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Abstract

Neural oscillations often occur as transient bursts with variable amplitude and

frequency dynamics. Quantifying these effects is important for understanding

brain–behaviour relationships, especially in continuous datasets. To robustly

measure bursts, rhythmical periods of oscillatory activity must be separated

from arrhythmical background 1/f activity, which is ubiquitous in electrophys-

iological recordings. The Better OSCillation (BOSC) framework achieves this

by defining a power threshold above the estimated background 1/f activity,

combined with a duration threshold. Here we introduce a modification to this

approach called fBOSC, which uses a spectral parametrisation tool to accu-

rately model background 1/f activity in neural data. fBOSC (which is openly

available as a MATLAB toolbox) is robust to power spectra with oscillatory

peaks and can also model non-linear spectra. Through a series of simulations,

we show that fBOSC more accurately models the 1/f power spectrum com-

pared with existing methods. fBOSC was especially beneficial where power

spectra contained a ‘knee’ below �.5–10 Hz, which is typical in neural data.

We also found that, unlike other methods, fBOSC was unaffected by oscillatory

peaks in the neural power spectrum. Moreover, by robustly modelling back-

ground 1/f activity, the sensitivity for detecting oscillatory bursts was standar-

dised across frequencies (e.g., theta- and alpha-bands). Finally, using openly

available resting state magnetoencephalography and intracranial electrophysi-

ology datasets, we demonstrate the application of fBOSC for oscillatory burst

detection in the theta-band. These simulations and empirical analyses high-

light the value of fBOSC in detecting oscillatory bursts, including in datasets

that are long and continuous with no distinct experimental trials.
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1 | INTRODUCTION

Rhythmical signals are present in many different types of
neural data, from single neuron measurements to
non-invasive magnetoencephalography (MEG) or
electroencephalography (EEG) recordings of large-scale
population dynamics (Başar et al., 2000; Buzsaki, 2006).
Changes in the amplitude of these neural oscillations are
linked to a range of cognitive tasks within specific fre-
quency bands. For example, motor tasks are associated
with dynamic beta-band (13–30 Hz) changes (Barratt
et al., 2018; Neuper & Pfurtscheller, 2001), and higher-
level executive functions (e.g., working memory and
memory encoding) are associated with theta-band (3–
7 Hz) changes (Costers et al., 2020; Herweg et al., 2020;
Roux & Uhlhaas, 2014). From a theoretical perspective,
oscillations have been argued to play a mechanistic role
in the dynamic temporal and spatial organisation of
neural activity (Bastos et al., 2015; Buzsaki, 2006;
Fries, 2015). Furthermore, perturbations to oscillations
are associated with several clinical conditions, including
Autism spectrum disorder (Kessler et al., 2016; Seymour
et al., 2019), schizophrenia (Kirihara et al., 2012; Thuné
et al., 2016) and mild traumatic brain injury (Allen
et al., 2021).

Electrophysiological analyses typically average oscil-
latory power across trials. However, oscillations within
single trials are often high-amplitude and transient,
occurring as short ‘bursts’ of activity (Jones, 2016; Jones
et al., 2009; Stokes & Spaak, 2016). The characteristics of
this bursting behaviour often go unstudied, meaning that
potentially important information in neural datasets is
missed. Single trial burst analyses allow the separation of
rhythmical burst amplitude from duration (Kosciessa
et al., 2020; Quinn et al., 2019). Furthermore, characteris-
ing oscillations as bursts rather than sustained rhythmi-
cal signals is more physiologically faithful, which has
implications for brain–behaviour relationships (Stokes &
Spaak, 2016). For example, within the motor literature, it
has recently been demonstrated that the rate and timing
of beta bursts in humans is more predictive of behaviour
than mean beta amplitude (Bonaiuto et al., 2021; Jana
et al., 2020). Consequently, there is increasing interest in
characterising the bursting properties of neural
oscillations (Bonaiuto et al., 2021; Jones, 2016; Kosciessa
et al., 2020; Stokes & Spaak, 2016). This will be particu-
larly important for continuous datasets, which cannot be
split into distinct trials, such as naturalistic paradigms
involving free movement (Seymour et al., 2021; Stangl
et al., 2021).

Rhythmical bursts occur in the context of a continu-
ous, arrhythmic, fractal-like background component in
neural data (He, 2014; He et al., 2010; Miller et al., 2009).

The power spectral density of this component decreases
logarithmically with frequency, such that P ≈ 1/fβ, where
β is the power-law exponent (Chaudhuri et al., 2017;
Miller et al., 2009). β typically varies between 1 and 3 in
human electrophysiological data (He, 2014; He
et al., 2010; Miller et al., 2009). Here we refer to this
activity as ‘(background) 1/f activity’, but others call it
‘scale-free’ (He et al., 2010) or ‘aperiodic’ (Donoghue,
Haller, et al., 2020). This type of activity is ubiquitous
across a wide range of systems, from empty-room EEG
and MEG recordings to economic data (He et al., 2010).
In the context of brain dynamics, neural 1/f activity is
not simply a summation of multiple oscillations but
potentially reflects the population firing rate (Manning
et al., 2009; Miller, 2010) and also relates to the balance
between excitatory and inhibitory neural circuits (Gao
et al., 2017). Dynamic changes to background 1/f activity
have also been associated with various aspects of
cognitive function independently of oscillations (Gao
et al., 2020; Helfrich et al., 2021; Lendner et al., 2020;
Wilson et al., 2022). Given their different neural origins,
it is vital to robustly separate background 1/f activity
from oscillations (Donoghue, Dominguez, &
Voytek, 2020; Donoghue, Haller, et al., 2020; Gerster
et al., 2021; He, 2014). This presents a challenge from a
data analysis perspective, given that electrophysiological
tools concurrently measure both rhythmic and arrhyth-
mical signals (Donoghue et al., 2021).

There are several burst detection methods that aim to
solve this problem, but here we focussed on the Better
OSCillation (BOSC) framework (Hughes et al., 2012;
Whitten et al., 2011), which works as follows: for each
frequency of interest, a power threshold is defined based
on the modelled background 1/f spectrum. In addition, a
duration threshold is defined, typically equivalent to 2–3
oscillatory cycles. An oscillatory burst is said to be
detected when both the power and duration thresholds
are exceeded. BOSC has been applied successfully to a
range of electrophysiological datasets in humans and
rodents (Caplan et al., 2001; Hughes et al., 2012; Stangl
et al., 2021; Whitten et al., 2011).

Here, we introduce a modification to the BOSC
method by modelling the background 1/f activity with a
recently developed spectral parametrisation tool
(Donoghue, Haller, et al., 2020). Using simulated data,
we show that our tool, called fBOSC, recovers 1/f signals
with greater accuracy than existing methods, especially
in situations with non-linear power spectra. Simulations
also show that by modelling the 1/f spectrum more
accurately, fBOSC standardises burst detection across
frequency bands. Finally, we demonstrate the empirical
utility of fBOSC using openly available MEG and intra-
cranial EEG (iEEG) datasets.

SEYMOUR ET AL. 5837
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2 | MATERIALS AND METHODS

2.1 | The BOSC framework and different
approaches to 1/f fitting

The BOSC framework determines the frequency and
duration of transient oscillatory bursts above and beyond
the background 1/f power spectrum present in neuro-
physiological data (Hughes et al., 2012; Whitten
et al., 2011). The first step involves a time-frequency
decomposition of each experimental trial, typically using
Morlet wavelets to control time-frequency trade-offs. The
logarithmically transformed power spectrum, averaged
over trials, is then used to fit the background 1/f activity
over all frequencies of interest (e.g., 2–64 Hz). A power
threshold based on this 1/f fit is then calculated, for
example, at the 99th percentile of the theoretical
probability distribution (with chi-squared form) of power
values at a given frequency. A duration threshold is also
defined, typically equivalent to 2 or 3 oscillatory cycles.
For each trial, if the power at a given frequency exceeds
the threshold and lasts longer than the duration thresh-
old, an oscillation is said to be detected.

A key part of the BOSC framework is the accurate
modelling of 1/f background activity, as it is used to
directly define the power threshold. The original
BOSC implementation (Hughes et al., 2012; Whitten
et al., 2011) uses ordinary least squares regression to fit

the power spectrum in log–log space (Figure 1, left).
However, when a prominent peak(s) exists in the power
spectrum, this approach can lead to a skewed 1/f fit. For
example, Whitten et al. (2011) noted that performing the
background fit on data with a large alpha-band peak
(where eyes were closed) led to different results
compared to data with a relatively flat spectrum (when
eyes were open). To address this, an extended BOSC
(eBOSC) implementation (Kosciessa et al., 2020) was
introduced using MATLAB’s robustfit function to
down-weight outliers. In addition, eBOSC allows the user
to exclude certain peak frequencies during the 1/f fit (see
Figure 1, middle).

However, two issues remain. First, where oscillatory
peaks exist in the power spectrum, the eBOSC approach
requires manual specification of peak frequencies, which
is not ideal for data automation and processing pipelines.
Furthermore, exclusion of multiple frequencies in the
power spectrum may lead to a poor 1/f fit. Second, where
power spectra are non-linear when plotted in log–log
space, the linear methods used by BOSC and eBOSC will
be unsuitable. This is especially problematic during the
analysis of lower frequency oscillatory bursts (e.g., delta-
and theta-bands), as human neurophysiological data
often exhibits a bend or ‘knee’ at �.5–10 Hz (He, 2014;
He et al., 2010). Furthermore, there is emerging evidence
that the broadband power spectrum of humans is highly
non-linear and is best modelled by the sum of two

F I GURE 1 Different methods for modelling the background 1/f power spectrum within the Better OSCillation (BOSC) framework. The

original BOSC implementation uses an ordinary least squares approach. The extended BOSC (eBOSC) toolbox uses MATLAB’s robustfit
function while also allowing the user to exclude peaks. fBOSC uses the fitting oscillations and one over f (FOOOF) algorithm to parametrise

the neural spectra. In this example, a non-linear 1/f frequency spectrum with a prominent knee is plotted in log–log space. Unlike fBOSC,
the 1/f fits from BOSC and eBOSC (red dotted line) fail to model this non-linear spectrum. Power thresholds (plotted in green) are therefore

higher for frequencies below the knee when using BOSC and eBOSC compared to fBOSC.
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Lorentzian functions (Chaudhuri et al., 2017; Gao
et al., 2017).

To address these issues, we introduce a modification
to the 1/f fitting procedure under the BOSC framework,
using the ‘fitting oscillations and one over f’ (FOOOF)
spectral parametrisation algorithm (Donoghue, Haller,
et al., 2020). We call this modification fBOSC
(FOOOF + BOSC, see Figure 1, right). In short, the
FOOOF algorithm performs an initial 1/f fit and itera-
tively models oscillatory peaks above this background as
Gaussians. These peaks are removed from the spectra
and the 1/f fit is performed again. Consequently, the fit
is not influenced by oscillatory peaks (Donoghue,
Haller, et al., 2020; Wilson et al., 2022), and no manual
selection of peak frequencies is required, as is the case for
eBOSC. FOOOF can also model the 1/f power spectrum
as either linear or non-linear. In the latter case, a variable
knee parameter is included. This addresses the second
issue with the BOSC/eBOSC fitting approaches.

An additional advantage of FOOOF is that the 1/f fit
returns several parameters describing the shape of the
spectrum over frequencies of interest (f ). First, the offset
parameter (b), which corresponds to the overall up/down
translation of the whole spectrum. Second, the exponent
(β) describes the rate of decay over frequency (Chaudhuri
et al., 2017; Miller et al., 2009). The third optional
parameter, k, describes the knee in the power spectrum.
These parameters are estimated by the fit of the function
(L) to the background 1/f activity, expressed as follows:

L fð Þ¼ b� log kþ f β
� � ð1Þ

2.2 | Code availability

We share the MATLAB code for fBOSC openly at https://
github.com/neurofractal/fBOSC. The code is built on top
of the original BOSC (Caplan et al., 2001) and eBOSC
(Kosciessa et al., 2020) code and is shared under a GNU
General Public License v3.0. fBOSC is also compatible
with the post-processing options included with eBOSC.
For all results presented here we used v0.1 of fBOSC
and the original Python implementation of FOOOF
(Donoghue, Haller, et al., 2020). However a MATLAB
version of the same algorithm has also been implemented
within fBOSC, adapted from Brainstorm (Tadel
et al., 2011). All FOOOF parameters were set to the
Python defaults: smallest peak width = .5; largest peak
width = 12.0; maximum number of peaks = infinite;
minimum peak height = 0; relative threshold for detect-
ing peaks = 2 standard deviations.

2.3 | Simulations

Various simulations were performed to assess the perfor-
mance of BOSC, eBOSC, and fBOSC. We generated two
types of data to mimic background, aperiodic neural
activity with either linear or non-linear 1/f slopes when
plotted in log–log space. Data with linear 1/fβ power
spectra were generated by filtering randomly generated
data using the cnoise MATLAB toolbox (https://people.
sc.fsu.edu/�jburkardt/m_src/cnoise/cnoise.html). The β
exponent was equal to 2, to approximately mimic human
neurophysiological data. Data with non-linear 1/f power
spectra were generated by convolving Poisson activity
with exponential kernels that mimic the shape of post-
synaptic potentials, using the Python neurodsp toolbox
(sim_synaptic_current function; Cole et al., 2019). These
neurophysiologically plausible data had a prominent
knee in the power spectrum when plotted in log–log
space. For both linear and non-linear simulations,
200 trials, each lasting 60 s, were computed at a 500 Hz
sampling rate. Sine waves at 4 or 10 Hz were then added
to simulate oscillatory bursts in the theta-band alone or
the alpha-band alone. These lasted 15 s in total but were
broken into transient bursts and placed pseudo-randomly
(separated by at least .5 s) within the 60-s-long trial. To
approximately mimic physiological bursting behaviour,
each sine wave varied randomly between two and seven
cycles (theta-band) or 8–30 cycles (alpha-band) and were
separated by a minimum of .5 s (Aghajan et al., 2017;
Kosciessa et al., 2020; Whitten et al., 2011). The ampli-
tude of the sine waves were equivalently scaled to specific
signal-to-noise ratios (SNRs) based on the relative ampli-
tude of band-pass filtered data (1 Hz bandwidth) at 4 or
10 Hz. Note that SNR in the context of our study refers to
the relative measure between background 1/f power and
rhythmical power at 4 or 10 Hz, rather than the overall
SNR across all frequencies (Kosciessa et al., 2020). To
approximate the variability of theta/alpha bursts in
neurophysiological data, the SNR of each burst was
varied randomly between 5 and 12. Finally, we simulated
data with oscillatory bursts at both theta and alpha
frequencies by concatenating 60-s-long trials together
(i.e., creating 120-s-long trials, with theta bursts in the
first 60 s and alpha bursts in the last 60 s).

For BOSC, eBOSC and fBOSC analyses, we used
frequency sampling at logarithmically spaced frequencies
(log base 2) between 2 and 64 Hz. Time-frequency
analysis was conducted using Morlet wavelets (six
cycles). This was performed on the simulated data before
and after the oscillatory bursts were added. The mean
power spectrum over all trials was then used for the 1/f
fit in BOSC, eBOSC and fBOSC. For eBOSC, frequencies
between 3–7 (theta) and 7–13 Hz (alpha) were excluded

SEYMOUR ET AL. 5839
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from the 1/f fit. For fBOSC, the aperiodic mode was mod-
elled with a knee for the non-linear 1/f data, and without
a knee (fixed) for the linear 1/f data. For each trial, the
1/f fit from all three methods was compared with the
power spectrum of the original 1/f data using the
root-mean-squared error (RMSE) metric.

When FOOOF is used to model power spectra with a
knee, the 1/f fit will contain an extra term, k (see
Equation 1), corresponding to a bend in the power
spectrum when plotted in log–log space. Consequently,
for the non-linear simulations, the 1/f fit from fBOSC will
be more complex than for eBOSC and BOSC. To rule out
the possibility that RMSE differences between methods
were influenced by differences in model complexity
(i.e., over-fitting), we conducted two follow-up analyses.
First, we performed 10-fold cross validation. The simu-
lated data were split into a training dataset (90% of trials)
and a testing dataset (10% of trials). Using the training
data, the background 1/f activity was estimated using
BOSC, eBOSC and fBOSC and the resulting 1/f model fit
from each method was used to predict the 1/f power
spectrum in the testing dataset. This was repeated itera-
tively for each fold of the data. Second, we repeated the
simulation analyses using the non-linear 1/f data and the
Akaike information criterion (AIC) rather than RMSE to
quantify the error between the ground truth and pre-
dicted 1/f fit. AIC is defined in Equation (2), where n is
the number of observations, SSE is the sum of square
error and c is the number of independently adjusted
parameters within the model. This is a commonly used
method for model selection since the c term penalises
models for complexity.

AIC¼ n ln
SSE
n

� �
þ2c ð2Þ

In a separate analysis, using BOSC, eBOSC and fBOSC,
we used the 1/f fitting procedures to define a power
threshold (.99, chi-squared distribution), combined with
a duration threshold (three oscillatory cycles) to detect
oscillatory bursts. For each trial, the hit rate (time points
where a burst was simulated and detected) and the false
alarm rate (time points where a burst was not simulated
but detected) was quantified for the theta- and alpha-
bands.

2.4 | Resting state MEG data analysis

We compared burst detection between BOSC, eBOSC and
fBOSC using an openly available MEG dataset from
the Young Adult Human Connectome Project (HCP;
Larson-Prior et al., 2013). Resting state data from the first

50 participants were used (26 female, 24 male; participant
numbers 100307 to 214524; first run only), which had
been pre-processed using a standardised HCP MEG Pipe-
line (see https://www.humanconnectome.org/software/
hcp-meg-pipelines). The resting state scan involved
participants looking at a screen and fixating on a red
cross for 6 min. Sensor-level data were mapped to source
space using a linearly constrained minimum variance
beamformer (Van Veen et al., 1997), as implemented in
the Fieldtrip toolbox (Oostenveld et al., 2011). For the
forward model, the participant’s T1-weighted structural
MRI scan was used to create a single-shell description of
the inner surface of the skull (Nolte, 2003). Using SPM12,
a non-linear spatial normalisation procedure was used to
construct a volumetric grid (8-mm resolution) registered
to the canonical Montreal Neurological Institute brain.
The source-localised data were then parcellated into
42 cortical regions of interest (ROIs) based on a down-
sampled version of the whole brain HCP multimodal
atlas (Glasser et al., 2016). The right dorsolateral
prefrontal cortex had the highest abundance of theta
bursts, and we therefore concentrated further analyses on
this ROI. For burst detection, the power threshold for
rhythmicity at each frequency was set at the 99th
percentile of a chi-squared distribution of power values,
in combination with a duration threshold of three
oscillatory cycles.

2.5 | Resting state iEEG data analysis

We also analysed an openly available resting state iEEG
dataset, originally published by Miller et al. (2012, 2017).
The data were collected from 10 patients (aged 18–42)
with implanted electrocorticographic grids for the moni-
toring and treatment of medically-refractory epilepsy. A
total of 533 electrodes were analysed across the
10 patients, which were mainly located across bilateral
frontal and frontotemporal areas (exact electrode
placements were not provided). Patients were instructed
to fixate on an ‘X’, which was located on a wall 3 m
away, for a duration of 2–3 min. Data were sampled at a
rate of 1000 Hz. Raw iEEG timeseries were loaded into
MATLAB, down-sampled to 200 Hz, notch filtered at
60 Hz, followed by a high-pass filter at .5 Hz and low-
pass filter at 90 Hz (5th order Butterworth filters applied
bidirectionally to achieve zero-phase shift). All patients
participated in a purely voluntary manner, after
providing informed written consent, under experimental
protocols approved by the Institutional Review Board
(IRB) of the University of Washington (#12193). All
patient data were anonymised according to IRB protocol,
in accordance with HIPAA mandate.

5840 SEYMOUR ET AL.
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2.6 | Statistical analysis

Statistical analyses were conducted using the JASP
software package (Love et al., 2019). One-way ANOVAs
were used to compare RMSE, hit rate, false alarm rate
and theta abundance across the three methods BOSC,
eBOSC and fBOSC. Post hoc tests were then conducted
with Bonferroni correction. For the knee versus fixed
analysis, a paired two-tailed t test was used.

3 | RESULTS

3.1 | fBOSC reduces 1/f fit error

To compare our fBOSC method, which combines FOOOF
spectral parametrisation with the BOSC framework, to
existing methods (BOSC and eBOSC, see Figure 1) we
performed a series of simulations. Data with a linear or
non-linear background 1/f power spectrum were com-
bined with simulated oscillatory bursts in the theta-band
(4 Hz), the alpha-band (10 Hz), or both bands, at SNRs
randomly varying between 5 and 12. The RMSE between
the simulated 1/f power spectrum (with known ground

truth) and the 1/f fit using BOSC, eBOSC and fBOSC was
calculated. Note that lower RMSE values indicate better
performance. We chose to simulate sinusoids at 4 and
10 Hz as we expected these frequency bands to show the
greatest differences between the methods, especially
when embedded within a non-linear 1/f power spectrum.

Results for the simulated data with a linear 1/f power
spectrum are shown in Figure 2a–c. Across all three
simulated oscillatory burst conditions (theta alone, alpha
alone, theta and alpha) there was a main effect of
method, F(2,597) > 1057, p < .001. Follow-up tests
showed that fBOSC outperformed BOSC, with signifi-
cantly lower RMSE values across all bursting conditions,
all p < .001. eBOSC had lower RMSE values than BOSC,
p < .001, suggesting that the use of robustfit and exclu-
sion of oscillatory peaks improves 1/f fitting (Kosciessa
et al., 2020). There were no significant differences in
RMSE values between fBOSC and eBOSC, p > .05.

Simulation results for data with a non-linear 1/f
power spectrum are shown in Figure 2d–f. Across the
different burst conditions (theta alone, alpha alone, theta
and alpha) there was a main effect of method, F(2,597)
> 2485, p < .001. Follow-up tests showed fBOSC had
significantly lower RMSE values compared with the other

F I GURE 2 Simulations were performed using data with either a linear (a–c) or non-linear (d–f) background 1/f power spectrum. These

data were then combined with simulated bursts in the theta-band alone (4 Hz), alpha-band alone (10 Hz) or both the theta- and alpha-bands

(4 and 10 Hz). The signal-to-noise ratio (SNR) of the bursts was varied between 5 and 12. For each set of simulations, the root-mean-squared

error (RMSE) between the estimated and actual 1/f fit was plotted for Better OSCillation (BOSC), extended BOSC (eBOSC) and fBOSC.

Individual data points correspond to RMSE values from each simulated trial. Error bars correspond to standard error.

SEYMOUR ET AL. 5841
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two methods, all p < .001. RMSE values were especially
large for eBOSC when theta frequencies were excluded
from the 1/f fit (bottom panel, left and right). By exclud-
ing frequencies, the eBOSC 1/f fitting procedure assumes
that the angle of the linear slope between 7 and 40 Hz
extends below 7 Hz, when in fact there is a non-linear
knee (also, see Figure 1, middle panel). Consequently,
eBOSC had higher RMSE values than fBOSC and BOSC
for the simulated data with embedded theta bursts or a
combination of theta and alpha bursts, p < .001. Similar
results were obtained for simulations with very high SNR
bursts (SNR varying between 24 and 48; see Figure S1).

When using fBOSC to model the simulated non-linear
1/f power spectrum, we chose to include an extra param-
eter, k (see Equation 1), to model the non-linear knee.
This means that the model describing the 1/f fit for
fBOSC was more complex than the models for BOSC and
eBOSC. The lower RMSE values for fBOSC reported in
Figure 2 may therefore have resulted from over-fitting
rather than genuinely better modelling of the power spec-
trum. To investigate this further, we repeated the simula-
tion analyses for the non-linear 1/f data and performed
10-fold cross validation (see Section 2). For every fold and

across all burst conditions (theta alone, alpha alone,
alpha and theta), RMSE values for the test data were
lowest for fBOSC, followed by BOSC and then eBOSC
(Figure 3a–c). This suggests that using fBOSC with the
knee option of FOOOF did not result in over-fitting and
was the best of the three methods for modelling non-
linear 1/f power spectra. We also performed another
analysis to check for over-fitting—the simulation ana-
lyses were repeated using the AIC metric for model
selection (see Section 2). AIC values were lower for
fBOSC than for BOSC and eBOSC (see Figure S2), again
suggesting that despite being more complex, fBOSC
performed background 1/f fitting better than BOSC and
eBOSC, when power spectra were non-linear.

To assess how the three methods dealt with the
presence of oscillatory peaks in the power spectrum, we
repeated the simulation analyses using data with a 1/f
non-linear background spectrum and oscillatory bursts in
the theta- and alpha-bands. The SNR of the embedded
bursts was increased from 0 to 24 in steps of 2, and no
random variation in burst SNR was present as for the
previous simulations. This had the effect of introducing
increasingly large oscillatory peaks into the power

F I GURE 3 Ten-fold cross validation was performed using the simulated non-linear 1/f data with embedded oscillations in the theta-

(a), alpha- (b) or theta- and alpha-bands (c). The root-mean-squared error (RMSE) of the test data is plotted for each method (Better

OSCillation [BOSC], extended BOSC [eBOSC] and fBOSC) and for each fold. Error bars indicate standard error for each method and fold.
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spectrum. The RMSE between the simulated non-linear
1/f power spectrum and the fit from BOSC, eBOSC and
fBOSC is plotted in Figure 4. eBOSC had the highest
overall RMSE values, due to the exclusion of frequencies
below 7 Hz when modelling the power spectrum. RMSE
values also slightly increased as a function of SNR. BOSC
had lower RMSE values than eBOSC; however, these
increased sharply as a function of SNR. This replicates a

well-known issue with the BOSC background 1/f fitting
approach (Kosciessa et al., 2020; Whitten et al., 2011).
The RMSE error over trials was lowest for fBOSC, with a
negligible increase as a function of oscillatory burst SNR.
Overall, these simulations demonstrate that the 1/f fit
from fBOSC is more accurate than the other two
methods, including when the spectrum is non-linear
and/or contains large oscillatory peaks.

3.2 | fBOSC standardises burst detection
across frequencies

Inaccuracies during the 1/f fit lead to inappropriate
power thresholds for burst detection (see Figure 1, green
line). In the case of non-linear power spectra, BOSC and
eBOSC fail to model the knee, resulting in differing sensi-
tivities to oscillatory burst detection based on whether
the frequency of the burst is above or below the knee,
assuming a fixed power threshold is used. As an illustra-
tion of this, Figure S3 shows an example theta burst
detected using fBOSC but not eBOSC. To investigate this
further, we performed a series of simulations with a non-
linear 1/f background power spectrum, with embedded
oscillatory bursts in theta-band (4 Hz) or alpha-band

F I GURE 4 Simulations using data with a non-linear 1/f

power spectrum and embedded theta and alpha bursts. The signal-

to-noise ratio (SNR) of the bursts was increased from 0 to 24, in

steps of 2. The root-mean-squared error (RMSE) between the

estimated and actual 1/f fit was plotted for Better OSCillation

(BOSC), extended BOSC (eBOSC) and fBOSC for each of the SNRs.

F I GURE 5 Simulations were performed using data with a non-linear 1/f power spectrum and embedded theta or alpha bursts (signal-

to-noise ratio, SNR, varied between 5 and 12). Better OSCillation (BOSC), extended BOSC (eBOSC) and fBOSC were used to detect these

oscillatory bursts. The (a) hit rate and (c) false alarm rate of theta and alpha burst detection are plotted for all three methods. The difference

in (b) hit rate and (d) false alarm rate between theta and alpha burst detection is also plotted, with an additional dotted line at 0. Across all

plots, individual data points correspond to each simulated trial. Error bars correspond to standard error.
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(10 Hz). The SNR of the bursts were scaled according to
background 1/f activity at 4 or 10 Hz. The hit rate and
false alarm rates for theta/alpha burst detection were
then compared between BOSC, eBOSC and fBOSC. As
shown in Figure 5a, the hit rate for burst detection in the
alpha-band was higher than the theta-band when using
BOSC and eBOSC. However, for fBOSC, the hit rate was
constant across theta and alpha (Figure 5a). Formal
comparison of the difference between hit ratealpha and hit
ratetheta showed that there was an effect of method
F(2,597) = 129.4, p < .001, with fBOSC having signifi-
cantly lower values than BOSC and eBOSC, p < .001.
Unlike BOSC and eBOSC, the hit rate difference for
fBOSC was close to 0 (Figure 5b), indicating no disparity
between frequency bands.

False alarm rates were higher for alpha bursts than
for theta bursts when using BOSC and eBOSC, but not
for fBOSC (Figure 5c). Again, we subtracted false alarm
ratealpha from false alarm ratetheta and compared the
methods (Figure 5d). There was an effect of method
F(2,597) = 174.0, p < .001, with fBOSC having lower
values than the BOSC and eBOSC, p < .001. The

difference in false alarm rate between alpha and theta
bursts for fBOSC was close to 0 (Figure 4d). Similar false
alarm results were obtained for simulations with very
high amplitude bursts (SNR = 24–48; see Figure S4).
Overall, our results show that when analysing data with
a non-linear 1/f spectrum, fBOSC standardises the sensi-
tivity for detecting oscillatory bursts across frequencies,
in terms of hit rate and false alarm rate.

3.3 | Modelling 1/f activity: Fixed versus
knee parameter

The simulation analyses showed that fBOSC outper-
formed BOSC and eBOSC particularly in situations where
the 1/f power spectrum was non-linear. In human elec-
trophysiological data, this non-linearity typically presents
itself as a knee in the power spectrum from �.5–10 Hz
(Gao et al., 2017; He, 2014; He et al., 2010). To investigate
whether modelling the knee reduces modelling errors in
real data, we analysed MEG and iEEG resting state
electrophysiological datasets (Larson-Prior et al., 2013;

F I GURE 6 Neural power spectra are often non-linear. Power spectra are plotted on a log–log scale from one example

magnetoencephalography (MEG) dataset (a) and one intracranial electroencephalography (iEEG) dataset (b). Individual lines correspond to

regions of interests (ROIs) (MEG) or electrodes (iEEG). Note the prominent knee in the power spectrum below �8 Hz. The difference in

root-mean-squared error (RMSE) when modelling the 1/f power spectrum as linear (fixed) or non-linear (can contain a knee parameter)

using fitting oscillations and one over f (FOOOF) (Donoghue, Haller, et al., 2020) was plotted for MEG (c) and iEEG (d) datasets. Individual

data points correspond to ROIs across participants (MEG) or electrodes across patients (iEEG). Error bars correspond to standard error.
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Miller et al., 2012; see Section 2). The power spectrum
from each ROI/electrode was computed using Welch’s
method. Example power spectra are plotted from one
MEG participant (Figure 6a) and one iEEG patient
(Figure 6b). Note the non-linear nature of the spectrum
when plotted in log–log space, with a prominent knee
below �8 Hz. Across all MEG participants and iEEG
patients the spectra were parametrised using the ‘fixed’
option of the FOOOF algorithm (Donoghue, Haller,
et al., 2020), which assumes a linear 1/f, or the knee
option, which assumes a non-linear 1/f. We specified a
frequency range of 1–40 Hz, overlapping with the fre-
quency of delta, theta, alpha and beta oscillations. To
avoid over-fitting, we used 10-fold cross validation—90%
of the data was used as training data and parameterised
using FOOOF (fixed and knee options). The resulting
parameters were used to predict the power spectrum of
the remaining held-out testing data, using RMSE to
quantify performance. This was repeated for each fold of
the data, and RMSE was averaged over each iteration.
RMSE values were then compared between the fixed and
knee options. Specifically, we subtracted RMSEfixed

� RMSEknee. As shown in Figure 6, for both MEG
(Figure 6c) and iEEG (Figure 6d) the difference in RMSE
was significantly greater than 0, p < .001, suggesting
increased accuracy when using the knee compared with
the fixed option. This demonstrates how non-linear 1/f
power spectra are common in human electrophysiologi-
cal data when analysing frequencies between 1 and
40 Hz. We expect our fBOSC method to be particularly
useful in these situations, and especially when analysing

oscillatory bursts overlapping with the knee frequency
(�.5–10 Hz).

3.4 | fBOSC and theta-band burst
detection

Next, we used BOSC, eBOSC and fBOSC to detect oscilla-
tory bursts in the same MEG and iEEG datasets with the
aim of quantifying differences in burst detection between
the methods. We focussed on theta-band (3–7 Hz) bursts
where errors in the 1/f fit will be highest for non-linear
power spectra when using BOSC or eBOSC (Figure 1).
Quantifying the bursting properties of theta rhythms is of
particular interest for the study of working memory
(Lisman, 2010), autobiographical memory retrieval
(Barry et al., 2019) and spatial navigation in humans
(Stangl et al., 2021).

For the MEG dataset (Larson-Prior et al., 2013),
across 50 participants we quantified theta burst
‘abundance’, defined as the duration of the theta
rhythmic episode relative to the length of the analysed
data segment. Abundance values are scaled between
0 and 1, where 0 indicates no burst present and 1 indi-
cates a burst continuously present. This is crucial metric
in burst analysis as it helps separate rhythmic duration
from power (Kosciessa et al., 2020). Focussing on the ROI
with the highest theta abundance (right dorsolateral
prefrontal cortex, Figure 7a), we statistically compared
abundance values as quantified using BOSC, eBOSC and
fBOSC (Figure 7b). There was a main effect of method,

F I GURE 7 Better OSCillation (BOSC), extended BOSC (eBOSC) and fBOSC were used to detect oscillatory bursts in resting state

magnetoencephalography (MEG) data. (a) We focussed on a region of interest in the right dorsolateral prefrontal cortex, where theta bursts

were most prominent (vertices within the regions of interest, ROI, are plotted in green and rendered on a cortical mesh using Connectome

Workbench). (b) Theta (3–7 Hz) burst abundance was quantified as the duration of rhythmic episodes relative to the length of the recording

and plotted separately for each method. (c) Theta burst signal-to-noise ratio (SNR) was quantified as the power of each burst relative to the

background 1/f fit at 3–7 Hz. Individual data points correspond to each MEG participant. Error bars correspond to standard error.
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F(2,147) = 8.151, p < .001, with follow-up tests showing
that fBOSC produced higher theta abundance values than
the other two methods, p < .005. This result is unsurpris-
ing, given that the 1/f fit will be lower at theta frequen-
cies for fBOSC than for BOSC and eBOSC, accurately
reflecting the knee in the power spectrum (Donoghue,
Haller, et al., 2020; He, 2014; He et al., 2010). We also
quantified the mean SNR of theta bursts versus the back-
ground spectrum at 3–7 Hz. There was a main effect of
method, F(2,147) = 46.77, p < .001, with follow-up tests
showing a reduction in mean theta SNR for fBOSC versus
the other two methods, p < .001 (Figure 7c).

For the iEEG dataset (Miller et al., 2012), we repeated
the theta abundance analysis using data from
533 electrodes across 10 participants (see Section 2).
Theta abundance values were statistically compared
using BOSC, eBOSC and fBOSC (Figure 8a). Again, there
was a main effect of method, F(2,1596) = 57.43, p < .001,
with follow-up tests showing that fBOSC produced higher
theta abundance values than BOSC and eBOSC, p < .001.
The SNR of each theta burst was also quantified using all
three methods (Figure 8b). There was a main effect of
method, F(2,1596) = 7.53, p < .001, with follow-up tests
showing that fBOSC produced higher SNR values than
eBOSC, p < .001, and there was a trend for higher fBOSC
SNR values compared with BOSC, p = .053. Overall, our
analysis of theta bursts in human MEG and iEEG
electrophysiological datasets showed that using fBOSC
produced statistically different results compared to BOSC
or eBOSC. Specifically, at a set fixed threshold, BOSC and
eBOSC produced lower theta abundance and either lower
(MEG) or higher (iEEG) SNR values when a knee was
present in the power spectrum.

4 | DISCUSSION

In this study we presented an improved method for
oscillatory burst detection based on the BOSC framework
(Caplan et al., 2001; Hughes et al., 2012). To separate
background 1/f neural activity from rhythmical bursts,
the BOSC framework models the average neural
power spectrum across trials to define a power threshold
per frequency of interest. Rather than using existing
linear regression approaches, here we utilised a
recently developed spectral parametrisation algorithm
(Donoghue, Haller, et al., 2020), which accurately
models neural power spectra across a wide variety of
conditions.

A series of simulation analyses were performed to
compare our modified method, fBOSC, with existing
approaches: (i) the original BOSC implementation, which
uses a partial least squares regression for 1/f fitting, and
(ii) the extended BOSC implementation (Kosciessa
et al., 2020), which uses MATLAB’s robustfit function for
1/f fitting combined with manual removal of oscillatory
peaks (Figure 1). Simulation analyses for data with a
linear power spectrum showed that fBOSC more
accurately modelled the 1/f slope than the original BOSC
implementation, and performed similarly to eBOSC. We
also replicated an established issue with the original
BOSC implementation (Whitten et al., 2011), whereby
the fit is biased by peaks in the power spectrum. Simula-
tions were also performed using data with a non-linear
1/f slope, containing a prominent knee below �5 Hz
(Gao et al., 2020; He, 2014). Both BOSC and eBOSC failed
to accurately model the power spectrum in this context
resulting in high RMSE values. The errors were

F I GURE 8 Using resting state intracranial electroencephalography (iEEG) data from 10 patients, theta (3–7 Hz) burst abundance

(a) was quantified as the duration of rhythmic episodes relative to the length of the recording. (b) Theta burst signal-to-noise ratio (SNR) was

quantified as power of each burst relative to background 1/f fit at 3–7 Hz. Abundance and SNR values are plotted separately for each

method. Individual data points correspond to each of the 533 electrodes across the 10 patients. Error bars correspond to standard error.
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particularly high for eBOSC after removal of peaks below
the knee frequency. These results are unsurprising, given
that both methods assume a linear 1/f slope. By contrast
FOOOF can model neural power with an additional knee
parameter and, consequently, across all simulations,
fBOSC produced the lowest modelling errors (Figure 2).
These results were not caused by over-fitting from the
addition of the extra knee parameter, k (Figures 3 and
S2). Furthermore, fBOSC was shown to be relatively
unaffected by the presence of increasingly large oscilla-
tory peaks in the power spectrum (Figure 4). This is
presumably because FOOOF models peaks as Gaussians,
iteratively removes them from the power spectrum, and
then re-models the flattened 1/f slope (Donoghue, Haller,
et al., 2020). This leads to more accurate 1/f fits
compared with the exclusion of peaks as used in eBOSC
(Kosciessa et al., 2020). We also note that the modelling
and removal of peaks is automated through the use of
FOOOF, whereas the exclusion of peaks requires user
specification with eBOSC.

Within the BOSC framework, the 1/f fit is used to
directly determine the power threshold. Consequently,
any inaccuracies introduced during the 1/f modelling
process will have knock-on effects for burst detection.
Where oscillatory peaks bias the 1/f fit (Figure 4), the
power threshold will be artificially increased across some
or all frequency bands of interest. The failure to model
the knee in the power spectrum has even greater conse-
quences, as shown in Figure 5. Using simulated data with
a non-linear 1/f power spectra, BOSC and eBOSC had
dramatically different hit rates and false alarm rates
between theta-band and alpha-band bursts. This is
because theta bursts occur below the knee frequency,
whereas alpha bursts occur above the knee frequency. Of
course, this assumes a fixed threshold was used across
frequencies (e.g., the 99th percentile of the theoretical
probability distribution). In contrast, fBOSC displayed
identical hit rate and false alarm rates for theta and alpha
bursts embedded within simulated data with a non-linear
background 1/f spectrum. Our fBOSC method, therefore,
ensures equivalent sensitivity for burst detection across
frequency bands.

The empirical application of fBOSC was demon-
strated using MEG and iEEG resting state datasets, which
showed evidence of non-linear power spectra (Figure 6).
We focussed on quantifying theta-band (3–7 Hz) bursts
below the �5-Hz knee. There were quantifiable differ-
ences in the abundance and SNR of theta bursts when
using fBOSC compared to BOSC or eBOSC. Abundance
values were approximately 1% higher for the iEEG data
when using fBOSC (Figure 8). This is presumably due to
the failure of BOSC and eBOSC to accurately model the
bend in the power spectrum overlapping with theta

frequencies. Interestingly, theta SNR burst increased
when using fBOSC for the iEEG dataset, but decreased
for the MEG dataset, highlighting the dissociation
between burst abundance and amplitude between data-
sets (Kosciessa et al., 2020). On a practical level, fBOSC is
expected to give the greatest benefits over and above
existing BOSC methods for the detection of bursts below
or overlapping with the knee frequency, that is, delta
(1–2 Hz), theta (3–7 Hz) and potentially alpha (8–13 Hz)
bursts. This could be particularly useful in the field of
memory research to disentangle the roles of theta oscilla-
tions from dynamic tilts in the background 1/f spectrum
(Herweg et al., 2020). In terms of higher-frequency bursts
(e.g., beta and gamma), the advantages of using fBOSC
compared with the existing methods are likely to be more
subtle. In neural data, frequencies from 10 to 100 Hz are
accurately modelled with linear approaches (He, 2014;
Kosciessa et al., 2020; Miller et al., 2012), although our
simulation analyses (Figure 2, top panel) did reveal that
fBOSC significantly improved 1/f fitting for linear power
spectra compared to BOSC.

More generally, our findings highlight the importance
of robustly separating background 1/f activity from
rhythmical activity. Neural oscillations are generated by
groups of neuronal ensembles firing in a regular,
synchronised manner (Buzsaki, 2006; Buzs�aki &
Draguhn, 2004). These often occur within single trials as
transient bursts (Bonaiuto et al., 2021; Jones, 2016;
Stokes & Spaak, 2016). On the other hand, background
1/f neural activity is highly correlated with asynchronous
population neuronal firing rates in macaques and
humans (Manning et al., 2009). Interestingly, the knee
frequency at .5–10 Hz is related to a decay constant (Gao
et al., 2020), potentially from membrane leak (Miller
et al., 2009). Rhythmical oscillations and arrhythmical 1/f
activity are concurrently measured with iEEG/EEG/
MEG, but are clearly dissociable in terms of their neural
origins (He, 2014; Miller et al., 2012). Both types of
activity are physiologically important for cognition, but
conflating them has consequences for the interpretation
of neuroscientific findings. There is emerging evidence
that previously reported oscillation-related effects might
actually be driven by a spectral tilt of the 1/f power
spectrum (Donoghue, Haller, et al., 2020; Herweg
et al., 2020; Lendner et al., 2020; Ouyang et al., 2020). For
example, He et al. (2019) recently reported that the
classic developmental redistribution of oscillatory power
from lower to higher frequencies during childhood can
be partly explained by a flatter 1/f slope in children
compared to adults. Calculating the power ratio between
frequency bands also conflates rhythmical and 1/f
arrhythmical components of neural signals (Donoghue,
Dominguez, & Voytek, 2020).
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One of the primary goals of any burst detection
algorithm should be the robust isolation of rhythmical
signals from background 1/f activity and other
experimental noise (Donoghue et al., 2021; van Ede
et al., 2018). fBOSC achieves this with greater accuracy
and flexibility than existing BOSC methods. In addition,
fBOSC returns parameters describing the shape of back-
ground 1/f activity from the FOOOF parametrisation
(offset, exponent and knee), which can be examined
separately from any oscillatory bursting properties. These
parameters could, for example, be used to estimate
population neuronal firing rates between participants
(Voytek et al., 2015), between different experimental
conditions (Gao et al., 2020) or between different stages
of sleep (Lendner et al., 2020).

When analysing neural power spectra, there are
several methodological points to be considered. We refer
the interested reader to Donoghue, Haller, et al. (2020)
and Gerster et al. (2021) for thorough guidelines. One
commonly encountered issue is the modelling of spectra
with oscillatory peaks crossing the edge of the frequency
range. This creates large fitting errors as FOOOF models
complete Gaussian peaks (Gerster et al., 2021). If the situ-
ation is unavoidable, users should specify a smaller fitting
range at higher frequencies (via the cfg.fBOSC.fooof.set-
tings option). One particularly important user-defined
parameter when using FOOOF is whether to model the
power spectrum with (knee) or without (fixed) a non-
linear bend. Generally, this should be present in human
neurophysiological data around .5–10 Hz (Chaudhuri
et al., 2017; Gao et al., 2020). We opted to use a cross
validation procedure to quantify modelling errors when
using FOOOF with the knee or fixed options for MEG
and iEEG datasets between 1 and 40 Hz, concluding
that it was better to use the knee option. A similar
procedure could be used for model selection in other
datasets to determine whether modelling the knee is
warranted.

More generally, fBOSC users should routinely
visualise the 1/f fit using fBOSC_fooof_plot.m to identify
inaccurate 1/f fitting results. When performing burst
analysis, we would also recommend estimating the back-
ground 1/f spectrum separately between experimental
conditions or participant groups of interest. This ensures
that any reported burst-related differences are not simply
a reflection of a spectral tilt of the 1/f slope between
conditions or groups (He et al., 2019; Weber et al., 2020;
Wilson et al., 2022). The parametrised 1/f slope properties
returned by fBOSC could also be compared between
conditions. It should be noted that FOOOF (Donoghue,
Haller, et al., 2020) is not the only spectral parametrisa-
tion tool available. One popular alternative is Irregular-
Resampling AutoSpectral Analysis (IRASA), which

estimates fractal activity through a resampling procedure
(Wen & Liu, 2016). However, IRASA operates in the time
domain rather than on power spectra, and can distort 1/f
fits when data contain a knee (Donoghue, Haller,
et al., 2020). FOOOF also has reduced computational
costs compared with IRASA.

The BOSC framework, which detects bursts via
amplitude and duration thresholds, is an intuitive,
computationally inexpensive and flexible tool for
oscillatory burst analysis (Caplan et al., 2001; Hughes
et al., 2012). It exists alongside a plethora of other burst
detection techniques. Our method, fBOSC, is conceptu-
ally similar to the recently developed Periodic/Aperiodic
Parameterization of Transient Oscillations (PAPTO)
approach (Brady & Bardouille, 2022), in that background
1/f activity is parametrised using FOOOF (Donoghue,
Haller, et al., 2020). However, PAPTO has a different
amplitude threshold procedure (Shin et al., 2017) and
post-processing options. Other methods include the use
of hidden Markov models (HMMs) to characterise tran-
sient changes in spectral power across multiple frequency
bands (Quinn et al., 2019). However, it is unclear
whether HMM-based methods are able to properly
separate dynamically changing 1/f activity from oscilla-
tory bursting across frequencies. It is also important to
note that where neural oscillations are non-sinusoidal or
possess some other non-linear property, the Fourier-
based decomposition of signals used within the BOSC
framework will be unsuitable and may lead to spurious
results (Donoghue, Haller, et al., 2020). Non-sinusoidal
oscillatory bursts would be better quantified through
empirical mode decomposition (Huang et al., 1998;
Quinn et al., 2021) or time domain approaches based on
waveform shape (Cole & Voytek, 2019). A principled
comparison between different burst detection methods is
beyond the scope of this article but would be of benefit to
the field.

One way in which fBOSC could be improved upon in
the future is in terms of the dynamic estimation of
background activity. In the current implementation,
time-frequency spectra are averaged with the assumption
that 1/f activity is constant across trials or conditions.
However, it is well established that background 1/f
activity can be dynamic, changing with arousal level
(Lendner et al., 2020) and during cognitive tasks (Gao
et al., 2020). Time varying spectral parametrisation
approaches (Wilson et al., 2022) are in development and
could be used to dynamically update the power threshold
used for burst detection. This would be particularly
useful for situations where dynamic 1/f changes co-occur
with oscillatory bursts, as well as for longer EEG/MEG
sleep recordings where the tilt of the 1/f slope changes
dramatically between sleep stages (Lendner et al., 2020).
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Of course, this would come with the added computa-
tional effort of parametrising multiple neural spectra.

4.1 | Conclusions

We have presented a tool for oscillatory burst detection,
which combines spectral parametrisation (FOOOF;
Donoghue, Haller, et al., 2020), with the BOSC frame-
work, termed fBOSC. This modification addresses two
issues with existing methods when modelling the 1/f
background spectrum of neural data (Caplan et al., 2001;
Kosciessa et al., 2020; Whitten et al., 2011). First, it is
robust to oscillatory peaks in the power spectrum.
Second, it can accurately model non-linear power spectra
containing a knee. By robustly separating background 1/f
activity from neural oscillations, fBOSC ensures that the
power threshold used for burst detection is consistent
across frequencies. Our tool is openly available for use at
https://github.com/neurofractal/fBOSC.
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