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Abstract—This paper aims at bringing some light and under-
standing to the field of deep learning for dynamic point cloud
processing. Specifically, we focus on the hierarchical features
learning aspect, with the ultimate goal of understanding which
features are learned at the different stages of the process and
what their meaning is. Last, we bring clarity on how hierarchical
components of the network affect the learned features and
their importance for a successful learning model. This study is
conducted for point cloud prediction tasks, useful for predicting
coding applications.

Index Terms—dynamic point clouds, hierarchical learning,
explanability, prediction

I. INTRODUCTION

One major open challenge in multimedia processing is
learning spatio-temporal features for dynamic point cloud (PC)
sequences. Being able to extract such information can be es-
sential for future compression algorithms. By learning spatio-
temporal features, a predictive motion-compensated coding
approach can reduce inter-frames redundancies from the com-
pressed bitstream [1]. Similarly, a PC predictor can be used
as learning-based decoder [2]. More at large, spatio-temporal
features are important also in high-level PC downstream tasks
such as action recognition, prediction and obstacle avoidance.
As of today, one of the most successful methodology is to
learn features via deep neural networks applied to each point
(or group of points) instead of the whole PC. This enables
the consumption of the raw PC data directly, without pre-
processing steps (e.g., voxelization) that could obscure natural
invariances of the data or introduce quantization errors. An
example is the pioneer PointNet [3] architecture, which learns
global PC features by aggregating local spatial features learned
by processing each point independently.

However, in such architecture, the local structures of the PC
are neglected. From convolutional neural networks (CNNs),
we know that leveraging the local structure is a key aspect of
the success of CNNs, in which local features are extracted
from small neighborhoods, grouped into larger units, and
processed to produce higher level features. This is the well-
known “hierarchical feature extraction”, deeply used in 2D
computer vision and processing tasks. In PCs, neighboring
points form a meaningful subset that captures key semantic
information about the 3D geometry; hence they should retain
even more information than the 2D counterpart. Because of

Fig. 1: Hierarchical learning of features. The network pro-
cesses a dynamic PC at progressively larger scales to learn
features. The learned features are represented as point color
using principal component analysis (PCA).

this intuition, PointNet++ [4] introduced a hierarchical archi-
tecture for PC processing, capturing features at increasingly
larger scales along a multi-resolution hierarchy. This concept
is illustrated in Figure 1, where a PC input is processed
at different scales (middle part of the figure) to extract
hierarchical features (right side of the figure) at different
levels. At the lower level (“Local” in the figure), each point
neighborhood covers a small and densely populated region,
extracting fine geometric structures. In contrast, at the higher
levels (“Global” in the figure), the network captures coarser
structures from larger neighborhoods. Given the increasing
importance of dynamic PC sequences in a wide spectrum of
applications from automation to virtual reality, several works
have extended the PointNet++ network by introducing spatio-
temporal neighborhoods in order to learn temporal features.
Most of these works adopt hierarchical architectures [5]–[9],
which can be considered the de-facto approach for dynamic
point cloud processing today.

The common intuition is that such hierarchical architecture
allows learning more descriptive features, pushing researchers
to develop even more hierarchical (and possibly complex)
models. However, why such models work and which features
do they learn in the framework of PC processing is still not
understood and usually overlooked in the literature. Initial
understanding has been provided for the PointNet model [3],
[10]. However, such efforts are limited to the original PointNet,
which does not have a hierarchical learning architecture and it
processes static PCs only, leaving a gap in the understanding
of current PC processing models. For example, which motion
or flow is learned at the different stages of the hierarchical
architecture is unknown. Also which key components of the
networks (multi-scaling, stacking of deep nets, etc.) lead to



Fig. 2: Classic hierarchical architecture of Graph-RNN with three levels for the prediction task.

the success of the model remain overlooked. Bringing more
clarity to such hierarchical learning models when applied
to dynamic PC sequences is the goal of this work, which
provides a clear understanding of the hierarchical spatial-
temporal features extraction in dynamic PCs.

Specifically, we perform an experimental study using state-
of-the-art prediction architecture via hierarchical Recurrent
Neural Networks (RNN) proposed in Point-RNN [9] and
improved in Graph-RNN [7]. To this end, we design different
variations of the hierarchical architecture and perform an
ablation study across architectures using a dataset of human
body motion [11], with the clear intent of disentangling the
multi-scale effect from the deep learning one. Then, we
explain the learned features for each tested architecture by
visualizing the body motion vector. This strategy allows us
to demonstrate how learning features at multiple scales is
equivalent to extracting local and global temporal correlations
from data. This confirms what has been studied in CNN
architectures [12]. However, unlike CNNs, in which only the
last layer features are processed to infer the final task, we
show that all the learned features are important to properly
capture complex movements (and perform downstream tasks).
In fact, we show that either when the hierarchical learning
is not considered or when is considered but only the last
level is taken into account, we cannot translate anymore the
local and global features to local and global movements and
the final task is not properly inferred. While some of these
insights might be intuitive, to the best of our knowledge this
is the first work validating those intuitions in the dynamic PC
setting. Moreover, we believe that understanding the effect of
the different components of the network on the features and
the prediction accuracy can inform future research directions
in how to learn more representative hierarchical features as
well as how to take advantage of their combination towards
the development of simpler and more accurate methods.

II. BACKGROUND - HIERARCHICAL ARCHITECTURE

Without loss of generality, we focus on the architecture
depicted in Figure 2 for the task of PC prediction [7], [9].
The architecture, which extracts the spatio-temporal features
via RNN cells, is composed by two phases:

1) Dynamic Extraction phase (DE): the network processes
the input PC frame Pt and extracts its hierarchical
features Ft;

2) Feature Propagation phase (FP): combines the learned
features to reconstruct the predicted point cloud P̂t+1,
which is the PC at the next time step.

We now describe both phases in more details.
1) Dynamic Extraction phase (DE): The DE phase takes

a PC Pt (pre-processed or raw) as input and extracts the PC
dynamic behavior. The DE phase consists of multiple stacked
RNN cells, for a total of L levels. Before being processed
by the RNN cell, the PC is downsampled by a Sampling
and Grouping (SG) module, as described in [4]. Hence, a
progressive subsampled PC is fed into subsequent RNN cells.
In each RNN, each point of the cloud is processed jointly
with its spatio-temporal neighborhood, defined as its k-closest
neighbors in space and time. It is worth noting that due to the
subsequent sampling (hence a sparser PC at later levels/RNN
cells) leads to a neighborhood with larger distances between
points. As a result, the first level learns local features F 1

t

from small scale neighborhoods whereas the last level learns
global features FL

t observing large scale neighborhoods. On
top of such multi-scale effect, the stacked RNNs make the
model deeper imposing that features learned at each level
l are the input to the next level l + 1. In natural language
processing (NLP) the advantage of staking RNN with respect
to the vanilla RNN model has been empirically proved [13].
In this work, we aim at understanding if the gain from the
stacked effect also remains in PC processing.

2) Feature Propagation phase (FP): Once DE phase has
learned the features from all the levels (F 1

t , F
2
t , ..., F

L
t ), the

FP phase combines them into a single final feature (FFinal
t ).

The combination is done by hierarchically propagating the
features from the higher levels to the lower levels through
several Feature Propagation (FP) [4] modules. This is done
by first interpolating the sub-sampled features from the higher
level to the same number of points as the lower level, followed
by a concatenation of the interpolated features with lower-
level features. The concatenation is then processed by a point-
based network and a ReLU. The process is repeated in a
hierarchical manner until the features from all the levels have
been combined into a final feature. As last step, after the
FP phase, the final features are converted into motion vectors
using a fully connected layer. The calculated motion vectors
are then added to the original PC to predict the PC at the next
time step.

It is worth noting that while the prediction phase is spe-
cific for the final application (i.e., prediction) the DE phase,
complemented by the FP phase, is the core of a hierarchical



PC processing strategy which is common to other downstream
tasks, such as classification [5] and segmentation [6].

III. EXPERIMENTAL STUDY

In this section, we present the different architectures along
with the dataset and simulation settings used in our study.

A. Dataset

Similarly to [7], we use the human Mixamo [11] dataset,
consisting of sequences of human bodies while performing
various dynamic activities such as dancing or playing sports.
The main motivations behind this selection are given in the
following: compared to real 3D scenes acquired by LiDAR
or mmWave sensors, such synthetic dataset does not suffer
from acquisition noise or quantization distortion. This makes
the dataset easy to visualize and hence to comprehend, while
also isolating the problem of learning features from noisy
corrections and other aspects that may arise in a more noisy
dataset. Additionally, the synthetic dataset allow us to generate
very different movements (from quite simply like walking to
highly complicating such as breakdance steps) and study the
learning of the highly descriptive features in such cases.

B. Experimental Architectures

To better understand and explain the hierarchical fea-
tures learning, different architectures have been implemented,
trained and compared to the Classic hierarchical architecture
depicted in Figure 2. The key idea is to isolate the multi-
scale resolution, from the “deepness” of the architecture,
disentangling in such a way the different aspects of the PC
processing. The common aspects of all implemented solutions
is the high level architecture depicted in Section II: a DE phase
(with L = 3 and downsampling factor in SG of four), a FP
phase and a final prediction step. On the other side, the models
differentiate in the RNN processing (stacked or parallel), as
well as in the sampling modules. Specifically, we implemented
the following architectures:

• Shallow hierarchical architecture – Figure 3 a): as in
Classic architecture, the PC is sub-sampled in a stacked
fashion, leading to a very sparse PC at level L = 3.
Unlike the Classic architecture, the RNN cells are in
parallel (instead of stacked), leading to a Shallow network
(local features are not grouped and processed at higher
levels). This network highlights the effect of multi-scaling
(sampling) instead of deep hierarchical learning.

• Single-scale architecture – Figure 3 b): Same architecture
as in Classic hierarchical model but without the down-
sampling modules at each level. Hence, all the levels
process the same number points and learn features at the
same scale.

• Without-combination architecture – Figure 3 c): this archi-
tecture recall the classic deep neural network in which
local features are extracted from small neighborhoods
(first RNN cell) and processed at higher (subsequent)
level. Only the last level feature is then used for the final
reconstruction. Note that in the Classic architecture all

(a) Shallow hierarchical architecture

(b) Single-scale hierarchical architecture

(c) Without-combination hierarchical architecture

Fig. 3: Experimental architectures.

features learned at different level are used for predicting
the final motion vectors.

C. Results Evaluation and Visualization

The above models, as well as the Classic one, are trained
using as loss function a combination of the Chamfer distance
(CD) [14] and earth’s moving distance (EMD) [14] to measure
the distance between predicted P̂t+1 and the target PC Pt+1, as
explained in [7]. Those metrics are also used for the evaluation
of PC prediction in the experimental results discussion. It is
worth noting that the CD distance tends to flatten all scores
toward zero values. This is because in the PC the majority of
the points are perfectly predicted (all points with no motion
or little motion) and most of the errors (high CD scores)
are focused in the high motion area. This is the area of
strongest interest in PC prediction tasks as we are interested
in understanding if the neural network is able to capture
such movements. Therefore, we also consider the CD Top 5%
metric, which looks at the CD metric of the 5% points with
the worst prediction (i.e., points with the farthest distance to
their closest point).

Besides the aforementioned metrics, we also visualize the
features learned at each level as motion vectors. This is a key
aspect to better understand the hierarchical learning process,
the goal of this paper. As shown in Figure 2, the motion vectors
are obtained by combining features from multiple levels in the
FP phase. The final features are then processed by a last fully
connected layer and converted into motion vectors. We are
interested in visualizing the actual contribution to the final
motion vectors from each level. We do this by seeing the
motion vectors as the combination of motion vectors produced
at each level i.e., Mt =

∑L
l M l

t , with Mt being the predicted
motion vectors and M l

t the motion vectors produced by level
l. Such level contribution M l

t is visualized by keeping the
features from level l and setting to zero the remaining ones
at the input of the FP phase. We then replicate the FP and



prediction phase operation with the already trained weights
and obtain the motion vector generated by level l.

IV. EXPLAINING HIERARCHICAL FEATURES

We now present and discuss the results obtained from our
study of hierarchical features, which is the core contribution
of this work. We aim at explaining what features are learned
and how these are learned in the Classic hierarchical archi-
tecture. Then, we investigate the role that the combination of
hierarchical features has in the dynamic PC processing (by
comparing the Classic with those presented above).

A. Hierarchical Learning

To study hierarchical learning in dynamic PC processing,
we study the features learned from the Classic architecture
in Figure 2. We visualize those features giving as input PC
a running person shown in Figure 4. We investigate how
each level of the architecture learns features for a given point
of interest, such as a point in the foot (red point in the
Figure 4). To do so, we first show in Figure 4 b) the multi-scale
neighborhood of the selected point in the foot at each level.
Due to the subsequent sampling in the network, the lower
level learns features only by looking at points in a small area
around the point of interest (top blue square in the figure). On
the contrary, the higher level learns features by considering
a sparser set of points in a large area (bottom gold square in
the figure). In Figure 4 c), we visualize the motion vectors M l

t

at each level of the Classic hierarchical architecture for given
time frame t. It can be observed that the lowest level captures
small and diverse motions; on the contrary, at the highest
level, a single main motion vector is learned for almost all the
points in the foot. Similarly to what happens in hierarchical
CNNs, we observe that the highest level of the network learns
global motions (for example the forward motion of the runner),
while lower levels of the architecture learn local movements
of the action (small refinement motion that defines the local
movement of the foot – which can also go up-backward when
the foot goes up). While intuitive, to the best of our knowledge,
this visualization is the first one in the literature confirming
that the intuition behind hierarchical features in CNNs can
be extended to dynamic PCs architectures and dynamic flow:
hierarchical features can be explained as local and global
motions.

To carry out our deeper understanding of hierarchical
learning, now we want to answer the following questions:
How does the hierarchical architecture learn global and local
motion? (Sections IV-B and IV-C); How does the hierarchical
PC architecture differ from CNN? (Section IV-D).

B. Is Stacked Effect the key?

To understand better how global and local motions are
learned in the hierarchical architecture, we first investigate
the effect of the stacked component on the learned features.
To do so, we compare the Classic architecture (in which
local features are aggregated and processed at a higher level)
to the Shallow one, which learns features without features

Fig. 4: (a) Input dynamic PC; (b) Multi-scale neighborhood
at different levels; motion vectors learned at level l with (c)
Classic and (d) Shallow networks.

aggregation. Note that in both architectures there is the multi-
scaling effect, with the higher lever observing a much sparser
PC (hence processing a more global neighborhood). Looking
at the motion vectors M l

t learned in the Shallow (Figure 4 d))
architecture, we can note that 1) motion vectors are all at
the same magnitude across levels; 2) at higher levels the
vectors show highly contrasting movements. This implies that
in the Shallow architecture the features lose the global and
location motion interpretation. Specifically, we do not have
the global motion (runner moving forward) being captured by
the higher levels. Similarly, lower levels do not capture only
small and refining local motions. This is motivated by the
fact that in the Shallow architecture all three levels contribute
equally to the output motion. This proves that the features
interpretation is not guaranteed by the multi-scale component
in the architecture, while it is learned by the stacked aspects of
local features being aggregated and processed to learn global
motion.

Interestingly, we have also observed that despite the missing
interpretation of global and local motion, the Shallow can
capture the overall movement of the PC and perform a decent
prediction. This is observed in Table I, which shows the
prediction error for the different architectures presented in
Section III-B. We also add the prediction error for the “Copy-
Last-Input” case, in which the prediction is simply the copy of
the previous input. This shows that all the methods investigated
in this work perform substantially better than “Copy-Last-
Input”, hence they are all able to capture some aspects of
the body movements. We also visualise in Figure 5 the
prediction for three particular sequences: Running, Jumping,
and Dancing. We can observe that the Dancing PC is very
well predicted from both Shallow and Classic architectures.
In Jumping and Running sequences, there is a mild gain from
the Classic one (see for example the arm in Jumping) but the
Shallow architecture still learns well the overall movement.
In short, while the stacked aspect has a big impact on the
interpretation of the learned feature, the performance gap is



Fig. 5: Predicted PCs in the different architecture for three
sequences of the Mixamo dataset.

not as substantial.

C. Is Multi-Scale Effect the key?

We are now interested in understanding how much the
multi-scale effect is important for capturing the PC motion.
We compare the Classic architecture to the Single-scale ar-
chitecture (i.e., without multi-scale effect) and we show that
the multi-scale is essential to achieve a good performance
(hence prediction). This is confirmed both numerically and
visually. In Table I, the Classic architecture has a better overall
prediction accuracy and from Figure 5, it is clear that Single-
scale architecture fails in capturing some local movements
such as the foot/leg in “Running”, the knee in “Jumping”
and the hands in “Dancing”. This is motivated by the fol-
lowing: in complex movement, as in the “Running”, in which
the foot performs a forward translation and rotation motion
simultaneously (Figure 4 c), the joint-motion can be captured
only by looking at points from different scales, the forward
movement required a large-scale neighborhood for example.
Only by observing the foot neighborhoods at multiple scales
both the global forward motion and local rotation motion are
captured. This ability to capture complex motion patterns as
local and global motions results in more accurate predictions.

D. Is This Like Any Other Deep Learning?

We are now interested in answering the second question:
How does the hierarchical PC architecture differ from CNN?
Both architectures use a hierarchical approach to learn global
and local features. However, in CNNs only the last layer
features are usually processed to infer the final task, while
in the Classic architecture all features from all the levels are
combined in an FP propagation phase. We then compare the
Classic architecture to the Without-combination one, which
does not combine the features from different levels. From
Figure 5, we can already observe that the Without-combination
architecture fails in predicting key local movements: knee in
“Jumping” and leg in “Dancing”. Even if the network can

TABLE I: Prediction error in all the Mixamo test sequences.

Experimental Architectures CD EMD CD
Top 5%

Classic 0.00262 59.6 0.1412
Shallow 0.00268 62.2 0.1459

Single-scale 0.00331 65.0 0.1609
Without-combination 0.00314 67.3 0.1752

Copy-Last-Input 0.01056 123.4 0.2691

learn hierarchical features, it is not able to merge the local
motions in the final reconstruction, in which only the higher
level motion is used for the prediction. As a result, the network
loses the ability to predict complex motions, resulting in an
inferior performance (validated in Table I).

V. CONCLUSION

By performing an experimental study on state-of-art archi-
tectures for PC prediction, this paper explains hierarchical
features in the context of dynamic PC processing. Specifically,
we have shown 1) the interpretation of low- and high-level
features as local and global motions; 2) the importance of
different components of the networks in current state-of-the-art
models to achieve a better PC predictions. We believe that such
insights can open the door to new designs of more efficient
and accurate networks for future PC processing tasks such as
learning-based PC compression algorithms.
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