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Abstract 

Background 

Antimicrobial resistant and virulent strains of Enterobacterales are frequent causes of hospital-

acquired urinary tract infections (HA-UTI).  This study explores the virulence and antibiotic 

resistance determinants, associated mobile genetic elements (MGE) and sequence types of six 

multidrug-resistant (MDR) Klebsiella pneumoniae (Kp1-Kp6), one Escherichia coli (Esc) and one 

Enterobacter cloacae strain (ECC) from a collection of 120 uropathogenic Enterobactericeae 

isolated from HA-UTI in Sri Lanka using genomic sequencing and comparative genomics.   

Results 

This study describes the first isolation of MDR K. pneumoniae ST16, E. coli ST131 and E. 

hormaechei subsp. steigerwaltii ST93 in Sri Lanka. All isolates carried genes conferring resistance 

to six or more different classes of antibiotics. Only five carried known carbapenemase genes with 

the others harbouring multiple AmpC and ESBL (extended-spectrum β-lactamase) genes. ECC 

manifested both blaNDM-4 and blaOXA-181 together with the ble gene which encodes resistance to 

bleomycin. The K. pneumoniae strains harbored fimbrial genes (fim, mrk) that play a role in the 

pathogenesis of UTI. Several extra-intestinal pathogenic Escherichia coli associated virulence 

genes were identified in Esc. The efflux pump gene, acrA and the T6SS gene cluster were detected 

in ECC. Many antimicrobial resistance (AMR) and virulence genes were identified associated with 

MGE. In all isolates ISEcp1 flanked upstream of blaCTX-M-15. The blaOXA-48-like carbapenemase 

genes, blaOXA-181 and blaOXA-232, were carried on ColKP3 plasmids and were associated with ISEcp1. 

In Esc, the AMR gene, blaTEM-1B and virulence gene, traT were found on an IncF plasmid replicon. 



3 
 

In Kp2, Kp4 and Kp6 the AMR genes sul1 and tetB present on IncR plasmid replicons were 

associated with the insertion sequence IS6100. In Kp5, blaLAP-2 and qnrS1co-existed and were 

flanked by ISEcl. AMR gene clusters of 3 to 4 genes, conferring resistance to multiple 

antimicrobial classes, flanked by mobile elements were identified in seven isolates.  

Conclusions 

The concurrent presence of resistance to multiple antibiotics and a variety of virulence factors 

facilitates pathogenicity in hospital acquired infections. This study revealed a diversity of AMR 

genes, virulence genes, associated MGE and sequence types among MDR uropathogenic 

Enterobacterales isolated from HA-UTI in Sri Lanka. 

Keywords 
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Hospital-acquired urinary tract infections, Sri Lanka 
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Background 

The spread of multidrug resistant (MDR) Klebsiella pneumoniae, Escherichia coli and 

Enterobacter cloacae complex (ECC) strains resulting in treatment failure and increased mortality 

has become a global health problem [1, 2]. In particular, extended spectrum β-lactamase (ESBL) 

and carbapenemase producing strains of K. pneumoniae, E. coli and ECC are of concern due to 

their association with transferable multidrug resistance and the establishment of successful clones 

[2, 3, 4]. Such strains pose a potential threat to hospitals as they are known to cause hospital 

outbreaks [4]. There have been several reports in Sri Lanka of outbreaks due to MDR 

K. pneumoniae and E. coli strains resulting in closure of wards [5, 6].  

Several sequence types (STs) of MDR K. pneumoniae, such as ST14, 15, 16, 17, 23, 29, 101 and 

147, are widely distributed across the globe [7, 8]. E. coli ST131 is notorious as a globally 



5 
 

disseminated cause of difficult to treat urinary tract infections (UTI) and sepsis [9]. 

E. xiangfangensis ST114, E. hormaechei subsp. steigerwaltii ST90 and ST93 and E. cloacae 

cluster III ST78 are widely disseminated, MDR strains of the ECC [2]. The presence of a variety 

of antimicrobial resistance (AMR) genes, conferring resistance to several antimicrobial classes, in 

combination with genes coding for a range of virulence factors, often carried on the same plasmid, 

enhance the pathogenic potential of these MDR clones [10, 11, 12]. 

K. pneumoniae serotypes K1, K2, O1, O2 and O3 and E. coli ST131, serotype O25:H4 are 

associated with high pathogenicity [13, 14]. However, the virulence correlates of MDR ECC have 

not been described in detail [2, 15].  

The increasing ease of whole genome sequencing (WGS) has permitted detailed investigation of 

such strains in high resolution. This study aims to identify the STs, serotypes, AMR genes, 

virulence genes and associated mobile genetic elements (MGE) of six MDR K. pneumoniae 

strains, one E. coli strain and one ECC strain isolated from hospital acquired UTI (HA- UTI) in 

Sri Lanka using comparative genomics.   

Results 

STs and serotypes 

The six K. pneumoniae isolates belonged to three STs; Kp2, Kp4 and Kp6 were ST147, Kp1 and 

Kp3 were ST16 and Kp5 was ST15, respectively. Multiple K and O loci were seen in these strains 

(Table 1).  Esc was identified as E.coli ST131 with a predicted serotype of O25:H4. The single 

ECC isolate was identified as E. hormaechei subsp. steigerwaltii ST93. (Table 1).  

AMR genes 

A total of 37 AMR genes conferring resistance to different antimicrobial classes were identified 

with all isolates harboring genes coding for resistance to six or more antibiotic classes (Fig. 1). 
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Resistance to aminoglycosides [aac(6')-Ib-cr, aph(3')-Ia, aac(3)-IIa, aph(3'')-Ib, aph(6)-Id, 

aac(3)-IId, aadA5], β-lactams (blaCTX-M-15, blaSHV-1, blaSHV-11, blaSHV-28, blaTEM-1B, blaOXA-1, blaDHA-

1, blaACT-7, blaLAP-2, blaOXA-181, blaOXA-232, blaNDM-4), fosfomycin (fosA), macrolides [erm(B), 

mph(A), mdh (A)], chloramphenicol (catA2, catB3), sulphonamides (sul1, sul2), trimethoprim 

(dfrA1, dfrA14, dfrA17), quinolones [aac(6')-Ib-cr, oqxA, qnrS1, qnrB4], rifampicin (ARR-3) and 

tetracycline [tet(A), tet(B), tet(D)] was seen.  

 

Kp3, Kp4 and Kp6 harbored blaOXA-181 and Kp1, blaOXA-232. The ECC strain carried both blaOXA-

181 and blaNDM-4 together with the ble gene which encodes resistance to bleomycin. Kp5 showed a 

multiple ESBL / AmpC β-lactamase combination of blaCTX-M-15, blaSHV-28, blaOXA-1 and blaDHA-1. 

This isolate also carried the acquired narrow spectrum blaLAP-2 gene. Kp2 and Esc carried only 

multiple ESBL genes (blaCTX-M-15, blaSHV-11 and blaTEM-1B and blaCTX-M-15, blaOXA-1 and blaTEM-

1B, respectively) (Table 1, Fig. 1).  
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Fig. 1. The dendrogram and heat map generated using the presence and absence of AMR genes (red boxes indicate 

the presence of genes and grey boxes indicate the absence of genes).  

Aminoglycoside resistance genes: aac(6')-Ib-cr, aph(3')-Ia, aac(3)-IIa, aph(3'')-Ib, aph(6)-Id, aac(3)-IId, , aadA5; β-

lactam resistance genes:, blaCTX-M-15, blaSHV-1, blaSHV-11, blaSHV-28, blaTEM-1B, blaOXA-1, blaDHA-1, blaACT-7, blaLAP-2, blaOXA-

181, blaOXA-232, blaNDM-4; fosfomycin resistance genes: fosA; macrolide resistance genes: erm(B), mph(A), mdh (A); 

phenicol resistance genes: catA2, catB3; quinolone resistance genes: aac(6')-Ib-cr, oqxA, qnrS1, qnrB4; rifampicin 

resistance genes: ARR-3; sulphonamide resistance genes: sul1, sul2; trimethoprim resistance genes: dfrA1, dfrA14, 

dfrA17; tetracycline resistance genes: tet(A), tet(B), tet(D). 

 

Virulence genes 

Virulence genes coding for several functional proteins were identified (Fig. 2). Kp1-4 and Kp6 

exhibited the yersiniabactin locus (ybt) encoding yersiniabactin siderophores while Kp5 
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manifested the kfu iron uptake system gene. While all K. pneumoniae strains harbored the Type 2 

fimbrial gene cluster mrk, Kp1 and Kp3 showed additional fimA genes. The serum resistance-

associated outer membrane lipoprotein traT gene was seen in K. pneumoniae Kp1 and Kp3 strains 

and in the Esc strain. Genes coding for adherence factors (afa, iha, yfcV), toxins (sat) and iron 

acquisition systems (iutA, sitA, chuA) and several other virulence genes were present in the Esc 

strain. The curli fiber gene cluster csg, efflux transporter periplasmic adaptor subunit acrA, 

bacteriocins gene cluster ent and Type VI secretion systems locus (T6SS) were found in the ECC 

strain (Table 1, Fig. 2). 
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Fig.2. The dendrogram and heat map generated using the presence and absence of virulence genes (blue boxes indicate 

the presence of genes and grey boxes indicate the absence of genes).  

Siderophore genes: fyuA , irp1, irp2, iucA, iucD, iutA, ybtA, ybtE, ybtP, ybtQ, ybtS, ybtT, ybtU, ybtX, chuA, fepA; 

iron uptake genes: kfuA, kfuB, kfuC, irp, sitA; fimbrial adherence determinant genes: fimA, fimD, mrkA, mrkB, mrkC, 

mrkD, mrkF, mrkH, mrkI, mrkJ, afaA, afaC, afaD, iha, yfcV; serum survival gene: iss; capsular polysaccharide gene: 

kps; outer membrane proteas: ompT; secreted autotransporter toxin: sat; tellurium ion resistance protein: terC; serum 

resistance-associated outer membrane lipoprotein: traT; Curli fiber gene: csgA, csgB, csgC, csgD, csgE, csgF, csgG; 

efflux transporter periplasmic adaptor subunit: acrA; bacteriocins genes: entA, entB, entC, entE,entF, entF; Type VI 

secretion systems locus: T6SS. 

 

AMR and virulence genes associated MGE 

Several AMR genes and virulence genes were associated with MGE (Table 2). In all isolates 

ISEcp1 flanked upstream of blaCTX-M-15. In Kp1, Kp3 and Kp6, ColKP3(size ~ 6.1kb) plasmids 

carried the blaOXA-48-like genes flanked by ISEcp1(IS1380 family) (Fig. 3). In Kp2 and Kp4, IncR 

plasmids (size ~ 31kb and ~ 42kb) carried sul1 and tet(A) flanked by IS6100 (Table 2). In Kp1, 

Kp3 and Esc, IncF plasmids (size ~ 59kb) carried virulence genes (eg. traT, sitA). In Kp1 and Esc 

strain the IncF plasmid (size ~ 65kb) carried both an AMR gene (blaTEM-1B) and a virulence gene 

(traT) (Fig. 3). Clusters of AMR genes, encoding resistance to multiple antimicrobial classes 

associated with MGE were identified in seven of the eight strains (Kp1, Kp3-Kp6, Esc, ECC) (Fig. 

4).  

 

Table 2 MGE associated with AMR and virulence genes 

 

 



10 
 

(a) 

 

 

 

 

(b) 

 

(c) 

 

(d) 
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Fig. 3. Plasmid maps of AMR plasmids identified in K. pneumoniae.  

ColKP3 plasmids; (a), ColKP3 carrying blaOXA-232 in Kp1; (b), ColKP3 carrying blaOXA-181 in Kp3; (c), ColKP3 

carrying blaOXA-181 in Kp6. (d), IncF plasmid carrying blaTEM-1B AMR gene (red) and traT virulence gene (blue) 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

 

(e) 

 

(f)
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(g)

 

Fig. 4. Clusters of AMR genes encoding resistance to multiple antimicrobial classes (aac(6')-Ib-cr, ARR3, blaOXA-

1, catB3 and sul), associated with MGE .  

(a)-(e), clusters of AMR genes associated with MGE in K. pneumoniae; (f), cluster of AMR genes associated with 

MGE in E. coli; (g), cluster of AMR genes associated with MGE in E. cloacae. 

 

Discussion 

We studied six MDR  K. pneumoniae (Kp1-Kp6), one E. coli (Esc) and one Enterobacter cloacae 

(ECC) strain from a collection of 120 uropathogenic Enterobactericeae isolated from HA-UTI in 

two hospitals in the Western Province of Sri Lanka during 2015–2016. 

While K. pneumoniae ST15 and ST147 have been reported in Sri Lanka previously [16,17], this 

paper describes the isolation of K. pneumoniae ST16, E. coli ST131 and E. hormaechei subsp. 

steigerwaltii ST93 for the first time in Sri Lanka. These STs are globally successful clones, known 

to disseminate multidrug resistance and associated with hospital outbreaks in many countries [2, 

7, 9]. 

The isolates harboured genes coding for resistance to 6 or more antibiotic classes exemplifying 

co-selection of resistance genes. The co-occurrence of multiple AMR genes in Sri Lanka has been 

reported previously only in K. pneumoniae [17]. This paper broadens this to include both E. coli 

and E. hormaechei. Although all the isolates were carbapenem resistant by disc diffusion, three 
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strains, Kp2, Kp5 and Esc, did not carry any known carbapenemase genes. The combination of 

multiple Amp C / ESBL production and other resistance mechanisms may have resulted in 

phenotypic carbapenem resistance in these isolates [18].  The blaNDM gene in the ECC strain was 

found together with the ble gene which confers resistance to bleomycin. This association has been 

identified regularly in blaNDM producing isolates of Enterobacterales [19, 20]. Both the blaNDM and 

the ble gene are believed to have originated from the same progenitor [19]. In Kp5, blaLAP-2 and 

qnrS1, which are known to co-exist, were found together, flanked by ISEcl. The blaLAP-2 gene has 

been found on unknown plasmids in Enterobacterales from China, Tunisia, Norway and the 

Netherlands and its close association with qnrS1 flanked by ISEcl has been reported [21]. 

However, in our study we could not identify any plasmid associated with these genes. 

The K. pneumoniae strains harbored fimbrial genes (fim, mrk) that play a role in the pathogenesis 

of UTI [22]. The type 3 fimbrial adhesins gene cluster mrk, which is associated with biofilm 

formation, was present in all the K. pneumoniae strains. In Kp1, Kp3 and Esc the serum resistance-

associated outer membrane lipoprotein (traT) which has a predominant role in pathogenicity was 

identified. Several extraintestinal pathogenic Escherichia coli (ExPEC) associated virulence genes 

(afaA, afaC, afaD, chuA, irp2, iutA, kpsM, ompT, sitA, terC , traT, and yfcV ) previously 

described in highly pathogenic E.coli isolated from hospital-acquired infections in different 

countries were seen in Esc [22]. The virulence genes iha and iss which are frequently reported in 

E. coli ST131 were also present in our isolate [14]. Overexpression of the efflux pump gene acrA 

has been observed to increase antibiotic resistance and virulence in E. cloacae [23]. The T6SS 

gene cluster coding for the type VI secretory system, which confers the ability to survive in a range 

of environments, was seen in the ECC strain [15].  
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 The blaCTX-M-15 gene in all the isolates had the international ISEcp1-blaCTX-M type genetic context 

[24]. BlaOXA48-like carbapenemase genes (blaOXA-181 and blaOXA-232) in three of our isolates (Kp1, 

Kp3 and Kp6) were carried by ColKP3 plasmids and were associated with ISEcp1. This 

association has been reported previously both globally and locally [17, 25, 26]. Although plasmids 

of the IncF group are some of the most frequent resistance plasmids found in Enterobacterales, 

none of the K. pneumoniae strains in our study carried AMR genes on IncF plasmid replicons [27]. 

However, these plasmids carried virulence genes such as traT and sitA in some strains (Kp1 and 

Kp3). In Esc an AMR gene (blaTEM-1B) and a virulence gene (traT) were found in combination on 

an IncF plasmid replicon. High rates of IncF plasmids co-harboring resistant and virulence genes 

have been reported in China [28].  In Kp2, Kp4 and Kp6 the AMR genes present on IncR plasmid 

replicons (sul1, tetB) were associated with insertion sequence IS6100. Although IncR plasmids are 

believed to be nontransferable, association with such transposable elements may allow the spread 

of these genes [29].  

 

We found that AMR gene clusters of 3 to 4 genes conferring resistance to multiple antimicrobial 

classes were flanked by mobile elements in almost all the strains which may indicate co-

transmission of these genes. The most common AMR genes located in these clusters were aac(6')-

Ib-cr, blaOXA-1 and catB3 flanked by IS26 (composite transposon). This cassette is widely 

distributed in Enterobacterales in China [30]. 

Conclusion 

The concomitant presence of resistance against multiple antibiotics and virulence factors facilitates 

bacterial pathogenicity in hospital-acquired infections.  We studied eight MDR uropathogenic 

Enterobacterales isolated from HA-UTI in Sri Lanka using genomic sequencing and comparative 
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genome analysis. A diverse variety of antibiotic resistance genes, virulence genes and associated 

MGE were identified that indicate the presence of highly adapted strains of MDR Enterobacterales 

in the hospital setting in Sri Lanka. 

Methodology 

Study setting 

Eight Enterobacterales strains found to be multidrug resistant by disc diffusion [ 31] were selected 

from a collection of 120 uropathogenic Enterobacterales from HA-UTI from two tertiary care 

hospitals, Sri Jayawardenepura General Hospital (SJGH) and Neville Fernando Teaching Hospital 

(NFTH), in the Western Province of Sri Lanka in 2015/2016. Six K. pneumoniae strains (Kp1-

Kp6), one E. coli strain (Esc) and one Enterobacter cloacae strain (ECC) were included in the 

study. (Table 1).  

Table 1 Clinical data and characteristics of strains under study 

WGS and comparative genome analysis 

WGS was performed by the MicrobesNG service (http://www.microbesng.uk). Comparative 

genome analysis of WGS data was done using bioinformatics tools. The species of the ECC strain 

and the STs of the isolates were identified by the MLST tool provided by the Centre for Genomic 

Epidemiology (CGE) [32] and the Institut Pasteur BIGSdb database [33, 34]. Capsule synthesis 

(K) and lipopolysaccharide (O) loci of K. pneumoniae were determined using Kaptive2 [35]. 

E. coli serotype was determined using SerotypeFinder 2.0 [36] and the FimH type was identified 

by FimTyper 1.0 [37]. 

http://www.microbesng.uk/
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The presence of virulence genes in the K. pneumoniae isolates was investigated using the Institut 

Pasteur BIGSdb database [33, 34]. Virulence genes of E. coli were investigated using 

virulencefinder 2.0 at Center for Genomic Epidemiology (CGE) [37] and the virulence genes of 

ECC were queried from the virulence factor database (VFDB) using reference genomes [38].  The 

National Center for Biotechnology Information (NCBI) GenBank Basic Local Alignment Search 

Tool (BLAST) tool [39] was used to find the corresponding regions with the highest similarity 

scores (100% coverage, 99% identity) to confirm identification. Antibiotic resistance genes were 

recognized using Resfinder 2.1 provided by the CGE [40].  

MGE flanking AMR genes and virulence genes were identified by MobileElementFinder [41]. 

Plasmid replicons and MGE were further identified by PlasmidFinder 1.3 [42] and by ISFinder 

[43]. The NCBI GenBank BLAST tool [39] was used to confirm the corresponding regions with 

the highest similarity scores (100% coverage, 99% identity) [44]. Schematic maps of the plasmids 

and the flanking regions of the bla genes were created using snapgene. 

 

Whole-genome sequences of the six Sri Lankan Enterobacterales strains have been submitted to 

the GenBank at National Center for Biotechnology Information (NCBI) under BioProject 

accession number PRJNA717825. The genome sequence accession numbers are 

JAGKSN000000000, JAGKSM000000000, JAGRPG000000000, JAGKSL000000000, 

JAGKSK000000000, JAGKSJ000000000, JAGKSH000000000 and JAGKSI000000000 
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Abbreviations 

AMR: Antimicrobial resistance 

BLAST: Basic Local Alignment Search Tool 

CGE: Center for Genomic Epidemiology 

ECC: Enterobacter cloacae complex 

ESBL: Extended spectrum β-lactamase 

Esc: Escherichia coli  

HA-UTI: Hospital acquired urinary tract infections 

K: Capsule synthesis loci 

Kp: Klebsiella pneumoniae  

MDR: Multidrug resistant 

MGE: Mobile genetic elements 

NCBI: National Center for Biotechnology Information 

NFTH: Neville Fernando Teaching Hospital 

O: Lipopolysaccharide loci 

SJGH: Sri Jayawardenepura General Hospital 

ST: Sequence types 

UTI: Urinary tract infections 
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VFDB: Virulence factor database 

WGS: Whole genome sequencing 
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Tables 

Table 1 Clinical data and characteristics of strains under study 

   Molecular typing Resistance Profile CLSI disc diffusion  

Strain 

ID 

Hospital Unit Sample Date ST Serotypes AMR genes 

Virulence 

genes 

C

P

D 

C

A

Z 

C

T

X 

C

R

O 

A

Z

M 

F

E

P 

F

O

X 

C

T

T 

I

P

M 

M

E

M 

E

T

P 

Kp1 SJGH MW Urine 

Oct-

2015 
ST16 

 

K15, K17, 

K51, K52 

O3b 

blaCTX-M-15,  

blaSHV-1,  

blaOXA-1, 

 blaOXA-232, 

aac(6')-Ib-cr, 

 erm(B), catB3, 

aac(6')-Ib-cr, 

oqxA, ARR-3, 

sul, dfrA1 

fyuA, irp1, 

irp2, ybtA, 

ybtE ybtP, 

ybtS, ybtT, 

ybtU, ybtX, 

traT, fimA, 

mrkA,mrkB,

mrkC,mrkD

,mrkF,mrkH

, mrkI, mrkJ 

R R R R R R R R R R R 

Kp2 SJGH ICU Urine 

Oct-

2015 
ST147 

K64 

O2v1 

blaCTX-M-15,  

blaSHV-11, 

blaTEM-1B, 

aph (6)-Id,  

aph (3'')-Ib, 

qnrS1, oqxA, 

sul1, dfrA1,  

tet(A) 

fyuA, irp1, 

irp2, ybtA, 

ybtE, ybtQ, 

ybtS, ybtT, 

ybtU, ybtX, 

mrkA,mrkB, 

mrkC,mrkD 

mrkF,mrkH, 

mrkI, mrkJ 

 

R R R R R R R R R R R 

Kp3 NFTH MW Urine 

Oct-

2015 
ST16 

K15, K17, 

K51, K52 

O3b 

blaCTX-M-15, 

 blaSHV-1, 

blaOXA-1,  

blaTEM-1B, 

blaOXA-181, 

aac (6')-Ib-cr,  

aac (3)-IId 

aadA5,mph(A) 

irp2, iucA, 

iucC, iucD, 

iutA, ybtA, 

ybtE, ybtP, 

ybtQ, ybtS, 

ybtT, ybtU, 

ybtX, traT 

R R R R R R R R R R R 
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,catB3,oqxA, sul1,  

dfrA17, tet(B) 

fimA, mrkA, 

mrkB,mrkC, 

mrkD,mrkF, 

mrkH, mrkI, 

mrkJ 

 

Kp4 NFTH MW Urine 

Oct-

2015 
ST147 

K64 

O2v1 

blaCTX-M-15, 

blaSHV-11 

blaOXA-1,  

blaTEM-1B 

blaOXA-181 

aac(6')-Ib-cr, 

aph(3')-Ib, 

aph(6)-Id,  

catB3, oqxA, 

qnrS1, sul1,  

dfrA1, tet(A) 

fyuA , irp1, 

ybtA, ybtE, 

ybtQ, ybtS, 

ybtT, ybtU, 

ybtX,mrkA,

mrkB,mrkC,

mrkD,mrkF, 

mrkH, mrkI, 

mrkJ 

 

R R R R R R R R R R R 

Kp5 SJGH MW Urine 

Nov-

2015 
ST15 

K112 

O1v1 

blaCTX-M-15,  

blaSHV-28, 

blaOXA-1, blaDHA-1, 

blaLAP-2 

aac(6')-Ib-cr, 

 aph(3')-Ia, 

fosA, catB3, 

oqxA, qnrS, 

qnrB4,  

sul1, sul2,  

dfrA14, tet(A) 

kfuA, kfuB, 

kfuC,mrkA, 

mrkB, mrkC 

 

R R R R R R R R I S S 

Kp6 SJGH ICU Urine 

Nov-

2015 
ST147 

K64 

O2v1 

blaCTX-M-15,  

blaSHV-11, 

blaOXA-1,  

blaTEM-1B, 

blaOXA-181, 

aac(6')-Ib-cr,  

aac(3)-IIa, 

aph(3'')-Ib,  

aph(6)-Id, 

catB3, oqxA, 

 qnrS1, sul1, 

dfrA14, tet(A) 

fyuA , irp2, 

ybtA, ybtQ, 

ybtS, ybtT, 

ybtU, ybtX 

mrkA,mrkB, 

mrkC,mrkD

,mrkF,mrkH

,mrkI, mrkJ 

 

R R R R R R R R R R R 
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MW, Medical Ward; ICU, intensive care unit; R, resistant; I, intermediate; S, susceptible; CPD, 

cefpodoxime; CAZ, ceftazidime; CTX, cefotaxime; CRO, ceftriaxone; AZM, aztreonam; FEP, 

cefepime; FOX, cefoxitin; CTT, cefotetan; IPM, imipenem; MEM, meropenem; ETP, ertapenem  

 

 

 

 

 

 

Esc NFTH MW Urine 

Oct-

2015 
ST131 

 

O25:H4 

blaCTX-M-15, 

blaTEM-1B, 

blaOXA-1, 

aac(6')-Ib-cr, 

 aph(6)-Id,  

aac(3)-IIa, 

 aadA5, mph(A), 

mdf(A), catB3, 

 sul1, sul2, 

dfrA17,tet(A) 

afaA,afaC, 

afaD,chuA, 

fyuA,iha, 

irp2, iss, 

iucC, iutA, 

kpsE, 

kpsMII, 

ompT, sat, 

sitA,terC, 

traT, yfcV 

R R R R R R R R S S R 

ECC SJGH ICU Urine 

Oct-

2015 
ST93 - 

blaACT-7,  

blaCTX-M-15, 

blaTEM-1B, blaOXA-1, 

blaNDM-4,  

blaOXA-181, 

aac(3)-IIa,  

aac(6')-Ib-c, 

aph(3'')-Ib,  

aph(6)-Id,  

fosA, mph(A),  

aac(6')-Ib-cr, 

sul2, dfrA14,  

catA2,tet(D) 

mrkB, 

mrkF, fimA, 

fimD, csgA, 

csgD, csgE, 

csgF, acrA, 

entA, entB, 

entC, entE 

,entF, entS 

fepA, fepB, 

fepC, fepD, 

fepG, 

T6SS gene 

cluster,csgB

, csgC, csgG 

R R R R R R R R R R R 
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Table 2 MGE associated with AMR and virulence genes 

 

 AMR gene Virulence 

Gene 

Plasmid  

replicons 

MGE 

Kp1 

(ST16) 

erm(B)   IS26-IS26 composite 

transposon 

 blaCTX-M-15   ISEcp1, 

Tn3-like transposon 

  

blaOXA-1- catB3- ARR3- emrE- sul1 

   

Tn3-like transposon 

  

blaOXA-232 

  

ColKP3 

 

ISEcp1 

 

  traT IncFII(K)  

Kp2 

(ST147) 

blaCTX-M-15   ISEcp1, 

Tn3-like transposon 

 

 sul1  IncR IS6100 

 

  fyuA  ISEc33 

 

Kp3 

(ST16) 

blaCTX-M-15   ISEcp1, Tn3-like 

transposon 

 

 aac(6')-Ib-cr - blaOXA-1 - catB3   ISEc9, IS26-IS26 

composite transposon 
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 blaTEM-1B traT IncFII 

 

 

 blaOXA-181  ColKP3 ISEcp1 

 

  sitA IncFIA ISKpn8 

 

Kp4 

(ST147) 

blaCTX-M-15   ISEcp1, Tn3-like 

transposon 

 

 aac(6')-Ib-cr - blaOXA-1 - catB3   IS26-IS26 composite 

transposon 

 

 tet(A)  IncR IS6100 

 

Kp5 

(ST15) 

blaCTX-M-15 iutA  ISEcp1, Tn3-like 

transposon 

 

 aac(6')-Ib-cr - blaOXA-1- catB- sul   ISEc33, ISVsa3 

 

 aph(3')-Ia   IS26-IS26 composite 

transposon 

 

 qnrS1 

 

blaLap-2 

  ISKpn19, ISEcl1 

 

ISEcl1 
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Kp6 

(ST147) 

blaCTX-M-15   ISEcp1, Tn3-like 

transposon 

 

 aac(6')-Ib-cr - blaOXA-1 - catB3   IS26-IS26 composite 

transposon 

 

 tet(A)   IS6100 

 

 blaTEM-1B   ISKpn19 

 

  irp2  ISEc33 

 

 blaOXA-181  ColKP3 ISEcp1 

 

Esc blaCTX-M-15   ISEcp1, Tn3-like 

transposon 

 

 aac(6')-Ib-cr - blaOXA-1 - catB3   IS26-IS26 composite 

transposon 

 

 dfrA17   IS6100 

 

 mdf(A) ompT  MITEEc1/ IS630 

 

 tet(A) sitA  Tn5403, Unit transposon 
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 blaTEM-1B traT IncFII ISEc63, Tn3-like 

transposon 

 

   

iutA 

  

IS30, IS629 

 

  fyuA  ISEc38 

 

  yfcV  MITEEc1/ IS630 

 

  kpsMII  IS4 

 

  afaC  IS640/ IS21 

 

  Usp  ISEc53 & ISEc52 

 

  terC  MITEEc1/ IS630 

 

ECC blaCTX-M-15   ISEcp1, Tn3-like 

transposon 

 

 aac(6')-Ib-cr - blaOXA-1 - catB3   IS26-IS26 composite 

transposon 

 

 sul2   IS5075/ IS110 

 

 blaNDM-4 - ble   IS5 

 


