 4.1 0.0062

SqueezeNet 4.4 0.0083
ResNet18 7.8 0.0143

GoogLeNet 8.9 0.0158

4. Discussion

In this work, the training from scratch of four popular CNNs and a new architecture
proposed by us was investigated. Given the whole DBT image (and not only some specific
ROIs) as input, the classification of cases by absence or presence of MCs was the main
task of these trainings. Original data and data resulting from preprocessing methods (to
increase MCs visibility) were considered. The DBT dataset used for training and testing are
from the public database available at The Cancer Imaging Archive website [75].

In order to avoid useless complex mathematical operations, all the information outside
the breast region was eliminated. In four steps, an automatic methodology that creates a
binary image where only the information inside the breast is considered was implemented.
The comparison between the contaminated data and the data with complete suppression of
BG signal can be observed through the profiles of the yellow regions in Figures 4a and 4f,
respectively. This operation represented a difference of about 5% in training times, without
performance losses, and it is usually applied in this type of CNN training.

Data preprocessing can be very useful when training CNNs from scratch to facilitate
the detection and classification processes. In this work, both original data and data resulting
from different preprocessing methods were considered as input. A comprehensive study of
different methods to make the MCs more visible to the algorithms was carried out.

In original data, the MCs showed reasonable contrast to the naked eye (Figure 5a). This
highlight can be compromised due to their size, the presence of noise, and other structures
that can make them less visible. Both preprocessing 1 and preprocessing 2, had a great
influence on MCs data. Preprocessing 1 smoothed the region around the MCs, preserving
its edges (Figure 5b), while preprocessing 2 contributed to an increase in contrast between
all structures, whether they were MCs or not (Figure 5c). We thought it might be interesting
to combine a technique that is essentially for noise reduction (TV minimization) with a
CLAHE technique; in this way, preprocessing 3 and preprocessing 4 corresponding to
Figures 5d and 5e, respectively, were implemented. While, visually, the MCs stand out
from the surrounding noise in Figure 5d, in Figure 5e, where the contrast enhancement
was applied first and the noise reduction latter, the MCs appear to fade. Additionally,
for its simplicity, another method based on squared normalized data was also studied
(preprocessing 5). This operation worked quite well when it comes to highlighting high-
intensity structures (Figure 5f). The application of the TV minimization filter to these data
(preprocessing 6) also resulted in a reduction in anatomical noise that allowed for greater
differentiation of the MCs, as can be seen in Figure 5g.

This descriptive analysis is in line with the numerical results obtained for the trained
CNNs. From Table 3, it can be seen that the results were affected not only by the type
of input data, but also the CNN architecture itself. In fact, the best AUC value of each
CNN was achieved with different input data. GoogLeNet showed the best AUC with data
processed using method 3 (94.19%), CNN-a showed the best AUC with data processed using
method 6 (91.17%), AlexNet showed the best AUC with data processed using method 4
(90.82%), ResNet18 showed the best AUC with data processed using method 5 (90.44%),
and SqueezeNet showed the best AUC with data processed using method 1 (88.78%). CNNs
trained with original data did not generate a maximum AUC. However, all the AUC values
were higher than 86%, showing that, even without any preprocessing, this could be an
option. As shown in Figure 9a, for cases where the MCs were in a region with less noise
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and were more evident, all the CNNs achieved a correct classification in the original data.
On the other hand, despite the efforts to reduce noise and increase contrast, some cases
such as the one in Figure 9b were incorrectly classified as negative by all CNNs, even when
varying the pre-processing. Although preprocessing 2 did not contribute to a maximum
either, it resulted in the third-best AUC for GoogLeNet. From Table 3, it is also possible
to conclude that GoogLeNet was the most sensitive CNN to data contrast since its best
results of AUC were obtained with methods where the contrast enhancement operation
was performed. In the example of a case where MCs were in a region with other structures
also of greater contrast (Figure 9c,d), GoogLeNet took advantage of preprocessing 3 and
was the only CNN to correctly classify this case. As a matter of fact, the GoogLeNet trained
with data processed using method 3 presented significantly higher values in the detection
of cases with MCs (p-value < 0.05, Table 4). This superiority is quite visible in the isolated
ROC curve in Figure 6. The second-best performance corresponded to CNN-a trained with
data from preprocessing 6, with this superiority significant in relation to ResNet18 and
SqueezeNet (Table 4). In Figure 9e there is a case of a MCs that were masked and only
detected by CNN-a after preprocessing 6 (Figure 9f). Thus, in agreement with the results in
Table 3, we can assume that it is the combination of both factors (data type and CNN) that
determines the result of a correct classification.
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Figure 9. Some examples of MCs in the DBT data used. (a) True positive (case correctly classified
as positive by all CNNs, even in the original image); (b) false negative (case incorrectly classified as
negative by all CNNs, even when varying the preprocessing); (c) original case classified as negative
and that was only detected by GoogLeNet when preprocessed with method 3 (d); (e) original case
classified as negative that was only detected by CNN-a when preprocessed with method 6 (f).

The variations and differences in AUC values obtained for each situation were, in
general, in agreement with the specificity, sensitivity, and accuracy values obtained in
Figure 7. Although specificity values were higher than sensitivity in most cases, these
differences were not significant (p-value > 0.05 in all cases). As for accuracy, GoogLeNet
and CNN-a presented the best values of 85.68% and 82.45%, respectively.

In the VICTRE database, it is possible to separate the cases by breast density, and a
study was published where a model observer was trained separately for detecting lesions
in each of the four breast density types and then tested on the same density type to
obtain the individual AUC for each density [89]. As a conclusion of this study, Zeng et al.
believed it would be appropriate to train the model observer with mixed breast density
images. This was exactly what we did with the deep learning architectures proposed in
this work. However, in order to understand whether the presented methodologies were
influenced or not by breast density, the same CNNs were tested separately for classifying
the DBT data about the presence of MCs in each of the four breast density types (fatty,
scattered, heterogeneous, and dense), and the results were analyzed in terms of AUC. As
seen in Figure 8, only SqueezeNet was especially sensitive to density, showing significant
differences in detection among the three density types. The correct classification of cases
with MCs in dense breasts with SqueezeNet was significantly lower compared to the
other densities. In general, due to the lower anatomical background, fatty breasts allowed
good classifications of cases with MCs. GoogLeNet was the exception, with fatty breasts
corresponding to the lowest AUC value (p > 0.05).
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Training and inference times of Table 5 are purely indicative as they vary depending on
the computation power available. However, in relative terms, the already existent networks
(GoogLeNet, ResNet18, SqueezeNet, and AlexNet) led with the four longest times. On the
other hand, although the CNN with the best AUC (GoogLeNet) showed the longest time,
the second best (CNN-a) was the faster network. As inference time is the key when the
models are used in clinic, it should be noted that, with CNN-a, it was possible to classify an
image never seen by the model before about three times faster than with GoogLeNet. From
our point of view, this fact makes this architecture adapted from AlexNet very interesting
for future studies that involve more complex and longer trainings, such as object detection
with state-of-the-art faster region-based CNNs. One of the most determining factors in
the training/testing time of these CNNs is the feature extraction network that is used as
the basis. Thus, a faster model such as CNN-a, which presents good results regarding the
classification of cases with MCs, should be an option to be studied in the future.

In two published studies (2D and 3D), where a prescreening stage generates possible
MCs and the proposed CNNs differentiate between true MCs and false positives, AUC
values of 93% [50] and 97.65% [68] were reported. Both studies used ROIs instead of the
whole image/volume. Some regions do not have any lesions or relevant information, while
others contain only the lesions. On the other hand, in a study where the main objective was
to compare the detection of MCs in images reconstructed with two different reconstruction
algorithms (EMPIRE and filtered back projection), small 3D patches were used as input,
and the best result obtained in terms of partial AUC was 88.0% [58].

In another study, an ROI was selected for each lesion on a DBT key slice, features were
extracted using a pretrained CNN and served as input to a support vector machine classifier
trained in the task of predicting likelihood of malignancy [62]. The AUC result obtained
in CC view for MCs detection was 82%. Other views were included, and, considering
MLO (mediolateral oblique) in addition to CC view, AUC improved to 97%, showing the
importance of having both views available.

Xiao et al. proposed an interesting ensemble CNN to classify benign and malignant
MCs in DBT. This classification was made on smaller patches (300 × 300) containing only
the MCs. The AUC and accuracy using a decision-level ensemble strategy were 0.8837 and
0.82, respectively [70].

The only work that took the whole image information into account used 2D synthetic
mammographic images obtained from DBT exams to train a multi-view deep CNN to
classify screening images into BI RADS classes (0: further evaluation is required due to a
suspicious abnormality; 1: the mammogram is negative; 2: the mammogram is benign).
The AUC values obtained were as follows: BI-RADS 0 vs. others, 91.2%; BI-RADS 1 vs.
others, 90.5%; BIRADS 2 vs. others, 90.0% [66].

A direct comparison between literature values and those obtained in this work is not
fair due to several reasons. The first is that different databases were used (those of the
studies mentioned were all private databases). The second is that the training data have
quite different characteristics due to different detection tasks. Some used only small parts
of the data, and those which used the entire image did not refer to DBT slices but rather
to synthetic mammograms obtained with DBT. Nevertheless, it is possible to confirm that
the results obtained by our study (maximum value of AUC achieved: 94.19%) are quite
competitive when compared to those available in the literature.

There were some limitations in this study. The first is that the available dataset is
limited to the CC view and one manufacturer. The second is that only one type of lesion
(MCs) was considered, and, within the available data, there may be some similarities
between lesions. We tried to overcome this fact through data augmentation with reflection
and rotation. The third is that, despite being very realistic, the data are simulated and,
therefore, do not correspond to real patients. Lastly, since DBT is a 3D technique, the fact
that we consider information in 2D slices can limit the advantage provided by the depth
information. Furthermore, the true clinical value lies in the classification of a volume,
because this is what radiologists do every day in clinical practice. We believe that this work
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is a starting point and can serve as a basis for the implementation of a 3D training with all
volume and 3D architectures, considering real data volumes and not just some slices. In
addition, it will also be important to diversify the lesions, including data obtained from
other views (MLO), manufacturers, and reconstruction algorithms. As for the training of
the CNNs themselves, other optimizers that have been producing good results (such as
Adam optimizer), as well as different mini-batch sizes and learning rates, should be tested
and evaluated.

5. Conclusions

Deep learning AI algorithms composed of multilayered CNNs have been growing
over the past 5 years and have shown very promising results in supporting the detection of
breast cancer. One of the great difficulties in training these algorithms is the lack of labeled
DBT databases. Furthermore, all published studies refer to private databases, thus limiting
the comparison and improvement of the studies carried out.

In this study, a public DBT dataset was used to train from scratch four popular CNNs
and a new CNN model proposed by us. The main task of our algorithms was to classify
a DBT case for the presence or absence of MCs, given the whole DBT image as input. In
addition to the original data, six different preprocessing methodologies, the main purpose
of which was to highlight MCs, were implemented to generate different input datasets.

Classifying the whole image according to the presence or absence of MCs is a difficult
task due to the size of MCs and all the information present in an entire image. With this
work, we were able to achieve encouraging outcomes in this regard, obtaining similar
results to other studies for the detection of larger lesions such as masses. The classification
of cases with/without MCs was greatly influenced by the type of input data, and our new
model achieved the second-best performance in the shortest time, thus becoming a very
interesting model to be considered in future studies.
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